WO2018235511A1 - 半導体モジュール - Google Patents

半導体モジュール Download PDF

Info

Publication number
WO2018235511A1
WO2018235511A1 PCT/JP2018/019846 JP2018019846W WO2018235511A1 WO 2018235511 A1 WO2018235511 A1 WO 2018235511A1 JP 2018019846 W JP2018019846 W JP 2018019846W WO 2018235511 A1 WO2018235511 A1 WO 2018235511A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
semiconductor module
wiring member
circuit pattern
wiring
Prior art date
Application number
PCT/JP2018/019846
Other languages
English (en)
French (fr)
Inventor
晃久 福本
中山 靖
小林 浩
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112018003222.1T priority Critical patent/DE112018003222T5/de
Priority to US16/606,011 priority patent/US10978364B2/en
Priority to CN201880038597.5A priority patent/CN110800104A/zh
Priority to JP2019525254A priority patent/JP6804646B2/ja
Publication of WO2018235511A1 publication Critical patent/WO2018235511A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/049Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body the other leads being perpendicular to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/647Resistive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/165Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48195Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being a discrete passive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4905Shape
    • H01L2224/49051Connectors having different shapes
    • H01L2224/49052Different loop heights
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • H01L2224/49431Connecting portions the connecting portions being staggered on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • H01L2224/49433Connecting portions the connecting portions being staggered outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1207Resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • the present invention relates to a semiconductor module, and more particularly to a semiconductor module capable of state detection.
  • semiconductor modules such as power modules are known.
  • a conduction failure may occur due to breakage of a wire connected to an electrode of the semiconductor element, and the semiconductor module may be damaged.
  • a method of detecting such damage of the semiconductor module in advance has been proposed conventionally.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-286009 proposes a method in which a dummy wire is connected to a semiconductor element separately from a wire for passing a main current, and damage to the semiconductor module is detected in advance.
  • the dummy wire in Patent Document 1 is weaker in bonding strength than a wire that passes a main current, and breaks first. For this reason, it is possible to detect breakage of the semiconductor module in advance by detecting breakage of the dummy wire before breakage of the wire for supplying the main current.
  • Patent Document 2 JP-A-10-56130 (hereinafter referred to as Patent Document 2), an emitter electrode of a semiconductor element and two lead-out terminal electrodes are respectively connected by a wire, and two lead-out terminal electrodes are connected by a resistor.
  • a semiconductor module capable of measuring a voltage value between two lead terminal electrodes is disclosed.
  • the semiconductor module disclosed in Patent Document 2 by measuring the voltage value between the two lead terminal electrodes, it is possible to detect the deterioration of the connection portion due to electromigration between one lead terminal electrode and the wire.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to obtain a semiconductor module capable of detecting breakage of the semiconductor module in advance while suppressing an increase in manufacturing cost of the semiconductor module. I assume.
  • a semiconductor module includes a semiconductor element, a circuit board, a resistor, a first wiring member, and a detection unit.
  • the circuit board includes a circuit pattern.
  • the resistor is connected to the surface of the circuit pattern.
  • the first wiring member directly connects the semiconductor element and the resistor. At least a portion of the current flowing from the semiconductor element to the circuit pattern flows through the first wiring member.
  • the detection unit detects at least one of a change in voltage drop value in the resistor and a change in current value in the resistor.
  • the detection unit it is possible to detect a change in the connection state between the semiconductor element and the circuit pattern via the first wiring member by the detection unit. Therefore, the destruction of the semiconductor module can be detected in advance based on the detection of the change by the detection unit. Furthermore, since a conventional dummy wire is not used to detect breakage of the semiconductor module, no extra area of the semiconductor element is required due to the installation of the dummy wire. Therefore, an increase in the manufacturing cost of the semiconductor module can be suppressed.
  • FIG. 7 is a partial cross-sectional schematic view showing a specific example of the semiconductor module shown in FIG. 6; It is a fragmentary sectional view of a semiconductor module concerning Embodiment 4 of the present invention.
  • FIG. 9 is a partial schematic view of the semiconductor module shown in FIG. 8; It is a partial perspective view of a semiconductor module concerning Embodiment 5 of the present invention.
  • FIG. 11 is an enlarged schematic view of a region XI shown in FIG.
  • FIG. 1 is a schematic sectional view showing a basic configuration of a semiconductor module 10000 which is a power module according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic partial perspective view showing a specific configuration of the semiconductor module 10000 shown in FIG.
  • the semiconductor module 10000 includes a base plate 7, a circuit board 3 as an insulating circuit board, a case 8, a semiconductor element 1 as a power semiconductor element, and a detection unit 12 as a detection mechanism.
  • the external terminal 11 is mainly provided.
  • the circuit board 3 includes an insulating member 302, a plate-like member 303, a circuit pattern 301a (first circuit pattern), and a circuit pattern 301b (second circuit pattern).
  • Insulating member 302 has, for example, a plate-like shape.
  • the member 303 is connected to one surface of the insulating member 302.
  • the circuit patterns 301a and 301b are disposed on the other surface of the insulating member 302 opposite to one surface to which the member 303 is connected.
  • the case 8 is connected to the outer peripheral portion of the base plate 7.
  • the case 8 has an annular shape so as to surround the outer periphery of the base plate 7.
  • the semiconductor element 1 and the circuit board 3 are disposed inside the base plate 7 and the case 8.
  • the semiconductor element 1 and the circuit board 3 are insulated and sealed by a sealing material 9.
  • the semiconductor element 1 is bonded to the surface of the circuit pattern 301 a constituting the circuit board 3 by the bonding material 2.
  • the back surface facing the circuit board 3 is bonded to the circuit pattern 301 a through the bonding material 2.
  • One end of the wiring member 4 is connected to the surface of the semiconductor element 1 opposite to the back surface in contact with the bonding material 2.
  • the other end of the wiring member 4 extends toward the circuit pattern 301 b in which the semiconductor element 1 is not disposed.
  • a resistor 5 exists between the other end of the wiring member 4 and the circuit pattern 301 b. That is, the wiring member 4 is connected to the circuit pattern 301 b via the resistor 5. By doing this, at least part of the current flowing in the current path including the semiconductor element from the circuit pattern 301 b to the circuit pattern 301 a flows through the resistor 5.
  • the circuit board 3 is surface-bonded to the base plate 7 by the bonding material 6.
  • One end of the wiring member 10 is attached to the circuit pattern 301 a of the circuit board 3.
  • the other end of the wiring member 10 is embedded in the case 8 and connected to the external terminal 11.
  • Connected to the resistor 5 is a detection unit 12 that measures a voltage drop value or a current value in the resistor 5.
  • the resistor 5 has two main surfaces.
  • the wiring member 4 is connected to one main surface.
  • the other main surface is connected to the circuit pattern 301b.
  • One of the two terminals of the detection unit 12 is connected to one main surface of the resistor 5 via the third wiring member 1201 a.
  • the other of the two terminals of the detection unit 12 is connected to the circuit pattern 301 b via the fourth wiring member 1201 b.
  • One terminal of the detection unit 12 is at substantially the same potential as one main surface of the resistor 5.
  • the other terminal of the detection unit 12 is at substantially the same potential as the other main surface of the resistor 5.
  • Each of the third and fourth wiring members 1201 a and 1201 b is connected to a region close to the resistor 5 or to the resistor 5 itself. For this reason, the current value or the voltage drop value in the resistor 5 is accurately measured by the detection unit 12.
  • the present invention can be applied to a power module of a type different from the semiconductor module 10000 shown in FIG.
  • the structure according to the form is applicable.
  • the semiconductor element 1 may be an insulated gate bipolar transistor (IGBT), a free wheel diode (FWD), a metal oxide semiconductor field effect transistor (MOSFET), or the like. Although the number of the semiconductor devices 1 is one in the semiconductor module 10000 of FIG. 1, the number of the semiconductor devices 1 is not limited to one.
  • the semiconductor module 10000 may include a plurality of semiconductor elements 1. For example, in the circuit design configured by the semiconductor module 10000, a plurality of power semiconductor devices may be selectively provided as the semiconductor device 1.
  • the bonding material 2 may be any material as long as the semiconductor element 1 can be connected to the circuit board 3.
  • the bonding material 2 is typically lead-free solder.
  • Other examples of the bonding material 2 include silver nanoparticle paste and silver paste containing an epoxy resin which is a so-called conductive adhesive.
  • the present invention is not limited to this.
  • any material can be used as the material forming the circuit patterns 301a and 301b as long as the material has conductivity.
  • a material of the circuit patterns 301a and 301b typically, a metal such as Cu or Al is used, and a material having high electrical conductivity may be used.
  • the insulating member 302 constituting the circuit board 3 ceramics that are inorganic materials such as alumina (Aluminum Oxide), Aluminum Nitride, Silicon Nitride, etc. can be used.
  • an organic material such as an epoxy resin, a polyimide resin, a cyanate resin, or the like may be filled with a filler.
  • a ceramic filler can be used as the filler.
  • alumina (Aluminum Oxide), Aluminum Nitride (Aluminum Nitride), Boron Nitride or the like may be used.
  • the material of the insulating member 302 is not limited to the example shown above.
  • a metal can be used.
  • Cu or Al is used as the material of the member 303.
  • a material having high thermal conductivity may be used.
  • the wiring member 4 for example, a wire or a ribbon made of metal can be used.
  • aluminum (Al), copper (Cu), or the alloy which had these metals as a main can be used.
  • the material of the wiring member 4 may be a material having conductivity, and is not limited to the above-mentioned materials.
  • any material can be applied as long as the circuit board 3 can be fixed to the base plate 7.
  • lead-free solder is used as the bonding material 6.
  • a material of the base plate 7 a material having good thermal conductivity may be used.
  • copper can be used as the material of the base plate 7.
  • an insulating material having high heat resistance can be used.
  • a thermoplastic resin with high heat resistance such as poly phenylene sulfide (Poly Phenylene Sulfide) or poly butylene terephthalate (Poly Butylene Terephthalate) can be used.
  • any insulating material can be used as a material of the sealing material 9.
  • a silicone-based resin material can be used as a material of the sealing material 9.
  • a urethane resin, an epoxy resin, a polyimide resin, a polyamide resin, a polyamide imide resin, an acrylic resin, a rubber material or the like may be used as a material of the sealing material 9.
  • a laminated body in which a plurality of members are laminated may be used as the sealing material 9.
  • a laminate in which a layer of epoxy resin is laminated on a layer of silicone gel may be used as the sealing material 9.
  • the number of laminated layers in the laminate constituting the sealing material 9 may be three or more.
  • the material of the wiring member 10 and the external terminal 11 is either aluminum (Al), copper (Cu), silver (Ag), nickel (Ni), gold (Au), or any of these metals. It may be an alloy mainly composed of The above is merely an example and not limitative.
  • FIG. 2 is a schematic perspective view for describing the features of the first embodiment of the present invention in detail. In FIG. 2, only the part required for detailed explanation is extracted among the structures shown in FIG.
  • a plurality of wiring members 4 are connected to the semiconductor element 1.
  • One end of each of the first wiring members 401a to 401d, which is a part of the plurality of wiring members 4, is directly joined to the surface of the resistor 5 opposite to the portion connected to the circuit pattern 301b.
  • the other ends of the first wiring members 401 a to 401 d are directly bonded to the surface of the semiconductor element 1 opposite to the portion connected to the circuit pattern 301 a.
  • One end of the second wiring members 402 a and 402 b, which is another part of the plurality of wiring members 4, is not directly connected to the resistor 5 and is directly joined to the circuit pattern 301 b.
  • Resistor 5 includes a first area 5a and a second area 5b to which first wiring members 401a to 401d are connected, and a third area 5c connecting first area 5a and second area 5b.
  • the first area 5a and the second area 5b are disposed at an interval.
  • the first wiring members 401 a and 401 b are connected to the first region 5 a of the resistor 5.
  • the first wiring members 401 c and 401 d are connected to the second region 5 b of the resistor 5.
  • the second wiring members 402a and 402b are connected to the surface portion of the circuit pattern 301b exposed between the first region 5a and the second region 5b.
  • the second wiring members 402a and 402b which are not wired to the resistor 5 have electrical resistances corresponding to the resistance 5 when viewed as a current path, as compared with the first wiring members 401a to 401d wired to the resistor 5. It has a low current path.
  • the second wiring members 402a and 402b are preferentially broken more than the first wiring members 401a to 401d because the current per wiring member is larger than the first wiring members 401a to 401d.
  • the second wiring members 402a and 402b break, all the current flows to the resistor 5 through the first wiring members 401a to 401d, so the current in the resistor 5 increases.
  • the detection unit 12 can detect an increase in the current value in the resistor 5 or an increase in the voltage drop value.
  • the resistor 5 may have any shape.
  • the shape of the resistor 5 may be a shape having two or more main surfaces, and is, for example, a block shape or a thin plate shape.
  • the resistor 5 and the circuit pattern 301b may be directly bonded without using a bonding material, for example, using an ultrasonic bonding method or the like.
  • FIG. 3 is a partial cross-sectional enlarged schematic view of a modification of the semiconductor module 10000 shown in FIG. In FIG. 3, among the two main surfaces of the resistor 5, the main surface facing the circuit pattern 301 b is connected to the circuit pattern 301 b via the bonding material 16.
  • the bonding material 16 may be made of any material as long as it is a conductive material.
  • the resistor 5 may be formed by depositing a material to be the resistor 5 directly on the surface 17 of the circuit pattern 301b, as shown in FIG.
  • a vapor deposition method for example, a vapor deposition method, or a method of applying a sintering paste containing metal fine particles to be the resistor 5 on the surface of the circuit pattern 301b and heat treating it can be used.
  • Any material can be used as the material of the resistor 5 as long as the resistor 5 and the circuit pattern 301 b can be mechanically and electrically connected.
  • a composite of copper foil and a solder bonding material may be used as the resistor 5, or a nichrome alloy layer formed on the surface of the circuit pattern 301b using a vapor deposition method may be used.
  • the resistance value of the resistor 5 is important in the present embodiment.
  • the resistance value of the resistor 5 is increased, detection of the fluctuation of the current value or the voltage fluctuation value in the detection unit 12 becomes easy.
  • current concentration on the second wiring members 402a and 402b not wired to the resistor 5 becomes excessive, and there is a possibility that the second wiring members 402a and 402b may be broken early.
  • the state change of the semiconductor module 10000 is detected at a timing earlier than the actual module life. As a result, the module life of the semiconductor module 10000 may be underestimated. Therefore, the resistance value of the resistor 5 should be smaller than the resistance value of the first wiring members 401a to 401b.
  • the resistance value of the first wiring members 401a to 401d is 2.1 m ⁇ .
  • the resistance value of the resistor 5 can be smaller than 2.1 m ⁇ .
  • a thin metal plate or a thin film can be used as the resistor 5.
  • the semiconductor module 10000 includes the semiconductor element 1, the circuit board 3, the resistor 5, the first wiring members 401 a to 401 d, and the detection unit 12.
  • the circuit board 3 includes a circuit pattern 301b.
  • the resistor 5 is connected to the surface of the circuit pattern 301b.
  • the first wiring members 401 a to 401 d connect the semiconductor element 1 and the resistor 5. That is, the first wiring members 401a to 401d directly connect the semiconductor element 1 and the resistor 5, and at least a part of the current flowing from the semiconductor element 1 to the circuit pattern 301b flows.
  • the detection unit 12 detects at least one of the change of the voltage drop value of the resistor 5 and the change of the current value of the resistor 5.
  • any one of the connection portion between the semiconductor element 1 and the first wiring members 401a to 401d, the first wiring members 401a to 401d itself, and the connection portion between the first wiring members 401a to 401d and the resistor 5 changes when there is a state change such as the progress of a local break or the occurrence of a joint failure.
  • the change can be detected by the detection unit 12. That is, the detection unit 12 can detect a change in the connection state between the semiconductor element 1 and the circuit pattern 301b through the first wiring members 401a to 401d. Therefore, based on the detection of the change by the detection unit 12, the destruction of the semiconductor module 10000 can be detected in advance.
  • the state change of the first wiring members 401a to 401d directly affects the voltage drop value or the current value in the resistor 5. For this reason, the state change of the first wiring members 401a to 401d can be detected with high sensitivity.
  • the semiconductor module 10000 described above since a conventional dummy wire is not used to detect the breakage of the semiconductor module 10000, an extra area of the semiconductor element 1 is required due to the installation of the dummy wire. There is no Furthermore, since the first wiring members 401a to 401d are connected to the circuit pattern 301b through the resistor 5, the resistor 5 is disposed at a position different from the connection portion between the first wiring members 401a to 401d and the circuit pattern 301b. The size of the semiconductor module 10000 can be made smaller than in the case of arrangement. Therefore, an increase in the manufacturing cost of the semiconductor module 10000 can be suppressed.
  • the semiconductor module 10000 further includes second wiring members 402a and 402b as shown in FIG.
  • the second wiring members 402a and 402b directly connect the semiconductor element 1 and the circuit pattern 301b.
  • the second wiring member 402a which is the second current path According to the electric resistance value of the first current path formed of the first wiring members 401a to 401d from the semiconductor element 1 to the circuit pattern 301b and the resistor 5, the second wiring member 402a which is the second current path, The electric resistance value of 402 b can be lowered. Therefore, in the first and second current paths forming the parallel circuit, the current value flowing through the second wiring members 402a and 402b, which are the second current paths, is larger than the current value flowing through the first current path. Become. Therefore, the second wiring members 402a and 402b have a higher probability of occurrence of breakage due to energization.
  • the current value in the first current path becomes high, and as a result, the current value in the resistor 5 changes.
  • the function itself of the semiconductor module 10000 is not immediately impaired. As a result, it is possible to detect a change in state leading to damage of the semiconductor module 10000 without impairing the function of the semiconductor module 10000.
  • the first wiring members 401a to 401d are either metal wires or metal ribbons.
  • the second wiring members 402a and 402b may also be either metal wires or metal ribbons.
  • the third wiring member 1201a and the fourth wiring member 1201b may also be either metal wires or metal ribbons.
  • the semiconductor module since the first wiring members 401a to 401d, the second wiring members 402a and 402b, the third wiring member 1201a and the fourth wiring member 1201b are formed of relatively common members such as metal wires or metal ribbons, the semiconductor module The increase in the manufacturing cost of
  • the resistor 5 is separate from the circuit board 3 and is connected to the surface of the circuit pattern 301b.
  • the degree of freedom in selecting the material, size, etc. of the resistor 5 can be increased.
  • the resistor 5 may be a film formed on the surface of the circuit pattern 301b as shown in FIG.
  • the thickness of the resistor 5 can be thinner than in the case of preparing the resistor 5 separately from the circuit board 3
  • the film thickness can be adjusted. Therefore, a smaller resistance value can be realized, and the resistance value can be adjusted more finely.
  • FIG. 5 is a schematic partial perspective view of a semiconductor module according to Embodiment 2 of the present invention.
  • FIG. 5 corresponds to FIG.
  • the semiconductor module shown in FIG. 5 basically has the same configuration as the semiconductor module shown in FIGS. 1 and 2, but the configurations of the wiring member 4 and the resistor 5 are different.
  • portions different from the semiconductor module according to the first embodiment will be mainly described, and description of overlapping portions will not be repeated.
  • one end of the first wiring members 401 a and 401 b is connected to the central region of the semiconductor element 1 in the wiring member 4.
  • the other ends of the first wiring members 401 a and 401 b are connected to the resistor 5.
  • one ends of the second wiring members 402 a to 402 d are connected to the peripheral region of the semiconductor element 1.
  • the other ends of the second wiring members 402a to 402d are connected not to the resistor 5 but to the circuit pattern 301b.
  • the peripheral portion of the semiconductor element 1 can dissipate heat toward the circuit board 3 around the semiconductor element 1.
  • the central portion of the semiconductor element 1 can not efficiently dissipate heat toward the periphery, it is a region which becomes the highest temperature.
  • the temperature of the central portion is increased, the temperature of the first electrode located in the central portion of the semiconductor element 1 and the temperature of the first wiring members 401a and 401b connected to the first electrode are also increased. Therefore, the first wiring members 401a and 401b wired in the central region of the semiconductor element 1 are broken preferentially. When the first wiring members 401a and 401b break, the resistor 5 can not be energized.
  • the remarkable state that the current value and the voltage drop value in the resistor 5 are zero is easy to detect by the detection unit 12.
  • it is possible to reliably detect a change in the state of the semiconductor module 10000 even in an environment with a large external disturbance to the electrical signal, for example, during the operation of the semiconductor module 10000.
  • FIG. 6 is a schematic partial perspective view of a semiconductor module according to Embodiment 3 of the present invention. 6 corresponds to FIG.
  • the semiconductor module shown in FIG. 6 basically has the same configuration as the semiconductor module shown in FIGS. 1 and 2 and can obtain the same effect.
  • the wiring member 4, the resistor 5 and the detection unit 12 Configuration is different.
  • portions different from the semiconductor module according to the first embodiment will be mainly described, and description of overlapping portions will not be repeated.
  • the end of the third wiring member 1201a for electrically connecting the detection unit 12 and the resistor 5 is connected to the end of the first wiring member 401a wired to the resistor 5. It is done.
  • FIG. 7 is a partial cross-sectional schematic view showing a specific example of the semiconductor module shown in FIG. A specific example of the semiconductor module shown in FIG. 6 will be described with reference to FIG.
  • the first wiring member 401a and the third and fourth wiring members 1201a and 1201b are metal wires, preferably metal wires mainly composed of aluminum.
  • the first wiring member 401 a is ultrasonically bonded to the semiconductor element 1 and the resistor 5.
  • the third wiring member 1201a is ultrasonically bonded to the end portion 41 connected to the resistor 5 of the first wiring member 401a from above the end portion 41.
  • the first wiring member 401 a and the third wiring member 1201 a are arranged to extend in different directions toward the resistor 5, specifically, in opposite directions.
  • the end of the fourth wiring member 1201 b connecting the detection unit 12 and the circuit pattern 301 b is also connected to the surface of the circuit pattern 301 b by wire bonding.
  • Metal wires, particularly wires based on aluminum, are excellent in deformability. Therefore, as described above, the wire bonding of the third wiring member 1201a onto the end 41 can be easily performed.
  • the semiconductor module 10000 includes a third wiring member 1201 a and a fourth wiring member 1201 b.
  • the third wiring member 1201 a electrically connects the detection unit 12 and the resistor 5.
  • the fourth wiring member 1201 b electrically connects the resistor 5 and the detection unit via the circuit pattern 301 b.
  • the first wiring member 401 a includes an end 41 connected to the resistor 5.
  • the three wiring member 1201 a includes an end 1210 as a connecting portion that overlaps the end 41 of the first wiring member 401 a and is directly connected to the end 41.
  • the end 1210 of the third wiring member 1201a connecting the detection unit 12 to the resistor 5 overlaps the end 41 of the first wiring member 401a, the end 41 of the first wiring member 401a and the first wiring member 401a
  • the area of the semiconductor module can be smaller than in the case where the end 1210 of the three wiring members 1201 a is located in another area.
  • the resistor 5, the first wiring member 401a, and the third wiring member 1201a are stacked in the connection region, the footprint occupied by the portion in the circuit board 3 becomes small.
  • the footprint of semiconductor modules tends to be reduced in recent years. Therefore, by adopting the configuration of the small footprint as described above, the applicability of the semiconductor module according to the present embodiment to a real product and the degree of freedom in designing the semiconductor module can be increased.
  • FIG. 8 is a schematic partial cross-sectional view of a semiconductor module according to Embodiment 4 of the present invention.
  • FIG. 8 corresponds to FIG.
  • FIG. 9 is a partial schematic view of the semiconductor module shown in FIG.
  • the semiconductor module shown in FIGS. 8 and 9 basically has the same configuration as that of the semiconductor module shown in FIGS. 1 and 2 and can obtain the same effect.
  • the first wiring member 401 a and the detecting portion The 12 configurations are different.
  • portions different from the semiconductor module according to the first embodiment will be mainly described, and description of overlapping portions will not be repeated.
  • the first wiring member 401a is, for example, a metal wire.
  • the first wiring member 401 a is stitch-bonded in a region 42 located above the resistor 5.
  • the region 42 of the first wiring member 401 a is connected to the resistor 5.
  • the end 43 of the first wiring member 401 a is connected to the circuit pattern 1302 a disposed on the surface of the printed circuit board 13.
  • a circuit pattern 1302 b is also formed on the surface of the printed circuit board 13.
  • the detection unit 12 is mounted on the printed circuit board 13.
  • the detection unit 12 is connected to the circuit patterns 1302 a and 1302 b.
  • the semiconductor element 1, the resistor 5, and the detection unit 12 are electrically connected via the first wiring member 401a.
  • the printed circuit board 13 is disposed at a position facing the circuit board 3.
  • One end of the fourth wiring member 1201 b is connected to the circuit pattern 1302 b of the printed circuit board 13.
  • the other end of the fourth wiring member 1201 b is connected to the circuit pattern 301 b.
  • the printed circuit board 13 is provided with a notch 1301 for passing the first wiring member 401 a and the fourth wiring member 1201 b.
  • the printed circuit board 13 is sized and arranged so as not to interfere with the routing of the first wiring member 401a and the fourth wiring member 1201b.
  • the configuration of the semiconductor module is determined such that the connection portion between semiconductor element 1 and first wiring member 401a and the connection portion between resistor 5 and first wiring member 401a do not overlap printed circuit board 13 in plan view. ing.
  • a circuit pattern 1302 is provided on the printed circuit board 13 so that the detection unit 12 and the wiring member 4 are electrically connected.
  • the first wiring member 401a includes an extending portion from the region 42, which is a portion connecting the resistor 5 and the detection unit 12, to the end 43.
  • the first wiring member 401 a connects the semiconductor element 1 and the resistor 5, it has a function as a connecting member between the resistor 5 and the detection unit 12.
  • the connection part of the 1st wiring member 401a and the resistor 5 is one place of the area
  • the area of the body 5 can be reduced.
  • the footprint of semiconductor modules tends to be reduced in recent years. Therefore, by adopting the configuration of the small footprint as described above, the applicability of the semiconductor module according to the present embodiment to a real product and the degree of freedom in designing the semiconductor module can be increased.
  • FIG. 10 is a schematic partial perspective view of a semiconductor module according to a fifth embodiment of the present invention.
  • FIG. 10 corresponds to FIG.
  • FIG. 11 is an enlarged schematic view of the area XI shown in FIG.
  • the semiconductor module shown in FIGS. 10 and 11 basically has the same configuration as the semiconductor module shown in FIGS. 1 and 2, but the configuration of the wiring member 4 is different.
  • portions different from the semiconductor module according to the first embodiment will be mainly described, and description of overlapping portions will not be repeated.
  • the diameters of the first wiring members 401a to 401d which are conductive wires are relatively larger than the diameters of the second wiring members 402a and 402b which are conductive wires.
  • breakage of the second wiring members 402a and 402b becomes faster than breakage of the first wiring members 401a to 401d. Also, due to the design of the diameters (wire diameters) of the first wiring members 401a to 401d and the second wiring members 402a and 402b, the second wiring member when a ratio of a period to the entire life of the semiconductor module has elapsed. It can be adjusted whether 402a and 402b break.
  • the area (ribbon bonding area) of the bonding surface of the second wiring members 402a and 402b to the circuit pattern 301b is thus, the area of bonding the first wiring members 401a to 401d with the resistor 5 may be increased. Also in this case, the breakage of the second wiring members 402a and 402b becomes faster than the breakage of the first wiring members 401a to 401d. Also, by designing the ribbon bonding area, it is possible to adjust how much the second wiring members 402a and 402b break when a period of time has elapsed with respect to the entire life of the semiconductor module.
  • the bonding strength with the circuit pattern 301b of the second wiring members 402a and 402b is set to the first wiring member 401a. It may be weaker than the bonding strength to the resistor 5 of ⁇ 401 d.
  • mechanical damage for example, machining such as forming a cut
  • a groove may be formed on the upper surface of the circuit pattern 301b, and the second wiring members 402a and 402b may be connected on the groove to reduce the bonding area of the second wiring members 402a and 402b to the circuit pattern 301b. Good. Also with such a configuration, the same effect as the semiconductor module shown in FIGS. 10 and 11 described above can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Wire Bonding (AREA)

Abstract

製造コストの増大を抑制しつつ、半導体モジュールの破壊を未然に検知可能な半導体モジュールを得る。半導体モジュール(10000)は、半導体素子(1)と、回路基板(3)と、抵抗体(5)と、第1配線部材(4)と、検知部(12)とを備える。回路基板(3)は回路パターン(301b)を含む。抵抗体(5)は、回路パターン(301b)の表面に接続される。第1配線部材(4)は、半導体素子(1)と抵抗体(5)とを直接接続し、半導体素子(1)から回路パターン(301b)へ流れる電流の少なくとも一部が流れる。検知部(12)は、抵抗体(5)における電圧降下値の変化および抵抗体(5)における電流値の変化の少なくともいずれか一方を検知する。

Description

半導体モジュール
 この発明は、半導体モジュールに関し、特に状態検知が可能な半導体モジュールに関するものである。
 従来、パワーモジュールなどの半導体モジュールが知られている。半導体モジュールにおいて、半導体素子の電極に接続されたワイヤが破断するといった理由により通電不良が発生し半導体モジュールが破損する場合がある。このような半導体モジュールの破損を未然に検知する方法が従来より提案されている。
 特開2005-286009号公報(以下、特許文献1と呼ぶ)では、半導体素子に主電流を通電するワイヤと別にダミーワイヤを接続し、半導体モジュールの破損を未然に検知する方法が提案されている。特許文献1におけるダミーワイヤは、主電流を通電するワイヤよりも接合強度が弱く、先に破断する。このため、主電流を通電するワイヤが破損する前に、当該ダミーワイヤの破断を検知することで、半導体モジュール破壊を未然に検知できる。
 特開平10-56130号公報(以下、特許文献2と呼ぶ)では、半導体素子のエミッタ電極と2つの導出端子電極とがそれぞれワイヤにより接続され、2つの導出端子電極間は抵抗体により接続され、2つの導出端子電極間の電圧値を測定可能な半導体モジュールが開示されている。特許文献2に開示された半導体モジュールでは、2つの導出端子電極間の電圧値を測定することで、一方の導出端子電極とワイヤとのエレクトロマイグレーションによる接続部の劣化を検出できる。
特開2005-286009号公報 特開平10-56130号公報
 上記特許文献1に開示された半導体モジュールでは、半導体素子にダミーワイヤを接続しているため、半導体素子の面積が余分に必要となる。半導体素子は半導体モジュールの構成部材の中でも高価なものであり、半導体素子の面積が大きいことは半導体モジュールの製造コストの増加要因となる。
 上記特許文献2に開示された半導体モジュールでは、上記電圧値を測定するため2つの導出端子電極間を抵抗体で接続した構成としているので、当該電圧値の測定を行わない場合、つまり1つの導出端子電極のみとエミッタ電極とを接続する構成より半導体モジュールの面積が大きくなる。したがって、半導体モジュールを構成する部材のサイズも大きくなり、結果的に半導体モジュールの製造コストが増加する。
 この発明は、上記のような問題点を解決するためになされたものであり、半導体モジュールの製造コストの増大を抑制しつつ、半導体モジュールの破壊を未然に検知可能な半導体モジュールを得ることを目的とする。
 本開示に係る半導体モジュールは、半導体素子と、回路基板と、抵抗体と、第1配線部材と、検知部とを備える。回路基板は回路パターンを含む。抵抗体は、回路パターンの表面に接続される。第1配線部材は、半導体素子と抵抗体とを直接接続する。第1配線部材には、半導体素子から回路パターンへ流れる電流の少なくとも一部が流れる。検知部は、抵抗体における電圧降下値の変化および抵抗体における電流値の変化の少なくともいずれか一方を検知する。
 本開示によれば、検知部により第1配線部材を介した半導体素子と回路パターンとの接続状態の変化を検出できる。そのため、検知部による上記変化の検出に基づき、半導体モジュールの破壊を未然に検知できる。さらに、半導体モジュールの破壊の検知のために従来のようなダミーワイヤを用いていないので、当該ダミーワイヤの設置に起因して半導体素子の面積を余分に必要とすることがない。このため、半導体モジュールの製造コストの増大を抑制できる。
本発明の実施の形態1に係る半導体モジュールの基本構成を示す断面模式図である。 図1に示した半導体モジュールの具体的な構成を示す部分斜視模式図である。 図2に示した半導体モジュールの変形例の部分断面拡大模式図である。 図2に示した半導体モジュールの他の変形例の部分断面拡大模式図である。 本発明の実施の形態2に係る半導体モジュールの部分斜視模式図である。 本発明の実施の形態3に係る半導体モジュールの部分斜視模式図である。 図6に示した半導体モジュールの具体例を示す部分断面模式図である。 本発明の実施の形態4に係る半導体モジュールの部分断面模式図である。 図8に示した半導体モジュールの部分模式図である。 本発明の実施の形態5に係る半導体モジュールの部分斜視模式図である。 図10に示した領域XIの拡大模式図である。
 以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
 実施の形態1.
 <半導体モジュールの構成>
 図1は、本発明の実施の形態1に係るパワーモジュールである半導体モジュール10000の基本構成を示す断面模式図である。図2は、図1に示した半導体モジュール10000の具体的な構成を示す部分斜視模式図である。図1に示すように、半導体モジュール10000は、ベース板7と、絶縁回路基板としての回路基板3と、ケース8と、パワー半導体素子としての半導体素子1と、検知機構としての検知部12と、外部端子11とを主に備える。回路基板3は、絶縁性部材302と、板状の部材303と、回路パターン301a(第1の回路パターン)と、回路パターン301b(第2の回路パターン)とを含む。絶縁性部材302はたとえば板状の形状を有する。部材303は絶縁性部材302の一方の表面に接続されている。回路パターン301a、301bは、絶縁性部材302において部材303が接続された一方の表面と反対側に位置する他方の表面上に配置されている。
 半導体モジュール10000では、ベース板7の外周部にケース8が接続される。ケース8は、ベース板7の外周部を囲むように環状の形状を有する。ベース板7とケース8とにより囲まれた内部には半導体素子1および回路基板3が配置されている。半導体素子1および回路基板3は封止材料9により絶縁封止されている。
 半導体素子1は、接合材料2により、回路基板3を構成する回路パターン301aの表面に接合されている。半導体素子1の主面のうち、回路基板3に面する裏面が接合材料2を介して回路パターン301aと接合されている。半導体素子1において接合材料2と接触している裏面と反対側に位置する表面には、配線部材4の一端が接続されている。配線部材4の他端は、半導体素子1が配置されていない回路パターン301bへ向けて伸びる。配線部材4の他端と回路パターン301bとの間には、抵抗体5が存在する。つまり、配線部材4は抵抗体5を介して回路パターン301bと接続される。このようにすることで、回路パターン301bから回路パターン301aに至るまでの半導体素子を含む電流経路を流れる電流の少なくとも一部は抵抗体5を流れることになる。
 回路基板3は、接合材料6によりベース板7に面接合されている。回路基板3の回路パターン301aには配線部材10の一端が取り付けられている。配線部材10の他端はケース8の内部に埋め込まれるとともに外部端子11に繋がっている。抵抗体5には、抵抗体5における電圧降下値または電流値を測定する検知部12が接続されている。ここで、抵抗体5には主面が2つ存在する。一方の主面は配線部材4が接続される。他方の主面は回路パターン301bと接続される。検知部12の2つの端子のうちの一方は、第3配線部材1201aを介して抵抗体5の一方の主面と接続される。検知部12の2つの端子のうちの他方は、第4配線部材1201bを介して回路パターン301bと接続される。検知部12の一方の端子は、抵抗体5の一方の主面と実質的に同電位である。検知部12の他方の端子は、抵抗体5の他方の主面と実質的に同電位である。第3および第4配線部材1201a、1201bは、いずれも抵抗体5に近接した領域もしくは抵抗体5自体に接続される。このため、検知部12により正確に抵抗体5における電流値もしくは電圧降下値が測定される。
 なお、上述した説明では、半導体モジュール10000としてケース型のパワーモジュールを例示したが、例えばモールド型モジュール等、図1に示した半導体モジュール10000とは異なる種類のパワーモジュールにも、本発明の実施の形態に係る構造は適用可能である。
 半導体素子1は、絶縁ゲート型バイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)、フリーホイール・ダイオード(FWD:Free Wheel Diode)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等であってもよい。図1の半導体モジュール10000では、半導体素子1の数が一つであるが、半導体素子1の数は一つに限定されるものではない。半導体モジュール10000は、複数の半導体素子1を備えていてもよい。たとえば、半導体モジュール10000が構成する回路設計において、半導体素子1として複数個のパワー半導体素子が選択的に備えられてもよい。
 接合材料2は、半導体素子1を回路基板3に接続できればよく、任意の材料を用いることができる。接合材料2は、典型的には鉛フリーはんだである。接合材料2として、ほかに銀ナノ粒子ペースト、および、いわゆる導電性接着剤であるエポキシ樹脂を含む銀ペースト等も選択可能であるが、これに限定されるものではない。
 回路パターン301a、301bを構成する材料として、導電性を有する材料であれば任意の材料を用いることができる。たとえば回路パターン301a、301bの材料として、典型的にはCuやAlなどの金属が用いられるほか、高い電気伝導性を有する材料が用いられていればよい。
 回路基板3を構成する絶縁性部材302には、無機材料であるセラミックス、例えばアルミナ(Aluminum Oxide)、窒化アルミニウム(Aluminum Nitride)、窒化珪素(Silicon Nitride)等を用いることができる。また、絶縁性部材302には、有機材料、例えばエポキシ樹脂、ポリイミド樹脂、シアネート系樹脂等に、フィラーを充填したものを用いてもよい。フィラーとしてはたとえばセラミックスフィラーを用いることができる。セラミックスフィラーの材料としては、例えばアルミナ(Aluminum Oxide)、窒化アルミニウム(Aluminum Nitride)、窒化ホウ素(Boron Nitride)等を用いてもよい。なお、絶縁性部材302の材料は以上に示した例に限定されるものではない。
 部材303の材料としては、たとえば金属を用いることができる。部材303の材料として典型的にはCuやAlが用いられる。部材303の材料としては、高い熱伝導性を有する材料が用いられていればよい。配線部材4には、たとえば金属からなるワイヤまたはリボンなどを用いることができる。配線部材4を構成する材料としては、アルミニウム(Al)または銅(Cu)、あるいはこれらの金属を主体とした合金を用いることができる。配線部材4の材料は、導電性を有する材料であればよく、上述した材料に限定されるものではない。
 接合材料6の材料としては、回路基板3をベース板7に固定できれば任意の材料を適用できる。接合材料6としては、典型的には鉛フリーはんだを用いる。ベース板7の材料としては、熱伝導性が良い材料を用いればよい。たとえば、ベース板7の材料として銅を用いることができる。
 ケース8の材料としては、耐熱性の高い絶縁性の材料を用いることができる。たとえば、ケース8の材料として、ポリフェニレンサルファイド(Poly Phenylen Sulfide)やポリブチレンテレフタレート(Poly Butylene Terephthalate)等、耐熱性の高い熱可塑性樹脂を用いることができる。
 封止材料9の材料としては、任意の絶縁性の材料を用いることができる。たとえば、封止材料9の材料として、シリコーン系の樹脂材料を用いることができる。また、封止材料9の材料として、例えば、ウレタン樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、アクリル樹脂、ゴム材等を用いてもよい。また、封止材料9として複数の部材を積層した積層体を用いてもよい。たとえば、シリコーンゲルの層上にエポキシ樹脂の層を積層した積層体を封止材料9として用いてもよい。封止材料9を構成する積層体における層の積層数は3以上であってもよい。
 配線部材10および外部端子11の材料は、電気的特性及び機械的特性から、金属を用いることが好ましい。たとえば、配線部材10および外部端子11の材料は、アルミニウム(Al)、銅(Cu)、銀(Ag)、ニッケル(Ni)、金(Au)のいずれか、またはこれらの金属のうちのいずれかを主体とした合金であってもよい。以上はあくまで例示であり、限定的なものではない。
 図2を参照して、図1に示した半導体モジュール10000の具体的な構成例を説明する。図2は、本発明の実施の形態1の特徴を詳細説明するための斜視模式図である。図2には、図1に示される構成のうち、詳細説明に必要な部分のみを抜粋する。
 図2に示すように、半導体素子1には、複数の配線部材4が接続される。複数の配線部材4のうちの一部である第1配線部材401a~401dは抵抗体5において回路パターン301bと接続される箇所と反対側に位置する面にその一端が直接接合される。第1配線部材401a~401dの他端は、半導体素子1において回路パターン301aと接続される箇所と反対側に位置する面に直接接合される。複数の配線部材4のうちの他の一部である第2配線部材402a、402bは抵抗体5に配線されずに回路パターン301bにその一端が直接接合される。第2配線部材402a、402bの他端は、半導体素子1において回路パターン301aと接続される箇所と反対側に位置する面に直接接合される。抵抗体5は、第1配線部材401a~401dが接続される第1領域5aおよび第2領域5bと、この第1領域5aと第2領域5bとを繋ぐ第3領域5cとを含む。第1領域5aと第2領域5bとは間隔を隔てて配置されている。第1配線部材401a、401bが抵抗体5の第1領域5aに接続されている。第1配線部材401c、401dが抵抗体5の第2領域5bに接続されている。第2配線部材402a、402bは、第1領域5aと第2領域5bとの間において露出している回路パターン301bの表面部分に接続されている。
 このような構成によれば、回路パターン301bから回路パターン301aに至るまでの半導体素子1を含む電流経路を流れる電流の少なくとも一部は抵抗体5を流れることになる。抵抗体5に配線された第1配線部材401a~401dには、半導体素子1から回路パターン301bへ流れる電流の少なくとも一部が流れる。そして抵抗体5に配線されない第2配線部材402a、402bは、抵抗体5に配線される第1配線部材401a~401dに比べて、通電経路として見たときに抵抗体5の分だけ電気抵抗が低い通電経路となっている。そのため、第2配線部材402a、402bは、配線部材1本あたりの電流が第1配線部材401a~401dより大きくなるため、結果的に第1配線部材401a~401dより優先的に破断する。第2配線部材402a、402bが破断すると、全ての電流が第1配線部材401a~401dを介して抵抗体5に流れるので、抵抗体5における電流が増大する。この結果、検知部12により抵抗体5における電流値の増加もしくは電圧降下値の増加を検知することができる。
 検知部12により抵抗体5における電流値もしくは電圧降下値の増大を測定した時点では、通電のためのワイヤまたはリボンである第1配線部材401a~401dは多数残存している。このため、この時点で半導体モジュール10000の機能が直ちに損なわれることはない。以上のようにして、半導体モジュール10000の故障を、その機能が完全に失われる前に、確実に検知することができる。
 抵抗体5は、任意の形状を有し得る。抵抗体5の形状は、主面を2つ以上持つ形状であってもよく、例えばブロック状や薄板状の形状である。抵抗体5と回路パターン301bとは、図1および図2に示すように、たとえば超音波接合法などを用いて接合材料を介さずに直接接合してもよい。
 図3に示すように、はんだ等の接合材料16を用いて抵抗体5と回路パターン301bとを接合することもできる。図3は、図2に示した半導体モジュール10000の変形例の部分断面拡大模式図である。図3では、抵抗体5の2つの主面のうち回路パターン301bに面する主面が接合材料16を介して回路パターン301bに接続されている。接合材料16は導電性の材料であれば任意の材料により構成され得る。
 抵抗体5は、図4に示すように、回路パターン301bの表面17上に直接抵抗体5となるべき材料を成膜することで形成してもよい。抵抗体5を成膜する場合、例えば蒸着法や、抵抗体5となるべき、金属微粒子を含有する焼結ペーストを回路パターン301bの表面に塗布して熱処理するといった方法を用いることができる。抵抗体5と回路パターン301bとが機械的かつ電気的に接続できれば、抵抗体5の材料として任意の材料を用いることができる。典型的には、抵抗体5として、銅箔とはんだ接合材との複合体を用いてもよく、回路パターン301bの表面に蒸着法を用いて形成されたニクロム合金層を用いてもよい。
 抵抗体5の抵抗値は、本実施形態において重要である。抵抗体5の抵抗値を大きくすると検知部12における電流値または電圧変動値の変動の検知は容易になる。しかし、抵抗体5に配線されない第2配線部材402a、402bへの電流集中が過剰となり、第2配線部材402a、402bが早期に破断する恐れがある。この場合、実際のモジュール寿命よりも早すぎるタイミングで半導体モジュール10000の状態変化を検知することになる。この結果、半導体モジュール10000のモジュール寿命を過小評価する可能性がある。このため、抵抗体5の抵抗値は、第1配線部材401a~401bの抵抗値よりも小さくすべきである。例えば長さ20mm、直径300μmのアルミワイヤを第1配線部材401a~401dとして用いる場合、第1配線部材401a~401dの抵抗値は2.1mΩである。抵抗体5の抵抗値は、2.1mΩより小さくすることができる。この場合、抵抗体5としては金属薄板もしくは薄膜を用いることができる。
 <作用効果>
 本開示に係る半導体モジュール10000は、半導体素子1と、回路基板3と、抵抗体5と、第1配線部材401a~401dと、検知部12とを備える。回路基板3は回路パターン301bを含む。抵抗体5は、回路パターン301bの表面に接続される。第1配線部材401a~401dは、半導体素子1と抵抗体5とを接続する。つまり、第1配線部材401a~401dは、半導体素子1と抵抗体5とを直接接続し、半導体素子1から回路パターン301bへ流れる電流の少なくとも一部が流れる。検知部12は、抵抗体5における電圧降下値の変化および抵抗体5における電流値の変化の少なくともいずれか一方を検知する。
 このようにすれば、半導体素子1と第1配線部材401a~401dとの接続部、第1配線部材401a~401d自体、および第1配線部材401a~401dと抵抗体5との接続部のいずれかにおいて局所的な破断の進行や接合不良の発生といった状態変化があった場合に、抵抗体5における電圧降下値または電流値が変化する。上記半導体モジュール10000では、当該変化を検知部12により検知できる。つまり、検知部12により第1配線部材401a~401dを介した半導体素子1と回路パターン301bとの接続状態の変化を検出できる。そのため、検知部12による上記変化の検出に基づき、半導体モジュール10000の破壊を未然に検知できる。このため、半導体モジュール10000が完全に破損する前に、半導体モジュール10000の点検などのメンテナンスを行うことができる。さらに、第1配線部材401a~401dが抵抗体5に直接接続されることで、第1配線部材401a~401dの状態変化が抵抗体5における電圧降下値または電流値に直接的に影響する。このため、第1配線部材401a~401dの状態変化を高感度で検知できる。
 上記半導体モジュール10000では、半導体モジュール10000の破壊の検知のために従来のようなダミーワイヤを用いていないので、当該ダミーワイヤの設置に起因して半導体素子1の面積が余分に必要とされることがない。さらに、第1配線部材401a~401dは抵抗体5を介して回路パターン301bに接続されているので、第1配線部材401a~401dと回路パターン301bとの接続部と別の位置に抵抗体5を配置する場合より半導体モジュール10000のサイズを小さくできる。このため、半導体モジュール10000の製造コストの増大を抑制できる。
 上記半導体モジュール10000は、図2に示すように第2配線部材402a、402bをさらに備える。第2配線部材402a、402bは、半導体素子1と回路パターン301bとを直接接続する。
 この場合、半導体素子1から回路パターン301bまでの第1配線部材401a~401dと抵抗体5とからなる第1の電流経路の電気抵抗値より、第2の電流経路である第2配線部材402a、402bの電気抵抗値を低くできる。このため、並列回路を構成する第1および第2の電流経路において、第2の電流経路である第2配線部材402a、402bを流れる電流値の方が第1の電流経路を流れる電流値より大きくなる。したがって、第2配線部材402a、402bの方が通電に起因する破損の発生確率が高くなる。第2配線部材402a、402bが破損した場合、第1の電流経路における電流値が高くなり結果的に抵抗体5における電流値が変化する。また、このとき第1の電流経路は通電可能な状態であるため、半導体モジュール10000の機能自体が直ちに損なわれることはない。この結果、半導体モジュール10000の機能を損なうことなく、当該半導体モジュール10000の破損に繋がる状態変化を検知できる。
 上記半導体モジュール10000において、第1配線部材401a~401dは金属ワイヤおよび金属リボンのいずれか一方である。第2配線部材402a、402bも金属ワイヤおよび金属リボンのいずれか一方であってもよい。第3配線部材1201aおよび第4配線部材1201bも金属ワイヤおよび金属リボンのいずれか一方であってもよい。この場合、金属ワイヤまたは金属リボンという比較的一般的な部材により第1配線部材401a~401d、第2配線部材402a、402b、第3配線部材1201aおよび第4配線部材1201bを構成するので、半導体モジュールの製造コストの増大を抑制できる。
 上記半導体モジュール10000において、抵抗体5は、図3などに示すように回路基板3と別体であって回路パターン301bの表面に接続されている。この場合、回路基板3と別体として抵抗体5を準備するので、抵抗体5の材料やサイズなどの選択の自由度を大きくできる。
 上記半導体モジュール10000において、抵抗体5は、図4に示すように回路パターン301bの表面上に形成された膜であってもよい。この場合、回路パターン301b表面上に蒸着法などを用いて抵抗体5を形成できるので、回路基板3と別体として抵抗体5を準備する場合より抵抗体5の厚みを薄くでき、かつ、精密に膜厚を調整することができる。よって、より微小な抵抗値を実現できるとともに、より細かく抵抗値を調節することができる。
 実施の形態2.
 <半導体モジュールの構成>
 図5は、本発明の実施の形態2に係る半導体モジュールの部分斜視模式図である。なお、図5は図2に対応する。図5に示す半導体モジュールは、基本的には図1および図2に示した半導体モジュールと同様の構成を備えるが、配線部材4および抵抗体5の構成が異なっている。以下、実施の形態1に係る半導体モジュールと異なる部分について主に説明し、重複する部分についての説明は繰り返さない。
 図5に示した半導体モジュールでは、配線部材4のうち、半導体素子1の中央領域に第1配線部材401a、401bの一端が接続される。第1配線部材401a、401bの他端が抵抗体5に接続されている。また、配線部材4のうち、第2配線部材402a~402dの一端が半導体素子1の周辺領域に接続される。第2配線部材402a~402dの他端が抵抗体5ではなく回路パターン301bに接続される。
 <作用効果>
 半導体素子1の周辺部は、半導体素子1の周囲の回路基板3に向けて熱を発散させることができる。一方、半導体素子1の中央部は周囲へ向けて熱を効率的に発散させることができないため、最も高温となる領域である。上記中央部の温度が高くなる場合、半導体素子1の中央部に位置する第1電極の温度、および第1電極に接続された第1配線部材401a、401bの温度も高くなる。したがって、半導体素子1の中央領域に配線された第1配線部材401a、401bは優先的に破断する。第1配線部材401a、401bが破断したとき、抵抗体5には通電できなくなる。このため、抵抗体5における電流値も電圧降下値もゼロとなる。このような電流、電圧降下がゼロになるという顕著な状態は、検知部12により容易に検知することができる。検知部12により抵抗体5における電流値もしくは電圧降下値がゼロとなったことを測定した時点では、通電に利用できるワイヤまたはリボンである第2配線部材402a~402dは多数残存している。そのため、半導体モジュールの機能が直ちに損なわれることはない。以上のようにして、半導体モジュール10000の破壊を未然に検知することができる。
 すなわち、抵抗体5における電流値および電圧降下値がゼロという顕著な状態は、検知部12による検知が容易である。これにより、例えば半導体モジュール10000の動作中等、電気信号に対する外部繚乱の大きい環境下でも半導体モジュール10000の状態変化を確実に検知できる。
 実施の形態3.
 <半導体モジュールの構成>
 図6は、本発明の実施の形態3に係る半導体モジュールの部分斜視模式図である。なお、図6は図2に対応する。図6に示す半導体モジュールは、基本的には図1および図2に示した半導体モジュールと同様の構成を備え、同様の効果を得ることができるが、配線部材4、抵抗体5および検知部12の構成が異なっている。以下、実施の形態1に係る半導体モジュールと異なる部分について主に説明し、重複する部分についての説明は繰り返さない。
 図6に示した半導体モジュールでは、抵抗体5に配線された第1配線部材401aの端部に、検知部12と抵抗体5とを電気的に接続する第3配線部材1201aの端部が接続されている。
 図7は、図6に示した半導体モジュールの具体例を示す部分断面模式図である。図7を参照して、図6に示した半導体モジュールの具体例を説明する。
 図7に示す半導体モジュールにおいて、第1配線部材401aと第3および第4配線部材1201a、1201bは、金属ワイヤであり、好ましくはアルミニウムを主成分とする金属ワイヤである。第1配線部材401aは、半導体素子1および抵抗体5に対して超音波接合されている。第3配線部材1201aは、第1配線部材401aの抵抗体5に接続された端部41に対して、当該端部41上から超音波接合される。図7では、第1配線部材401aと第3配線部材1201aとは、抵抗体5に向けて異なる方向、具体的には反対方向から延びるように配置されている。
 検知部12と回路パターン301bとを接続する第4配線部材1201bの端部も、回路パターン301bの表面にワイヤボンディングにより接続されている。金属ワイヤ、特にアルミニウムを主成分とするワイヤは、変形能に優れている。したがって、前述のように端部41上への第3配線部材1201aのワイヤボンディングを容易に実施することができる。
 <作用効果>
 上記半導体モジュール10000は、第3配線部材1201aと第4配線部材1201bとを備える。第3配線部材1201aは、検知部12と抵抗体5とを電気的に接続する。第4配線部材1201bは、抵抗体5と回路パターン301bを介して検知部とを電気的に接続する。第1配線部材401aは、抵抗体5に接続された端部41を含む。3配線部材1201aは、第1配線部材401aの端部41と重なるとともに当該端部41と直接接続された接続部としての端部1210を含む。
 この場合、検知部12を抵抗体5と接続する第3配線部材1201aの端部1210が第1配線部材401aの端部41と重なっているので、当該第1配線部材401aの端部41と第3配線部材1201aの端部1210とが別の領域に位置する場合より半導体モジュールの面積を小さくできる。異なる観点から言えば、抵抗体5、第1配線部材401a、第3配線部材1201aがその接続領域において積層するため、当該部分が回路基板3に占めるフットプリントは小さくなる。ここで、半導体モジュールに対する高集積化、高出力密度化の要請により、半導体モジュールのフットプリントは近年縮小傾向にある。そのため、上記のような小フットプリントとなる構成を採用することで、本実施の形態に係る半導体モジュールの実製品への適用可能性や、半導体モジュールの設計自由度を大きくすることができる。
 実施の形態4.
 <半導体モジュールの構成>
 図8は、本発明の実施の形態4に係る半導体モジュールの部分断面模式図である。なお、図8は図7に対応する。図9は、図8に示した半導体モジュールの部分模式図である。図8および図9に示す半導体モジュールは、基本的には図1および図2に示した半導体モジュールと同様の構成を備え、同様の効果を得ることができるが、第1配線部材401aおよび検知部12の構成が異なっている。以下、実施の形態1に係る半導体モジュールと異なる部分について主に説明し、重複する部分についての説明は繰り返さない。
 図8および図9に示した半導体モジュールでは、第1配線部材401aは例えば金属ワイヤである。第1配線部材401aは抵抗体5の上に位置する領域42においてステッチボンドされる。この結果、第1配線部材401aの領域42は抵抗体5に接続される。その後、第1配線部材401aの端部43は、プリント基板13の表面に配置された回路パターン1302aに接続される。プリント基板13の表面には回路パターン1302bも形成されている。検知部12は、プリント基板13上に搭載される。検知部12は、回路パターン1302a、1302bと接続されている。この結果、半導体素子1、抵抗体5および検知部12が第1配線部材401aを介して電気的に接続される。
 プリント基板13は図8に示すように、回路基板3と対向する位置に配置されている。第4配線部材1201bの一端はプリント基板13の回路パターン1302bと接続されている。第4配線部材1201bの他端は回路パターン301bと接続されている。
 プリント基板13には、第1配線部材401aおよび第4配線部材1201bを通すための切欠き部1301が設けられている。プリント基板13は、第1配線部材401aおよび第4配線部材1201bの取り回しを妨げないような寸法・配置とされる。たとえば、平面視において、半導体素子1と第1配線部材401aの接続部、および抵抗体5と第1配線部材401aの接続部が、プリント基板13と重ならないように、半導体モジュールの構成は決定されている。プリント基板13上には回路パターン1302が設けられており、これにより検知部12と配線部材4とが電気的に接続される。
 <作用効果>
 上記半導体モジュール10000において、第1配線部材401aは、抵抗体5と検知部12とを接続する部分である領域42から端部43までの延在部を含む。この場合、第1配線部材401aが半導体素子1と抵抗体5とを接続すると同時に、抵抗体5と検知部12との接続部材としての機能を有する。そして、第1配線部材401aと抵抗体5との接続部は領域42の1カ所であるため、当該抵抗体5において第1配線部材401aと別部材とのそれぞれについて接続部を形成する場合より抵抗体5の面積を小さくできる。ここで、半導体モジュールに対する高集積化、高出力密度化の要請により、半導体モジュールのフットプリントは近年縮小傾向にある。そのため、上記のような小フットプリントとなる構成を採用することで、本実施の形態に係る半導体モジュールの実製品への適用可能性や、半導体モジュールの設計自由度を大きくすることができる。
 実施の形態5.
 <半導体モジュールの構成>
 図10は、本発明の実施の形態5に係る半導体モジュールの部分斜視模式図である。図10は図2に対応する。図11は、図10に示した領域XIの拡大模式図である。図10および図11に示す半導体モジュールは、基本的には図1および図2に示した半導体モジュールと同様の構成を備えるが、配線部材4の構成が異なっている。以下、実施の形態1に係る半導体モジュールと異なる部分について主に説明し、重複する部分についての説明は繰り返さない。
 図10および図11に示した半導体モジュールでは、導電ワイヤである第1配線部材401a~401dの径が、導電ワイヤである第2配線部材402a、402bの径より相対的に大きくなっている。
 <作用効果>
 上記のような構成とすることで、より確実に第2配線部材402a、402bの破断が第1配線部材401a~401dの破断よりも早くなる。また、第1配線部材401a~401dおよび第2配線部材402a、402bの径(ワイヤ径)の設計により、半導体モジュールの全寿命期間に対してどれほどの割合の期間が経過したときに第2配線部材402a、402bが破断するかを調節することができる。
 また、例えば第1配線部材401a~401dおよび第2配線部材402a、402bがリボン形状であるときは、第2配線部材402a、402bの回路パターン301bとの接合面の面積(リボン接合面積)に対して、第1配線部材401a~401dの抵抗体5とのリボン接合面積を大きくしてもよい。この場合も、より確実に第2配線部材402a,402bの破断が第1配線部材401a~401dの破断よりも早くなる。また、リボン接合面積の設計により、半導体モジュールの全寿命期間に対してどれほどの割合の期間が経過したときに第2配線部材402a、402bが破断するかを調節することができる。
 他の構成例として、第1配線部材401a~401dおよび第2配線部材402a、402bのボンディングパラメータの調節により、第2配線部材402a、402bの回路パターン301bとの接合強度を、第1配線部材401a~401dの抵抗体5に対する接合強度よりも弱くしてもよい。あるいは、第2配線部材402a、402bを回路パターン301bに接合したあと、当該接合部に機械的ダメージ(例えば切れ込みを形成するなどの機械加工)を与えてもよい。あるいは、回路パターン301bの上面に溝を形成しておき、当該溝上に第2配線部材402a、402bを接続することで、第2配線部材402a、402bの回路パターン301bに対する接合面積を小さくしてもよい。このような構成によっても、上述した図10および図11に示した半導体モジュールと同様の効果を得ることができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1 半導体素子、2,6,16 接合材料、3 回路基板、4,10 配線部材、5 抵抗体、5a 第1領域、5b 第2領域、5c 第3領域、7 ベース板、8 ケース、9 封止材料、11 外部端子、12 検知部、13 プリント基板、17 表面、41,43,1210 端部、41a,401a,1210a 凹部、42 領域、301a,301b,1302a,1302b 回路パターン、302 絶縁性部材、303 部材、401a~401d 第1配線部材、402a~402d 第2配線部材、1201a 第3配線部材、1201b 第4配線部材、1301 切欠き部、10000 半導体モジュール。

Claims (8)

  1.  半導体素子と、
     回路パターンを含む回路基板と、
     前記回路パターンの表面に接続された抵抗体と、
     前記半導体素子と前記抵抗体とを直接接続し、前記半導体素子から前記回路パターンへ流れる電流の少なくとも一部が流れる第1配線部材と、
     前記抵抗体における電圧降下値の変化および前記抵抗体における電流値の変化の少なくともいずれか一方を検知する検知部とを備える、半導体モジュール。
  2.  前記半導体素子と前記回路パターンとを直接接続する第2配線部材をさらに備える、請求項1に記載の半導体モジュール。
  3.  前記第1配線部材は金属ワイヤおよび金属リボンのいずれか一方である、請求項1または請求項2に記載の半導体モジュール。
  4.  前記検知部と前記抵抗体とを電気的に接続する第3配線部材と、
     前記回路パターンを介して前記抵抗体と前記検知部とを電気的に接続する第4配線部材とを備え、
     前記第1配線部材は、前記抵抗体に接続された端部を含み、
     前記第3配線部材は、前記第1配線部材の前記端部と重なるとともに前記端部と直接接続された接続部を含む、請求項1~3のいずれか1項に記載の半導体モジュール。
  5.  前記第3配線部材および前記第4配線部材は、金属ワイヤおよび金属リボンのいずれか一方である、請求項4に記載の半導体モジュール。
  6.  前記第1配線部材は、前記抵抗体と前記検知部とを接続する部分を含む、請求項1~3のいずれか1項に記載の半導体モジュール。
  7.  前記抵抗体は、前記回路基板と別体であって前記回路パターンの表面に接続されている、請求項1~6のいずれか1項に記載の半導体モジュール。
  8.  前記抵抗体は、前記回路パターンの表面上に形成された膜である、請求項1~6のいずれか1項に記載の半導体モジュール。
PCT/JP2018/019846 2017-06-22 2018-05-23 半導体モジュール WO2018235511A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018003222.1T DE112018003222T5 (de) 2017-06-22 2018-05-23 Halbleitermodul
US16/606,011 US10978364B2 (en) 2017-06-22 2018-05-23 Semiconductor module
CN201880038597.5A CN110800104A (zh) 2017-06-22 2018-05-23 半导体模块
JP2019525254A JP6804646B2 (ja) 2017-06-22 2018-05-23 半導体モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017122234 2017-06-22
JP2017-122234 2017-06-22

Publications (1)

Publication Number Publication Date
WO2018235511A1 true WO2018235511A1 (ja) 2018-12-27

Family

ID=64737142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019846 WO2018235511A1 (ja) 2017-06-22 2018-05-23 半導体モジュール

Country Status (5)

Country Link
US (1) US10978364B2 (ja)
JP (1) JP6804646B2 (ja)
CN (1) CN110800104A (ja)
DE (1) DE112018003222T5 (ja)
WO (1) WO2018235511A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023502165A (ja) * 2020-01-30 2023-01-20 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト アクセス可能な金属クリップ付きパワー半導体モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056130A (ja) * 1996-08-12 1998-02-24 Toshiba Corp 半導体装置
JP2000174202A (ja) * 1998-12-09 2000-06-23 Fuji Electric Co Ltd 半導体装置およびその製造方法
JP2004363458A (ja) * 2003-06-06 2004-12-24 Renesas Technology Corp 半導体装置
JP2011249475A (ja) * 2010-05-25 2011-12-08 Denso Corp 電力半導体装置
JP2015228447A (ja) * 2014-06-02 2015-12-17 株式会社デンソー 半導体装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038918A1 (ja) * 2003-10-15 2005-04-28 Hitachi, Ltd. パワー半導体モジュール及びそれを用いた電力変換装置並びに移動体
JP4091562B2 (ja) 2004-03-29 2008-05-28 ファナック株式会社 モータ駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056130A (ja) * 1996-08-12 1998-02-24 Toshiba Corp 半導体装置
JP2000174202A (ja) * 1998-12-09 2000-06-23 Fuji Electric Co Ltd 半導体装置およびその製造方法
JP2004363458A (ja) * 2003-06-06 2004-12-24 Renesas Technology Corp 半導体装置
JP2011249475A (ja) * 2010-05-25 2011-12-08 Denso Corp 電力半導体装置
JP2015228447A (ja) * 2014-06-02 2015-12-17 株式会社デンソー 半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023502165A (ja) * 2020-01-30 2023-01-20 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト アクセス可能な金属クリップ付きパワー半導体モジュール
JP7340706B2 (ja) 2020-01-30 2023-09-07 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト アクセス可能な金属クリップ付きパワー半導体モジュール

Also Published As

Publication number Publication date
CN110800104A (zh) 2020-02-14
JP6804646B2 (ja) 2020-12-23
JPWO2018235511A1 (ja) 2020-05-21
DE112018003222T5 (de) 2020-03-26
US20200273760A1 (en) 2020-08-27
US10978364B2 (en) 2021-04-13

Similar Documents

Publication Publication Date Title
US9899345B2 (en) Electrode terminal, semiconductor device for electrical power, and method for manufacturing semiconductor device for electrical power
US8031043B2 (en) Arrangement comprising a shunt resistor and method for producing an arrangement comprising a shunt resistor
US9613929B2 (en) Power semiconductor chip with a metallic moulded body for contacting thick wires or strips and method for the production thereof
US9030005B2 (en) Semiconductor device
JP6727428B2 (ja) 半導体装置
WO2021251126A1 (ja) 半導体装置
JP6997340B2 (ja) 半導体パッケージ、その製造方法、及び、半導体装置
JP6804646B2 (ja) 半導体モジュール
CN108292642B (zh) 电力用半导体装置
JP4038173B2 (ja) 電力用半導体装置
US11848298B2 (en) Semiconductor apparatus, power module, and manufacturing method of semiconductor apparatus
EP2159834A1 (en) Conductive bond wire coating
US8519547B2 (en) Chip arrangement and method for producing a chip arrangement
WO2023089714A1 (ja) 半導体装置及び半導体装置の製造方法
JP7254156B2 (ja) 半導体パッケージ、及び、半導体装置
WO2021221042A1 (ja) 半導体装置
US20240105566A1 (en) Semiconductor device
WO2023017707A1 (ja) 半導体装置
WO2021182016A1 (ja) 半導体装置
JP3477002B2 (ja) 半導体装置
JP2017092059A (ja) 半導体装置およびその製造方法
JP2024072278A (ja) 基板への半導体素子の接合
JP2012023204A (ja) 半導体装置およびその製造方法
JPS6119108B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525254

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18820153

Country of ref document: EP

Kind code of ref document: A1