WO2018189869A1 - Aluminum alloy for die casting, and aluminum alloy die casting using same - Google Patents

Aluminum alloy for die casting, and aluminum alloy die casting using same Download PDF

Info

Publication number
WO2018189869A1
WO2018189869A1 PCT/JP2017/015176 JP2017015176W WO2018189869A1 WO 2018189869 A1 WO2018189869 A1 WO 2018189869A1 JP 2017015176 W JP2017015176 W JP 2017015176W WO 2018189869 A1 WO2018189869 A1 WO 2018189869A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
die casting
weight
alloy
content
Prior art date
Application number
PCT/JP2017/015176
Other languages
French (fr)
Japanese (ja)
Inventor
敦夫 鏑木
宮尻 聡
大城 直人
Original Assignee
株式会社大紀アルミニウム工業所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大紀アルミニウム工業所 filed Critical 株式会社大紀アルミニウム工業所
Priority to JP2019512133A priority Critical patent/JP6852146B2/en
Priority to PCT/JP2017/015176 priority patent/WO2018189869A1/en
Publication of WO2018189869A1 publication Critical patent/WO2018189869A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Definitions

  • the present invention relates to an aluminum alloy for die casting excellent in mechanical properties and corrosion resistance, and an aluminum alloy die casting using the alloy.
  • Aluminum alloys are light in weight and excellent in formability and mass productivity, and are therefore widely used as components in automobiles, industrial machines, aircraft, home appliances, and other various fields.
  • automotive applications the application of aluminum alloy die casting to bodies and undercarriage parts is expanding for the purpose of reducing the weight of the vehicle body and the accompanying fuel saving.
  • many parts using aluminum alloys have been adopted, but on the other hand, since many of these parts are important safety parts, not only mechanical properties such as proof stress and ductility, but also In view of the required service life and usage environment, corrosion resistance that can withstand long-term use is required. For this reason, with existing alloys, although the mechanical properties required for such parts can be satisfied, a situation in which corrosion resistance cannot be satisfied has begun to occur.
  • Patent Document 1 9.5 to 11.5 weight as a material suitable for a safety component such as an automobile wheel (wheel) is disclosed.
  • % Silicon (Si) 0.1-0.5 wt% magnesium (Mg), 0.5-0.8 wt% manganese (Mn), max 0.15 wt% iron (Fe), max Contains 0.03 wt% copper (Cu), up to 0.10 wt% zinc (Zn), up to 0.15 wt% titanium (Ti), the balance being aluminum (Al) and a permanent atomizer
  • a die casting aluminum alloy composed of 30 to 300 ppm of strontium (Sr) is disclosed. According to this technique, since the content ratio of Cu that corrodes the aluminum alloy by the battery action is suppressed to 0.03% by weight at the maximum, an aluminum alloy for die casting having high corrosion resistance can be provided.
  • the main problem of the present invention is that it can be produced economically and sustainably by using recycled raw materials, as well as important safety parts for automobiles having improved mechanical properties without impairing corrosion resistance. It is an object to provide a suitable aluminum alloy for die casting and an aluminum alloy die casting made of the alloy.
  • Aluminum alloy In the present invention, Cu is contained in the range of 0.05% by weight or more and 0.70% by weight or less, and Mg is contained in the range of more than 0.50% by weight to 1.0% by weight or less. Therefore, in addition to enabling the use of recycled raw materials, mechanical properties such as tensile strength and 0.2% proof stress can be improved.
  • an aluminum alloy for die casting excellent not only in castability and mechanical properties but also in corrosion resistance can be obtained by merely including six kinds of elemental components at a predetermined ratio and by their interaction.
  • the ingot can be economically safe and simple to manufacture.
  • the aluminum alloy for die casting of the present invention it is preferable to add 30 to 200 ppm of at least one selected from Na, Sr and Ca, or 0.05 to 0.20% by weight of Sb. By doing so, the particles of eutectic Si can be made finer, and the toughness and strength of the aluminum alloy can be further improved. It is also preferable to add 1 to 50 ppm of B. By doing this, even when the amount of Si is small or when using a casting method with a slow cooling rate, the crystal grains of the aluminum alloy can be refined, and as a result, the elongation of the aluminum alloy can be improved. Can do.
  • an aluminum alloy die casting comprising the die casting aluminum alloy according to the first aspect.
  • the aluminum alloy die casting made of the aluminum alloy for die casting of the present invention can be mass-produced with good castability and has excellent corrosion resistance as well as mechanical properties such as tensile strength and hardness. Suitable for use.
  • the present invention in addition to being able to produce economically and sustainably using recycled raw materials, it is suitable for die-casting suitable for important safety parts of automobiles having improved mechanical properties without impairing corrosion resistance.
  • An aluminum alloy and an aluminum alloy die casting made of the alloy can be provided.
  • the aluminum alloy for die casting of the present invention (hereinafter also simply referred to as “aluminum alloy”) is 0.05% ⁇ Cu (copper) ⁇ 0.70%, 4.0% ⁇ Si (silicon) ⁇ % by weight. 11.0%, 0.50% ⁇ Mg (magnesium) ⁇ 1.0%, 0.05% ⁇ Fe (iron) ⁇ 0.60%, Mn (manganese) ⁇ 0.8%, 0.10% ⁇ It contains Cr (chromium) ⁇ 0.40%, and the balance is substantially composed of Al (aluminum) and inevitable impurities.
  • aluminum alloy is 0.05% ⁇ Cu (copper) ⁇ 0.70%, 4.0% ⁇ Si (silicon) ⁇ % by weight. 11.0%, 0.50% ⁇ Mg (magnesium) ⁇ 1.0%, 0.05% ⁇ Fe (iron) ⁇ 0.60%, Mn (manganese) ⁇ 0.8%, 0.10% ⁇ It contains Cr (chromium) ⁇ 0.40%
  • Cu copper is an important element for improving the wear resistance, mechanical strength, and hardness of an aluminum alloy.
  • the content ratio of Cu with respect to the weight of the entire aluminum alloy is preferably 0.05% by weight or more and 0.70% by weight or less.
  • the Cu content is less than 0.05% by weight, the above-mentioned mechanical property improving effect cannot be obtained.
  • the Cu content exceeds 0.70% by weight the corrosion resistance is not improved. This is because problems such as a significant decrease in elongation, a decrease in elongation, and an increase in specific gravity will occur.
  • Si silicon is an important element that ensures fluidity at the time of melting an aluminum alloy and improves castability.
  • the content ratio of Si with respect to the weight of the entire aluminum alloy is preferably 4.0% by weight or more and 11.0% by weight or less.
  • the Si content is less than 4.0% by weight, it is difficult to ensure the fluidity of the molten metal, and it is applied to large parts when considering the usual die casting that is commonly used.
  • the Si content exceeds 11.0% by weight, the elongation of the alloy decreases.
  • Mg manganesium
  • Mg 2 Si aluminum alloy
  • excessive content contains castability and corrosion resistance. It is a component that adversely affects
  • the content ratio of Mg with respect to the weight of the entire aluminum alloy is preferably in the range of more than 0.50 wt% and 1.0 wt% or less.
  • the Mg content is 0.5% by weight or less, in addition to the above effects, it becomes possible to ensure the 0.2% proof stress of the alloy without performing heat treatment. This is because if it exceeds 1.0% by weight, the elongation and corrosion resistance of the alloy will be significantly reduced.
  • Fe iron
  • the content ratio of Fe with respect to the weight of the entire aluminum alloy is preferably in the range of 0.05 to 0.60% by weight.
  • the effect of preventing seizure at the time of die casting is not sufficient, and conversely, when the Fe content is more than 0.6% by weight, the above effect of preventing seizure is also achieved. Is sufficient, but the toughness of the alloy decreases and the melting temperature rises to deteriorate the castability.
  • Mn manganese
  • Mn is mainly for preventing seizure between the aluminum alloy and the mold during die casting, as with the above-described Fe.
  • the content ratio of Mn with respect to the weight of the entire aluminum alloy is suppressed to 0.8% by weight or less.
  • the lower limit of the content ratio of Mn is not particularly limited, but it is preferable to contain Mn in an amount of 0.2% by weight or more in order to exert the above-described seizure prevention effect remarkably.
  • Cr is an element having the effect of improving the corrosion resistance of the alloy in addition to preventing seizure between the aluminum alloy and the mold during die casting, as with the above-described Fe and Mn.
  • the content ratio of Cr with respect to the weight of the entire aluminum alloy is preferably in the range of 0.10 wt% or more and 0.40 wt% or less.
  • the Cr content is less than 0.10% by weight, the above effects cannot be obtained sufficiently.
  • the Cr content exceeds 0.40% by weight no more is added. This is because even if the amount is increased, the effect of addition cannot be improved.
  • Ti titanium
  • This Ti has an effect of refining crystal grains, and is generally said to be an element that can particularly improve elongation among suppression of casting cracks and mechanical properties.
  • the content ratio of Ti with respect to the weight of the entire aluminum alloy is preferably in the range of 0.30% by weight or less. This is because when the Ti content exceeds 0.30% by weight, it becomes difficult to dissolve the aluminum alloy, and there is a possibility that undissolved material is generated.
  • At least one selected from Na (sodium), Sr (strontium), Ca (calcium), and Sb (antimony) may be added as an improvement treatment material.
  • the particles of eutectic Si can be made finer, and the toughness and strength of the aluminum alloy can be further improved.
  • the addition ratio of the improved treatment material to the total weight of the aluminum alloy is 30 to 200 ppm when the improved treatment material is Na, Sr and Ca, and 0.05 to 0.20% by weight when Sb is used. A range is preferable.
  • the addition ratio of the improved treatment material is less than 30 ppm (0.05% by weight in the case of Sb), it becomes difficult to refine the eutectic Si particles in the aluminum alloy.
  • the addition ratio of Z is more than 200 ppm (0.20% by weight in the case of Sb)
  • the eutectic Si particles in the aluminum alloy are sufficiently refined and added even if the addition amount is further increased. This is because the effect does not increase.
  • B boron
  • B boron
  • the addition ratio of B with respect to the weight of the entire aluminum alloy is preferably in the range of 1 to 50 ppm.
  • the addition ratio of B is less than 1 ppm, it is difficult to refine the crystal grains in the aluminum alloy.
  • the addition ratio of B is more than 50 ppm, the crystal grains in the aluminum alloy are sufficient. This is because the effect of the addition cannot be increased even if the addition amount is increased further.
  • a raw material containing each elemental component of Al, Cu, Si, Mg, Fe, Mn and Cr so as to have the above-described predetermined ratio is prepared.
  • this raw material is put into a melting furnace such as a pre-furnace melting furnace or a closed melting furnace to melt them.
  • the melted raw material, that is, the molten aluminum alloy is subjected to a purification treatment such as a dehydrogenation treatment and a decontamination treatment as necessary.
  • the refined molten metal is poured into a predetermined mold or the like and solidified to form the molten aluminum alloy into an alloy ingot or the like.
  • solution treatment and aging treatment are performed as necessary.
  • the mechanical properties of the aluminum alloy casting can be improved by subjecting the aluminum alloy die casting to solution treatment, aging treatment, and the like.
  • the present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.
  • the mechanical properties (specifically, tensile strength, elongation, 0.2% proof stress) in the following various alloys were measured by the following methods. That is, using an ordinary die casting machine having a clamping force of 135 tons (DC135EL manufactured by Toshiba Machine Co., Ltd.), die casting was performed at an injection speed of 1.0 m / second and a casting pressure of 60 MPa, and ASTM (American Society for Testing and Testing and Material) A round bar test piece conforming to the standard was prepared.
  • the tensile strength, elongation, and 0.2% proof stress of the round bar test piece in an as-cast state were measured using a universal testing machine (AG-IS 100 kN) manufactured by Shimadzu Corporation.
  • the alloy component of various alloys was measured using the solid-state emission spectrometer (Thermo Scientific ARL4460 by Thermo Fisher Scientific).
  • Table 1 shows die casting aluminum manufactured by adjusting the alloy component other than Cu to a certain ratio within the scope of the present invention and changing the Cu content ratio. It shows the alloy composition and mechanical properties (tensile strength, elongation, 0.2% proof stress).
  • Table 2 shows die casting aluminum manufactured by adjusting the alloy components other than Mg to a certain ratio within the scope of the present invention and changing the Mg content. It shows the alloy composition and mechanical properties (tensile strength, elongation, 0.2% proof stress).
  • Cu is contained in the range of 0.05% by weight or more and 0.70% by weight or less, and Mg is more than 0.50% by weight to 1.0% by weight or less. Therefore, in addition to being able to use recycled raw materials, it is possible to improve mechanical properties such as tensile strength and 0.2% proof stress while suppressing a decrease in elongation.
  • Cr having an effect of improving the corrosion resistance is contained in an amount of 0.10 wt% or more and 0.40 wt% or less. Moreover, deterioration of the corrosion resistance of the aluminum alloy for die casting can be prevented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Extrusion Of Metal (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

Provided are an aluminum alloy for die casting that can be economically and sustainably produced using recycled raw material and that is also suitable for critical safety parts or the like of an automobile in which mechanical properties are enhanced without compromising corrosion resistance, and an aluminum alloy die casting that is die-cast using the alloy. Specifically, the present invention is an aluminum alloy for die casting and an aluminum alloy die casting using the same, the aluminum alloy for die casting being characterized by containing, in terms of wt%, 0.05% < Cu ≤ 0.70%, 4.0% ≤ Si ≤ 11.0%, 0.50% < Mg ≤ 1.0%, 0.05% ≤ Fe ≤ 0.60%, Mn ≤ 0.80%, and 0.10% ≤ Cr ≤ 0.40%, the remainder comprising Al and unavoidable impurities.

Description

ダイカスト用アルミニウム合金およびこれを用いたアルミニウム合金ダイカストAluminum alloy for die casting and aluminum alloy die casting using the same
 本発明は、機械的特性と耐食性とに優れたダイカスト用アルミニウム合金および当該合金を利用したアルミニウム合金ダイカストに関する。 The present invention relates to an aluminum alloy for die casting excellent in mechanical properties and corrosion resistance, and an aluminum alloy die casting using the alloy.
 アルミニウム合金は、軽量であると共に、成形性や量産性に優れることから、自動車や産業機械、航空機、家庭電化製品その他各種分野において、その構成部品素材として広く使用されている。
 このうち、例えば自動車用途においては、車体の軽量化やそれに伴う省燃費を目的に、ボディや足回り部品などへのアルミニウム合金ダイカストの適用が拡大している。このように近年、アルミニウム合金を用いた部品が数多く採用されて来ているが、その一方で、これらの部品の多くは重要保安部品であるため、耐力や延性と言った機械的性質のみならず、必要耐用年数や使用環境などの観点から、長期間の使用に耐え得るだけの耐食性が要求される。このため、既存合金では、かかる部品に要求される機械的特性は充足できるものの、耐食性を満足できない事態が生じ始めている。
Aluminum alloys are light in weight and excellent in formability and mass productivity, and are therefore widely used as components in automobiles, industrial machines, aircraft, home appliances, and other various fields.
Of these, for example, in automotive applications, the application of aluminum alloy die casting to bodies and undercarriage parts is expanding for the purpose of reducing the weight of the vehicle body and the accompanying fuel saving. Thus, in recent years, many parts using aluminum alloys have been adopted, but on the other hand, since many of these parts are important safety parts, not only mechanical properties such as proof stress and ductility, but also In view of the required service life and usage environment, corrosion resistance that can withstand long-term use is required. For this reason, with existing alloys, although the mechanical properties required for such parts can be satisfied, a situation in which corrosion resistance cannot be satisfied has begun to occur.
 そこで、そのような問題を解決する技術の一つとして、例えば、下記の特許文献1には、自動車のホイール(車輪)などの安全構成要素に好適な材料として、9.5~11.5重量%の珪素(Si),0.1~0.5重量%のマグネシウム(Mg),0.5~0.8重量%のマンガン(Mn),最大0.15重量%の鉄(Fe),最大0.03重量%の銅(Cu),最大0.10重量%の亜鉛(Zn),最大0.15重量%のチタン(Ti)を含み、残部がアルミニウム(Al)及び永続的微粒化剤としての30~300ppmのストロンチウム(Sr)で構成されたダイカスト用アルミニウム合金が開示されている。
 この技術によれば、電池作用によってアルミニウム合金を腐食させるCuの含有割合を最大で0.03重量%に抑えているので、高い耐食性を有するダイカスト用アルミニウム合金を提供することができる。
Therefore, as one of the techniques for solving such a problem, for example, in Patent Document 1 below, 9.5 to 11.5 weight as a material suitable for a safety component such as an automobile wheel (wheel) is disclosed. % Silicon (Si), 0.1-0.5 wt% magnesium (Mg), 0.5-0.8 wt% manganese (Mn), max 0.15 wt% iron (Fe), max Contains 0.03 wt% copper (Cu), up to 0.10 wt% zinc (Zn), up to 0.15 wt% titanium (Ti), the balance being aluminum (Al) and a permanent atomizer A die casting aluminum alloy composed of 30 to 300 ppm of strontium (Sr) is disclosed.
According to this technique, since the content ratio of Cu that corrodes the aluminum alloy by the battery action is suppressed to 0.03% by weight at the maximum, an aluminum alloy for die casting having high corrosion resistance can be provided.
特許第3255560号公報Japanese Patent No. 3255560
 しかしながら、耐食性を向上させるため、上述のようにCuの含有割合を制限すれば、実質的にスクラップ原料の使用が不可能となり、アルミニウム合金を経済的に製造できなくなるばかりでなく、循環型社会を構築する上での律速となる。また、Cuはアルミニウム合金に対して引張強さや0.2%耐力と言った機械的性質を向上させる効果を有しているが、Cuの含有割合を0.03重量%以下に制限すれば、かかる効果も期待できなくなる。
 さらに、CuのみならずMgについても事情は同様である。すなわち、合金中のMgの含有割合を上述のように制限した場合、例えばサッシ屑やアルミ缶などのMg含有割合の高い材料で構成されたスクラップ原料を使用するためには、溶かしたスクラップ原料に塩素ガスを吹き込んだり塩素系フラックスを使用してスクラップ溶湯中のMgを塩化マグネシウムとして分離し、再生後合金のMg含有割合が上記範囲内となるように調整しなければならない。しかしながら、スクラップ溶湯からのMgの分離にはこのように塩素が使用されるので排ガス中にダイオキシン類が生成するなど別の問題が生じ得る。したがって、合金中のMgの含有割合を上述のように制限した場合、実質的にはスクラップ原料の使用が難しくなる場合がある。また、Mgはアルミニウム合金に対して0.2%耐力を向上させる効果を有しているが、Mgの含有割合を0.5重量%以下に制限すれば、かかる効果も期待できなくなる。
 それゆえに、この発明の主たる課題は、リサイクル原料を使用して経済的且つ持続可能に生産することができるのに加え、耐食性を損なうことなく機械的性質を向上させた自動車の重要保安部品などに好適なダイカスト用アルミニウム合金と、当該合金からなるアルミニウム合金ダイカストとを提供することである。
However, in order to improve the corrosion resistance, if the content ratio of Cu is limited as described above, it becomes practically impossible to use scrap raw materials, making it impossible to produce aluminum alloys economically, and to create a recycling society. It becomes the rate-limiting factor in building. Further, Cu has an effect of improving mechanical properties such as tensile strength and 0.2% proof stress with respect to an aluminum alloy, but if the Cu content is limited to 0.03% by weight or less, Such an effect cannot be expected.
Furthermore, the situation is the same for Mg as well as Cu. That is, when the content ratio of Mg in the alloy is limited as described above, for example, in order to use a scrap raw material composed of a material with a high Mg content such as sash scraps or aluminum cans, It is necessary to separate the Mg in the scrap metal as magnesium chloride by blowing chlorine gas or using a chlorine-based flux, and adjust the Mg content of the recycled alloy to be within the above range. However, since chlorine is used in this way for separating Mg from molten scrap, other problems such as generation of dioxins in the exhaust gas may occur. Therefore, when the content ratio of Mg in the alloy is limited as described above, it may be difficult to use scrap raw materials substantially. Further, Mg has an effect of improving the 0.2% proof stress with respect to the aluminum alloy. However, if the Mg content is limited to 0.5% by weight or less, such an effect cannot be expected.
Therefore, the main problem of the present invention is that it can be produced economically and sustainably by using recycled raw materials, as well as important safety parts for automobiles having improved mechanical properties without impairing corrosion resistance. It is an object to provide a suitable aluminum alloy for die casting and an aluminum alloy die casting made of the alloy.
 本発明における第1の発明は、「重量%で、0.05%≦Cu≦0.70%、4.0%≦Si≦11.0%、0.50%<Mg≦1.0%、0.05%≦Fe≦0.60%、Mn≦0.80%、0.10%≦Cr≦0.40%を含有し、残部がAlと不可避不純物とからなる」ことを特徴とするダイカスト用アルミニウム合金である。
 この発明では、Cuを0.05重量%以上で且つ0.70重量%以下の範囲内で含有させると共にMgを0.50重量%超から1.0重量%以下の範囲内で含有させることができるので、リサイクル原料の使用が可能となるのに加え、引張強さや0.2%耐力と言った機械的性質を向上させることができる。また、耐食性を悪化させる虞のあるCuの含有割合を上記範囲内に抑える一方で、耐食性改善効果のあるCrを0.10重量%以上で且つ0.40重量%以下含有するようにしているので、ダイカスト用アルミニウム合金の耐食性の悪化を防止することができる。
 以上のように、本発明では、6種類の元素成分を所定の割合で含有させるだけで、それらの相互的作用によって、鋳造性や機械的性質のみならず、耐食性にも優れたダイカスト用アルミニウム合金のインゴットを経済的に安全且つ簡便に製造することができる。
According to a first aspect of the present invention, “by weight, 0.05% ≦ Cu ≦ 0.70%, 4.0% ≦ Si ≦ 11.0%, 0.50% <Mg ≦ 1.0%, Die casting characterized by containing 0.05% ≦ Fe ≦ 0.60%, Mn ≦ 0.80%, 0.10% ≦ Cr ≦ 0.40%, with the balance being Al and inevitable impurities ” Aluminum alloy.
In the present invention, Cu is contained in the range of 0.05% by weight or more and 0.70% by weight or less, and Mg is contained in the range of more than 0.50% by weight to 1.0% by weight or less. Therefore, in addition to enabling the use of recycled raw materials, mechanical properties such as tensile strength and 0.2% proof stress can be improved. In addition, while suppressing the content ratio of Cu, which may deteriorate the corrosion resistance, within the above range, Cr having an effect of improving the corrosion resistance is contained in an amount of 0.10 wt% or more and 0.40 wt% or less. Moreover, deterioration of the corrosion resistance of the aluminum alloy for die casting can be prevented.
As described above, in the present invention, an aluminum alloy for die casting excellent not only in castability and mechanical properties but also in corrosion resistance can be obtained by merely including six kinds of elemental components at a predetermined ratio and by their interaction. The ingot can be economically safe and simple to manufacture.
 なお、本発明のダイカスト用アルミニウム合金では、Tiを0.30重量%以下含有させるのが好ましい。こうすることにより、当該合金の結晶粒を微細化させて鋳造割れをより一層効果的に抑制できると共に、機械的性質とりわけ伸びを向上させることができる。 In addition, it is preferable to contain 0.30 weight% or less of Ti in the aluminum alloy for die-casting of this invention. By carrying out like this, while making the crystal grain of the said alloy fine, a casting crack can be suppressed much more effectively, and mechanical property, especially elongation can be improved.
 また、本発明のダイカスト用アルミニウム合金では、Na,SrおよびCaから選ばれる少なくとも1種を30~200ppm添加することや、Sbを0.05~0.20重量%添加するのが好ましい。こうすることにより、共晶Siの粒子を細かくすることができ、アルミニウム合金の靱性や強度をより一層向上させることができる。
 さらに、Bを1~50ppm添加することも好ましい。こうすることにより、特にSi量が少ない場合や冷却速度の遅い鋳造方法を用いる場合であってもアルミニウム合金の結晶粒を微細化させることができ、その結果、当該アルミニウム合金の伸びを向上させることができる。
In the aluminum alloy for die casting of the present invention, it is preferable to add 30 to 200 ppm of at least one selected from Na, Sr and Ca, or 0.05 to 0.20% by weight of Sb. By doing so, the particles of eutectic Si can be made finer, and the toughness and strength of the aluminum alloy can be further improved.
It is also preferable to add 1 to 50 ppm of B. By doing this, even when the amount of Si is small or when using a casting method with a slow cooling rate, the crystal grains of the aluminum alloy can be refined, and as a result, the elongation of the aluminum alloy can be improved. Can do.
 本発明における第2の発明は、上記第1の発明に記載のダイカスト用アルミニウム合金からなることを特徴とするアルミニウム合金ダイカストである。
 本発明のダイカスト用アルミニウム合金からなるアルミニウム合金ダイカストは、鋳造性よく量産できると共に、引張強さや硬さと言った機械的特性のみならず耐食性にも優れているため、例えば自動車の重要保安部品などの用途に好適である。
According to a second aspect of the present invention, there is provided an aluminum alloy die casting comprising the die casting aluminum alloy according to the first aspect.
The aluminum alloy die casting made of the aluminum alloy for die casting of the present invention can be mass-produced with good castability and has excellent corrosion resistance as well as mechanical properties such as tensile strength and hardness. Suitable for use.
 本発明によれば、リサイクル原料を使用して経済的且つ持続可能に生産することができるのに加え、耐食性を損なうことなく機械的性質を向上させた自動車の重要保安部品などに好適なダイカスト用アルミニウム合金と、当該合金からなるアルミニウム合金ダイカストとを提供することができる。 According to the present invention, in addition to being able to produce economically and sustainably using recycled raw materials, it is suitable for die-casting suitable for important safety parts of automobiles having improved mechanical properties without impairing corrosion resistance. An aluminum alloy and an aluminum alloy die casting made of the alloy can be provided.
ダイカスト用アルミニウム合金におけるCuの含有割合と機械的性質との関係を示すグラフである。It is a graph which shows the relationship between the content rate of Cu and the mechanical property in the aluminum alloy for die-casting. ダイカスト用アルミニウム合金におけるMgの含有割合と機械的性質との関係を示すグラフである。It is a graph which shows the relationship between the content rate of Mg and the mechanical property in the aluminum alloy for die-casting.
 以下、本発明の実施の形態について具体例を示しながら詳述する。
 本発明のダイカスト用アルミニウム合金(以下、単に「アルミニウム合金」とも云う。)は、重量%で、0.05%≦Cu(銅)≦0.70%、4.0%≦Si(ケイ素)≦11.0%、0.50%<Mg(マグネシウム) ≦1.0%、0.05%≦Fe(鉄)≦0.60%、Mn(マンガン)≦0.8%、0.10%≦Cr(クロム)≦0.40%を含有し、残部がAl(アルミニウム)と不可避不純物とで大略構成されている。以下、各元素の特性について説明する。
Hereinafter, embodiments of the present invention will be described in detail with specific examples.
The aluminum alloy for die casting of the present invention (hereinafter also simply referred to as “aluminum alloy”) is 0.05% ≦ Cu (copper) ≦ 0.70%, 4.0% ≦ Si (silicon) ≦% by weight. 11.0%, 0.50% <Mg (magnesium) ≦ 1.0%, 0.05% ≦ Fe (iron) ≦ 0.60%, Mn (manganese) ≦ 0.8%, 0.10% ≦ It contains Cr (chromium) ≦ 0.40%, and the balance is substantially composed of Al (aluminum) and inevitable impurities. Hereinafter, the characteristics of each element will be described.
 Cu(銅)は、アルミニウム合金の耐摩耗性や機械的強度や硬さを向上させるために重要な元素である。
 アルミニウム合金全体の重量に対するCuの含有割合は、上述したように0.05重量%以上で且つ0.70重量%以下の範囲内であることが好ましい。Cuの含有割合が0.05重量%未満の場合には、上述の機械的性質改善効果を得ることができなくなり、逆に、Cuの含有割合が0.70重量%を超える場合には、耐食性の著しい低下、伸びの低下、比重の増大などの問題が生じるようになるからである。
Cu (copper) is an important element for improving the wear resistance, mechanical strength, and hardness of an aluminum alloy.
As described above, the content ratio of Cu with respect to the weight of the entire aluminum alloy is preferably 0.05% by weight or more and 0.70% by weight or less. When the Cu content is less than 0.05% by weight, the above-mentioned mechanical property improving effect cannot be obtained. Conversely, when the Cu content exceeds 0.70% by weight, the corrosion resistance is not improved. This is because problems such as a significant decrease in elongation, a decrease in elongation, and an increase in specific gravity will occur.
 Si(ケイ素)は、アルミニウム合金溶融時における流動性を確保し、鋳造性を向上させる重要な元素である。
 アルミニウム合金全体の重量に対するSiの含有割合は、上述したように4.0重量%以上で且つ11.0重量%以下の範囲内であることが好ましい。Siの含有割合が4.0重量%未満の場合には、溶湯の流動性を確保することが難しく、一般的に多用されている通常のダイカストでの成形を考えた場合、大型部品への適用の妨げとなり、逆に、Siの含有割合が11.0重量%を超える場合には、合金の伸びが低下するようになるからである。
Si (silicon) is an important element that ensures fluidity at the time of melting an aluminum alloy and improves castability.
As described above, the content ratio of Si with respect to the weight of the entire aluminum alloy is preferably 4.0% by weight or more and 11.0% by weight or less. When the Si content is less than 4.0% by weight, it is difficult to ensure the fluidity of the molten metal, and it is applied to large parts when considering the usual die casting that is commonly used. On the contrary, when the Si content exceeds 11.0% by weight, the elongation of the alloy decreases.
 Mg(マグネシウム)は、主としてアルミニウム合金中のAl母材に固溶した状態又はMgSiとして存在し、アルミニウム合金に耐力および引張強さを付与する一方で、過大量の含有により鋳造性や耐食性に悪影響を及ぼす成分である。
 アルミニウム合金全体の重量に対するMgの含有割合は、上述したように0.50重量%超で且つ1.0重量%以下の範囲であることが好ましい。Mgの含有割合が0.5重量%以下の場合には、上述の効果に加え、熱処理を行うことなく合金の0.2%耐力を確保することが可能となり、逆に、Mgの含有割合が1.0重量%を超える場合には、合金の伸びや耐食性が著しく低下するようになるからである。
Mg (magnesium) exists mainly as a solid solution in an Al base material in an aluminum alloy or as Mg 2 Si, and imparts proof strength and tensile strength to the aluminum alloy. On the other hand, excessive content contains castability and corrosion resistance. It is a component that adversely affects
As described above, the content ratio of Mg with respect to the weight of the entire aluminum alloy is preferably in the range of more than 0.50 wt% and 1.0 wt% or less. When the Mg content is 0.5% by weight or less, in addition to the above effects, it becomes possible to ensure the 0.2% proof stress of the alloy without performing heat treatment. This is because if it exceeds 1.0% by weight, the elongation and corrosion resistance of the alloy will be significantly reduced.
 Fe(鉄)は、ダイカスト時の焼付き防止効果を有することが知られている。しかしながら、このFeは、Al-Si-Feからなる針状晶を晶出し、アルミニウム合金の靱性(伸び)を低下させると共に、大量に添加すると適温での溶解を困難にする。
 アルミニウム合金全体の重量に対するFeの含有割合は、上述したように0.05~0.60重量%の範囲内であることが好ましい。Feの含有割合が0.05重量%未満の場合には、ダイカスト時の焼き付き防止効果が十分ではなく、逆に、Feの含有割合が0.6重量%より多い場合にも、上記焼き付き防止効果は十分なものになるが、当該合金の靱性が低下すると共に溶解温度が上昇して鋳造性が悪化するようになるからである。
Fe (iron) is known to have an effect of preventing seizure during die casting. However, this Fe crystallizes needle-like crystals made of Al-Si-Fe, lowers the toughness (elongation) of the aluminum alloy, and makes it difficult to dissolve at an appropriate temperature when added in a large amount.
As described above, the content ratio of Fe with respect to the weight of the entire aluminum alloy is preferably in the range of 0.05 to 0.60% by weight. When the Fe content is less than 0.05% by weight, the effect of preventing seizure at the time of die casting is not sufficient, and conversely, when the Fe content is more than 0.6% by weight, the above effect of preventing seizure is also achieved. Is sufficient, but the toughness of the alloy decreases and the melting temperature rises to deteriorate the castability.
 Mn(マンガン)は、上述したFeと同様に、主としてダイカスト時におけるアルミニウム合金と金型との焼付きを防止するためのものである。このMnもFeと同様に、大量に含有させると適温での溶解が困難になることから、本発明では、アルミニウム合金全体の重量に対するMnの含有割合を0.8重量%以下に抑えている。
 なお、このMnの含有割合の下限については特に限定する必要はないが、上記焼付き防止効果を顕著に発揮させるためには、Mnを0.2重量%以上含有させるのが好ましい。
Mn (manganese) is mainly for preventing seizure between the aluminum alloy and the mold during die casting, as with the above-described Fe. Similarly to Fe, if Mn is contained in a large amount, it becomes difficult to dissolve at an appropriate temperature. Therefore, in the present invention, the content ratio of Mn with respect to the weight of the entire aluminum alloy is suppressed to 0.8% by weight or less.
The lower limit of the content ratio of Mn is not particularly limited, but it is preferable to contain Mn in an amount of 0.2% by weight or more in order to exert the above-described seizure prevention effect remarkably.
 Cr(クロム)は、上述したFeやMnと同様に、ダイカスト時におけるアルミニウム合金と金型との焼付きを防止するのに加え、合金の耐食性を向上させる効果を有する元素である。
 アルミニウム合金全体の重量に対するCrの含有割合は、上述したように0.10重量%以上で且つ0.40重量%以下の範囲内であることが好ましい。Crの含有割合が0.10重量%未満の場合には、上述の効果を十分に得ることができなくなり、逆に、Crの含有割合が0.40重量%を超える場合には、これ以上添加量を増やしても添加効果が上がらなくなるからである。
Cr (chromium) is an element having the effect of improving the corrosion resistance of the alloy in addition to preventing seizure between the aluminum alloy and the mold during die casting, as with the above-described Fe and Mn.
As described above, the content ratio of Cr with respect to the weight of the entire aluminum alloy is preferably in the range of 0.10 wt% or more and 0.40 wt% or less. When the Cr content is less than 0.10% by weight, the above effects cannot be obtained sufficiently. Conversely, when the Cr content exceeds 0.40% by weight, no more is added. This is because even if the amount is increased, the effect of addition cannot be improved.
 以上の含有割合に従って、Cu,Si,Mg,Fe,Mn及びCrの含有割合を調整すると、安全性の高い簡単な処方で有りながら、鋳造性や機械的性質のみならず、耐食性にも優れたダイカスト用アルミニウム合金地金を経済的に得ることができる。 When the content ratios of Cu, Si, Mg, Fe, Mn and Cr are adjusted according to the above content ratios, not only castability and mechanical properties but also corrosion resistance are excellent while being a simple and highly safe formulation. An aluminum alloy ingot for die casting can be obtained economically.
 なお、上述した各元素成分のほかに、Ti(チタン)を添加するようにしてもよい。このTiは、結晶粒を微細化させる効果を有しており、一般的には鋳造割れの抑制や機械的性質のうち特に伸びを向上させることができる元素であると言われている。
 アルミニウム合金全体の重量に対するこのTiの含有割合は、0.30重量%以下の範囲内であることが好ましい。Tiの含有割合が0.30重量%を超える場合には、アルミニウム合金の溶解が難しくなり、溶け残りの生じる可能性が出てくるからである。
In addition to the above-described element components, Ti (titanium) may be added. This Ti has an effect of refining crystal grains, and is generally said to be an element that can particularly improve elongation among suppression of casting cracks and mechanical properties.
The content ratio of Ti with respect to the weight of the entire aluminum alloy is preferably in the range of 0.30% by weight or less. This is because when the Ti content exceeds 0.30% by weight, it becomes difficult to dissolve the aluminum alloy, and there is a possibility that undissolved material is generated.
 また、上述した各元素成分のほかに、Na(ナトリウム),Sr(ストロンチウム),Ca(カルシウム)およびSb(アンチモン)から選ばれる少なくとも1種を改良処理材として添加するようにしてもよい。このような改良処理材を添加することによって共晶Siの粒子を細かくすることができ、アルミニウム合金の靱性や強度をより一層向上させることができる。
 ここで、アルミニウム合金全体の重量に対する改良処理材の添加割合は、当該改良処理材がNa,SrおよびCaの場合には30~200ppm、Sbの場合には0.05~0.20重量%の範囲であることが好ましい。改良処理材の添加割合が30ppm(Sbの場合には0.05重量%)未満の場合には、アルミニウム合金中の共晶Siの粒子を微細化するのが困難となり、逆に、改良処理材の添加割合が200ppm(Sbの場合には0.20重量%)より多い場合には、アルミニウム合金中の共晶Siの粒子は十分に微細化されており、これ以上添加量を増やしても添加効果が上がらなくなるからである。
In addition to the above-described element components, at least one selected from Na (sodium), Sr (strontium), Ca (calcium), and Sb (antimony) may be added as an improvement treatment material. By adding such an improved treatment material, the particles of eutectic Si can be made finer, and the toughness and strength of the aluminum alloy can be further improved.
Here, the addition ratio of the improved treatment material to the total weight of the aluminum alloy is 30 to 200 ppm when the improved treatment material is Na, Sr and Ca, and 0.05 to 0.20% by weight when Sb is used. A range is preferable. When the addition ratio of the improved treatment material is less than 30 ppm (0.05% by weight in the case of Sb), it becomes difficult to refine the eutectic Si particles in the aluminum alloy. In the case where the addition ratio of Z is more than 200 ppm (0.20% by weight in the case of Sb), the eutectic Si particles in the aluminum alloy are sufficiently refined and added even if the addition amount is further increased. This is because the effect does not increase.
 また、上記改良処理材に代えて、或いは改良処理材と共に、B(硼素)を添加するようにしてもよい。このようにBを添加することによってアルミニウム合金の結晶粒が微細化され、当該合金の伸びを向上させることができる。なお、かかる効果は、特にSi量が少ない場合や冷却速度の遅い鋳造方法を用いる場合に顕著となる。
 アルミニウム合金全体の重量に対するBの添加割合は、1~50ppmの範囲であることが好ましい。Bの添加割合が1ppm未満の場合には、アルミニウム合金中の結晶粒を微細化するのが困難となり、逆に、Bの添加割合が50ppmより多い場合には、アルミニウム合金中の結晶粒は十分に微細化されており、これ以上添加量を増やしても添加効果が上がらなくなるからである。
Further, B (boron) may be added in place of the improved treatment material or together with the improved treatment material. By adding B in this way, the crystal grains of the aluminum alloy are refined, and the elongation of the alloy can be improved. Such an effect is particularly remarkable when the amount of Si is small or when a casting method having a low cooling rate is used.
The addition ratio of B with respect to the weight of the entire aluminum alloy is preferably in the range of 1 to 50 ppm. When the addition ratio of B is less than 1 ppm, it is difficult to refine the crystal grains in the aluminum alloy. Conversely, when the addition ratio of B is more than 50 ppm, the crystal grains in the aluminum alloy are sufficient. This is because the effect of the addition cannot be increased even if the addition amount is increased further.
 本発明のダイカスト用アルミニウム合金を製造する際には、まず、Al,Cu,Si,Mg,Fe,Mn及びCrの各元素成分が上述した所定の割合となるように含有させた原料を準備する(必要に応じて上記のTiや改良処理材等も添加。)。続いて、この原料を前炉付溶解炉や密閉溶解炉などの溶解炉に投入し、これらを溶解させる。溶解させた原料すなわちアルミニウム合金の溶湯は、必要に応じて脱水素処理および脱介在物処理などの精製処理が施される。そして、精製された溶湯を所定の鋳型などに流し込み、固化させることによって、アルミニウム合金の溶湯を合金地金インゴットなどに成形する。 When producing the aluminum alloy for die casting of the present invention, first, a raw material containing each elemental component of Al, Cu, Si, Mg, Fe, Mn and Cr so as to have the above-described predetermined ratio is prepared. (If necessary, the above-mentioned Ti and improved treatment materials are also added.) Subsequently, this raw material is put into a melting furnace such as a pre-furnace melting furnace or a closed melting furnace to melt them. The melted raw material, that is, the molten aluminum alloy is subjected to a purification treatment such as a dehydrogenation treatment and a decontamination treatment as necessary. Then, the refined molten metal is poured into a predetermined mold or the like and solidified to form the molten aluminum alloy into an alloy ingot or the like.
 また、本発明のダイカスト用アルミニウム合金を用いてアルミニウム合金ダイカストを鋳造した後、必要に応じて溶体化処理及び時効処理などが施される。このようにアルミニウム合金ダイカストに溶体化処理および時効処理などを施すことによってアルミニウム合金鋳物の機械的特性を改良することができる。 Also, after casting an aluminum alloy die cast using the die casting aluminum alloy of the present invention, solution treatment and aging treatment are performed as necessary. Thus, the mechanical properties of the aluminum alloy casting can be improved by subjecting the aluminum alloy die casting to solution treatment, aging treatment, and the like.
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
 なお、下記の各種合金における機械的特性(具体的には、引張強さ,伸び,0.2%耐力)は、次の方法で測定した。すなわち、型締力135トンの通常のダイカストマシン(東芝機械(株)社製・DC135EL)を用いて、射出速度1.0m/秒、鋳造圧力60MPaでダイカスト鋳造し、ASTM(American Society for Testing and Material)規格に準拠した丸棒試験片を作製した。そして、鋳放しの状態のかかる丸棒試験片について、(株)島津製作所社製の万能試験機(AG-IS 100kN)を用いて、引張強さ,伸び,0.2%耐力を測定した。
 また、各種合金の合金成分は、固体発光分光分析機(サーモフィッシャーサイエンティフィック社製 Thermo Scientific ARL4460)を用いて測定した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.
The mechanical properties (specifically, tensile strength, elongation, 0.2% proof stress) in the following various alloys were measured by the following methods. That is, using an ordinary die casting machine having a clamping force of 135 tons (DC135EL manufactured by Toshiba Machine Co., Ltd.), die casting was performed at an injection speed of 1.0 m / second and a casting pressure of 60 MPa, and ASTM (American Society for Testing and Testing and Material) A round bar test piece conforming to the standard was prepared. Then, the tensile strength, elongation, and 0.2% proof stress of the round bar test piece in an as-cast state were measured using a universal testing machine (AG-IS 100 kN) manufactured by Shimadzu Corporation.
Moreover, the alloy component of various alloys was measured using the solid-state emission spectrometer (Thermo Scientific ARL4460 by Thermo Fisher Scientific).
Cuのダイカスト用アルミニウム合金物性に対する影響
 表1は、Cu以外の合金成分が本発明範囲内における或る一定の割合となるように調整すると共に、Cuの含有割合を変化させて製造したダイカスト用アルミニウム合金の成分組成及び各機械的特性(引張強さ,伸び,0.2%耐力)を示したものである。
Effect of Cu on die casting aluminum alloy physical properties Table 1 shows die casting aluminum manufactured by adjusting the alloy component other than Cu to a certain ratio within the scope of the present invention and changing the Cu content ratio. It shows the alloy composition and mechanical properties (tensile strength, elongation, 0.2% proof stress).
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 この表1および図1が示すように、ダイカスト用アルミニウム合金のCuの含有割合が増えるに従って当該合金の引張強さ(図1-1参照)が向上することが窺える。
 これに対し、当該合金の伸びは、Cuの含有割合が0.70重量%を超えると著しく低下するような傾向が窺える(図1-2参照)。このため、本発明のダイカスト用アルミニウム合金では、Cuの含有割合を0.05重量%以上で且つ0.70重量%以下の範囲内とするのが好ましい。
 なお、表1中の合金1~3は、本発明範囲内の合金組成、すなわち実施例合金である。
As shown in Table 1 and FIG. 1, it can be seen that the tensile strength (see FIG. 1-1) of the alloy improves as the Cu content of the aluminum alloy for die casting increases.
On the other hand, the elongation of the alloy tends to decrease remarkably when the Cu content exceeds 0.70% by weight (see FIG. 1-2). For this reason, in the aluminum alloy for die castings of this invention, it is preferable to make the content rate of Cu into the range of 0.05 weight% or more and 0.70 weight% or less.
Alloys 1 to 3 in Table 1 are alloy compositions within the scope of the present invention, that is, example alloys.
Mgのダイカスト用アルミニウム合金物性に対する影響
 表2は、Mg以外の合金成分が本発明範囲内における或る一定の割合となるように調整すると共に、Mgの含有割合を変化させて製造したダイカスト用アルミニウム合金の成分組成及び各機械的特性(引張強さ,伸び,0.2%耐力)を示したものである。
Effect of Mg on die casting aluminum alloy physical properties Table 2 shows die casting aluminum manufactured by adjusting the alloy components other than Mg to a certain ratio within the scope of the present invention and changing the Mg content. It shows the alloy composition and mechanical properties (tensile strength, elongation, 0.2% proof stress).
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 この表2および図2が示すように、ダイカスト用アルミニウム合金のMgの含有割合が増えるに従って当該合金の0.2%耐力が向上し、Mgの含有割合が0.50重量%を超えた辺りから当該合金の0.2%耐力が160MPaを超えるようになることが窺える(図2-1参照)。
 一方、当該合金の伸びは、Mgの含有割合が増えるに従って漸減し、Mgの含有割合が1.0重量%を超えた辺りから当該合金の伸びが7%を下回るようになる傾向が窺える(図2-2)。このため、本発明のダイカスト用アルミニウム合金では、Mgの含有割合を0.50重量%超で且つ1.0重量%以下の範囲内とするのが好ましい。
 なお、表2中の合金6~8は、本発明範囲内の合金組成、すなわち実施例合金である。
As shown in Table 2 and FIG. 2, as the Mg content of the die casting aluminum alloy increases, the 0.2% yield strength of the alloy increases, and the Mg content exceeds 0.50% by weight. It can be seen that the 0.2% proof stress of the alloy exceeds 160 MPa (see FIG. 2-1).
On the other hand, the elongation of the alloy gradually decreases as the Mg content increases, and the elongation of the alloy tends to fall below 7% when the Mg content exceeds 1.0% by weight (see FIG. 2-2). For this reason, in the aluminum alloy for die castings of this invention, it is preferable to make content rate of Mg into the range of more than 0.50 weight% and 1.0 weight% or less.
Alloys 6 to 8 in Table 2 are alloy compositions within the scope of the present invention, that is, example alloys.
 本実施形態のダイカスト用アルミニウム合金によれば、Cuを0.05重量%以上で且つ0.70重量%以下の範囲内で含有させると共にMgを0.50重量%超から1.0重量%以下の範囲内で含有させることができるので、リサイクル原料の使用が可能となるのに加え、伸びの低下を抑えつつ引張強さや0.2%耐力と言った機械的性質を向上させることができる。また、耐食性を悪化させる虞のあるCuの含有割合を上記範囲内に抑える一方で、耐食性改善効果のあるCrを0.10重量%以上で且つ0.40重量%以下含有するようにしているので、ダイカスト用アルミニウム合金の耐食性の悪化を防止することができる。 According to the aluminum alloy for die casting of this embodiment, Cu is contained in the range of 0.05% by weight or more and 0.70% by weight or less, and Mg is more than 0.50% by weight to 1.0% by weight or less. Therefore, in addition to being able to use recycled raw materials, it is possible to improve mechanical properties such as tensile strength and 0.2% proof stress while suppressing a decrease in elongation. In addition, while suppressing the content ratio of Cu, which may deteriorate the corrosion resistance, within the above range, Cr having an effect of improving the corrosion resistance is contained in an amount of 0.10 wt% or more and 0.40 wt% or less. Moreover, deterioration of the corrosion resistance of the aluminum alloy for die casting can be prevented.

Claims (6)

  1.  重量%で、0.05%≦Cu≦0.70%、4.0%≦Si≦11.0%、0.50%<Mg≦1.0%、0.05%≦Fe≦0.60%、Mn≦0.80%、0.10%≦Cr≦0.40%を含有し、残部がAlと不可避不純物とからなる、ことを特徴とするダイカスト用アルミニウム合金。 % By weight, 0.05% ≦ Cu ≦ 0.70%, 4.0% ≦ Si ≦ 11.0%, 0.50% <Mg ≦ 1.0%, 0.05% ≦ Fe ≦ 0.60 %, Mn.ltoreq.0.80%, 0.10% .ltoreq.Cr.ltoreq.0.40%, the balance being made of Al and inevitable impurities.
  2.  請求項1のダイカスト用アルミニウム合金において、
     Tiを0.30重量%以下含有する、ことを特徴とするダイカスト用アルミニウム合金。
    The aluminum alloy for die casting according to claim 1,
    The aluminum alloy for die-casting characterized by containing Ti 0.30weight% or less.
  3.  請求項1又は2のダイカスト用アルミニウム合金において、
     Na,SrおよびCaから選ばれる少なくとも1種を30~200ppm添加した、ことを特徴とするダイカスト用アルミニウム合金。
    In the aluminum alloy for die castings according to claim 1 or 2,
    An aluminum alloy for die casting, wherein 30 to 200 ppm of at least one selected from Na, Sr and Ca is added.
  4.  請求項1乃至3の何れかのダイカスト用アルミニウム合金において、
     Sbを0.05~0.20重量%添加した、ことを特徴とするダイカスト用アルミニウム合金。
    In the aluminum alloy for die castings in any one of Claims 1 thru | or 3,
    An aluminum alloy for die casting, characterized in that 0.05 to 0.20% by weight of Sb is added.
  5.  請求項1乃至4の何れかのダイカスト用アルミニウム合金において、
     Bを1~50ppm添加した、ことを特徴とするダイカスト用アルミニウム合金。
    In the aluminum alloy for die castings in any one of Claims 1 thru | or 4,
    An aluminum alloy for die casting, wherein 1 to 50 ppm of B is added.
  6.  請求項1乃至5の何れかのダイカスト用アルミニウム合金からなることを特徴とするアルミニウム合金ダイカスト。 An aluminum alloy die casting comprising the aluminum alloy for die casting according to any one of claims 1 to 5.
PCT/JP2017/015176 2017-04-13 2017-04-13 Aluminum alloy for die casting, and aluminum alloy die casting using same WO2018189869A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019512133A JP6852146B2 (en) 2017-04-13 2017-04-13 Aluminum alloy for die casting and aluminum alloy die casting using this
PCT/JP2017/015176 WO2018189869A1 (en) 2017-04-13 2017-04-13 Aluminum alloy for die casting, and aluminum alloy die casting using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015176 WO2018189869A1 (en) 2017-04-13 2017-04-13 Aluminum alloy for die casting, and aluminum alloy die casting using same

Publications (1)

Publication Number Publication Date
WO2018189869A1 true WO2018189869A1 (en) 2018-10-18

Family

ID=63793254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015176 WO2018189869A1 (en) 2017-04-13 2017-04-13 Aluminum alloy for die casting, and aluminum alloy die casting using same

Country Status (2)

Country Link
JP (1) JP6852146B2 (en)
WO (1) WO2018189869A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110016594A (en) * 2019-05-07 2019-07-16 中铝广西崇左稀钪新材料科技有限公司 A kind of die-casting rare earth aluminum alloy materials and preparation method thereof with high heat conductance
CN111926221A (en) * 2020-08-24 2020-11-13 山东弗泽瑞金属科技有限公司 Preparation equipment and preparation method of high-thermal-conductivity aluminum alloy for die casting
CN111926222A (en) * 2020-08-25 2020-11-13 肇庆南都再生铝业有限公司 Heat-resistant regenerated die-casting aluminum alloy and preparation method thereof
CN114182142A (en) * 2021-12-09 2022-03-15 东北轻合金有限责任公司 Al-Si-Cu-Mg-Mn die-casting aluminum alloy and preparation method thereof
CN114686714A (en) * 2022-04-06 2022-07-01 南昌大学 Method for preparing wear-resistant bearing bush alloy from scrap aluminum
CN114959376A (en) * 2021-02-18 2022-08-30 Oppo广东移动通信有限公司 Die-casting aluminum alloy, preparation method thereof, electronic equipment structural part and electronic equipment
WO2023167312A1 (en) * 2022-03-03 2023-09-07 日本軽金属株式会社 Al-si alloy for casting, al-si alloy casting and al-si alloy casting joint
WO2024181286A1 (en) * 2023-02-28 2024-09-06 日本軽金属株式会社 AL-SI ALLOY FOR CASTING, AL-Si ALLOY CASTING AND METHOD FOR PRODUCING AL-Si ALLOY CASTING

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115323225B (en) * 2022-08-17 2023-02-03 吉林大学 Corrosion-resistant high-toughness cast aluminum-silicon alloy and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149937A (en) * 1987-12-08 1989-06-13 Ube Ind Ltd Heat-treatment-type aluminum alloy for high-pressure casting
US20040045638A1 (en) * 2000-12-14 2004-03-11 Michel Garat Safety component moulded in a1-si alloy
CN104878256A (en) * 2015-05-20 2015-09-02 柳州市百田机械有限公司 High-compactness die-cast aluminum alloy
US20150354032A1 (en) * 2014-06-06 2015-12-10 Huawei Technologies Co., Ltd. Die casting aluminum alloy and production method thereof, and communications product
CN105177370A (en) * 2015-09-21 2015-12-23 珠海市润星泰电器有限公司 Aluminum-silicon alloy and semi-solid state die-cast product thereof
WO2016166779A1 (en) * 2015-04-15 2016-10-20 株式会社大紀アルミニウム工業所 Aluminum alloy for die casting, and die-cast aluminum alloy using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149937A (en) * 1987-12-08 1989-06-13 Ube Ind Ltd Heat-treatment-type aluminum alloy for high-pressure casting
US20040045638A1 (en) * 2000-12-14 2004-03-11 Michel Garat Safety component moulded in a1-si alloy
US20150354032A1 (en) * 2014-06-06 2015-12-10 Huawei Technologies Co., Ltd. Die casting aluminum alloy and production method thereof, and communications product
WO2016166779A1 (en) * 2015-04-15 2016-10-20 株式会社大紀アルミニウム工業所 Aluminum alloy for die casting, and die-cast aluminum alloy using same
CN104878256A (en) * 2015-05-20 2015-09-02 柳州市百田机械有限公司 High-compactness die-cast aluminum alloy
CN105177370A (en) * 2015-09-21 2015-12-23 珠海市润星泰电器有限公司 Aluminum-silicon alloy and semi-solid state die-cast product thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATSUO KABURAGI ET AL.: "Ko Ensei Die Casting-yo Al Gokin no Kikaiteki Seishitsu ni Oyobosu Cu no Eikyo", JAPAN FOUNDRY ENGINEERING SOCIETY, REPORTS OF THE 168TH JFS MEETING, 5 September 2016 (2016-09-05), pages 29 *
TERUAKI DANNO ET AL.: "Ko Ensei Die Casting-yo Al Gokin ni Oyobosu Cu Oyobi Cr no Eikyo", JAPAN FOUNDRY ENGINEERING SOCIETY, REPORTS OF THE 167TH JFS MEETING, 5 October 2015 (2015-10-05), pages 119 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110016594A (en) * 2019-05-07 2019-07-16 中铝广西崇左稀钪新材料科技有限公司 A kind of die-casting rare earth aluminum alloy materials and preparation method thereof with high heat conductance
CN110016594B (en) * 2019-05-07 2020-09-22 广西国瑞稀钪新材料科技有限公司 Die-casting rare earth aluminum alloy material with high thermal conductivity and preparation method thereof
CN111926221A (en) * 2020-08-24 2020-11-13 山东弗泽瑞金属科技有限公司 Preparation equipment and preparation method of high-thermal-conductivity aluminum alloy for die casting
CN111926222A (en) * 2020-08-25 2020-11-13 肇庆南都再生铝业有限公司 Heat-resistant regenerated die-casting aluminum alloy and preparation method thereof
CN114959376A (en) * 2021-02-18 2022-08-30 Oppo广东移动通信有限公司 Die-casting aluminum alloy, preparation method thereof, electronic equipment structural part and electronic equipment
CN114182142A (en) * 2021-12-09 2022-03-15 东北轻合金有限责任公司 Al-Si-Cu-Mg-Mn die-casting aluminum alloy and preparation method thereof
WO2023167312A1 (en) * 2022-03-03 2023-09-07 日本軽金属株式会社 Al-si alloy for casting, al-si alloy casting and al-si alloy casting joint
CN114686714A (en) * 2022-04-06 2022-07-01 南昌大学 Method for preparing wear-resistant bearing bush alloy from scrap aluminum
WO2024181286A1 (en) * 2023-02-28 2024-09-06 日本軽金属株式会社 AL-SI ALLOY FOR CASTING, AL-Si ALLOY CASTING AND METHOD FOR PRODUCING AL-Si ALLOY CASTING

Also Published As

Publication number Publication date
JPWO2018189869A1 (en) 2020-03-05
JP6852146B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP5898819B1 (en) Aluminum alloy for die casting and aluminum alloy die casting using the same
WO2018189869A1 (en) Aluminum alloy for die casting, and aluminum alloy die casting using same
JP5469100B2 (en) Aluminum alloy for pressure casting and cast aluminum alloy
CA3021397C (en) Die casting alloy
US9080225B2 (en) Aluminum alloy and manufacturing method thereof
JP5797360B1 (en) Aluminum alloy for die casting and aluminum alloy die casting using the same
KR20130023330A (en) Aluminium alloy and use of an aluminium alloy
JP5969713B1 (en) Aluminum alloy for die casting and aluminum alloy die casting using the same
JP4994734B2 (en) Aluminum alloy for casting and cast aluminum alloy
JP2006322062A (en) Aluminum alloy for casting, and aluminum alloy casting thereby
JP2007070716A (en) Aluminum alloy for pressure casting, and aluminum alloy casting made thereof
JP6267408B1 (en) Aluminum alloy and aluminum alloy castings
CN100547097C (en) A kind of production method of aluminum alloy materials of heat exchanger inner fin
JP2016102246A (en) Aluminum alloy for die casting excellent in ductility and cast product using the same
JP2016204711A (en) HIGH STRENGTH HYPEREUTECTIC Al-Si ALLOY AND DIE CAST USING THE SAME
JP2006316341A (en) Castable aluminum alloy and aluminum alloy cast made therefrom
JP5723064B2 (en) Aluminum alloy for die casting and aluminum alloy die casting using the same
CN112119172A (en) Al-Si-Mg series aluminum alloy
JP7401080B1 (en) Manufacturing method of Al alloy for casting
CN111094607B (en) Method for producing Al-Si-Mg-based aluminum alloy casting material
JP2020105545A (en) Aluminum alloy having low casting crack sensitivity, and aluminum alloy casting using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512133

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905573

Country of ref document: EP

Kind code of ref document: A1