WO2018235272A1 - Aluminum alloy and aluminum alloy casting - Google Patents
Aluminum alloy and aluminum alloy casting Download PDFInfo
- Publication number
- WO2018235272A1 WO2018235272A1 PCT/JP2017/023240 JP2017023240W WO2018235272A1 WO 2018235272 A1 WO2018235272 A1 WO 2018235272A1 JP 2017023240 W JP2017023240 W JP 2017023240W WO 2018235272 A1 WO2018235272 A1 WO 2018235272A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- weight
- alloy
- elongation
- less
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
Definitions
- the present invention relates to an aluminum alloy excellent in mechanical properties and an aluminum alloy cast article using the alloy.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2003-27169
- Patent Document 1 Japanese Patent Application Laid-Open No. 2003-27169
- As an aluminum alloy 8.5 to 9.5% of Si, 0.20% or less of Cu, 0.20 to 0.40% of Mg, and 0.6% or less of Fe on a weight basis .30 to 0.50% of Mn, 0.05 to 0.15% of Ti, 0.01 to 0.025% of Sr, and 0.15% or less of Zn, the balance being Al
- An aluminum alloy is disclosed. According to this technology, it is believed that an aluminum alloy having high strength and high toughness can be provided so that it can withstand breakage even in a severe use environment (than the use environment of conventional materials).
- the present invention is an aluminum alloy capable of balancing mechanical properties, in particular tensile strength, elongation, 0.2% proof stress and hardness at a high level, and also for expanding applications mainly in transport equipment generally. It is an object of the present invention to provide an aluminum alloy that can be economically and sustainably produced using recycled raw materials such as scrap, and an aluminum alloy cast article made of the alloy.
- Cu is contained in the range of 0.75% by weight or more and 1.25% by weight or less
- Mg is also contained in the range of more than 0.50% by weight to 0.80% by weight or less
- Cr containing 0.10% by weight or more and 0.30% by weight or less of the effect of improving the corrosion resistance is contained. It is possible to minimize the deterioration of the corrosion resistance of the aluminum alloy caused by the inclusion of Cu.
- the ingot of an aluminum alloy excellent in castability and mechanical properties is recycled mainly by containing the above six types of elemental components in a predetermined ratio, and their interaction with each other. It can be economically and simply manufactured using raw materials.
- the aluminum alloy of the present invention it is preferable to further contain 0.30% by weight or less of Ti based on the total weight of the alloy.
- the crystal grains of the alloy can be refined to suppress casting cracks more effectively, and mechanical properties, in particular, elongation can be improved.
- At least one selected from Na, Sr and Ca is further added so as to be 30 to 200 ppm with respect to the total weight of the alloy, or Sb relative to the total weight of the alloy It is preferable to add so as to be 0.05 to 0.20% by weight. By so doing, particles of eutectic Si can be made finer, and the toughness and strength of the aluminum alloy can be further improved. Furthermore, it is also preferable to add B to 1 to 50 ppm with respect to the weight of the entire alloy. By so doing, the crystal grains of the aluminum alloy can be made finer even if the amount of Si is small or the casting method with a slow cooling rate is used, and as a result, the elongation of the aluminum alloy is improved. Can.
- a second invention of the present invention is an aluminum alloy cast article comprising the aluminum alloy according to the first invention.
- the aluminum alloy cast article comprising the aluminum alloy of the present invention can be mass-produced with good castability, and because mechanical characteristics, especially tensile strength, elongation, 0.2% proof stress and hardness are balanced at high dimensions, for example It can be suitably used in new applications of cast articles that require weight reduction in general transportation equipment where the application of aluminum alloy cast articles is expanding.
- the present invention is an aluminum alloy capable of balancing mechanical properties, in particular tensile strength, elongation, 0.2% proof stress and hardness at a high level, and also for expanding applications mainly in transport equipment generally, It is possible to provide an aluminum alloy that can be economically and sustainably produced using recycled raw materials such as scrap, and an aluminum alloy cast article made of the alloy.
- the aluminum alloy of the present invention is, by weight, 0.75% ⁇ Cu ⁇ 1.25%, 7.5% ⁇ Si ⁇ 8.5%, 0.50% ⁇ Mg ⁇ 0.80%, 0.20 It contains% ⁇ Fe ⁇ 0.50%, 0.30% ⁇ Mn ⁇ 0.50%, 0.10% ⁇ Cr ⁇ 0.30%, and the balance is roughly constituted by Al and unavoidable impurities. The characteristics of each element will be described below.
- Cu copper
- the content of Cu relative to the weight of the entire aluminum alloy is preferably in the range of 0.75% by weight or more and 1.25% by weight or less as described above. If the content ratio of Cu is less than 0.75% by weight, the above-mentioned mechanical property improvement effect can not be obtained, and conversely, if the content ratio of Cu exceeds 1.25% by weight, the main In the T6 treated material (details will be described later), the tensile strength and the elongation become insufficient.
- Si silicon
- the content of Si relative to the weight of the entire aluminum alloy is preferably in the range of 7.5% by weight or more and 8.5% by weight or less as described above.
- the content ratio of Si is less than 7.5% by weight, it is difficult to secure the fluidity of the molten metal, and in the case of forming by ordinary die casting generally used widely as the casting method, it is large Application to parts is hindered, and conversely, when the content of Si exceeds 8.5% by weight, the castability is improved but the elongation of the alloy is significantly reduced.
- Mg manganesium mainly exists as a solid solution in an Al base material in an aluminum alloy or exists as Mg 2 Si and imparts yield strength and hardness to the aluminum alloy while elongation is significantly reduced by the inclusion of an excessive amount Together with castability and corrosion resistance.
- the content ratio of Mg to the weight of the entire aluminum alloy is preferably in the range of more than 0.50% by weight and 0.80% by weight or less as described above. When the content ratio of Mg is 0.5% by weight or less, it becomes possible to secure 0.2% proof stress and hardness of the alloy regardless of the presence or absence of heat treatment, while the content ratio of Mg is 0.8 If it exceeds the weight percent, the elongation of the alloy will be significantly reduced.
- Fe iron
- the content ratio of Fe with respect to the weight of the entire aluminum alloy is preferably 0.20% by weight or more, as described above, in consideration of using a recycled material such as scrap for a part of the material from the viewpoint of recycling.
- the upper limit is 0.50% by weight as described above It is preferable that it is the following.
- Mn manganese
- Mn is mainly for preventing seizing between an aluminum alloy and a mold at the time of casting such as die casting, as in the case of Fe described above.
- the upper limit of the content ratio of Mn to the weight of the entire aluminum alloy is suppressed to 0.50 wt% or less There is.
- the lower limit of the content of Mn is preferably 0.30% by weight or more, as described above, in order to exert the above-mentioned anti-seizure effect remarkably.
- Cr chromium
- the content of Cr relative to the weight of the entire aluminum alloy is preferably in the range of 0.10% by weight or more and 0.30% by weight or less as described above. If the content ratio of Cr is less than 0.10% by weight, the above-mentioned effects can not be sufficiently obtained, and conversely, if the content ratio of Cr exceeds 0.30% by weight, it is added more Even if the amount is increased, the addition effect can not be improved.
- Ti titanium
- This Ti has an effect of refining crystal grains, and is generally an element which can particularly improve elongation among suppression of casting cracks and mechanical properties.
- the content of Ti with respect to the weight of the entire aluminum alloy is preferably in the range of 0.30% by weight or less. When the content ratio of Ti exceeds 0.30% by weight, it is difficult to melt the aluminum alloy, and there is a possibility that the unmelted portion is generated.
- At least one selected from Na (sodium), Sr (strontium), Ca (calcium) and Sb (antimony) may be added as the improvement treatment material.
- the improvement treatment material By adding such an improvement treatment material, particles of eutectic Si can be made finer, and the toughness and strength of the aluminum alloy can be further improved.
- the addition ratio of the improved material to the total weight of the aluminum alloy is 30 to 200 ppm when the improved material is Na, Sr and Ca, and 0.05 to 0.20% by weight when Sb is used. It is preferable that it is a range.
- the addition ratio of the improvement treatment material is less than 30 ppm (0.05% by weight in the case of Sb), it becomes difficult to refine the particles of eutectic Si in the aluminum alloy, conversely, the improvement treatment material
- the addition ratio of is greater than 200 ppm (0.20% by weight in the case of Sb)
- the particles of eutectic Si in the aluminum alloy are sufficiently finely divided, and addition is possible even if the addition amount is further increased It is because the effect does not rise.
- B boron
- B boron
- the proportion of B added to the total weight of the aluminum alloy is preferably in the range of 1 to 50 ppm.
- the addition ratio of B is less than 1 ppm, it is difficult to refine the crystal grains in the aluminum alloy, and conversely, when the addition ratio of B is more than 50 ppm, the crystal grains in the aluminum alloy are sufficient. The effect of addition is not improved even if the amount of addition is further increased.
- raw materials are prepared in which the respective elemental components of Al, Cu, Si, Mg, Fe, Mn, and Cr are in the above-described predetermined ratio (necessary In accordance with the above, Ti and modified materials are added.
- the raw material is put into a melting furnace such as a forging furnace-containing melting furnace or a closed melting furnace to melt these materials.
- the molten raw material thus melted that is, the molten metal of the aluminum alloy, is subjected to a purification treatment such as dehydrogenation treatment and removal treatment, if necessary.
- the refined molten metal is poured into a predetermined mold or the like and solidified to form a molten metal of an aluminum alloy into an alloy base metal ingot or the like.
- tensile strength, elongation and 0.2% proof stress were measured by the following methods. That is, using an ordinary die casting machine with a clamping force of 135 tons (DC 135EL manufactured by Toshiba Machine Co., Ltd.), die casting is performed at an injection speed of 1.0 m / s and a casting pressure of 60 MPa. ASTM (American Society for Testing and Material) Round bar test piece conforming to the standard was prepared.
- the T6 treatment is a heat treatment method in which reheating and artificial aging treatment are performed after the solution treatment.
- the solution treatment after heating at 510 ° C. for 3 hours as this T6 treatment, it was water cooled (solution treatment), and further heated at 180 ° C. for 3 hours, then air cooled (artificial aging treatment).
- the hardness was evaluated by the Rockwell hardness test according to Japanese Industrial Standard JIS G0202.
- Table 1 shows the composition of an aluminum alloy manufactured by adjusting the alloy components other than Cu to a certain ratio within the scope of the present invention and changing the content ratio of Cu. And the mechanical properties (tensile strength, elongation, 0.2% proof stress and hardness).
- the elongation of the alloy gradually decreases as the content of Cu increases, and in particular, when the content of Cu exceeds 1.25% by weight, the elongation becomes less than 5.0% in the T6 treated material. It is difficult to say that it is excellent in growth. For this reason, in the aluminum alloy of the present invention, the content of Cu is in the range of 0.75% by weight or more and 1.25% by weight or less. Alloys 1 and 2 in Table 1 are alloy compositions within the scope of the present invention, ie, example alloys, and alloy 9 is a JIS ADC 3 alloy representing a conventional material.
- Table 2 shows the composition of the aluminum alloy manufactured by adjusting the alloy components other than Mg to a certain ratio within the range of the present invention and changing the content ratio of Mg. And the mechanical properties (tensile strength, elongation, 0.2% proof stress and hardness).
- Cu is contained in the range of 0.75% by weight or more and 1.25% by weight or less, and Mg is also more than 0.50% by weight or more and 0.80% by weight or less Since it is contained in the range, not only the use of recycled raw materials such as scraps becomes possible, but also mechanical properties such as tensile strength, 0.2% proof stress and hardness can be improved. Moreover, while suppressing the content ratio of Cu which may deteriorate the corrosion resistance within the above range, Cr containing 0.10% by weight or more and 0.30% by weight or less of the effect of improving the corrosion resistance is contained. It is possible to minimize the deterioration of the corrosion resistance of the aluminum alloy caused by the inclusion of Cu.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Forging (AREA)
Abstract
Provided are: an aluminum alloy with an extremely good balance of mechanical properties, especially tensile strength, elongation, 0.2% proof stress and hardness, that can be used for an increasing number of applications mainly in the field of transport equipment in general, and can be produced economically and sustainably using recycled starting materials such as scrap; and an aluminum alloy casting made from said alloy. That is, the present invention is: an aluminum alloy characterized in containing, in mass%, 0.75%≤Cu≤1.25%, 7.5%≤Si≤8.5%, 0.50%<Mg≤0.80%, 0.20%≤Fe≤0.50%, 0.30%≤Mn≤0.50%, and 0.10%≤Cr≤0.30%, the balance being made of Al and unavoidable impurities; and an aluminum alloy casting thereof.
Description
本発明は、機械的特性に優れたアルミニウム合金および当該合金を利用したアルミニウム合金鋳物品に関する。
The present invention relates to an aluminum alloy excellent in mechanical properties and an aluminum alloy cast article using the alloy.
自転車や自動車などの輸送機器全般において軽量化が求められており、アルミニウム合金鋳物品の適用が拡大している。従来より、この種の用途には、JIS ADC3合金が多用されているが、かかる適用の拡がりに伴い、この従来材では機械的性質を満足できない用途も顕在化している。
Weight reduction is required in all transport devices such as bicycles and automobiles, and the application of aluminum alloy cast articles is expanding. Conventionally, JIS ADC 3 alloy has been widely used for this type of application, but with the spread of such application, applications in which mechanical properties can not be satisfied with this conventional material have become apparent.
そこで、JIS ADC3合金のような従来材では対応できない用途に対応するため、例えば、下記の特許文献1(日本国・特開2003-27169号公報)には、機械的強度と靭性とを高めたアルミニウム合金として、重量基準で8.5~9.5%のSiと、0.20%以下のCuと、0.20~0.40%のMgと、0.6%以下のFeと、0.30~0.50%のMnと、0.05~0.15%のTiと、0.01~0.025%のSrと、0.15%以下のZnとを含むと共に、残部にAlを含むアルミニウム合金が開示されている。
この技術によれば、(従来材の使用環境よりも)過酷な使用環境においても破壊に耐えられるよう、強度が高く、且つ靭性の高いアルミニウム合金を提供することができるとされている。 Then, in order to correspond to the use which conventional materials such as JIS ADC 3 alloy can not cope with, for example, the following Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-27169) has improved mechanical strength and toughness. As an aluminum alloy, 8.5 to 9.5% of Si, 0.20% or less of Cu, 0.20 to 0.40% of Mg, and 0.6% or less of Fe on a weight basis .30 to 0.50% of Mn, 0.05 to 0.15% of Ti, 0.01 to 0.025% of Sr, and 0.15% or less of Zn, the balance being Al An aluminum alloy is disclosed.
According to this technology, it is believed that an aluminum alloy having high strength and high toughness can be provided so that it can withstand breakage even in a severe use environment (than the use environment of conventional materials).
この技術によれば、(従来材の使用環境よりも)過酷な使用環境においても破壊に耐えられるよう、強度が高く、且つ靭性の高いアルミニウム合金を提供することができるとされている。 Then, in order to correspond to the use which conventional materials such as JIS ADC 3 alloy can not cope with, for example, the following Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-27169) has improved mechanical strength and toughness. As an aluminum alloy, 8.5 to 9.5% of Si, 0.20% or less of Cu, 0.20 to 0.40% of Mg, and 0.6% or less of Fe on a weight basis .30 to 0.50% of Mn, 0.05 to 0.15% of Ti, 0.01 to 0.025% of Sr, and 0.15% or less of Zn, the balance being Al An aluminum alloy is disclosed.
According to this technology, it is believed that an aluminum alloy having high strength and high toughness can be provided so that it can withstand breakage even in a severe use environment (than the use environment of conventional materials).
しかしながら、合金の耐食性を維持するためにCuを不純物扱いとし、その含有割合を上述のように0.20%以下に制限すれば、実質的にスクラップ原料の使用が不可能となり、アルミニウム合金を経済的に製造できなくなるのに加え、循環型社会を構築していく上での律速ともなる。また、Cuはアルミニウム合金に対して引張強さや0.2%耐力と言った機械的性質を向上させる効果を有しているが、そのCuの含有割合を0.20%以下に制限すれば、かかる効果も限定的となる。
それゆえに、本発明は、機械的特性、とりわけ引張強さ,伸び,0.2%耐力及び硬さを高い次元でバランスさせ、主として輸送機器全般において拡大する用途にも対応できるアルミニウム合金であって、スクラップなどのリサイクル原料を使用して経済的且つ持続可能に生産することが可能なアルミニウム合金と、当該合金からなるアルミニウム合金鋳物品とを提供することを目的とする。 However, if Cu is treated as an impurity in order to maintain the corrosion resistance of the alloy and the content thereof is limited to 0.20% or less as described above, the use of scrap material becomes substantially impossible, and the aluminum alloy is economically In addition to being unable to manufacture, it is also the rate-limiting factor in constructing a recycling society. In addition, Cu has the effect of improving mechanical properties such as tensile strength and 0.2% proof stress with respect to aluminum alloy, but if the content ratio of Cu is limited to 0.20% or less, Such effects are also limited.
Therefore, the present invention is an aluminum alloy capable of balancing mechanical properties, in particular tensile strength, elongation, 0.2% proof stress and hardness at a high level, and also for expanding applications mainly in transport equipment generally. It is an object of the present invention to provide an aluminum alloy that can be economically and sustainably produced using recycled raw materials such as scrap, and an aluminum alloy cast article made of the alloy.
それゆえに、本発明は、機械的特性、とりわけ引張強さ,伸び,0.2%耐力及び硬さを高い次元でバランスさせ、主として輸送機器全般において拡大する用途にも対応できるアルミニウム合金であって、スクラップなどのリサイクル原料を使用して経済的且つ持続可能に生産することが可能なアルミニウム合金と、当該合金からなるアルミニウム合金鋳物品とを提供することを目的とする。 However, if Cu is treated as an impurity in order to maintain the corrosion resistance of the alloy and the content thereof is limited to 0.20% or less as described above, the use of scrap material becomes substantially impossible, and the aluminum alloy is economically In addition to being unable to manufacture, it is also the rate-limiting factor in constructing a recycling society. In addition, Cu has the effect of improving mechanical properties such as tensile strength and 0.2% proof stress with respect to aluminum alloy, but if the content ratio of Cu is limited to 0.20% or less, Such effects are also limited.
Therefore, the present invention is an aluminum alloy capable of balancing mechanical properties, in particular tensile strength, elongation, 0.2% proof stress and hardness at a high level, and also for expanding applications mainly in transport equipment generally. It is an object of the present invention to provide an aluminum alloy that can be economically and sustainably produced using recycled raw materials such as scrap, and an aluminum alloy cast article made of the alloy.
本発明における第1の発明は、「重量%で、0.75%≦Cu≦1.25%、7.5%≦Si≦8.5%、0.50%<Mg≦0.80%、0.20%≦Fe≦0.50%、0.30%≦Mn≦0.50%、0.10%≦Cr≦0.30%を含有し、残部がAlと不可避不純物とからなる」ことを特徴とするアルミニウム合金である。
According to a first aspect of the present invention, “% by weight, 0.75% ≦ Cu ≦ 1.25%, 7.5% ≦ Si ≦ 8.5%, 0.50% <Mg ≦ 0.80%, 0.20% ≦ Fe ≦ 0.50%, 0.30% ≦ Mn ≦ 0.50%, 0.10% ≦ Cr ≦ 0.30%, and the balance consists of Al and unavoidable impurities ” Is an aluminum alloy characterized by
この発明では、Cuを0.75重量%以上で且つ1.25重量%以下の範囲内で含有させると共に、Mgも0.50重量%超から0.80重量%以下の範囲内で含有させているので、スクラップなどのリサイクル原料の使用が可能となるのみならず、引張強さや0.2%耐力や硬さと言った機械的性質を向上させることもできる。また、耐食性を悪化させる虞のあるCuの含有割合を上記範囲内に抑える一方で、耐食性改善効果のあるCrを0.10重量%以上で且つ0.30重量%以下含有するようにしているので、Cuの含有に伴うアルミニウム合金の耐食性の低下を最低限に抑えることができる。
以上のように、本発明では、主として上記の6種類の元素成分を所定の割合で含有させるだけで、それらの相互的作用によって、鋳造性や機械的性質に優れたアルミニウム合金のインゴットを、リサイクル原料を用いて経済的且つ簡便に製造することができる。 In the present invention, Cu is contained in the range of 0.75% by weight or more and 1.25% by weight or less, and Mg is also contained in the range of more than 0.50% by weight to 0.80% by weight or less Not only is it possible to use recycled materials such as scrap, but it is also possible to improve mechanical properties such as tensile strength, 0.2% proof stress and hardness. Moreover, while suppressing the content ratio of Cu which may deteriorate the corrosion resistance within the above range, Cr containing 0.10% by weight or more and 0.30% by weight or less of the effect of improving the corrosion resistance is contained. It is possible to minimize the deterioration of the corrosion resistance of the aluminum alloy caused by the inclusion of Cu.
As described above, in the present invention, the ingot of an aluminum alloy excellent in castability and mechanical properties is recycled mainly by containing the above six types of elemental components in a predetermined ratio, and their interaction with each other. It can be economically and simply manufactured using raw materials.
以上のように、本発明では、主として上記の6種類の元素成分を所定の割合で含有させるだけで、それらの相互的作用によって、鋳造性や機械的性質に優れたアルミニウム合金のインゴットを、リサイクル原料を用いて経済的且つ簡便に製造することができる。 In the present invention, Cu is contained in the range of 0.75% by weight or more and 1.25% by weight or less, and Mg is also contained in the range of more than 0.50% by weight to 0.80% by weight or less Not only is it possible to use recycled materials such as scrap, but it is also possible to improve mechanical properties such as tensile strength, 0.2% proof stress and hardness. Moreover, while suppressing the content ratio of Cu which may deteriorate the corrosion resistance within the above range, Cr containing 0.10% by weight or more and 0.30% by weight or less of the effect of improving the corrosion resistance is contained. It is possible to minimize the deterioration of the corrosion resistance of the aluminum alloy caused by the inclusion of Cu.
As described above, in the present invention, the ingot of an aluminum alloy excellent in castability and mechanical properties is recycled mainly by containing the above six types of elemental components in a predetermined ratio, and their interaction with each other. It can be economically and simply manufactured using raw materials.
なお、本発明のアルミニウム合金では、合金全体の重量に対して更にTiを0.30重量%以下含有させるのが好ましい。こうすることにより、当該合金の結晶粒を微細化させて鋳造割れをより一層効果的に抑制できると共、機械的性質とりわけ伸びを向上させることができる。
In the aluminum alloy of the present invention, it is preferable to further contain 0.30% by weight or less of Ti based on the total weight of the alloy. By so doing, the crystal grains of the alloy can be refined to suppress casting cracks more effectively, and mechanical properties, in particular, elongation can be improved.
また、本発明のアルミニウム合金では、更に、Na,SrおよびCaから選ばれる少なくとも1種を合金全体の重量に対して30~200ppmとなるように添加することや、Sbを合金全体の重量に対して0.05~0.20重量%となるように添加するのが好ましい。こうすることにより、共晶Siの粒子を細かくすることができ、アルミニウム合金の靱性や強度をより一層向上させることができる。
更に、Bを合金全体の重量に対して1~50ppmとなるように添加することも好ましい。こうすることにより、特にSi量が少ない場合や冷却速度の遅い鋳造方法を用いる場合であってもアルミニウム合金の結晶粒を微細化させることができ、その結果、当該アルミニウム合金の伸びを向上させることができる。 Further, in the aluminum alloy of the present invention, at least one selected from Na, Sr and Ca is further added so as to be 30 to 200 ppm with respect to the total weight of the alloy, or Sb relative to the total weight of the alloy It is preferable to add so as to be 0.05 to 0.20% by weight. By so doing, particles of eutectic Si can be made finer, and the toughness and strength of the aluminum alloy can be further improved.
Furthermore, it is also preferable to add B to 1 to 50 ppm with respect to the weight of the entire alloy. By so doing, the crystal grains of the aluminum alloy can be made finer even if the amount of Si is small or the casting method with a slow cooling rate is used, and as a result, the elongation of the aluminum alloy is improved. Can.
更に、Bを合金全体の重量に対して1~50ppmとなるように添加することも好ましい。こうすることにより、特にSi量が少ない場合や冷却速度の遅い鋳造方法を用いる場合であってもアルミニウム合金の結晶粒を微細化させることができ、その結果、当該アルミニウム合金の伸びを向上させることができる。 Further, in the aluminum alloy of the present invention, at least one selected from Na, Sr and Ca is further added so as to be 30 to 200 ppm with respect to the total weight of the alloy, or Sb relative to the total weight of the alloy It is preferable to add so as to be 0.05 to 0.20% by weight. By so doing, particles of eutectic Si can be made finer, and the toughness and strength of the aluminum alloy can be further improved.
Furthermore, it is also preferable to add B to 1 to 50 ppm with respect to the weight of the entire alloy. By so doing, the crystal grains of the aluminum alloy can be made finer even if the amount of Si is small or the casting method with a slow cooling rate is used, and as a result, the elongation of the aluminum alloy is improved. Can.
本発明における第2の発明は、上記第1の発明に記載のアルミニウム合金からなることを特徴とするアルミニウム合金鋳物品である。
本発明のアルミニウム合金からなるアルミニウム合金鋳物品は、鋳造性よく量産できると共に、機械的特性、とりわけ引張強さ,伸び,0.2%耐力及び硬さが高い次元でバランスされているため、例えばアルミニウム合金鋳物品の適用が拡大している輸送機器全般において、軽量化が必要な鋳物品の新規用途で好適に使用することができる。 A second invention of the present invention is an aluminum alloy cast article comprising the aluminum alloy according to the first invention.
The aluminum alloy cast article comprising the aluminum alloy of the present invention can be mass-produced with good castability, and because mechanical characteristics, especially tensile strength, elongation, 0.2% proof stress and hardness are balanced at high dimensions, for example It can be suitably used in new applications of cast articles that require weight reduction in general transportation equipment where the application of aluminum alloy cast articles is expanding.
本発明のアルミニウム合金からなるアルミニウム合金鋳物品は、鋳造性よく量産できると共に、機械的特性、とりわけ引張強さ,伸び,0.2%耐力及び硬さが高い次元でバランスされているため、例えばアルミニウム合金鋳物品の適用が拡大している輸送機器全般において、軽量化が必要な鋳物品の新規用途で好適に使用することができる。 A second invention of the present invention is an aluminum alloy cast article comprising the aluminum alloy according to the first invention.
The aluminum alloy cast article comprising the aluminum alloy of the present invention can be mass-produced with good castability, and because mechanical characteristics, especially tensile strength, elongation, 0.2% proof stress and hardness are balanced at high dimensions, for example It can be suitably used in new applications of cast articles that require weight reduction in general transportation equipment where the application of aluminum alloy cast articles is expanding.
本発明によれば、機械的特性、とりわけ引張強さ,伸び,0.2%耐力及び硬さを高い次元でバランスさせ、主として輸送機器全般において拡大する用途にも対応できるアルミニウム合金であって、スクラップなどのリサイクル原料を使用して経済的且つ持続可能に生産することが可能なアルミニウム合金と、当該合金からなるアルミニウム合金鋳物品とを提供することができる。
According to the present invention, it is an aluminum alloy capable of balancing mechanical properties, in particular tensile strength, elongation, 0.2% proof stress and hardness at a high level, and also for expanding applications mainly in transport equipment generally, It is possible to provide an aluminum alloy that can be economically and sustainably produced using recycled raw materials such as scrap, and an aluminum alloy cast article made of the alloy.
以下、本発明の実施の形態について具体例を示しながら詳述する。
本発明のアルミニウム合金は、重量%で、0.75%≦Cu≦1.25%、7.5%≦Si≦8.5%、0.50%<Mg≦0.80%、0.20%≦Fe≦0.50%、0.30%≦Mn≦0.50%、0.10%≦Cr≦0.30%を含有し、残部がAlと不可避不純物とで大略構成されている。以下、各元素の特性について説明する。 Hereinafter, embodiments of the present invention will be described in detail by way of specific examples.
The aluminum alloy of the present invention is, by weight, 0.75% ≦ Cu ≦ 1.25%, 7.5% ≦ Si ≦ 8.5%, 0.50% <Mg ≦ 0.80%, 0.20 It contains% ≦ Fe ≦ 0.50%, 0.30% ≦ Mn ≦ 0.50%, 0.10% ≦ Cr ≦ 0.30%, and the balance is roughly constituted by Al and unavoidable impurities. The characteristics of each element will be described below.
本発明のアルミニウム合金は、重量%で、0.75%≦Cu≦1.25%、7.5%≦Si≦8.5%、0.50%<Mg≦0.80%、0.20%≦Fe≦0.50%、0.30%≦Mn≦0.50%、0.10%≦Cr≦0.30%を含有し、残部がAlと不可避不純物とで大略構成されている。以下、各元素の特性について説明する。 Hereinafter, embodiments of the present invention will be described in detail by way of specific examples.
The aluminum alloy of the present invention is, by weight, 0.75% ≦ Cu ≦ 1.25%, 7.5% ≦ Si ≦ 8.5%, 0.50% <Mg ≦ 0.80%, 0.20 It contains% ≦ Fe ≦ 0.50%, 0.30% ≦ Mn ≦ 0.50%, 0.10% ≦ Cr ≦ 0.30%, and the balance is roughly constituted by Al and unavoidable impurities. The characteristics of each element will be described below.
Cu(銅)は、アルミニウム合金の耐摩耗性や機械的強度や硬さを向上させるために重要な元素である。
アルミニウム合金全体の重量に対するCuの含有割合は、上述したように0.75重量%以上で且つ1.25重量%以下の範囲内であることが好ましい。Cuの含有割合が0.75重量%未満の場合には、上述の機械的性質改善効果を得ることができなくなり、逆に、Cuの含有割合が1.25重量%を超える場合には、主にT6処理材(詳しくは後述)において引張強度や伸びが不十分なものとなるからである。 Cu (copper) is an important element for improving the wear resistance, mechanical strength and hardness of aluminum alloys.
The content of Cu relative to the weight of the entire aluminum alloy is preferably in the range of 0.75% by weight or more and 1.25% by weight or less as described above. If the content ratio of Cu is less than 0.75% by weight, the above-mentioned mechanical property improvement effect can not be obtained, and conversely, if the content ratio of Cu exceeds 1.25% by weight, the main In the T6 treated material (details will be described later), the tensile strength and the elongation become insufficient.
アルミニウム合金全体の重量に対するCuの含有割合は、上述したように0.75重量%以上で且つ1.25重量%以下の範囲内であることが好ましい。Cuの含有割合が0.75重量%未満の場合には、上述の機械的性質改善効果を得ることができなくなり、逆に、Cuの含有割合が1.25重量%を超える場合には、主にT6処理材(詳しくは後述)において引張強度や伸びが不十分なものとなるからである。 Cu (copper) is an important element for improving the wear resistance, mechanical strength and hardness of aluminum alloys.
The content of Cu relative to the weight of the entire aluminum alloy is preferably in the range of 0.75% by weight or more and 1.25% by weight or less as described above. If the content ratio of Cu is less than 0.75% by weight, the above-mentioned mechanical property improvement effect can not be obtained, and conversely, if the content ratio of Cu exceeds 1.25% by weight, the main In the T6 treated material (details will be described later), the tensile strength and the elongation become insufficient.
Si(ケイ素)は、アルミニウム合金溶融時における流動性を確保し、鋳造性を向上させる重要な元素である。
アルミニウム合金全体の重量に対するSiの含有割合は、上述したように7.5重量%以上で且つ8.5重量%以下の範囲内であることが好ましい。Siの含有割合が7.5重量%未満の場合には、溶湯の流動性を確保することが難しく、その鋳造方法として一般的に多用されている通常のダイカストでの成形を考えた場合、大型部品への適用の妨げとなり、逆に、Siの含有割合が8.5重量%を超える場合には、鋳造性は向上するが合金の伸びが著しく低下するようになるからである。 Si (silicon) is an important element which secures the fluidity at the time of aluminum alloy melting and improves the castability.
The content of Si relative to the weight of the entire aluminum alloy is preferably in the range of 7.5% by weight or more and 8.5% by weight or less as described above. When the content ratio of Si is less than 7.5% by weight, it is difficult to secure the fluidity of the molten metal, and in the case of forming by ordinary die casting generally used widely as the casting method, it is large Application to parts is hindered, and conversely, when the content of Si exceeds 8.5% by weight, the castability is improved but the elongation of the alloy is significantly reduced.
アルミニウム合金全体の重量に対するSiの含有割合は、上述したように7.5重量%以上で且つ8.5重量%以下の範囲内であることが好ましい。Siの含有割合が7.5重量%未満の場合には、溶湯の流動性を確保することが難しく、その鋳造方法として一般的に多用されている通常のダイカストでの成形を考えた場合、大型部品への適用の妨げとなり、逆に、Siの含有割合が8.5重量%を超える場合には、鋳造性は向上するが合金の伸びが著しく低下するようになるからである。 Si (silicon) is an important element which secures the fluidity at the time of aluminum alloy melting and improves the castability.
The content of Si relative to the weight of the entire aluminum alloy is preferably in the range of 7.5% by weight or more and 8.5% by weight or less as described above. When the content ratio of Si is less than 7.5% by weight, it is difficult to secure the fluidity of the molten metal, and in the case of forming by ordinary die casting generally used widely as the casting method, it is large Application to parts is hindered, and conversely, when the content of Si exceeds 8.5% by weight, the castability is improved but the elongation of the alloy is significantly reduced.
Mg(マグネシウム)は、主としてアルミニウム合金中のAl母材に固溶した状態又はMg2Siとして存在し、アルミニウム合金に耐力および硬さを付与する一方で、過大量の含有によって伸びが著しく低下すると共に鋳造性や耐食性にも悪影響を及ぼす成分である。
アルミニウム合金全体の重量に対するMgの含有割合は、上述したように0.50重量%超で且つ0.80重量%以下の範囲であることが好ましい。Mgの含有割合が0.5重量%以下の場合には、熱処理の有無にかかわらず合金の0.2%耐力と硬さとを確保することが可能となる一方、Mgの含有割合が0.8重量%を超える場合には、合金の伸びが著しく低下するようになるからである。 Mg (magnesium) mainly exists as a solid solution in an Al base material in an aluminum alloy or exists as Mg 2 Si and imparts yield strength and hardness to the aluminum alloy while elongation is significantly reduced by the inclusion of an excessive amount Together with castability and corrosion resistance.
The content ratio of Mg to the weight of the entire aluminum alloy is preferably in the range of more than 0.50% by weight and 0.80% by weight or less as described above. When the content ratio of Mg is 0.5% by weight or less, it becomes possible to secure 0.2% proof stress and hardness of the alloy regardless of the presence or absence of heat treatment, while the content ratio of Mg is 0.8 If it exceeds the weight percent, the elongation of the alloy will be significantly reduced.
アルミニウム合金全体の重量に対するMgの含有割合は、上述したように0.50重量%超で且つ0.80重量%以下の範囲であることが好ましい。Mgの含有割合が0.5重量%以下の場合には、熱処理の有無にかかわらず合金の0.2%耐力と硬さとを確保することが可能となる一方、Mgの含有割合が0.8重量%を超える場合には、合金の伸びが著しく低下するようになるからである。 Mg (magnesium) mainly exists as a solid solution in an Al base material in an aluminum alloy or exists as Mg 2 Si and imparts yield strength and hardness to the aluminum alloy while elongation is significantly reduced by the inclusion of an excessive amount Together with castability and corrosion resistance.
The content ratio of Mg to the weight of the entire aluminum alloy is preferably in the range of more than 0.50% by weight and 0.80% by weight or less as described above. When the content ratio of Mg is 0.5% by weight or less, it becomes possible to secure 0.2% proof stress and hardness of the alloy regardless of the presence or absence of heat treatment, while the content ratio of Mg is 0.8 If it exceeds the weight percent, the elongation of the alloy will be significantly reduced.
Fe(鉄)は、例えばダイカストなどの鋳造を行う際に、金型の焼付きを防止する効果を有していることが知られている。しかしながら、このFeは、Al-Si-Feからなる針状晶を晶出し、アルミニウム合金の靱性(伸び)を低下させると共に、大量に添加すると適温での溶解を困難にする。
アルミニウム合金全体の重量に対するFeの含有割合は、リサイクルの観点から原料の一部にスクラップなどのリサイクル原料を用いることを考慮すれば、上述したように0.20重量%以上であることが好ましい。その一方で、Feの含有割合が高すぎると、上記の通りAl-Si-Feからなる針状晶を晶出し、合金の伸びが低下するため、その上限は上述したように0.50重量%以下であることが好ましい。 Fe (iron) is known to have an effect of preventing seizing of a mold when casting, for example, die casting. However, this Fe crystallizes needle-like crystals consisting of Al-Si-Fe and lowers the toughness (elongation) of the aluminum alloy, and when added in large amounts, makes it difficult to melt at an appropriate temperature.
The content ratio of Fe with respect to the weight of the entire aluminum alloy is preferably 0.20% by weight or more, as described above, in consideration of using a recycled material such as scrap for a part of the material from the viewpoint of recycling. On the other hand, if the Fe content ratio is too high, as described above, needle crystals consisting of Al-Si-Fe crystallize and the elongation of the alloy decreases, so the upper limit is 0.50% by weight as described above It is preferable that it is the following.
アルミニウム合金全体の重量に対するFeの含有割合は、リサイクルの観点から原料の一部にスクラップなどのリサイクル原料を用いることを考慮すれば、上述したように0.20重量%以上であることが好ましい。その一方で、Feの含有割合が高すぎると、上記の通りAl-Si-Feからなる針状晶を晶出し、合金の伸びが低下するため、その上限は上述したように0.50重量%以下であることが好ましい。 Fe (iron) is known to have an effect of preventing seizing of a mold when casting, for example, die casting. However, this Fe crystallizes needle-like crystals consisting of Al-Si-Fe and lowers the toughness (elongation) of the aluminum alloy, and when added in large amounts, makes it difficult to melt at an appropriate temperature.
The content ratio of Fe with respect to the weight of the entire aluminum alloy is preferably 0.20% by weight or more, as described above, in consideration of using a recycled material such as scrap for a part of the material from the viewpoint of recycling. On the other hand, if the Fe content ratio is too high, as described above, needle crystals consisting of Al-Si-Fe crystallize and the elongation of the alloy decreases, so the upper limit is 0.50% by weight as described above It is preferable that it is the following.
Mn(マンガン)は、上述したFeと同様に、主としてダイカストなどの鋳造時におけるアルミニウム合金と金型との焼付きを防止するためのものである。このMnもFeと同様に、大量に含有させると適温での溶解が困難になることから、本発明では、アルミニウム合金全体の重量に対するMnの含有割合の上限を0.50重量%以下に抑えている。
なお、このMnの含有割合の下限については、上記焼付き防止効果を顕著に発揮させるためには、上述したように0.30重量%以上含有させるのが好ましい。 Mn (manganese) is mainly for preventing seizing between an aluminum alloy and a mold at the time of casting such as die casting, as in the case of Fe described above. Similarly to Fe, if this Mn is contained in a large amount, it becomes difficult to melt at an appropriate temperature. Therefore, in the present invention, the upper limit of the content ratio of Mn to the weight of the entire aluminum alloy is suppressed to 0.50 wt% or less There is.
The lower limit of the content of Mn is preferably 0.30% by weight or more, as described above, in order to exert the above-mentioned anti-seizure effect remarkably.
なお、このMnの含有割合の下限については、上記焼付き防止効果を顕著に発揮させるためには、上述したように0.30重量%以上含有させるのが好ましい。 Mn (manganese) is mainly for preventing seizing between an aluminum alloy and a mold at the time of casting such as die casting, as in the case of Fe described above. Similarly to Fe, if this Mn is contained in a large amount, it becomes difficult to melt at an appropriate temperature. Therefore, in the present invention, the upper limit of the content ratio of Mn to the weight of the entire aluminum alloy is suppressed to 0.50 wt% or less There is.
The lower limit of the content of Mn is preferably 0.30% by weight or more, as described above, in order to exert the above-mentioned anti-seizure effect remarkably.
Cr(クロム)は、上述したFeやMnと同様に、ダイカストなどの鋳造時におけるアルミニウム合金と金型との焼付きを防止するのに加え、合金の耐食性を向上させる効果を有する元素である。
アルミニウム合金全体の重量に対するCrの含有割合は、上述したように0.10重量%以上で且つ0.30重量%以下の範囲内であることが好ましい。Crの含有割合が0.10重量%未満の場合には、上述の効果を十分に得ることができなくなり、逆に、Crの含有割合が0.30重量%を超える場合には、これ以上添加量を増やしても添加効果が上がらなくなるからである。 Cr (chromium) is an element having an effect of improving the corrosion resistance of the alloy in addition to preventing the seizure between the aluminum alloy and the mold at the time of casting such as die casting, similarly to Fe and Mn described above.
The content of Cr relative to the weight of the entire aluminum alloy is preferably in the range of 0.10% by weight or more and 0.30% by weight or less as described above. If the content ratio of Cr is less than 0.10% by weight, the above-mentioned effects can not be sufficiently obtained, and conversely, if the content ratio of Cr exceeds 0.30% by weight, it is added more Even if the amount is increased, the addition effect can not be improved.
アルミニウム合金全体の重量に対するCrの含有割合は、上述したように0.10重量%以上で且つ0.30重量%以下の範囲内であることが好ましい。Crの含有割合が0.10重量%未満の場合には、上述の効果を十分に得ることができなくなり、逆に、Crの含有割合が0.30重量%を超える場合には、これ以上添加量を増やしても添加効果が上がらなくなるからである。 Cr (chromium) is an element having an effect of improving the corrosion resistance of the alloy in addition to preventing the seizure between the aluminum alloy and the mold at the time of casting such as die casting, similarly to Fe and Mn described above.
The content of Cr relative to the weight of the entire aluminum alloy is preferably in the range of 0.10% by weight or more and 0.30% by weight or less as described above. If the content ratio of Cr is less than 0.10% by weight, the above-mentioned effects can not be sufficiently obtained, and conversely, if the content ratio of Cr exceeds 0.30% by weight, it is added more Even if the amount is increased, the addition effect can not be improved.
以上の含有割合に従って、Cu,Si,Mg,Fe,Mn及びCrの含有割合を調整すると、機械的特性、とりわけ引張強さ,伸び,0.2%耐力及び硬さを高い次元でバランスさせたアルミニウム合金をリサイクル原料を用いて経済的且つ持続可能に生産することができる。
According to the above content ratio, adjusting the content ratio of Cu, Si, Mg, Fe, Mn and Cr, the mechanical properties, especially tensile strength, elongation, 0.2% proof stress and hardness were balanced with high dimension Aluminum alloys can be economically and sustainably produced using recycled materials.
なお、上述した各元素成分のほかに、Ti(チタン)を添加するようにしてもよい。このTiは、結晶粒を微細化させる効果を有しており、一般的には鋳造割れの抑制や機械的性質のうち特に伸びを向上させることができる元素である。
アルミニウム合金全体の重量に対するこのTiの含有割合は、0.30重量%以下の範囲内であることが好ましい。Tiの含有割合が0.30重量%を超える場合には、アルミニウム合金の溶解が難しくなり、溶け残りの生じる可能性が出てくるからである。 Note that Ti (titanium) may be added in addition to each of the above-described element components. This Ti has an effect of refining crystal grains, and is generally an element which can particularly improve elongation among suppression of casting cracks and mechanical properties.
The content of Ti with respect to the weight of the entire aluminum alloy is preferably in the range of 0.30% by weight or less. When the content ratio of Ti exceeds 0.30% by weight, it is difficult to melt the aluminum alloy, and there is a possibility that the unmelted portion is generated.
アルミニウム合金全体の重量に対するこのTiの含有割合は、0.30重量%以下の範囲内であることが好ましい。Tiの含有割合が0.30重量%を超える場合には、アルミニウム合金の溶解が難しくなり、溶け残りの生じる可能性が出てくるからである。 Note that Ti (titanium) may be added in addition to each of the above-described element components. This Ti has an effect of refining crystal grains, and is generally an element which can particularly improve elongation among suppression of casting cracks and mechanical properties.
The content of Ti with respect to the weight of the entire aluminum alloy is preferably in the range of 0.30% by weight or less. When the content ratio of Ti exceeds 0.30% by weight, it is difficult to melt the aluminum alloy, and there is a possibility that the unmelted portion is generated.
また、上述した各元素成分のほかに、Na(ナトリウム),Sr(ストロンチウム),Ca(カルシウム)およびSb(アンチモン)から選ばれる少なくとも1種を改良処理材として添加するようにしてもよい。このような改良処理材を添加することによって共晶Siの粒子を細かくすることができ、アルミニウム合金の靱性や強度をより一層向上させることができる。
ここで、アルミニウム合金全体の重量に対する改良処理材の添加割合は、当該改良処理材がNa,SrおよびCaの場合には30~200ppm、Sbの場合には0.05~0.20重量%の範囲であることが好ましい。改良処理材の添加割合が30ppm(Sbの場合には0.05重量%)未満の場合には、アルミニウム合金中の共晶Siの粒子を微細化するのが困難となり、逆に、改良処理材の添加割合が200ppm(Sbの場合には0.20重量%)より多い場合には、アルミニウム合金中の共晶Siの粒子は十分に微細化されており、これ以上添加量を増やしても添加効果が上がらなくなるからである。 Further, in addition to the above-described respective element components, at least one selected from Na (sodium), Sr (strontium), Ca (calcium) and Sb (antimony) may be added as the improvement treatment material. By adding such an improvement treatment material, particles of eutectic Si can be made finer, and the toughness and strength of the aluminum alloy can be further improved.
Here, the addition ratio of the improved material to the total weight of the aluminum alloy is 30 to 200 ppm when the improved material is Na, Sr and Ca, and 0.05 to 0.20% by weight when Sb is used. It is preferable that it is a range. If the addition ratio of the improvement treatment material is less than 30 ppm (0.05% by weight in the case of Sb), it becomes difficult to refine the particles of eutectic Si in the aluminum alloy, conversely, the improvement treatment material In the case where the addition ratio of is greater than 200 ppm (0.20% by weight in the case of Sb), the particles of eutectic Si in the aluminum alloy are sufficiently finely divided, and addition is possible even if the addition amount is further increased It is because the effect does not rise.
ここで、アルミニウム合金全体の重量に対する改良処理材の添加割合は、当該改良処理材がNa,SrおよびCaの場合には30~200ppm、Sbの場合には0.05~0.20重量%の範囲であることが好ましい。改良処理材の添加割合が30ppm(Sbの場合には0.05重量%)未満の場合には、アルミニウム合金中の共晶Siの粒子を微細化するのが困難となり、逆に、改良処理材の添加割合が200ppm(Sbの場合には0.20重量%)より多い場合には、アルミニウム合金中の共晶Siの粒子は十分に微細化されており、これ以上添加量を増やしても添加効果が上がらなくなるからである。 Further, in addition to the above-described respective element components, at least one selected from Na (sodium), Sr (strontium), Ca (calcium) and Sb (antimony) may be added as the improvement treatment material. By adding such an improvement treatment material, particles of eutectic Si can be made finer, and the toughness and strength of the aluminum alloy can be further improved.
Here, the addition ratio of the improved material to the total weight of the aluminum alloy is 30 to 200 ppm when the improved material is Na, Sr and Ca, and 0.05 to 0.20% by weight when Sb is used. It is preferable that it is a range. If the addition ratio of the improvement treatment material is less than 30 ppm (0.05% by weight in the case of Sb), it becomes difficult to refine the particles of eutectic Si in the aluminum alloy, conversely, the improvement treatment material In the case where the addition ratio of is greater than 200 ppm (0.20% by weight in the case of Sb), the particles of eutectic Si in the aluminum alloy are sufficiently finely divided, and addition is possible even if the addition amount is further increased It is because the effect does not rise.
また、上記改良処理材に代えて、或いは改良処理材と共に、B(硼素)を添加するようにしてもよい。このようにBを添加することによってアルミニウム合金の結晶粒が微細化され、当該合金の伸びを向上させることができる。なお、かかる効果は、特にSi量が少ない場合や冷却速度の遅い鋳造方法を用いる場合に顕著となる。
アルミニウム合金全体の重量に対するBの添加割合は、1~50ppmの範囲であることが好ましい。Bの添加割合が1ppm未満の場合には、アルミニウム合金中の結晶粒を微細化するのが困難となり、逆に、Bの添加割合が50ppmより多い場合には、アルミニウム合金中の結晶粒は十分に微細化されており、これ以上添加量を増やしても添加効果が上がらなくなるからである。 Further, B (boron) may be added instead of the above-mentioned improved treatment material or together with the improvement treatment material. By adding B in this manner, the crystal grains of the aluminum alloy can be refined, and the elongation of the alloy can be improved. Such an effect is particularly remarkable when the amount of Si is small or when a casting method with a slow cooling rate is used.
The proportion of B added to the total weight of the aluminum alloy is preferably in the range of 1 to 50 ppm. When the addition ratio of B is less than 1 ppm, it is difficult to refine the crystal grains in the aluminum alloy, and conversely, when the addition ratio of B is more than 50 ppm, the crystal grains in the aluminum alloy are sufficient. The effect of addition is not improved even if the amount of addition is further increased.
アルミニウム合金全体の重量に対するBの添加割合は、1~50ppmの範囲であることが好ましい。Bの添加割合が1ppm未満の場合には、アルミニウム合金中の結晶粒を微細化するのが困難となり、逆に、Bの添加割合が50ppmより多い場合には、アルミニウム合金中の結晶粒は十分に微細化されており、これ以上添加量を増やしても添加効果が上がらなくなるからである。 Further, B (boron) may be added instead of the above-mentioned improved treatment material or together with the improvement treatment material. By adding B in this manner, the crystal grains of the aluminum alloy can be refined, and the elongation of the alloy can be improved. Such an effect is particularly remarkable when the amount of Si is small or when a casting method with a slow cooling rate is used.
The proportion of B added to the total weight of the aluminum alloy is preferably in the range of 1 to 50 ppm. When the addition ratio of B is less than 1 ppm, it is difficult to refine the crystal grains in the aluminum alloy, and conversely, when the addition ratio of B is more than 50 ppm, the crystal grains in the aluminum alloy are sufficient. The effect of addition is not improved even if the amount of addition is further increased.
本発明のアルミニウム合金を製造する際には、まず、Al,Cu,Si,Mg,Fe,Mn及びCrの各元素成分が上述した所定の割合となるように含有させた原料を準備する(必要に応じて上記のTiや改良処理材等も添加)。続いて、この原料を前炉付溶解炉や密閉溶解炉などの溶解炉に投入し、これらを溶解させる。溶解させた原料すなわちアルミニウム合金の溶湯は、必要に応じて脱水素処理および脱介在物処理などの精製処理が施される。そして、精製された溶湯を所定の鋳型などに流し込み、固化させることによって、アルミニウム合金の溶湯を合金地金インゴットなどに成形する。
In the production of the aluminum alloy of the present invention, first, raw materials are prepared in which the respective elemental components of Al, Cu, Si, Mg, Fe, Mn, and Cr are in the above-described predetermined ratio (necessary In accordance with the above, Ti and modified materials are added. Subsequently, the raw material is put into a melting furnace such as a forging furnace-containing melting furnace or a closed melting furnace to melt these materials. The molten raw material thus melted, that is, the molten metal of the aluminum alloy, is subjected to a purification treatment such as dehydrogenation treatment and removal treatment, if necessary. Then, the refined molten metal is poured into a predetermined mold or the like and solidified to form a molten metal of an aluminum alloy into an alloy base metal ingot or the like.
また、本発明のアルミニウム合金を用いて、ダイカストや重力鋳造などの金型鋳造法,砂型鋳造法或いは精密鋳造法と言った様々な鋳造方法でアルミニウム合金鋳物品を鋳造した後、必要に応じて溶体化処理及び時効処理などが施される。このようにアルミニウム合金鋳物品に溶体化処理および時効処理などを施すことによってアルミニウム合金鋳物品の機械的特性を改良することができる。
In addition, after casting an aluminum alloy cast article by various casting methods such as die casting method such as die casting and gravity casting, sand casting method or precision casting method using the aluminum alloy of the present invention, if necessary Solution treatment, aging treatment, etc. are performed. Thus, the mechanical properties of the aluminum alloy cast article can be improved by subjecting the aluminum alloy cast article to solution treatment, aging treatment and the like.
以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこの実施例に限定されるものではない。
なお、下記の各種合金における機械的特性のうち、引張強さ,伸び及び0.2%耐力は、次の方法で測定した。すなわち、型締力135トンの通常のダイカストマシン(東芝機械(株)社製・DC135EL)を用いて、射出速度1.0m/秒、鋳造圧力60MPaでダイカスト鋳造し、ASTM(American Society for Testing and Material)規格に準拠した丸棒試験片を作製した。そして、鋳放しの状態及びT6処理後のかかる丸棒試験片について、(株)島津製作所社製の万能試験機(AG-IS 100kN)を用いて、引張強さ,伸び,0.2%耐力を測定した。ここで、T6処理とは、溶体化処理を行った後、再加熱して人工時効処理する熱処理方法である。本実施例では、このT6処理として510℃で3時間加熱した後に水冷(溶体化処理)し、さらに180℃で3時間加熱した後に空冷(人工時効処理)した。
また、硬さについては、日本工業規格JIS G0202に準拠したロックウェル硬さ試験にて評価を行なった。すなわち、上記と同じ条件で鋳造した平板試験片の表面を1mm切削後、研磨したものについてロックウェル硬さ試験機で試験を行った。かかる試験機での測定を3回行い、その平均値をロックウェル硬さ試験の測定値とした。
さらに、各種合金の合金成分は、固体発光分光分析機(サーモフィッシャーサイエンティフィック社製 Thermo Scientific ARL4460)を用いて測定した。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
Among the mechanical properties of the various alloys described below, tensile strength, elongation and 0.2% proof stress were measured by the following methods. That is, using an ordinary die casting machine with a clamping force of 135 tons (DC 135EL manufactured by Toshiba Machine Co., Ltd.), die casting is performed at an injection speed of 1.0 m / s and a casting pressure of 60 MPa. ASTM (American Society for Testing and Material) Round bar test piece conforming to the standard was prepared. And, with regard to the as-cast condition and the round bar test piece after T6 treatment, using a universal testing machine (AG-IS 100 kN) manufactured by Shimadzu Corp., tensile strength, elongation, 0.2% proof stress Was measured. Here, the T6 treatment is a heat treatment method in which reheating and artificial aging treatment are performed after the solution treatment. In this example, after heating at 510 ° C. for 3 hours as this T6 treatment, it was water cooled (solution treatment), and further heated at 180 ° C. for 3 hours, then air cooled (artificial aging treatment).
The hardness was evaluated by the Rockwell hardness test according to Japanese Industrial Standard JIS G0202. That is, after cutting 1 mm of the surface of a flat plate specimen cast under the same conditions as described above, the polished plate was tested with a Rockwell hardness tester. The measurement with this tester was performed three times, and the average value was taken as the measurement value of the Rockwell hardness test.
Further, alloy components of various alloys were measured using a solid state emission spectrometer (Thermo Scientific ARL 4460 manufactured by Thermo Fisher Scientific Co., Ltd.).
なお、下記の各種合金における機械的特性のうち、引張強さ,伸び及び0.2%耐力は、次の方法で測定した。すなわち、型締力135トンの通常のダイカストマシン(東芝機械(株)社製・DC135EL)を用いて、射出速度1.0m/秒、鋳造圧力60MPaでダイカスト鋳造し、ASTM(American Society for Testing and Material)規格に準拠した丸棒試験片を作製した。そして、鋳放しの状態及びT6処理後のかかる丸棒試験片について、(株)島津製作所社製の万能試験機(AG-IS 100kN)を用いて、引張強さ,伸び,0.2%耐力を測定した。ここで、T6処理とは、溶体化処理を行った後、再加熱して人工時効処理する熱処理方法である。本実施例では、このT6処理として510℃で3時間加熱した後に水冷(溶体化処理)し、さらに180℃で3時間加熱した後に空冷(人工時効処理)した。
また、硬さについては、日本工業規格JIS G0202に準拠したロックウェル硬さ試験にて評価を行なった。すなわち、上記と同じ条件で鋳造した平板試験片の表面を1mm切削後、研磨したものについてロックウェル硬さ試験機で試験を行った。かかる試験機での測定を3回行い、その平均値をロックウェル硬さ試験の測定値とした。
さらに、各種合金の合金成分は、固体発光分光分析機(サーモフィッシャーサイエンティフィック社製 Thermo Scientific ARL4460)を用いて測定した。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
Among the mechanical properties of the various alloys described below, tensile strength, elongation and 0.2% proof stress were measured by the following methods. That is, using an ordinary die casting machine with a clamping force of 135 tons (DC 135EL manufactured by Toshiba Machine Co., Ltd.), die casting is performed at an injection speed of 1.0 m / s and a casting pressure of 60 MPa. ASTM (American Society for Testing and Material) Round bar test piece conforming to the standard was prepared. And, with regard to the as-cast condition and the round bar test piece after T6 treatment, using a universal testing machine (AG-IS 100 kN) manufactured by Shimadzu Corp., tensile strength, elongation, 0.2% proof stress Was measured. Here, the T6 treatment is a heat treatment method in which reheating and artificial aging treatment are performed after the solution treatment. In this example, after heating at 510 ° C. for 3 hours as this T6 treatment, it was water cooled (solution treatment), and further heated at 180 ° C. for 3 hours, then air cooled (artificial aging treatment).
The hardness was evaluated by the Rockwell hardness test according to Japanese Industrial Standard JIS G0202. That is, after cutting 1 mm of the surface of a flat plate specimen cast under the same conditions as described above, the polished plate was tested with a Rockwell hardness tester. The measurement with this tester was performed three times, and the average value was taken as the measurement value of the Rockwell hardness test.
Further, alloy components of various alloys were measured using a solid state emission spectrometer (Thermo Scientific ARL 4460 manufactured by Thermo Fisher Scientific Co., Ltd.).
Cuのアルミニウム合金物性に対する影響
表1は、Cu以外の合金成分が本発明範囲内における或る一定の割合となるように調整すると共に、Cuの含有割合を変化させて製造したアルミニウム合金の成分組成と各機械的特性(引張強さ,伸び,0.2%耐力及び硬さ)との関係を示したものである。 Influence of Cu on Aluminum Alloy Physical Properties Table 1 shows the composition of an aluminum alloy manufactured by adjusting the alloy components other than Cu to a certain ratio within the scope of the present invention and changing the content ratio of Cu. And the mechanical properties (tensile strength, elongation, 0.2% proof stress and hardness).
表1は、Cu以外の合金成分が本発明範囲内における或る一定の割合となるように調整すると共に、Cuの含有割合を変化させて製造したアルミニウム合金の成分組成と各機械的特性(引張強さ,伸び,0.2%耐力及び硬さ)との関係を示したものである。 Influence of Cu on Aluminum Alloy Physical Properties Table 1 shows the composition of an aluminum alloy manufactured by adjusting the alloy components other than Cu to a certain ratio within the scope of the present invention and changing the content ratio of Cu. And the mechanical properties (tensile strength, elongation, 0.2% proof stress and hardness).
この表1および図1,2に示すように、アルミニウム合金のCuの含有割合が0.75重量%以上になると、機械的特性、とりわけ引張強さ,伸び,0.2%耐力及び硬さを高い次元でバランスさせるのに十分な引張強さを得ることができるようになり、1.25重量%までは、非熱処理材・T6処理材共にその含有割合が増えるに従って引張強さの向上することが窺える。そして、T6処理材ではCuの含有割合が1.25重量%を超えると引張強さが低下するようになる。このような傾向は、0.2%耐力や硬さでも窺える。
一方、当該合金の伸びは、Cuの含有割合が増えるに従って漸減するようになり、特にT6処理材ではCuの含有割合が1.25重量%を超えると伸びが5.0%を下回るようになり伸びに優れたものとは言い難くなる。
このため、本発明のアルミニウム合金では、Cuの含有割合を0.75重量%以上で且つ1.25重量%以下の範囲内としている。
なお、表1中の合金1及び2は、本発明範囲内の合金組成すなわち実施例合金であり、合金9は、従来材を代表するJIS ADC3合金である。 As shown in Table 1 and FIGS. 1 and 2, when the Cu content of the aluminum alloy is 0.75% by weight or more, mechanical properties, in particular, tensile strength, elongation, 0.2% proof stress and hardness, are obtained. It is possible to obtain sufficient tensile strength to achieve balance in high dimensions, and up to 1.25% by weight, the tensile strength improves as the content of both non-heat-treated and T6 treated materials increases. I can see you. And in T6 processing material, when the content rate of Cu exceeds 1.25 weight%, tensile strength comes to fall. Such a tendency can be overcome with 0.2% proof stress and hardness.
On the other hand, the elongation of the alloy gradually decreases as the content of Cu increases, and in particular, when the content of Cu exceeds 1.25% by weight, the elongation becomes less than 5.0% in the T6 treated material. It is difficult to say that it is excellent in growth.
For this reason, in the aluminum alloy of the present invention, the content of Cu is in the range of 0.75% by weight or more and 1.25% by weight or less.
Alloys 1 and 2 in Table 1 are alloy compositions within the scope of the present invention, ie, example alloys, and alloy 9 is a JIS ADC 3 alloy representing a conventional material.
一方、当該合金の伸びは、Cuの含有割合が増えるに従って漸減するようになり、特にT6処理材ではCuの含有割合が1.25重量%を超えると伸びが5.0%を下回るようになり伸びに優れたものとは言い難くなる。
このため、本発明のアルミニウム合金では、Cuの含有割合を0.75重量%以上で且つ1.25重量%以下の範囲内としている。
なお、表1中の合金1及び2は、本発明範囲内の合金組成すなわち実施例合金であり、合金9は、従来材を代表するJIS ADC3合金である。 As shown in Table 1 and FIGS. 1 and 2, when the Cu content of the aluminum alloy is 0.75% by weight or more, mechanical properties, in particular, tensile strength, elongation, 0.2% proof stress and hardness, are obtained. It is possible to obtain sufficient tensile strength to achieve balance in high dimensions, and up to 1.25% by weight, the tensile strength improves as the content of both non-heat-treated and T6 treated materials increases. I can see you. And in T6 processing material, when the content rate of Cu exceeds 1.25 weight%, tensile strength comes to fall. Such a tendency can be overcome with 0.2% proof stress and hardness.
On the other hand, the elongation of the alloy gradually decreases as the content of Cu increases, and in particular, when the content of Cu exceeds 1.25% by weight, the elongation becomes less than 5.0% in the T6 treated material. It is difficult to say that it is excellent in growth.
For this reason, in the aluminum alloy of the present invention, the content of Cu is in the range of 0.75% by weight or more and 1.25% by weight or less.
Mgのアルミニウム合金物性に対する影響
表2は、Mg以外の合金成分が本発明範囲内における或る一定の割合となるように調整すると共に、Mgの含有割合を変化させて製造したアルミニウム合金の成分組成と各機械的特性(引張強さ,伸び,0.2%耐力及び硬さ)との関係を示したものである。 Influence of Mg on Aluminum Alloy Physical Properties Table 2 shows the composition of the aluminum alloy manufactured by adjusting the alloy components other than Mg to a certain ratio within the range of the present invention and changing the content ratio of Mg. And the mechanical properties (tensile strength, elongation, 0.2% proof stress and hardness).
表2は、Mg以外の合金成分が本発明範囲内における或る一定の割合となるように調整すると共に、Mgの含有割合を変化させて製造したアルミニウム合金の成分組成と各機械的特性(引張強さ,伸び,0.2%耐力及び硬さ)との関係を示したものである。 Influence of Mg on Aluminum Alloy Physical Properties Table 2 shows the composition of the aluminum alloy manufactured by adjusting the alloy components other than Mg to a certain ratio within the range of the present invention and changing the content ratio of Mg. And the mechanical properties (tensile strength, elongation, 0.2% proof stress and hardness).
この表2が示すように、アルミニウム合金のMgの含有割合が0.29重量%の合金10と0.66重量%の合金1及び2とを比較した場合、Mgの含有割合が多いと、当該合金の0.2%耐力及び硬さが向上する一方で伸びは減少する。このため、本発明のアルミニウム合金では、上述したように、他の元素成分とのバランスも考慮し、Mgの含有割合を0.50重量%超で且つ0.80重量%以下の範囲内としている。
なお、表2中の合金1及び2は、本発明範囲内の合金組成すなわち実施例合金である。 As Table 2 shows, when analloy 10 containing 0.29% by weight of Mg and an alloy 1 and 2 containing 0.66% by weight of Mg in the aluminum alloy are compared, when the content of Mg is high, The elongation is reduced while the 0.2% proof stress and hardness of the alloy is improved. Therefore, in the aluminum alloy of the present invention, as described above, the content ratio of Mg is set in the range of more than 0.50% by weight and 0.80% by weight or less in consideration of the balance with other element components. .
Alloys 1 and 2 in Table 2 are alloy compositions within the scope of the present invention, ie, example alloys.
なお、表2中の合金1及び2は、本発明範囲内の合金組成すなわち実施例合金である。 As Table 2 shows, when an
本実施形態のアルミニウム合金によれば、Cuを0.75重量%以上で且つ1.25重量%以下の範囲内で含有させると共に、Mgも0.50重量%超から0.80重量%以下の範囲内で含有させているので、スクラップなどのリサイクル原料の使用が可能となるのみならず、引張強さや0.2%耐力や硬さと言った機械的性質を向上させることもできる。また、耐食性を悪化させる虞のあるCuの含有割合を上記範囲内に抑える一方で、耐食性改善効果のあるCrを0.10重量%以上で且つ0.30重量%以下含有するようにしているので、Cuの含有に伴うアルミニウム合金の耐食性の低下を最低限に抑えることができる。
According to the aluminum alloy of the present embodiment, Cu is contained in the range of 0.75% by weight or more and 1.25% by weight or less, and Mg is also more than 0.50% by weight or more and 0.80% by weight or less Since it is contained in the range, not only the use of recycled raw materials such as scraps becomes possible, but also mechanical properties such as tensile strength, 0.2% proof stress and hardness can be improved. Moreover, while suppressing the content ratio of Cu which may deteriorate the corrosion resistance within the above range, Cr containing 0.10% by weight or more and 0.30% by weight or less of the effect of improving the corrosion resistance is contained. It is possible to minimize the deterioration of the corrosion resistance of the aluminum alloy caused by the inclusion of Cu.
Claims (6)
- 重量%で、0.75%≦Cu≦1.25%、7.5%≦Si≦8.5%、0.50%<Mg≦0.80%、0.20%≦Fe≦0.50%、0.30%≦Mn≦0.50%、0.10%≦Cr≦0.30%を含有し、残部がAlと不可避不純物とからなる、ことを特徴とするアルミニウム合金。 % By weight, 0.75% ≦ Cu ≦ 1.25%, 7.5% ≦ Si ≦ 8.5%, 0.50% <Mg ≦ 0.80%, 0.20% ≦ Fe ≦ 0.50 %, 0.30% ≦ Mn ≦ 0.50%, 0.10% ≦ Cr ≦ 0.30%, and the balance is made of Al and unavoidable impurities.
- 請求項1のアルミニウム合金において、
合金全体の重量に対して更にTiを0.30重量%以下含有する、ことを特徴とするアルミニウム合金。 In the aluminum alloy of claim 1,
An aluminum alloy characterized by further containing 0.30% by weight or less of Ti based on the weight of the entire alloy. - 請求項1又は2のアルミニウム合金において、
更にNa,SrおよびCaから選ばれる少なくとも1種を合金全体の重量に対して30~200ppmとなるように添加した、ことを特徴とするアルミニウム合金。 In the aluminum alloy of claim 1 or 2,
Furthermore, an aluminum alloy characterized in that at least one selected from Na, Sr and Ca is added so as to be 30 to 200 ppm with respect to the total weight of the alloy. - 請求項1乃至3の何れかのアルミニウム合金において、
更にSbを合金全体の重量に対して0.05~0.20重量%となるように添加した、ことを特徴とするアルミニウム合金。 In the aluminum alloy according to any one of claims 1 to 3,
Furthermore, Sb is added so as to be 0.05 to 0.20% by weight with respect to the total weight of the alloy. - 請求項1乃至4の何れかのアルミニウム合金において、
更にBを合金全体の重量に対して1~50ppmとなるように添加した、ことを特徴とするアルミニウム合金。 In the aluminum alloy according to any one of claims 1 to 4,
Furthermore, B is added so as to be 1 to 50 ppm with respect to the weight of the entire alloy. - 請求項1乃至5の何れかのアルミニウム合金からなることを特徴とするアルミニウム合金鋳物品。 An aluminum alloy cast article comprising the aluminum alloy according to any one of claims 1 to 5.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780091658.XA CN110709526A (en) | 2017-06-23 | 2017-06-23 | Aluminum alloy and aluminum alloy cast product |
PCT/JP2017/023240 WO2018235272A1 (en) | 2017-06-23 | 2017-06-23 | Aluminum alloy and aluminum alloy casting |
MYPI2019006987A MY181256A (en) | 2017-06-23 | 2017-06-23 | Aluminum alloy and aluminum alloy casting |
JP2017548236A JP6267408B1 (en) | 2017-06-23 | 2017-06-23 | Aluminum alloy and aluminum alloy castings |
PH12019502327A PH12019502327A1 (en) | 2017-06-23 | 2019-10-11 | Aluminum alloy and aluminum alloy casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/023240 WO2018235272A1 (en) | 2017-06-23 | 2017-06-23 | Aluminum alloy and aluminum alloy casting |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018235272A1 true WO2018235272A1 (en) | 2018-12-27 |
Family
ID=61020788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/023240 WO2018235272A1 (en) | 2017-06-23 | 2017-06-23 | Aluminum alloy and aluminum alloy casting |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6267408B1 (en) |
CN (1) | CN110709526A (en) |
PH (1) | PH12019502327A1 (en) |
WO (1) | WO2018235272A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024181286A1 (en) * | 2023-02-28 | 2024-09-06 | 日本軽金属株式会社 | AL-SI ALLOY FOR CASTING, AL-Si ALLOY CASTING AND METHOD FOR PRODUCING AL-Si ALLOY CASTING |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112251655B (en) * | 2020-09-09 | 2022-07-01 | 科曼车辆部件系统(苏州)有限公司 | High-toughness liquid die forging cast aluminum alloy and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1112705A (en) * | 1997-06-20 | 1999-01-19 | Sumitomo Light Metal Ind Ltd | Production of high strength aluminum alloy forging excellent in machinability |
JP2004277762A (en) * | 2003-03-13 | 2004-10-07 | Nippon Light Metal Co Ltd | Method for manufacturing heat treatment type aluminum alloy material for cold working |
WO2010086951A1 (en) * | 2009-01-27 | 2010-08-05 | 株式会社大紀アルミニウム工業所 | Aluminum alloy for pressure casting and casting made of said aluminum alloy |
WO2015151369A1 (en) * | 2014-03-31 | 2015-10-08 | アイシン軽金属株式会社 | Aluminum alloy and die casting method |
WO2016166779A1 (en) * | 2015-04-15 | 2016-10-20 | 株式会社大紀アルミニウム工業所 | Aluminum alloy for die casting, and die-cast aluminum alloy using same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19524564A1 (en) * | 1995-06-28 | 1997-01-02 | Vaw Alucast Gmbh | Aluminium@ alloy for casting cylinder heads |
ES2607728T3 (en) * | 2011-10-28 | 2017-04-03 | Alcoa Usa Corp. | AlSiMgCu high performance cast alloy |
CN106048329A (en) * | 2016-06-30 | 2016-10-26 | Sj技术股份有限公司 | Die-casting aluminum alloy and preparation method of aluminum alloy casting product by using same |
-
2017
- 2017-06-23 JP JP2017548236A patent/JP6267408B1/en active Active
- 2017-06-23 CN CN201780091658.XA patent/CN110709526A/en active Pending
- 2017-06-23 WO PCT/JP2017/023240 patent/WO2018235272A1/en active Application Filing
-
2019
- 2019-10-11 PH PH12019502327A patent/PH12019502327A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1112705A (en) * | 1997-06-20 | 1999-01-19 | Sumitomo Light Metal Ind Ltd | Production of high strength aluminum alloy forging excellent in machinability |
JP2004277762A (en) * | 2003-03-13 | 2004-10-07 | Nippon Light Metal Co Ltd | Method for manufacturing heat treatment type aluminum alloy material for cold working |
WO2010086951A1 (en) * | 2009-01-27 | 2010-08-05 | 株式会社大紀アルミニウム工業所 | Aluminum alloy for pressure casting and casting made of said aluminum alloy |
WO2015151369A1 (en) * | 2014-03-31 | 2015-10-08 | アイシン軽金属株式会社 | Aluminum alloy and die casting method |
WO2016166779A1 (en) * | 2015-04-15 | 2016-10-20 | 株式会社大紀アルミニウム工業所 | Aluminum alloy for die casting, and die-cast aluminum alloy using same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024181286A1 (en) * | 2023-02-28 | 2024-09-06 | 日本軽金属株式会社 | AL-SI ALLOY FOR CASTING, AL-Si ALLOY CASTING AND METHOD FOR PRODUCING AL-Si ALLOY CASTING |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018235272A1 (en) | 2019-06-27 |
CN110709526A (en) | 2020-01-17 |
JP6267408B1 (en) | 2018-01-24 |
PH12019502327A1 (en) | 2020-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016166779A1 (en) | Aluminum alloy for die casting, and die-cast aluminum alloy using same | |
JP5469100B2 (en) | Aluminum alloy for pressure casting and cast aluminum alloy | |
WO2018189869A1 (en) | Aluminum alloy for die casting, and aluminum alloy die casting using same | |
CA3021397C (en) | Die casting alloy | |
CN111032897A (en) | Method of forming cast aluminum alloy | |
US20200216934A1 (en) | Aluminum alloy for die casting and functional component using the same | |
JP2010018875A (en) | High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member | |
JP5797360B1 (en) | Aluminum alloy for die casting and aluminum alloy die casting using the same | |
US20190136349A1 (en) | Aluminum Alloys Having Improved Tensile Properties | |
JP5969713B1 (en) | Aluminum alloy for die casting and aluminum alloy die casting using the same | |
JP4994734B2 (en) | Aluminum alloy for casting and cast aluminum alloy | |
JP2007070716A (en) | Aluminum alloy for pressure casting, and aluminum alloy casting made thereof | |
JP6267408B1 (en) | Aluminum alloy and aluminum alloy castings | |
JP2006322062A (en) | Aluminum alloy for casting, and aluminum alloy casting thereby | |
JP2016102246A (en) | Aluminum alloy for die casting excellent in ductility and cast product using the same | |
CN114231793B (en) | Gravity casting zinc alloy | |
JP2011162883A (en) | High-strength aluminum alloy, method of manufacturing high-strength aluminum alloy casting, and method of manufacturing high-strength aluminum alloy member | |
CN110373581B (en) | Multi-performance aluminum alloy and rapid heat treatment process thereof | |
JP2006316341A (en) | Castable aluminum alloy and aluminum alloy cast made therefrom | |
JP2016204711A (en) | HIGH STRENGTH HYPEREUTECTIC Al-Si ALLOY AND DIE CAST USING THE SAME | |
JP5522692B2 (en) | High strength copper alloy forging | |
JP5723064B2 (en) | Aluminum alloy for die casting and aluminum alloy die casting using the same | |
JP7401080B1 (en) | Manufacturing method of Al alloy for casting | |
JP2020125527A (en) | Aluminum alloy casting material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017548236 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17914907 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17914907 Country of ref document: EP Kind code of ref document: A1 |