WO2018235143A1 - Refrigerant circulation device for motor - Google Patents

Refrigerant circulation device for motor Download PDF

Info

Publication number
WO2018235143A1
WO2018235143A1 PCT/JP2017/022577 JP2017022577W WO2018235143A1 WO 2018235143 A1 WO2018235143 A1 WO 2018235143A1 JP 2017022577 W JP2017022577 W JP 2017022577W WO 2018235143 A1 WO2018235143 A1 WO 2018235143A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
motor
internal space
cylinder
partition plate
Prior art date
Application number
PCT/JP2017/022577
Other languages
French (fr)
Japanese (ja)
Inventor
智之 真鍋
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/022577 priority Critical patent/WO2018235143A1/en
Priority to JP2019524730A priority patent/JP6726360B2/en
Publication of WO2018235143A1 publication Critical patent/WO2018235143A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to a refrigerant circulating apparatus for a motor.
  • Japanese Patent No. 3211315 in a motor of an electric vehicle, in order to prevent the coil from generating heat and burning at high output, oil is forcibly circulated by an oil pump disposed in the wheel motor, A mechanism for cooling the inner coil is disclosed.
  • an object of this invention is to provide the refrigerant
  • the motor refrigerant circulating apparatus is a motor refrigerant circulating apparatus that causes a motor to circulate and cool a refrigerant.
  • This device is mechanically connected to a motor, and has a mechanical pump that switches the discharge direction of the refrigerant according to the rotation direction of the motor, a supply path for supplying the refrigerant to the motor, and an introduction path for introducing the refrigerant discharged from the motor
  • a discharge path for circulating the refrigerant discharged from the mechanical pump at the time of forward rotation of the motor and a suction path for circulating the refrigerant to be sucked by the mechanical pump at the time of forward rotation of the motor are connected.
  • a path switching mechanism is provided, which connects the path and the supply path and communicates the suction path and the introduction path, and communicates the suction path and the supply path when the motor rotates in the reverse direction and connects the discharge path and the introduction path.
  • FIG. 1 is a schematic view of a motor refrigerant circulation device (during normal rotation) according to the first embodiment.
  • FIG. 2 is a schematic view of the motor refrigerant circulation system (at the time of reverse rotation) according to the first embodiment.
  • FIG. 3 is a schematic view of a path switching mechanism (in forward rotation) which constitutes the motor refrigerant circulation system of the first embodiment.
  • FIG. 4 is a schematic view of a path switching mechanism (during reverse rotation) constituting the motor refrigerant circulation system of the first embodiment.
  • FIG. 5 is a schematic view of a motor refrigerant circulation device (during normal rotation) according to the second embodiment.
  • FIG. 6 is a schematic view of a motor coolant circulation system (during reverse rotation) according to the second embodiment.
  • FIG. 1 is a schematic view of a motor refrigerant circulation device (during normal rotation) according to the first embodiment.
  • FIG. 2 is a schematic view of the motor refrigerant circulation system (at the time
  • FIG. 7 is a schematic view of a path switching mechanism (during normal rotation) constituting the motor refrigerant circulation system of the second embodiment.
  • FIG. 8 is a schematic view of a path switching mechanism (during reverse rotation) constituting the motor refrigerant circulation system of the second embodiment.
  • FIG. 9 is a schematic view of a motor refrigerant circulation device (in normal rotation idle) according to the second embodiment.
  • FIG. 10 is a schematic view of a motor refrigerant circulation device (in reverse rotation idle rotation) of the second embodiment.
  • FIG. 11 is a schematic view of a path switching mechanism constituting the motor refrigerant circulating apparatus according to the second embodiment, wherein the solid line arrow indicates the flow direction of air when the mechanical pump is forward rotating, and the broken line arrow indicates the machine Shows the air flow direction at the time of reverse rotation.
  • FIG. 12 is a schematic view of a motor coolant circulation system (in normal rotation idle) according to the third embodiment.
  • FIG. 13 is a schematic view of a motor refrigerant circulation system (in reverse rotation idle rotation) of the third embodiment.
  • FIG. 14 is a schematic view of a path switching mechanism (in forward rotation around the air) constituting the motor refrigerant circulation system of the fourth embodiment.
  • FIG. 15 is a schematic view of a path switching mechanism (during reverse rotation around the air) that constitutes the motor refrigerant circulation system of the fourth embodiment.
  • FIG. 1 is a schematic view of a motor refrigerant circulation device 1 (during normal rotation) according to the first embodiment.
  • FIG. 2 is a schematic view of the motor refrigerant circulation device 1 (during reverse rotation) according to the first embodiment.
  • the motor refrigerant circulation device 1 serves as a circulation path of a refrigerant such as oil for cooling the motor 7 (the rotor 72).
  • the motor refrigerant circulating apparatus 1 is constituted by a mechanical pump 2 mechanically connected to a shaft 721 of a rotor 72 and a path switching mechanism 3.
  • the motor 7 (housing 71) and the path switching mechanism 3 are connected by the supply path 56 and the introduction path 57 of the refrigerant.
  • the motor 7 has a housing 71 housing a rotor 72 (and a stator), and a refrigerant can circulate in the rotor 72.
  • the refrigerant supplied from the path switching mechanism 3 via the supply path 56 is supplied to the inside of the rotor 72, and the refrigerant discharged from the rotor 72 is stored in the tank 711 in the lower part of the housing 71. Then, the refrigerant stored in the tank 711 is introduced into the path switching mechanism 3 via the introduction path 57.
  • the mechanical pump 2 is directly connected to the shaft 721 of the rotor 72 or mechanically connected to the shaft 721 via a gear (not shown), and rotates according to the rotational force of the rotor 72, and follows the rotational direction of the rotor 72. The direction of rotation is switched.
  • a trochoid pump, a vane pump or the like can be applied.
  • the refrigerant discharged from the mechanical pump 2 is supplied to the motor 7 (the rotor 72) through the supply path 56, and the refrigerant stored in the tank 711 is introduced into the introduction path 57 by the suction force of the mechanical pump 2. Be done.
  • the mechanical pump 2 and the path switching mechanism 3 are connected via the discharge path 21 and the suction path 22.
  • the discharge path 21 is a path through which the refrigerant discharged from the mechanical pump 2 flows when the mechanical pump 2 rotates forward
  • the suction path 22 is the refrigerant drawn by the mechanical pump 2 when the mechanical pump 2 rotates forward. Is a route through which On the other hand, at the time of reverse rotation of the mechanical pump 2, the discharge path 21 is a path through which the refrigerant sucked by the mechanical pump 2 flows
  • the suction path 22 is a path through which the refrigerant discharged by the mechanical pump 2 flows.
  • the path switching mechanism 3 includes a cylinder 4, a piston 5, and an actuator 6.
  • the cylinder 4 is composed of a first cylinder 41 and a second cylinder 42.
  • the first cylinder 41 and the second cylinder 42 are adjacent to each other, and the longitudinal direction and the direction of the opening match. Further, the first cylinder 41 and the second cylinder 42 are not in direct communication with each other, but are in communication with each other via the mechanical pump 2, the supply path 56, and the introduction path 57.
  • the supply path 56 branches into a first supply path 561 and a second supply path 562, the first supply path 561 is connected to the first cylinder 41, and the second supply path 562 is connected to the second cylinder 42.
  • the introduction path 57 branches into a first introduction path 571, a second introduction path 572, and a third introduction path 573.
  • the first introduction path 571 is connected to the first cylinder 41
  • the second introduction path 572 and the third introduction path 573 is connected to the second cylinder 42.
  • the discharge path 21 is connected to the first cylinder 41
  • the suction path 22 is connected to the second cylinder 42.
  • the piston 5 is supported by the actuator 6 and is movable in the cylinder 4 according to the drive of the actuator 6.
  • the piston 5 is branched into a first piston 51 and a second piston 52 from an intermediate position in the longitudinal direction.
  • the first piston 51 and the second piston 52 are disposed parallel to each other, the first piston 51 is accommodated in the first cylinder 41, and the second piston 52 is accommodated in the second cylinder 42. Further, the second piston 52 is designed to be longer than the first piston 51.
  • a first partition plate 511 and a second partition plate 512 are attached to the first piston 51 in order of proximity to the actuator 6, and the second partition plate 512 is attached to the end of the first piston 51 in the longitudinal direction There is.
  • the fifth partition plate 523, the third partition plate 521, and the fourth partition plate 522 are attached to the second piston 52 in order of proximity to the actuator 6, and the fourth partition plate 522 is an end of the second piston 52 in the longitudinal direction Is attached to
  • a first internal space 411 is formed between the first partition plate 511 and the second partition plate 512, and on the opposite side of the first internal space 411 of the second partition plate 512, a second internal space 412 are formed.
  • a buffer space 423 is formed between the fifth partition plate 523 and the third partition plate 521, and a third internal space 421 is formed between the third partition plate 521 and the fourth partition plate 522.
  • a buffer space 424 is formed on the opposite side of the third inner space 421 of the fourth partition plate 522.
  • the buffer space 423 is an internal space communicated with the second supply path 562 instead of the third internal space 421 in the first communication state described later.
  • the buffer space 424 is an internal space for taking in and out the refrigerant in order to avoid locking of the piston 5.
  • the second partition plate 512, the third partition plate 521, and the fourth partition plate 522 are attached at mutually different positions in the longitudinal direction of the piston 5.
  • the second partition plate 512 and the fourth partition plate 522 are attached at positions closer to the actuator 6 in this order.
  • the actuator 6 moves the piston 5 (the first piston 51 and the second piston 52) along its longitudinal direction (longitudinal direction of the cylinder 4).
  • a rotational direction signal (+ ⁇ , ⁇ ) representing the rotational direction of the motor 7 is input to the actuator 6, and the stroke position of the piston 5 is switched according to the rotational direction signal.
  • the motor 7 is rotating forward, the rotation direction signal (+ ⁇ ) is input to the actuator 6, and the actuator 6 moves the first piston 51 and the second piston 52 to a stroke position away from the actuator 6. (The first communication state described later).
  • the motor 7 is reversely rotated, and the rotational direction signal ( ⁇ ) is input to the actuator 6, and the actuator 6 moves the first piston 51 and the second piston 52 to the stroke position closer to the actuator 6. (The second communication state described later).
  • the mechanical pump 2 switches the discharge direction of the refrigerant according to the rotation direction of the motor 7, so the path switching mechanism 3 communicates the inside of the first cylinder 41 and the inside of the second cylinder 42 according to the rotation direction of the motor 7.
  • Partition plates first to fifth partition plates 511 to 523 so that the refrigerant can be supplied from the supply path 56 regardless of the rotational direction of the motor 7 by switching the first communication state and the second communication state, respectively. Is attached.
  • the first internal space 411, the second internal space 412, the third internal space 421, the buffer space 423, and the buffer space 424 are independent of the first communication state and the second communication state.
  • the following communication states are maintained. That is, the first inner space 411 communicates with the first supply path 561 and is separated from the first introduction path 571.
  • the second inner space 412 communicates with the first introduction path 571 and is separated from the first supply path 561.
  • the buffer space 423 is separated from the second introduction path 572, the third introduction path 573, and the suction path 22.
  • the third inner space 421 communicates with the suction path 22 and is separated from the third introduction path 573.
  • the buffer space 424 is separated from the second supply path 562 and the suction path 22 and is in communication with the third introduction path 573.
  • the first internal space 411 communicates the discharge path 21 with the first supply path 561
  • the second internal space 412 communicates with the first introduction path 571 and is separated from the discharge path 21.
  • the buffer space 423 is in communication with the second supply path 562
  • the third inner space 421 is in communication with the suction path 22 and the second introduction path 572 and is separated from the second supply path 562
  • the buffer space 424 is 2 separated from the introduction path 572
  • the first internal space 411 is separated from the discharge path 21
  • the second internal space 412 communicates the discharge path 21 with the first introduction path 571
  • the buffer space 423 is the second supply.
  • the third internal space 421 communicates the suction path 22 with the second supply path 562 and separates from the second introduction path 572
  • the buffer space 424 forms the second introduction path 572 and the third introduction path 573. It is in communication with
  • the second internal space 412 is always in communication with the first introduction path 571, and the buffer space 424 is always in communication with the third introduction path 573.
  • the actuator 6 moves the piston 5
  • the refrigerant can be taken in and out of the second internal space 412 and the buffer space 424, and locking of the piston 5 can be avoided.
  • FIG. 3 is a schematic view of the path switching mechanism 3 (during normal rotation) of the motor refrigerant circulating apparatus 1 of the first embodiment.
  • FIG. 4 is a schematic view of the path switching mechanism 3 (during reverse rotation) of the motor refrigerant circulating apparatus 1 of the first embodiment.
  • an O-ring 53 is attached to the side surface of the partition plate (the first partition plate 511 to the fifth partition plate 523), and the O-ring 53 is of the first cylinder 41 and the second cylinder 42. Internal spaces adjacent to each other are separated by being pressed by the inner wall.
  • an opening 561a of the first supply path 561, an opening 21a of the discharge path 21, and an opening 571a of the first introduction path 571 are formed.
  • an opening 562a of the second supply path 562, an opening 22a of the suction path 22, an opening 572a of the second introduction path 572 and an opening 573a of the third introduction path 573 are formed.
  • the opening 561a and the opening 562a communicate with each other through the supply path 56
  • the opening 571a, the opening 572a, and the opening 573a communicate with each other through the introduction path 57.
  • the first internal space 411 communicates the opening 561a with the opening 21a
  • the second internal space 412 communicates with the opening 571a and is separated from the opening 561a
  • 423 communicates with the opening 562a
  • the third internal space 421 connects the opening 22a with the opening 572a and is separated from the opening 562a
  • the buffer space 424 communicates with the opening 573a and is separated from the opening 572a doing.
  • the first internal space 411 communicates with the opening 561a and is separated from the opening 21a
  • the second internal space 412 communicates the opening 21a with the opening 571a
  • the buffer space 423 separates from the opening 562a
  • the third inner space 421 connects the opening 562a and the opening 22a and separates from the opening 572a
  • the buffer space 424 communicates with the opening 572a and the opening 573a .
  • the mechanical pump 2 sucks the refrigerant from the discharge passage 21 and discharges the refrigerant to the suction passage 22.
  • the refrigerant stored in the tank 711 is introduced into the second internal space 412 through the first introduction path 571 in the path switching mechanism 3, flows from the opening 571 a to the opening 21 a, and is introduced into the discharge path 21. It is sucked by the mechanical pump 2.
  • the refrigerant discharged from the mechanical pump 2 to the suction path 22 is introduced into the third inner space 421, flows from the opening 22a to the opening 562a, and is supplied to the motor via the second supply path 562 and the supply path 56. 7 (rotor 72).
  • the refrigerant stored in the tank 711 is transferred from the supply path 56 to the motor 7 by switching the flow path in the path switching mechanism 3. (Rotor 72) can be supplied, and the refrigerant can be reliably circulated.
  • the motor refrigerant circulation device 1 is a motor refrigerant circulation device 1 for circulating and cooling the refrigerant to the motor 7.
  • the motor refrigerant circulation device 1 is mechanically connected to the motor 7 and the refrigerant is It is discharged from the mechanical pump 2 at the time of normal rotation of the motor 7, the supply path 56 for supplying the refrigerant to the motor 7, the introduction path 57 for introducing the refrigerant discharged from the motor 7, and the mechanical pump 2 whose discharge direction changes.
  • the suction path 22 for circulating the refrigerant drawn by the mechanical pump 2 when the motor 7 rotates forward, and the discharge path 21 and the supply path 56 are rotated when the motor 7 rotates forward.
  • the suction path 22 and the introduction path 57 are communicated with each other, and when the motor 7 rotates in the reverse direction, the suction path 22 and the supply path 56 are communicated and the discharge path 21 and the introduction path 57 are communicated. It includes a switching mechanism 3, a.
  • the path switching mechanism 3 can switch the communication destination of the mechanical pump 2 in conjunction with this. Therefore, regardless of the rotation direction of the motor 7 and the discharge direction of the mechanical pump 2, the refrigerant can be circulated in the forward direction, and the cost can be suppressed without using the electric oil pump to suppress the refrigerant in the motor 7. Can be circulated.
  • the path switching mechanism 3 divides the internal space of the cylinder 4 to which the supply path 56, the introduction path 57, the discharge path 21, and the suction path 22 are connected, and a partition plate (first partition plate 511 to A first communicating state in which a fifth partition plate 523) is attached, and the partition plate communicates the discharge path 21 with the supply path 56 at the normal rotation of the motor 7 and communicates the suction path 22 with the introduction path 57
  • a piston 5 movable movably to a second communication state forming an internal space communicating the suction path 22 with the supply path 56 and communicating the discharge path 21 with the introduction path 57 when the motor 7 reversely rotates. , Moving the piston 5 in accordance with the rotational direction of the motor 7 to switch the internal space of the cylinder 4 to either the first communication state or the second communication state. It includes a eta 6, the.
  • the communication destination of the discharge path 21 and the communication destination of the suction path 22 are switched with a simple configuration, and the forward circulation of the refrigerant is maintained regardless of the rotational direction of the mechanical pump 2, that is, the discharge direction of the refrigerant.
  • Mechanisms can be built.
  • the cylinder 4 communicates with the first supply path 561 branched from the supply path 56, the first introduction path 571 branched from the introduction path 57, and the first cylinder 41 communicated with the discharge path 21 and separated from the suction path 22;
  • a second supply path 562 branched from the supply path 56, a second introduction path 572 branched from the introduction path 57, and a second cylinder 42 communicating with the suction path 22 and separated from the discharge path 21 are provided.
  • the piston 5 is branched into a first piston 51 disposed in the first cylinder 41 and a second piston 52 disposed in the second cylinder 42.
  • the partition plates include a first partition plate 511 and a second partition plate 512 attached to the first piston 51 side by side, and a third partition plate 521 and a fourth partition plate 522 attached to the second piston 52 side by side; Equipped with
  • the first cylinder 41 is formed between the first partition plate 511 and the second partition plate 512, and is in communication with the first supply path 561.
  • the first cylinder 41 is connected to the first inner space 411 of the second partition plate 512.
  • a second internal space 412 formed on the opposite side and in communication with the first introduction path 571.
  • the second cylinder 42 includes a third inner space 421 formed between the third partition plate 521 and the fourth partition plate 522 and in communication with the suction path 22.
  • the first internal space 411 communicates the discharge path 21 with the first supply path 561, and the third internal space 421 communicates the suction path 22 with the second introduction path 572.
  • the second internal space 412 communicates the discharge path 21 with the first introduction path 571, and the third internal space 421 communicates the suction path 22 with the second supply path 562.
  • the first communication state and the second communication state can be formed in the cylinder 4 only by moving the piston 5, so that the path switching mechanism 3 can be miniaturized.
  • the attachment positions of the supply path 56 and the introduction path 57 may be reversed.
  • the communication states are mutually switched between the first communication state and the second communication state. Therefore, when the motor 7 and the mechanical pump 2 are rotating in the normal direction, the actuator 6 moves the piston 5 to the stroke position in the second communication state, and in the reverse direction, the piston 5 is (1) It may be moved to the stroke position in which the communication state is established.
  • the supply passage 56 is branched into the first supply passage 561 and the second supply passage 562, but the cylinders are connected so that the supply passage 56 communicates with the first cylinder 41 and the second cylinder 42.
  • a large opening that crosses the wall surface between the first cylinder 41 and the second cylinder 42 may be formed, and the supply path 56 may be connected to the opening.
  • the introduction path 57 is branched into the first introduction path 571 and the second introduction path 572, the first cylinder in the cylinder 4 is in communication with the first cylinder 41 and the second cylinder 42.
  • a large opening that crosses the wall surface between the cylinder 41 and the second cylinder 42 may be formed, and the introduction path 57 may be connected to this opening.
  • FIG. 5 is a schematic view of the motor refrigerant circulating apparatus 1 (during normal rotation) according to the second embodiment.
  • FIG. 6 is a schematic view of the motor refrigerant circulation device 1 (during reverse rotation) according to the second embodiment.
  • the mechanical pump 2 is idled to reduce torque of the motor 7. The loss of the mechanical pump 2 is reduced.
  • the supply path 56 branches into a first supply path 561 and a second supply path 562, the first supply path 561 is connected to the first cylinder 41, and the second supply path 562 is connected to the second cylinder 42.
  • the introduction path 57 branches into a first introduction path 571 and a second introduction path 572.
  • the first introduction path 571 is connected to the first cylinder 41
  • the second introduction path 572 is connected to the second cylinder 42.
  • the discharge path 21 is connected to the first cylinder 41
  • the suction path 22 is connected to the second cylinder 42.
  • One of the air introduction paths 58 is connected to the housing 71 (tank 711) of the motor 7 at a position higher than the liquid level of the refrigerant, and the other is connected to the cylinder 4. Thereby, even if the refrigerant flows backward from the path switching mechanism 3 to the air introduction path 58, it is possible to prevent the refrigerant from leaking to the outside.
  • the other of the air introduction paths 58 is branched into a first air introduction path 581, a second air introduction path 582, and a third air introduction path 583.
  • the first air introduction path 581 is connected to the first cylinder 41, and the second air
  • the introduction path 582 and the third air introduction path 583 are connected to the second cylinder 42.
  • a first partition plate 541, a second partition plate 542, and a third partition plate 543 are attached to the first piston 54 in order of proximity to the actuator 6, and the third partition plate 543 is in the longitudinal direction of the first piston 54. Attached to the end.
  • a seventh partition plate 554, a fourth partition plate 551, a fifth partition plate 552, and a sixth partition plate 553 are attached to the second piston 55 in order of proximity from the actuator 6, and the sixth partition plate 553 is the second piston 55 Attached to the longitudinal end of the
  • a first internal space 411 is formed between the first partition plate 541 and the second partition plate 542, and a second internal space 412 is formed between the second partition plate 542 and the third partition plate 543.
  • a buffer space 413 is formed in the opposite side of the second inner space 412 of the third partition plate 543 for taking in and out air in order to avoid locking of the operation of the piston 5.
  • a buffer space 423 is formed between the seventh partition plate 554 and the fourth partition plate 551, and a third internal space 421 is formed between the fourth partition plate 551 and the fifth partition plate 552
  • the fourth inner space 422 is formed between the fifth partition plate 552 and the sixth partition plate 553, and on the opposite side of the fourth inner space 422 of the sixth partition plate 553, locking of the operation of the piston 5 is performed.
  • a buffer space 424 for taking in and out air is formed to avoid the problem.
  • the first internal space 411 to the fourth internal space 422, the buffer space 413, the buffer space 423, and the buffer space 424 have a first communication state, a second communication state, and a second communication state described later. 3
  • the following communication state is maintained regardless of the communication state. That is, the first internal space 411 communicates with the first supply path 561 and is separated from the first introduction path 571 and the first air introduction path 581.
  • the second internal space 412 communicates with the first introduction path 571 and is separated from the first supply path 561 and the first air introduction path 581.
  • the buffer space 413 is separated from the first supply path 561, the first introduction path 571, and the discharge path 21 and is in communication with the first air introduction path 581.
  • the buffer space 423 is separated from the second introduction path 572, the suction path 22, the second air introduction path 582, and the third air introduction path 583.
  • the third internal space 421 communicates with the suction path 22 and is separated from the second air introduction path 582 and the third air introduction path 583.
  • the fourth inner space 422 is separated from the second supply path 562, the suction path 22, and the third air introduction path 583.
  • the buffer space 424 is separated from the second supply path 562, the second introduction path 572, and the suction path 22, and is in communication with the third air introduction path 583.
  • the first internal space 411 communicates the discharge path 21 with the first supply path 561
  • the second internal space 412 is separated from the discharge path 21
  • the buffer space 423 is the second supply.
  • the third internal space 421 is in communication with the suction path 22 and the second introduction path 572
  • the fourth internal space 422 is in communication with the second air introduction path 582 and separated from the second introduction path 572.
  • the buffer space 424 is separated from the second air introduction path 582.
  • the first internal space 411 is separated from the discharge path 21, the second internal space 412 communicates the discharge path 21 with the first introduction path 571 and the buffer space 423 is the second supply.
  • the third internal space 421 communicates with the suction path 22 and the second supply path 562 and separates from the second introduction path 572, and the fourth internal space 422 communicates with the second introduction path 572.
  • the buffer space 424 is in communication with the second air introduction path 582 separately from the second air introduction path 582.
  • the buffer space 413 is always in communication with the first air introduction path 581, and the buffer space 424 is always in communication with the third air introduction path 583.
  • the actuator 6 moves the piston 5
  • air can be taken in and out of the buffer space 413 and the buffer space 424, and locking of the piston 5 can be avoided.
  • the air in the motor 7 is introduced into the buffer space 413 and the buffer space 424, it is possible to prevent the leakage of the air including the vaporized oil in the motor 7.
  • FIG. 7 is a schematic view of a path switching mechanism 3 (during normal rotation) constituting the motor refrigerant circulating apparatus 1 of the second embodiment.
  • FIG. 8 is a schematic view of a path switching mechanism 3 (during reverse rotation) constituting the motor refrigerant circulating apparatus 1 of the second embodiment.
  • the opening 561a of the first supply path 561, the opening 21a of the discharge path 21, the opening 571a of the first introduction path 571 and the first air introduction path An opening 581 a of 581 is formed in the second cylinder 42.
  • an opening 562a of the second supply path 562, an opening 22a of the suction path 22, an opening 572a of the second introduction path 572, an opening 582a of the second air introduction path 582, a third air introduction An opening 583a of the path 583 is formed.
  • the opening 561a and the opening 562a communicate with each other through the supply path 56
  • the opening 571a and the opening 572a communicate with each other through the introduction path 57
  • the opening 581a, the opening 582a, and the opening 583a are in communication with each other via the air introduction path 58.
  • the air introduction path 58 is branched into the first air introduction path 581 and the second air introduction path 582, in the cylinder 4 so that the air introduction path 58 communicates with the first cylinder 41 and the second cylinder 42.
  • a large opening that crosses the wall surface between the first cylinder 41 and the second cylinder 42 may be formed, and the air introduction path 58 may be connected to this opening.
  • the first internal space 411 communicates the opening 561a with the opening 21a
  • the second internal space 412 communicates with the opening 571a
  • the buffer space 413 communicates with the opening 581a.
  • the buffer space 423 communicates with the opening 562a
  • the third internal space 421 communicates the opening 22a with the opening 572a
  • the fourth internal space 422 communicates with the opening 582a
  • the buffer space 424 is the opening It communicates with 583a.
  • the first internal space 411 communicates with the opening 561a
  • the second internal space 412 communicates between the opening 21a and the opening 571a
  • the buffer space 413 communicates with the opening 581a.
  • the buffer space 423 is separated from the opening 562a
  • the third inner space 421 connects the opening 22a and the opening 562a, and is separated from the opening 572a
  • the fourth inner space 422 communicates with the opening 572a.
  • the buffer space 424 is in communication with the opening 582a and the opening 583a.
  • the actuator 6 can measure the temperature (T) of the motor 7 (rotor 72) by a temperature sensor (not shown) attached to the motor 7. When the temperature (T) is higher than a predetermined temperature (Tth), the piston 6 The stroke position 5 is moved to the stroke position forming the first communication state or the stroke position forming the second communication state based on the rotation direction signal (+ ⁇ , ⁇ ).
  • the actuator 6 determines that cooling of the motor 7 (the rotor 72) is not necessary, and the rotation direction signal (+ ⁇ , - ⁇ ) Regardless of the above, the stroke position of the piston 5 is moved to the stroke position in the third communication state described later, and the mechanical pump 2 idles.
  • FIG. 9 is a schematic view of a motor refrigerant circulation device 1 (in normal rotation idle) according to the second embodiment.
  • FIG. 10 is a schematic view of a motor refrigerant circulation device 1 (during reverse rotation idle rotation) of the second embodiment.
  • FIG. 11 is a schematic view of the route switching mechanism 3 constituting the motor refrigerant circulating apparatus 1 according to the second embodiment, and the solid line arrow indicates the flow direction of air when the mechanical pump 2 rotates forward. The arrows indicate the flow direction of air when the mechanical pump 2 reverses.
  • the third communication state is similar to the first communication state, but the second introduction path 572 is in communication with the third inner space 421 and the fourth inner space 422. It has become. That is, as shown in FIG. 11, the diameter of the opening 572a (first opening) of the second introduction path 572 is larger than the thickness of the fifth partition plate 552, and in the third communication state, the fifth partition The third inner space 421 and the fourth inner space 422 communicate with each other through the opening 572 a by the side of the fifth partition plate 552 facing the opening 572 a in a manner that the opening 572 a protrudes on both sides of the plate 552 It is in a state of
  • the stroke position of the piston 5 forming the third communication state is the stroke position of the piston 5 forming the first communication state, and the second communication state And the stroke position of the piston 5. Thereby, an increase in the stroke amount of the actuator 6 can be avoided.
  • the air introduction path 58 (second air introduction path 582) includes a fourth internal space 422, a second introduction path 572 (opening 572a), a third internal space 421, and a suction path 22. It communicates with the mechanical pump 2 via The mechanical pump 2 is in communication with the first supply path 561 via the discharge path 21 and the first internal space 411.
  • the discharge passage 21 has a negative pressure, so that the supply passage 56 (first supply Air is introduced into the path 561, and the air is drawn into the mechanical pump 2 via the first internal space 411 and the discharge path 21. Further, the air discharged from the mechanical pump 2 to the suction path 22 passes from the second air introduction path 582 (air introduction path 58) through the third internal space 421, the opening 572a, and the fourth internal space 422 to the motor 7. (Housing 71).
  • the mechanical pump 2 starts rotating in reverse, and the air introduced from the motor 7 via the supply path 56 is returned to the motor 7 via the air introduction path 58, and the air is transferred to the motor 7 (housing 71). It circulates with the path switching mechanism 3.
  • the mechanical pump 2 sucks the refrigerant from the suction path 22 and discharges the refrigerant to the discharge path 21.
  • the refrigerant stored in the tank 711 is introduced into the third internal space 421 through the second introduction path 572 in the path switching mechanism 3, and the refrigerant introduced into the third internal space 421 passes through the suction path 22. It is sucked by the mechanical pump 2. Further, the refrigerant discharged from the mechanical pump 2 to the discharge path 21 is supplied to the motor 7 (rotor 72) via the first inner space 411 and the first supply path 561 (supply path 56).
  • the mechanical pump 2 sucks the refrigerant from the discharge passage 21 and discharges the refrigerant in the suction passage 22.
  • the refrigerant stored in the tank 711 is introduced into the second internal space 412 through the first introduction path 571 in the path switching mechanism 3, and the refrigerant introduced into the second internal space 412 through the discharge path 21. It is sucked by the mechanical pump 2.
  • the refrigerant discharged from the mechanical pump 2 to the suction path 22 is supplied to the motor 7 (rotor 72) via the third inner space 421 and the second supply path 562 (supply path 56).
  • the refrigerant stored in the tank 711 is transmitted to the motor 7 (the rotor 7 72), and circulation of the refrigerant can be reliably performed.
  • the actuator 6 sets the stroke position of the piston 5 to the stroke position where it is in the third communication state, as shown in FIGS. Move and make the mechanical pump 2 idle.
  • a stroke position at which the first communication state is formed based on the rotation direction signal (+ ⁇ , - ⁇ ) after a predetermined time has elapsed.
  • the mechanical pump 2 may be temporarily moved to the stroke position where the second communication state is formed, and the refrigerant may be temporarily supplied to the inside of the mechanical pump 2 to prevent wear due to insufficient lubrication.
  • the actuator 6 performs a stroke position for forming the first communication state based on the rotation direction signal (+ ⁇ , ⁇ ). Or, it is moved to the stroke position where the second communication state is formed, and the circulation of the refrigerant to the motor 7 (rotor 72) is restarted.
  • the cylinder 4 is connected to an air introduction path 58 for introducing air, and the partition plate (fifth partition plate 552) forms a first communication state.
  • the discharge path 21 communicates with the supply path 56 and the suction path 22 is connected to the air introduction path via the introduction path 57 (the opening 572a of the second introduction path 572). It is attached to the piston 5 so as to be switchable to a third communication state forming an internal space communicated with the valve 58. Then, the actuator 6 moves the piston 5 to be in the third communication state when the temperature of the refrigerant becomes lower than a predetermined temperature.
  • the cylinder 4 communicates with the first supply path 561 branched from the supply path 56, the first introduction path 571 branched from the introduction path 57, and the first cylinder 41 communicated with the discharge path 21 and separated from the suction path 22; It communicates with the second supply path 562 branched from the supply path 56, the second introduction path 572 branched from the introduction path 57, the suction path 22 and the air introduction path 58 (second air introduction path 582) and is separated from the discharge path 21 And a second cylinder 42.
  • the piston 5 is branched into a first piston 54 disposed in the first cylinder 41 and a second piston 55 disposed in the second cylinder 42.
  • the partition plates are a first partition plate 541, a second partition plate 542, and a third partition plate 543 mounted side by side with the first piston 54, and a fourth partition plate 551 mounted side by side with the second piston 55, And a fifth partition plate 552 and a sixth partition plate 553. Ru.
  • the first cylinder 41 is formed between the first partition plate 541 and the second partition plate 542, and includes the first internal space 411 communicating with the first supply path 561, the second partition plate 542, and the third partition plate 543. And a second internal space 412 communicating with the first introduction path 571 formed therebetween.
  • the second cylinder 42 is formed between the fourth partition 551 and the fifth partition 552, and is in communication between the third inner space 421 communicating with the suction path 22, and between the fifth partition 552 and the sixth partition 553. And a fourth internal space 422 formed in the
  • the first internal space 411 communicates the discharge path 21 with the first supply path 561, and the third internal space 421 communicates the suction path 22 with the second introduction path 572.
  • the second internal space 412 communicates the discharge path 21 with the first introduction path 571, and the third internal space 421 communicates the suction path 22 with the second supply path 562.
  • the first internal space 411 communicates the discharge path 21 with the first supply path 561
  • the third internal space 421 communicates with the suction path 22
  • the fourth internal space 422 is the second
  • the third internal space 421 and the fourth internal space 422 are in communication with each other through the second introduction path 572 (opening 572a) in communication with the air introduction path 582 (the air introduction path 58).
  • the first communication state, the second communication state, and the third communication state can be formed in the cylinder 4 simply by moving the piston 5, so the path switching mechanism 3 can be miniaturized.
  • the diameter of the opening 572a (first opening) connected to the second cylinder 42 of the second introduction path 572 is larger than the thickness of the fifth partition plate 552, and in the third communication state, both surfaces of the fifth partition plate 552
  • the third inner space 421 and the fourth inner space 422 communicate with each other through the opening 572 a by the side surface of the fifth partition plate 552 facing the opening 572 a in a manner that the opening 572 a protrudes to the side.
  • the third internal space 421 and the fourth internal space 422 can be communicated with each other in the third communication state with a simple configuration.
  • the actuator 6 may be temporarily returned to the first communication state or the second communication state according to the rotation direction of the motor 7 every predetermined time while the internal space of the cylinder 4 is in the third communication state.
  • the refrigerant can be temporarily supplied to the inside of the mechanical pump 2 and wear due to insufficient lubrication of the mechanical pump 2 can be prevented.
  • the air introduction path 58 is in communication with the housing 71 of the motor 7. Thereby, even if the refrigerant flows backward from the path switching mechanism 3 to the air introduction path 58, it is possible to prevent the refrigerant from leaking to the outside.
  • the bottom of the first cylinder 41 and the bottom of the second cylinder 42 are opened, and the first air introduction path 581 (buffer space 413) and the third air introduction path 583 (buffer space 424) are opened. Even if omitted, it is possible to form the first communication state, the second communication state, and the third communication state.
  • the piston 5 is pulled out of the actuator 6 to form a first communication state, and the piston 5 is retracted to form a second communication state.
  • the mounting positions of the cylinder 4 of the discharge path 21, the suction path 22, the supply path 56, the introduction path 57, and the air introduction path 58 are reversed in the longitudinal direction of the cylinder 4
  • the mounting positions of the first partition plate 511 to the fifth partition plate 523 of the first embodiment are reversed in the longitudinal direction of the piston 5.
  • FIG. 12 is a schematic view of the motor refrigerant circulation device 1 (in normal rotation idle) according to the third embodiment.
  • FIG. 13 is a schematic view of a motor refrigerant circulation device 1 (during reverse rotation idle rotation) of the third embodiment.
  • the motor refrigerant circulation device 1 of the third embodiment is obtained by increasing the stroke length of the actuator 6 in the motor refrigerant circulation device 1 of the second embodiment.
  • the actuator 6 (not shown in FIG. 12 and FIG. 13) has openings for connecting all the partition plates to the supply path 56, the discharge path 21, the suction path 22 and the cylinder 4 of the air introduction path 58.
  • the piston 5 is movable so as to be positioned on one side of the piston 5 in the longitudinal direction.
  • the actuator 6 is positioned closer to the actuator 6 than the respective openings where the third partition plate 543 is connected to the cylinder 4 of the first supply path 561, the discharge path 21, and the first air introduction path 581.
  • the mechanical pump 2 idles in normal rotation, and the air introduced from the motor 7 via the air introduction path 58 is returned to the motor 7 via the supply path 56, and the air is transferred to the motor 7 (housing 71). It circulates with the path switching mechanism 3.
  • the air discharged to the first cylinder 41 may flow through the first air introduction path 581.
  • the air is introduced into the second cylinder 42 through the second air introduction path 582 and introduced into the suction path 22 communicating with the second cylinder 42, and the air is introduced into the mechanical pump 2, the first cylinder 41, A circulation path in which the second cylinder 42 and the mechanical pump 2 circulate in this order is formed.
  • the discharge passage 21 has a negative pressure
  • the supply passage 56 first supply passage Air is introduced into the first cylinder 41 via 561
  • the air discharged from the mechanical pump 2 to the suction path 22 is discharged to the second cylinder 42, and the air is communicated via the second air introduction path 582 (air introduction path 58) in communication with the second cylinder 42. 7 (housing 71).
  • the mechanical pump 2 rotates in the reverse direction and the air introduced from the motor 7 via the supply path 56 is returned to the motor 7 via the air introduction path 58, and the air and the path between the motor 7 (housing 71) It circulates with the switching mechanism 3.
  • the air introduced into the second air introduction path 582 may be introduced into the first cylinder 41 via the first air introduction path 581.
  • the air is introduced into the discharge path 21 communicating with the first cylinder 41, and a circulation path is formed in which the air circulates in the order of the mechanical pump 2, the second cylinder 42, the first cylinder 41, and the mechanical pump 2. Ru.
  • the stroke amount of the actuator 6 becomes long, since the inside of the cylinder 4 can be filled with air immediately, the loss of the output of the motor 7 due to the rotation of the mechanical pump 2 can be shortened. Can be reduced.
  • FIG. 14 is a schematic view of a path switching mechanism 3 (when rotating around a forward rotation air) constituting the motor refrigerant circulating apparatus 1 of the fourth embodiment.
  • FIG. 15 is a schematic view of a path switching mechanism 3 (during reverse rotation around the air) which constitutes the motor refrigerant circulating apparatus 1 of the fourth embodiment.
  • the opening 572a (first opening) of the second introduction path 572 is the path switching mechanism 3 constituting the motor refrigerant circulating apparatus 1 of the second embodiment. It is in communication with the first cylinder 41.
  • the diameter of the opening 21 a (second opening) connected to the first cylinder 41 of the discharge path 21 is designed to be larger than the thickness of the second partition plate 542.
  • the opening 572a (first opening) is in communication with the second internal space 412, and the opening 21a (second opening) protrudes on both sides of the second partition plate 542
  • the side surface of the second partition plate 542 is opposed to the opening 21a (second opening), so that the first internal space 411 and the second internal space 412 mutually communicate via the opening 21a (second opening). It is in communication.
  • the air discharged from the mechanical pump 2 to the discharge path 21 is discharged to the first inner space 411, and the air is communicated via the first inner path 411 with the first supply path 561 (supply path 56). 7 (housing 71).
  • the mechanical pump 2 idles in normal rotation, and the air introduced from the motor 7 via the air introduction path 58 is returned to the motor 7 via the supply path 56, and the air is transferred to the motor 7 (housing 71). It circulates with the path switching mechanism 3.
  • the opening 21 a of the discharge path 21 and the opening 572 a of the second introduction path 572 communicate with each other in the second internal space 412. Therefore, when the air is circulated for a while as described above, the air discharged to the second inner space 412 may flow to the third inner space 421 through the opening 572 a of the second introduction path 572. In this case, the air is again introduced into the suction path 22 to form a circulation path in which the air circulates in the order of the mechanical pump 2, the second internal space 412, the third internal space 421, and the mechanical pump 2. .
  • the discharge path 21 has a negative pressure, and the supply path 56
  • the air is introduced into the first internal space 411 via the (first supply path 561), and the air is sucked into the mechanical pump 2 by the introduction of the air into the discharge path 21.
  • the air discharged from the mechanical pump 2 to the suction path 22 is discharged to the third inner space 421, and the air is introduced into the fourth inner space 422 through the opening 572 a of the second introduction path 572.
  • the air is introduced into the second air introduction path 582 (air introduction path 58) communicating with the internal space 422, and is discharged to the motor 7 (housing 71).
  • the mechanical pump 2 rotates in the reverse direction and the air introduced from the motor 7 via the air introduction path 58 is returned to the motor 7 via the supply path 56, and the air and the path between the motor 7 (housing 71) It circulates with the switching mechanism 3.
  • the air discharged to the third inner space 421 may flow to the second inner space 412 through the opening 572 a of the second introduction path 572.
  • the air is introduced into the discharge path 21 from the opening 21a, so that the circulation path in which the air circulates in the order of the mechanical pump 2, the third internal space 421, the second internal space 412, and the mechanical pump 2 is It is formed.
  • a plurality of air flow paths can be formed without lengthening the stroke amount of the actuator 6, and therefore, the mechanical resistance of the air can be reduced to reduce the mechanical resistance of the motor 7.
  • the loss due to the rotation of the pump 2 can be further reduced, and the load on the actuator 6 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Multiple-Way Valves (AREA)

Abstract

This refrigerant circulation device 1 for a motor cools the motor 7 by circulating a refrigerant in the motor 7, the refrigerant circulation device 1 comprising: a mechanical pump 2 connected mechanically to the motor 7 and configured so that the direction of discharge of the refrigerant is switched depending on the direction of rotation of the motor 7; and a passage switching mechanism 3 having connected thereto a supply passage 56 for supplying the refrigerant to the motor 7, the passage switching mechanism 3 also having connected thereto an introduction passage 57 into which the refrigerant discharged from the motor 7 is introduced, the passage switching mechanism 3 further having connected thereto a discharge passage 21 through which the refrigerant discharged from the mechanical pump 2 when the motor 7 is rotated in the forward direction flows, the passage switching mechanism 3 still further having connected thereto a suction passage 22 through which the refrigerant sucked in by the mechanical pump 2 when the motor 7 is rotated in the forward direction flows, the passage switching mechanism 3 being configured so that, when the motor 7 is rotated in the forward direction, the passage switching mechanism 3 connects the discharge passage 21 and the supply passage 56 and also connects the suction passage 22 and the introduction passage 57, and so that, when the motor 7 is rotated in the reverse direction, the passage switching mechanism 3 connects the suction passage 22 and the supply passage 56 and also connects the discharge passage 21 and the introduction passage 57.

Description

モータ用冷媒循環装置Motor coolant circulation system
 本発明は、モータ用冷媒循環装置に関する。 The present invention relates to a refrigerant circulating apparatus for a motor.
 特許第3211315号公報は、電動車両のモータにおいて、高出力時にコイルが発熱して焼損することを防止するため、ホイールモータ内に配設されているオイルポンプによりオイルを強制的に循環させ、モータ内のコイルを冷却させる機構を開示している。 In Japanese Patent No. 3211315, in a motor of an electric vehicle, in order to prevent the coil from generating heat and burning at high output, oil is forcibly circulated by an oil pump disposed in the wheel motor, A mechanism for cooling the inner coil is disclosed.
 しかし、電動のオイルポンプは高価であるため、これを搭載すると電動車両がその分コストが高くなる。 However, since the electric oil pump is expensive, mounting the oil pump increases the cost of the electric vehicle.
 そこで、本発明は、電動のオイルポンプを用いることなくモータに冷媒を循環させることが可能なモータ用冷媒循環装置を提供することを目的とする。 Then, an object of this invention is to provide the refrigerant | coolant circulation apparatus for motors which can circulate a refrigerant | coolant to a motor, without using an electrically-driven oil pump.
 本発明の一態様におけるモータ用冷媒循環装置は、モータに冷媒を循環して冷却させるモータ用冷媒循環装置である。この装置は、モータに機械的に接続され、モータの回転方向に従って冷媒の吐出方向が切り替わる機械式ポンプと、モータに冷媒を供給する供給経路と、モータから排出された冷媒を導入する導入経路と、モータの正転時に機械式ポンプから吐出される冷媒を流通させる吐出経路と、モータの正転時に機械式ポンプが吸引する冷媒を流通させる吸引経路と、が接続され、モータの正転時に吐出経路と供給経路を連通させるとともに吸引経路と導入経路を連通させ、モータの逆転時に吸引経路と供給経路を連通させるとともに吐出経路と導入経路を連通させる経路切替機構と、を備える。 The motor refrigerant circulating apparatus according to one aspect of the present invention is a motor refrigerant circulating apparatus that causes a motor to circulate and cool a refrigerant. This device is mechanically connected to a motor, and has a mechanical pump that switches the discharge direction of the refrigerant according to the rotation direction of the motor, a supply path for supplying the refrigerant to the motor, and an introduction path for introducing the refrigerant discharged from the motor A discharge path for circulating the refrigerant discharged from the mechanical pump at the time of forward rotation of the motor and a suction path for circulating the refrigerant to be sucked by the mechanical pump at the time of forward rotation of the motor are connected. A path switching mechanism is provided, which connects the path and the supply path and communicates the suction path and the introduction path, and communicates the suction path and the supply path when the motor rotates in the reverse direction and connects the discharge path and the introduction path.
図1は、第1実施形態のモータ用冷媒循環装置(正転時)の模式図である。FIG. 1 is a schematic view of a motor refrigerant circulation device (during normal rotation) according to the first embodiment. 図2は、第1実施形態のモータ用冷媒循環装置(逆転時)の模式図である。FIG. 2 is a schematic view of the motor refrigerant circulation system (at the time of reverse rotation) according to the first embodiment. 図3は、第1実施形態のモータ用冷媒循環装置を構成する経路切替機構(正転時)の模式図である。FIG. 3 is a schematic view of a path switching mechanism (in forward rotation) which constitutes the motor refrigerant circulation system of the first embodiment. 図4は、第1実施形態のモータ用冷媒循環装置を構成する経路切替機構(逆転時)の模式図である。FIG. 4 is a schematic view of a path switching mechanism (during reverse rotation) constituting the motor refrigerant circulation system of the first embodiment. 図5は、第2実施形態のモータ用冷媒循環装置(正転時)の模式図である。FIG. 5 is a schematic view of a motor refrigerant circulation device (during normal rotation) according to the second embodiment. 図6は、第2実施形態のモータ用冷媒循環装置(逆転時)の模式図である。FIG. 6 is a schematic view of a motor coolant circulation system (during reverse rotation) according to the second embodiment. 図7は、第2実施形態のモータ用冷媒循環装置を構成する経路切替機構(正転時)の模式図である。FIG. 7 is a schematic view of a path switching mechanism (during normal rotation) constituting the motor refrigerant circulation system of the second embodiment. 図8は、第2実施形態のモータ用冷媒循環装置を構成する経路切替機構(逆転時)の模式図である。FIG. 8 is a schematic view of a path switching mechanism (during reverse rotation) constituting the motor refrigerant circulation system of the second embodiment. 図9は、第2実施形態のモータ用冷媒循環装置(正転空回り時)の模式図である。FIG. 9 is a schematic view of a motor refrigerant circulation device (in normal rotation idle) according to the second embodiment. 図10は、第2実施形態のモータ用冷媒循環装置(逆転空回り時)の模式図である。FIG. 10 is a schematic view of a motor refrigerant circulation device (in reverse rotation idle rotation) of the second embodiment. 図11は、第2実施形態のモータ用冷媒循環装置を構成する経路切替機構の模式図であり、実線の矢印は機械式ポンプが正転時のエアの流通方向を示し、破線の矢印は機械式ポンプが逆転時のエアの流通方向を示す。FIG. 11 is a schematic view of a path switching mechanism constituting the motor refrigerant circulating apparatus according to the second embodiment, wherein the solid line arrow indicates the flow direction of air when the mechanical pump is forward rotating, and the broken line arrow indicates the machine Shows the air flow direction at the time of reverse rotation. 図12は、第3実施形態のモータ用冷媒循環装置(正転空回り時)の模式図である。FIG. 12 is a schematic view of a motor coolant circulation system (in normal rotation idle) according to the third embodiment. 図13は、第3実施形態のモータ用冷媒循環装置(逆転空回り時)の模式図である。FIG. 13 is a schematic view of a motor refrigerant circulation system (in reverse rotation idle rotation) of the third embodiment. 図14は、第4実施形態のモータ用冷媒循環装置を構成する経路切替機構(正転空周り時)の模式図である。FIG. 14 is a schematic view of a path switching mechanism (in forward rotation around the air) constituting the motor refrigerant circulation system of the fourth embodiment. 図15は、第4実施形態のモータ用冷媒循環装置を構成する経路切替機構(逆転空周り時)の模式図である。FIG. 15 is a schematic view of a path switching mechanism (during reverse rotation around the air) that constitutes the motor refrigerant circulation system of the fourth embodiment.
 以下、図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [第1実施形態の構成]
 図1は、第1実施形態のモータ用冷媒循環装置1(正転時)の模式図である。図2は、第1実施形態のモータ用冷媒循環装置1(逆転時)の模式図である。
Configuration of First Embodiment
FIG. 1 is a schematic view of a motor refrigerant circulation device 1 (during normal rotation) according to the first embodiment. FIG. 2 is a schematic view of the motor refrigerant circulation device 1 (during reverse rotation) according to the first embodiment.
 第1実施形態のモータ用冷媒循環装置1は、モータ7(ロータ72)を冷却するオイル等の冷媒の循環経路となるものである。モータ用冷媒循環装置1は、ロータ72のシャフト721に機械的に接続された機械式ポンプ2と、経路切替機構3とにより構成される。モータ7(ハウジング71)と経路切替機構3は、冷媒の供給経路56及び導入経路57により接続されている。 The motor refrigerant circulation device 1 according to the first embodiment serves as a circulation path of a refrigerant such as oil for cooling the motor 7 (the rotor 72). The motor refrigerant circulating apparatus 1 is constituted by a mechanical pump 2 mechanically connected to a shaft 721 of a rotor 72 and a path switching mechanism 3. The motor 7 (housing 71) and the path switching mechanism 3 are connected by the supply path 56 and the introduction path 57 of the refrigerant.
 モータ7は、ハウジング71にロータ72(及びステータ)を収容したものであり、ロータ72内は冷媒が循環できるようになっている。モータ7では、経路切替機構3から供給経路56を介して供給された冷媒がロータ72内部に供給され、ロータ72から排出された冷媒がハウジング71下部にあるタンク711に蓄えられる。そしてタンク711に蓄えられた冷媒は導入経路57を介して経路切替機構3に導入される。 The motor 7 has a housing 71 housing a rotor 72 (and a stator), and a refrigerant can circulate in the rotor 72. In the motor 7, the refrigerant supplied from the path switching mechanism 3 via the supply path 56 is supplied to the inside of the rotor 72, and the refrigerant discharged from the rotor 72 is stored in the tank 711 in the lower part of the housing 71. Then, the refrigerant stored in the tank 711 is introduced into the path switching mechanism 3 via the introduction path 57.
 機械式ポンプ2は、ロータ72のシャフト721に直結する、若しくはシャフト721にギア(不図示)を介して機械的に接続することで、ロータ72の回転力に従って回転し、ロータ72の回転方向に従って回転方向が切り替わるものである。機械式ポンプ2としては、トロコイドポンプ、ベーンポンプ等を適用することができる。そして、機械式ポンプ2から吐出された冷媒は供給経路56を介してモータ7(ロータ72)に供給され、機械式ポンプ2の吸引力により、タンク711に蓄えられた冷媒が導入経路57に導入される。 The mechanical pump 2 is directly connected to the shaft 721 of the rotor 72 or mechanically connected to the shaft 721 via a gear (not shown), and rotates according to the rotational force of the rotor 72, and follows the rotational direction of the rotor 72. The direction of rotation is switched. As the mechanical pump 2, a trochoid pump, a vane pump or the like can be applied. Then, the refrigerant discharged from the mechanical pump 2 is supplied to the motor 7 (the rotor 72) through the supply path 56, and the refrigerant stored in the tank 711 is introduced into the introduction path 57 by the suction force of the mechanical pump 2. Be done.
 機械式ポンプ2と経路切替機構3は、吐出経路21及び吸引経路22を介して接続されている。吐出経路21は、機械式ポンプ2の正転時に機械式ポンプ2から吐出される冷媒が流通する経路であり、吸引経路22は、機械式ポンプ2の正転時に機械式ポンプ2が吸引する冷媒が流通する経路である。一方、機械式ポンプ2の逆転時は、吐出経路21は機械式ポンプ2が吸引する冷媒が流通する経路となり、吸引経路22は機械式ポンプ2が吐出する冷媒が流通する経路となる。 The mechanical pump 2 and the path switching mechanism 3 are connected via the discharge path 21 and the suction path 22. The discharge path 21 is a path through which the refrigerant discharged from the mechanical pump 2 flows when the mechanical pump 2 rotates forward, and the suction path 22 is the refrigerant drawn by the mechanical pump 2 when the mechanical pump 2 rotates forward. Is a route through which On the other hand, at the time of reverse rotation of the mechanical pump 2, the discharge path 21 is a path through which the refrigerant sucked by the mechanical pump 2 flows, and the suction path 22 is a path through which the refrigerant discharged by the mechanical pump 2 flows.
 経路切替機構3は、シリンダ4、ピストン5、アクチュエータ6により構成される。シリンダ4は、第1シリンダ41、及び第2シリンダ42により構成されている。第1シリンダ41及び第2シリンダ42は互いに隣り合っており、長手方向及び開口部の向きが一致している。また、第1シリンダ41と第2シリンダ42は互いに直接連通しておらず、機械式ポンプ2、供給経路56、導入経路57を介して互いに連通している。 The path switching mechanism 3 includes a cylinder 4, a piston 5, and an actuator 6. The cylinder 4 is composed of a first cylinder 41 and a second cylinder 42. The first cylinder 41 and the second cylinder 42 are adjacent to each other, and the longitudinal direction and the direction of the opening match. Further, the first cylinder 41 and the second cylinder 42 are not in direct communication with each other, but are in communication with each other via the mechanical pump 2, the supply path 56, and the introduction path 57.
 供給経路56は、第1供給経路561と第2供給経路562に分岐し、第1供給経路561が第1シリンダ41に接続され、第2供給経路562が第2シリンダ42に接続されている。 The supply path 56 branches into a first supply path 561 and a second supply path 562, the first supply path 561 is connected to the first cylinder 41, and the second supply path 562 is connected to the second cylinder 42.
 導入経路57は、第1導入経路571、第2導入経路572、第3導入経路573に分岐し、第1導入経路571は第1シリンダ41に接続され、第2導入経路572及び第3導入経路573は第2シリンダ42に接続されている。吐出経路21は、第1シリンダ41に接続され、吸引経路22は、第2シリンダ42に接続されている。 The introduction path 57 branches into a first introduction path 571, a second introduction path 572, and a third introduction path 573. The first introduction path 571 is connected to the first cylinder 41, and the second introduction path 572 and the third introduction path 573 is connected to the second cylinder 42. The discharge path 21 is connected to the first cylinder 41, and the suction path 22 is connected to the second cylinder 42.
 ピストン5は、アクチュエータ6に支持され、アクチュエータ6の駆動に従ってシリンダ4内で可動するものである。ピストン5は、長手方向の途中位置から第1ピストン51と第2ピストン52に分岐している。
第1ピストン51及び第2ピストン52は互いに平行となるように配置され、第1ピストン51は、第1シリンダ41に収容され、第2ピストン52は第2シリンダ42に収容される。また、第2ピストン52は第1ピストン51よりも長く設計されている。
The piston 5 is supported by the actuator 6 and is movable in the cylinder 4 according to the drive of the actuator 6. The piston 5 is branched into a first piston 51 and a second piston 52 from an intermediate position in the longitudinal direction.
The first piston 51 and the second piston 52 are disposed parallel to each other, the first piston 51 is accommodated in the first cylinder 41, and the second piston 52 is accommodated in the second cylinder 42. Further, the second piston 52 is designed to be longer than the first piston 51.
 第1ピストン51には、アクチュエータ6から近い順に、第1仕切り板511、第2仕切り板512が取り付けられており、第2仕切り板512は第1ピストン51の長手方向の端部に取り付けられている。 A first partition plate 511 and a second partition plate 512 are attached to the first piston 51 in order of proximity to the actuator 6, and the second partition plate 512 is attached to the end of the first piston 51 in the longitudinal direction There is.
 第2ピストン52には、アクチュエータ6から近い順に、第5仕切り板523、第3仕切り板521、第4仕切り板522が取り付けられ、第4仕切り板522は第2ピストン52の長手方向の端部に取り付けられている。 The fifth partition plate 523, the third partition plate 521, and the fourth partition plate 522 are attached to the second piston 52 in order of proximity to the actuator 6, and the fourth partition plate 522 is an end of the second piston 52 in the longitudinal direction Is attached to
 第1ピストン51において、第1仕切り板511と第2仕切り板512の間には第1内部空間411が形成され、第2仕切り板512の第1内部空間411の反対側には第2内部空間412が形成されている。 In the first piston 51, a first internal space 411 is formed between the first partition plate 511 and the second partition plate 512, and on the opposite side of the first internal space 411 of the second partition plate 512, a second internal space 412 are formed.
 第2ピストン52において、第5仕切り板523と第3仕切り板521の間にはバッファ空間423が形成され、第3仕切り板521と第4仕切り板522の間には第3内部空間421が形成され、第4仕切り板522の第3内部空間421の反対側にはバッファ空間424が形成されている。バッファ空間423は、後述の第1連通状態において第3内部空間421に代わって第2供給経路562に連通させる内部空間である。また、バッファ空間424は、ピストン5のロックを回避するために冷媒を出し入れするための内部空間である。 In the second piston 52, a buffer space 423 is formed between the fifth partition plate 523 and the third partition plate 521, and a third internal space 421 is formed between the third partition plate 521 and the fourth partition plate 522. A buffer space 424 is formed on the opposite side of the third inner space 421 of the fourth partition plate 522. The buffer space 423 is an internal space communicated with the second supply path 562 instead of the third internal space 421 in the first communication state described later. Also, the buffer space 424 is an internal space for taking in and out the refrigerant in order to avoid locking of the piston 5.
 図1,2に示すように、第2仕切り板512、第3仕切り板521、第4仕切り板522は、ピストン5の長手方向で互いに異なる位置に取り付けられており、第3仕切り板521、第2仕切り板512、第4仕切り板522の順にアクチュエータ6に近くなる位置に取り付けられている。 As shown in FIGS. 1 and 2, the second partition plate 512, the third partition plate 521, and the fourth partition plate 522 are attached at mutually different positions in the longitudinal direction of the piston 5. The second partition plate 512 and the fourth partition plate 522 are attached at positions closer to the actuator 6 in this order.
 アクチュエータ6は、ピストン5(第1ピストン51、第2ピストン52)をその長手方向(シリンダ4の長手方向)に沿って移動させるものである。アクチュエータ6には、モータ7の回転方向を表す回転方向信号(+θ、-θ)が入力され、回転方向信号に従ってピストン5のストローク位置を切り替える。 The actuator 6 moves the piston 5 (the first piston 51 and the second piston 52) along its longitudinal direction (longitudinal direction of the cylinder 4). A rotational direction signal (+ θ, −θ) representing the rotational direction of the motor 7 is input to the actuator 6, and the stroke position of the piston 5 is switched according to the rotational direction signal.
 図1では、モータ7は正転しており、アクチュエータ6には回転方向信号(+θ)が入力され、アクチュエータ6は第1ピストン51及び第2ピストン52をアクチュエータ6から遠ざけたストローク位置に移動させている(後述の第1連通状態)。 In FIG. 1, the motor 7 is rotating forward, the rotation direction signal (+ θ) is input to the actuator 6, and the actuator 6 moves the first piston 51 and the second piston 52 to a stroke position away from the actuator 6. (The first communication state described later).
 図2では、モータ7は逆転しており、アクチュエータ6には回転方向信号(-θ)が入力され、アクチュエータ6は第1ピストン51及び第2ピストン52をアクチュエータ6に近づけたストローク位置に移動させている(後述の第2連通状態)。 In FIG. 2, the motor 7 is reversely rotated, and the rotational direction signal (−θ) is input to the actuator 6, and the actuator 6 moves the first piston 51 and the second piston 52 to the stroke position closer to the actuator 6. (The second communication state described later).
 上記のように、機械式ポンプ2はモータ7の回転方向に従って冷媒の吐出方向が切り替わるため、経路切替機構3は、モータ7の回転方向に従って第1シリンダ41内部及び第2シリンダ42内部の連通状態(第1連通状態、第2連通状態)をそれぞれ切り替えることで、モータ7の回転方向に関わらず供給経路56から冷媒が供給できるように仕切り板(第1仕切り板511乃至第5仕切り板523)が取り付けられている。 As described above, the mechanical pump 2 switches the discharge direction of the refrigerant according to the rotation direction of the motor 7, so the path switching mechanism 3 communicates the inside of the first cylinder 41 and the inside of the second cylinder 42 according to the rotation direction of the motor 7. Partition plates (first to fifth partition plates 511 to 523) so that the refrigerant can be supplied from the supply path 56 regardless of the rotational direction of the motor 7 by switching the first communication state and the second communication state, respectively. Is attached.
 図1、図2に示すように、第1内部空間411、第2内部空間412、第3内部空間421、バッファ空間423、及びバッファ空間424は、第1連通状態及び第2連通状態に関わらず以下の連通状態を維持している。すなわち、第1内部空間411は、第1供給経路561に連通するとともに第1導入経路571から分離している。第2内部空間412は、第1導入経路571に連通するとともに第1供給経路561から分離している。 As shown in FIGS. 1 and 2, the first internal space 411, the second internal space 412, the third internal space 421, the buffer space 423, and the buffer space 424 are independent of the first communication state and the second communication state. The following communication states are maintained. That is, the first inner space 411 communicates with the first supply path 561 and is separated from the first introduction path 571. The second inner space 412 communicates with the first introduction path 571 and is separated from the first supply path 561.
 バッファ空間423は、第2導入経路572、第3導入経路573、吸引経路22から分離している。第3内部空間421は、吸引経路22に連通し、第3導入経路573から分離している。バッファ空間424は、第2供給経路562、吸引経路22から分離し、第3導入経路573に連通している。 The buffer space 423 is separated from the second introduction path 572, the third introduction path 573, and the suction path 22. The third inner space 421 communicates with the suction path 22 and is separated from the third introduction path 573. The buffer space 424 is separated from the second supply path 562 and the suction path 22 and is in communication with the third introduction path 573.
 図1に示す第1連通状態において、第1内部空間411は吐出経路21と第1供給経路561とを連通し、第2内部空間412は第1導入経路571に連通するとともに吐出経路21から分離し、バッファ空間423は第2供給経路562に連通し、第3内部空間421は吸引経路22と第2導入経路572とを連通するとともに、第2供給経路562から分離し、バッファ空間424は第2導入経路572から分離している。 In the first communication state shown in FIG. 1, the first internal space 411 communicates the discharge path 21 with the first supply path 561, and the second internal space 412 communicates with the first introduction path 571 and is separated from the discharge path 21. The buffer space 423 is in communication with the second supply path 562, the third inner space 421 is in communication with the suction path 22 and the second introduction path 572 and is separated from the second supply path 562, and the buffer space 424 is 2 separated from the introduction path 572
 図2に示す第2連通状態において、第1内部空間411は吐出経路21から分離し、第2内部空間412は吐出経路21と第1導入経路571とを連通し、バッファ空間423は第2供給経路562から分離し、第3内部空間421は吸引経路22と第2供給経路562とを連通するとともに第2導入経路572から分離し、バッファ空間424は第2導入経路572及び第3導入経路573に連通している。 In the second communication state shown in FIG. 2, the first internal space 411 is separated from the discharge path 21, the second internal space 412 communicates the discharge path 21 with the first introduction path 571, and the buffer space 423 is the second supply. Separated from the path 562, the third internal space 421 communicates the suction path 22 with the second supply path 562 and separates from the second introduction path 572, and the buffer space 424 forms the second introduction path 572 and the third introduction path 573. It is in communication with
 上記のように、第2内部空間412は第1導入経路571に常時連通し、バッファ空間424は第3導入経路573に常時連通している。これにより、アクチュエータ6がピストン5を移動させるときに、第2内部空間412及びバッファ空間424に冷媒を出し入れすることができ、ピストン5のロックを回避することができる。 As described above, the second internal space 412 is always in communication with the first introduction path 571, and the buffer space 424 is always in communication with the third introduction path 573. As a result, when the actuator 6 moves the piston 5, the refrigerant can be taken in and out of the second internal space 412 and the buffer space 424, and locking of the piston 5 can be avoided.
 図3は、第1実施形態のモータ用冷媒循環装置1の経路切替機構3(正転時)の模式図である。図4は、第1実施形態のモータ用冷媒循環装置1の経路切替機構3(逆転時)の模式図である。図3、図4に示すように、仕切り板(第1仕切り板511乃至第5仕切り板523)の側面にはOリング53が取り付けられ、Oリング53が第1シリンダ41、第2シリンダ42の内壁に押圧されることにより互いに隣接する内部空間同士を分離している。 FIG. 3 is a schematic view of the path switching mechanism 3 (during normal rotation) of the motor refrigerant circulating apparatus 1 of the first embodiment. FIG. 4 is a schematic view of the path switching mechanism 3 (during reverse rotation) of the motor refrigerant circulating apparatus 1 of the first embodiment. As shown in FIGS. 3 and 4, an O-ring 53 is attached to the side surface of the partition plate (the first partition plate 511 to the fifth partition plate 523), and the O-ring 53 is of the first cylinder 41 and the second cylinder 42. Internal spaces adjacent to each other are separated by being pressed by the inner wall.
 第1シリンダ41には、第1供給経路561の開口部561a、吐出経路21の開口部21a、第1導入経路571の開口部571aが形成されている。第2シリンダ42には、第2供給経路562の開口部562a、吸引経路22の開口部22a、第2導入経路572の開口部572a、第3導入経路573の開口部573aが形成されている。このうち、開口部561a及び開口部562aは供給経路56を介して互いに連通し、開口部571a、開口部572a、及び開口部573aは導入経路57を介し互いに連通している。 In the first cylinder 41, an opening 561a of the first supply path 561, an opening 21a of the discharge path 21, and an opening 571a of the first introduction path 571 are formed. In the second cylinder 42, an opening 562a of the second supply path 562, an opening 22a of the suction path 22, an opening 572a of the second introduction path 572 and an opening 573a of the third introduction path 573 are formed. Among these, the opening 561a and the opening 562a communicate with each other through the supply path 56, and the opening 571a, the opening 572a, and the opening 573a communicate with each other through the introduction path 57.
 図3に示す第1連通状態において、第1内部空間411は開口部561aと開口部21aとを連通し、第2内部空間412は開口部571aに連通するとともに開口部561aから分離し、バッファ空間423は開口部562aに連通し、第3内部空間421は開口部22aと開口部572aとを連通するとともに開口部562aから分離し、バッファ空間424は開口部573aに連通するとともに開口部572aから分離している。 In the first communication state shown in FIG. 3, the first internal space 411 communicates the opening 561a with the opening 21a, and the second internal space 412 communicates with the opening 571a and is separated from the opening 561a. 423 communicates with the opening 562a, the third internal space 421 connects the opening 22a with the opening 572a and is separated from the opening 562a, and the buffer space 424 communicates with the opening 573a and is separated from the opening 572a doing.
 図4に示す第2連通状態において、第1内部空間411は開口部561aに連通するとともに開口部21aから分離し、第2内部空間412は開口部21aと開口部571aとを連通し、バッファ空間423は開口部562aから分離し、第3内部空間421は開口部562aと開口部22aとを連通するとともに開口部572aから分離し、バッファ空間424は開口部572a及び開口部573aに連通している。 In the second communication state shown in FIG. 4, the first internal space 411 communicates with the opening 561a and is separated from the opening 21a, and the second internal space 412 communicates the opening 21a with the opening 571a, and the buffer space 423 separates from the opening 562a, the third inner space 421 connects the opening 562a and the opening 22a and separates from the opening 572a, and the buffer space 424 communicates with the opening 572a and the opening 573a .
 [第1実施形態の動作]
 図1、図3に示す第1連通状態において、機械式ポンプ2が正転すると、機械式ポンプ2は、吸引経路22から冷媒を吸引し、吐出経路21に冷媒を吐出する動作を行う。このとき、タンク711に蓄えられた冷媒は、経路切替機構3において、第2導入経路572を通じて第3内部空間421に導入され、開口部572aから開口部22aに流通して吸引経路22に供給される機械式ポンプ2に吸引される。また、機械式ポンプ2から吐出経路21に吐出された冷媒は、第1内部空間411において開口部21aから開口部561aに流通し、第1供給経路561及び供給経路56を介してモータ7(ロータ72)に供給される。
Operation of First Embodiment
In the first communication state shown in FIG. 1 and FIG. 3, when the mechanical pump 2 rotates forward, the mechanical pump 2 sucks the refrigerant from the suction path 22 and discharges the refrigerant to the discharge path 21. At this time, the refrigerant stored in the tank 711 is introduced into the third inner space 421 through the second introduction path 572 in the path switching mechanism 3, flows from the opening 572 a to the opening 22 a, and is supplied to the suction path 22. Is pumped by the mechanical pump 2. Further, the refrigerant discharged from the mechanical pump 2 to the discharge path 21 flows from the opening 21a to the opening 561a in the first internal space 411, and the motor 7 (rotor 7 (the rotor) 72).
 図2、図4に示す第2連通状態において、機械式ポンプ2が逆転すると、機械式ポンプ2は、吐出経路21から冷媒を吸引し、吸引経路22に冷媒を吐出する動作を行う。このとき、タンク711に蓄えられた冷媒は、経路切替機構3において、第1導入経路571を通じて第2内部空間412に導入され、開口部571aから開口部21aに流通して吐出経路21に導入され機械式ポンプ2に吸引される。また、機械式ポンプ2から吸引経路22に吐出された冷媒は、第3内部空間421に導入され、開口部22aから開口部562aに流通し、第2供給経路562及び供給経路56を介してモータ7(ロータ72)に供給される。 In the second communication state shown in FIGS. 2 and 4, when the mechanical pump 2 is reversely rotated, the mechanical pump 2 sucks the refrigerant from the discharge passage 21 and discharges the refrigerant to the suction passage 22. At this time, the refrigerant stored in the tank 711 is introduced into the second internal space 412 through the first introduction path 571 in the path switching mechanism 3, flows from the opening 571 a to the opening 21 a, and is introduced into the discharge path 21. It is sucked by the mechanical pump 2. Further, the refrigerant discharged from the mechanical pump 2 to the suction path 22 is introduced into the third inner space 421, flows from the opening 22a to the opening 562a, and is supplied to the motor via the second supply path 562 and the supply path 56. 7 (rotor 72).
 以上のように、モータ7(ロータ72)及び機械式ポンプ2の回転方向に関わらず、タンク711に蓄えられた冷媒は、経路切替機構3内の流路の切替により、供給経路56からモータ7(ロータ72)に供給することができ、冷媒の循環を確実に行うことができる。 As described above, regardless of the rotational direction of the motor 7 (the rotor 72) and the mechanical pump 2, the refrigerant stored in the tank 711 is transferred from the supply path 56 to the motor 7 by switching the flow path in the path switching mechanism 3. (Rotor 72) can be supplied, and the refrigerant can be reliably circulated.
 なお、第1連通状態、第2連通状態の切り替えは、アクチュエータ6が回転方向信号(+θ、-θ)を受信することにより、ピストン5を、第1連通状態を実現するストローク位置、第2連通状態を実現するストローク位置に移動させている。その際、第2内部空間412、及びバッファ空間424は常時導入経路57に連通しているので、導入経路57との間で冷媒の出し入れが可能となり、ピストン5の動作のロックを回避することができる。 Note that switching between the first communication state and the second communication state is performed by the actuator 6 receiving a rotation direction signal (+ θ, -θ) to thereby make the piston 5 a stroke position for realizing the first communication state, the second communication It is moved to the stroke position that realizes the state. At this time, since the second internal space 412 and the buffer space 424 are always in communication with the introduction path 57, the refrigerant can be taken in and out with the introduction path 57, and locking of the operation of the piston 5 can be avoided. it can.
 [第1実施形態の効果]
 第1実施形態のモータ用冷媒循環装置1は、モータ7に冷媒を循環して冷却させるモータ用冷媒循環装置1であって、モータ7に機械的に接続され、モータ7の回転方向に従って冷媒の吐出方向が切り替わる機械式ポンプ2と、モータ7に冷媒を供給する供給経路56と、モータ7から排出された冷媒を導入する導入経路57と、モータ7の正転時に機械式ポンプ2から吐出される冷媒を流通させる吐出経路21と、モータ7の正転時に機械式ポンプ2が吸引する冷媒を流通させる吸引経路22と、が接続され、モータ7の正転時に吐出経路21と供給経路56を連通させるとともに吸引経路22と導入経路57を連通させ、モータ7の逆転時に吸引経路22と供給経路56を連通させるとともに吐出経路21と導入経路57を連通させる経路切替機構3と、を備える。
[Effect of First Embodiment]
The motor refrigerant circulation device 1 according to the first embodiment is a motor refrigerant circulation device 1 for circulating and cooling the refrigerant to the motor 7. The motor refrigerant circulation device 1 is mechanically connected to the motor 7 and the refrigerant is It is discharged from the mechanical pump 2 at the time of normal rotation of the motor 7, the supply path 56 for supplying the refrigerant to the motor 7, the introduction path 57 for introducing the refrigerant discharged from the motor 7, and the mechanical pump 2 whose discharge direction changes. And the suction path 22 for circulating the refrigerant drawn by the mechanical pump 2 when the motor 7 rotates forward, and the discharge path 21 and the supply path 56 are rotated when the motor 7 rotates forward. The suction path 22 and the introduction path 57 are communicated with each other, and when the motor 7 rotates in the reverse direction, the suction path 22 and the supply path 56 are communicated and the discharge path 21 and the introduction path 57 are communicated. It includes a switching mechanism 3, a.
 上記構成により、モータ7の回転方向が切り替わることで機械式ポンプ2の冷媒の吐出方向が切り替わっても経路切替機構3がこれに連動して機械式ポンプ2の連通先を切り替えることができる。よって、モータ7の回転方向、及び機械式ポンプ2の吐出方向に関わらず、冷媒を順方向に循環させることができ、電動のオイルポンプを用いることなく、コストを抑制して、モータ7に冷媒を循環させることができる。 With the above configuration, even if the discharge direction of the refrigerant of the mechanical pump 2 is switched by switching the rotational direction of the motor 7, the path switching mechanism 3 can switch the communication destination of the mechanical pump 2 in conjunction with this. Therefore, regardless of the rotation direction of the motor 7 and the discharge direction of the mechanical pump 2, the refrigerant can be circulated in the forward direction, and the cost can be suppressed without using the electric oil pump to suppress the refrigerant in the motor 7. Can be circulated.
 経路切替機構3は、供給経路56と、導入経路57と、吐出経路21と、吸引経路22と、が接続されたシリンダ4と、シリンダ4の内部空間を仕切る仕切り板(第1仕切り板511乃至第5仕切り板523)が取り付けられ、仕切り板によりモータ7の正転時に吐出経路21と供給経路56を連通させるとともに吸引経路22と導入経路57とを連通させる内部空間を形成する第1連通状態と、モータ7の逆転時に吸引経路22と供給経路56とを連通させるとともに吐出経路21と導入経路57とを連通させる内部空間を形成する第2連通状態と、に切り替え可能に可動するピストン5と、モータ7の回転方向に従ってピストン5を移動させ、シリンダ4の内部空間を第1連通状態及び第2連通状態のいずれか一方に切り替えるアクチュエータ6と、を備える。 The path switching mechanism 3 divides the internal space of the cylinder 4 to which the supply path 56, the introduction path 57, the discharge path 21, and the suction path 22 are connected, and a partition plate (first partition plate 511 to A first communicating state in which a fifth partition plate 523) is attached, and the partition plate communicates the discharge path 21 with the supply path 56 at the normal rotation of the motor 7 and communicates the suction path 22 with the introduction path 57 And a piston 5 movable movably to a second communication state forming an internal space communicating the suction path 22 with the supply path 56 and communicating the discharge path 21 with the introduction path 57 when the motor 7 reversely rotates. , Moving the piston 5 in accordance with the rotational direction of the motor 7 to switch the internal space of the cylinder 4 to either the first communication state or the second communication state. It includes a eta 6, the.
 上記構成により、簡易な構成で、吐出経路21の連通先、吸引経路22の連通先を切り替え、機械式ポンプ2の回転方向、すなわち冷媒の吐出方向に関わらず冷媒の順方向の循環を維持する機構を構築することができる。 With the above configuration, the communication destination of the discharge path 21 and the communication destination of the suction path 22 are switched with a simple configuration, and the forward circulation of the refrigerant is maintained regardless of the rotational direction of the mechanical pump 2, that is, the discharge direction of the refrigerant. Mechanisms can be built.
 シリンダ4は、供給経路56から分岐した第1供給経路561、導入経路57から分岐した第1導入経路571、及び吐出経路21に連通するとともに吸引経路22から分離している第1シリンダ41と、供給経路56から分岐した第2供給経路562、導入経路57から分岐した第2導入経路572、及び吸引経路22に連通するとともに吐出経路21から分離している第2シリンダ42と、を備える。 The cylinder 4 communicates with the first supply path 561 branched from the supply path 56, the first introduction path 571 branched from the introduction path 57, and the first cylinder 41 communicated with the discharge path 21 and separated from the suction path 22; A second supply path 562 branched from the supply path 56, a second introduction path 572 branched from the introduction path 57, and a second cylinder 42 communicating with the suction path 22 and separated from the discharge path 21 are provided.
 ピストン5は、第1シリンダ41内に配置される第1ピストン51と、第2シリンダ42内に配置される第2ピストン52と、に分岐している。 The piston 5 is branched into a first piston 51 disposed in the first cylinder 41 and a second piston 52 disposed in the second cylinder 42.
 仕切り板は、第1ピストン51に並んで取り付けられた第1仕切り板511及び第2仕切り板512と、第2ピストン52に並んで取り付けられた第3仕切り板521及び第4仕切り板522と、を備える。 The partition plates include a first partition plate 511 and a second partition plate 512 attached to the first piston 51 side by side, and a third partition plate 521 and a fourth partition plate 522 attached to the second piston 52 side by side; Equipped with
 第1シリンダ41は、第1仕切り板511と第2仕切り板512の間に形成され、第1供給経路561に連通する第1内部空間411と、第2仕切り板512の第1内部空間411の反対側に形成され、第1導入経路571に連通する第2内部空間412と、を備える。 The first cylinder 41 is formed between the first partition plate 511 and the second partition plate 512, and is in communication with the first supply path 561. The first cylinder 41 is connected to the first inner space 411 of the second partition plate 512. And a second internal space 412 formed on the opposite side and in communication with the first introduction path 571.
 第2シリンダ42は、第3仕切り板521と第4仕切り板522の間に形成され吸引経路22に連通する第3内部空間421を備える。 The second cylinder 42 includes a third inner space 421 formed between the third partition plate 521 and the fourth partition plate 522 and in communication with the suction path 22.
 第1連通状態において、第1内部空間411は、吐出経路21と第1供給経路561とを連通し、第3内部空間421は、吸引経路22と第2導入経路572とを連通している。 In the first communication state, the first internal space 411 communicates the discharge path 21 with the first supply path 561, and the third internal space 421 communicates the suction path 22 with the second introduction path 572.
 第2連通状態において、第2内部空間412は、吐出経路21と第1導入経路571とを連通し、第3内部空間421は、吸引経路22と第2供給経路562とを連通している。 In the second communication state, the second internal space 412 communicates the discharge path 21 with the first introduction path 571, and the third internal space 421 communicates the suction path 22 with the second supply path 562.
 上記構成により、ピストン5を移動させるだけでシリンダ4内に第1連通状態及び第2連通状態を形成できるので、経路切替機構3を小型化することができる。 According to the above configuration, the first communication state and the second communication state can be formed in the cylinder 4 only by moving the piston 5, so that the path switching mechanism 3 can be miniaturized.
 なお、第1実施形態(以後の実施形態も同様)において、供給経路56と導入経路57の取り付け位置を逆にしてもよい。この場合、第1連通状態と第2連通状態とで連通状態が互いに入れ替わる。よって、モータ7及び機械式ポンプ2が正転しているときは、アクチュエータ6はピストン5を上記の第2連通状態となるストローク位置に移動させ、逆転しているときはピストン5を上記の第1連通状態となるストローク位置に移動させればよい。また、第1実施形態では、供給経路56を第1供給経路561と第2供給経路562に分岐させているが、供給経路56が第1シリンダ41及び第2シリンダ42に連通するように、シリンダ4において第1シリンダ41と第2シリンダ42の間の壁面を跨ぐような大きな開口部を形成し、この開口部に供給経路56を接続する形態であってもよい。同様に、導入経路57を第1導入経路571と第2導入経路572に分岐させているが、導入経路57が第1シリンダ41及び第2シリンダ42に連通するように、シリンダ4において第1シリンダ41と第2シリンダ42の間の壁面を跨ぐような大きな開口部を形成し、この開口部に導入経路57を接続する形態であってもよい。 In the first embodiment (the same applies to the subsequent embodiments), the attachment positions of the supply path 56 and the introduction path 57 may be reversed. In this case, the communication states are mutually switched between the first communication state and the second communication state. Therefore, when the motor 7 and the mechanical pump 2 are rotating in the normal direction, the actuator 6 moves the piston 5 to the stroke position in the second communication state, and in the reverse direction, the piston 5 is (1) It may be moved to the stroke position in which the communication state is established. Further, in the first embodiment, the supply passage 56 is branched into the first supply passage 561 and the second supply passage 562, but the cylinders are connected so that the supply passage 56 communicates with the first cylinder 41 and the second cylinder 42. 4, a large opening that crosses the wall surface between the first cylinder 41 and the second cylinder 42 may be formed, and the supply path 56 may be connected to the opening. Similarly, although the introduction path 57 is branched into the first introduction path 571 and the second introduction path 572, the first cylinder in the cylinder 4 is in communication with the first cylinder 41 and the second cylinder 42. A large opening that crosses the wall surface between the cylinder 41 and the second cylinder 42 may be formed, and the introduction path 57 may be connected to this opening.
 [第2実施形態の構成]
 図5は、第2実施形態のモータ用冷媒循環装置1(正転時)の模式図である。図6は、第2実施形態のモータ用冷媒循環装置1(逆転時)の模式図である。第2実施形態のモータ用冷媒循環装置1では、経路切替機構3にエア導入経路58が接続され、ロータ72の冷却が不要な場合に、機械式ポンプ2を空回りさせて、モータ7のトルクの機械式ポンプ2に係る損失を低減させるようになっている。
Configuration of Second Embodiment
FIG. 5 is a schematic view of the motor refrigerant circulating apparatus 1 (during normal rotation) according to the second embodiment. FIG. 6 is a schematic view of the motor refrigerant circulation device 1 (during reverse rotation) according to the second embodiment. In the motor refrigerant circulating apparatus 1 of the second embodiment, when the air introduction path 58 is connected to the path switching mechanism 3 and cooling of the rotor 72 is unnecessary, the mechanical pump 2 is idled to reduce torque of the motor 7. The loss of the mechanical pump 2 is reduced.
 供給経路56は、第1供給経路561と第2供給経路562に分岐し、第1供給経路561が第1シリンダ41に接続され、第2供給経路562が第2シリンダ42に接続されている。 The supply path 56 branches into a first supply path 561 and a second supply path 562, the first supply path 561 is connected to the first cylinder 41, and the second supply path 562 is connected to the second cylinder 42.
 導入経路57は、第1導入経路571、第2導入経路572に分岐し、第1導入経路571は第1シリンダ41に接続され、第2導入経路572は第2シリンダ42に接続されている。吐出経路21は、第1シリンダ41に接続され、吸引経路22は、第2シリンダ42に接続されている。 The introduction path 57 branches into a first introduction path 571 and a second introduction path 572. The first introduction path 571 is connected to the first cylinder 41, and the second introduction path 572 is connected to the second cylinder 42. The discharge path 21 is connected to the first cylinder 41, and the suction path 22 is connected to the second cylinder 42.
 エア導入経路58の一方は、モータ7のハウジング71(タンク711)であって冷媒の液面より高くなる位置に接続され、他方は、シリンダ4に接続されている。これにより、経路切替機構3からエア導入経路58に冷媒が逆流したとしても、冷媒が外部に漏洩することを防止できる。 One of the air introduction paths 58 is connected to the housing 71 (tank 711) of the motor 7 at a position higher than the liquid level of the refrigerant, and the other is connected to the cylinder 4. Thereby, even if the refrigerant flows backward from the path switching mechanism 3 to the air introduction path 58, it is possible to prevent the refrigerant from leaking to the outside.
 エア導入経路58の他方は、第1エア導入経路581、第2エア導入経路582、第3エア導入経路583に分岐し、第1エア導入経路581は第1シリンダ41に接続され、第2エア導入経路582及び第3エア導入経路583は第2シリンダ42に接続されている。 The other of the air introduction paths 58 is branched into a first air introduction path 581, a second air introduction path 582, and a third air introduction path 583. The first air introduction path 581 is connected to the first cylinder 41, and the second air The introduction path 582 and the third air introduction path 583 are connected to the second cylinder 42.
 第1ピストン54には、アクチュエータ6から近い順に、第1仕切り板541、第2仕切り板542、第3仕切り板543が取り付けられており、第3仕切り板543は第1ピストン54の長手方向の端部に取り付けられている。 A first partition plate 541, a second partition plate 542, and a third partition plate 543 are attached to the first piston 54 in order of proximity to the actuator 6, and the third partition plate 543 is in the longitudinal direction of the first piston 54. Attached to the end.
 第2ピストン55には、アクチュエータ6から近い順に、第7仕切り板554、第4仕切り板551、第5仕切り板552、第6仕切り板553が取り付けられ、第6仕切り板553は第2ピストン55の長手方向の端部に取り付けられている。 A seventh partition plate 554, a fourth partition plate 551, a fifth partition plate 552, and a sixth partition plate 553 are attached to the second piston 55 in order of proximity from the actuator 6, and the sixth partition plate 553 is the second piston 55 Attached to the longitudinal end of the
 第1シリンダ41において、第1仕切り板541と第2仕切り板542の間には第1内部空間411が形成され、第2仕切り板542と第3仕切り板543の間には第2内部空間412が形成され、第3仕切り板543の第2内部空間412の反対側には、ピストン5の動作のロックを回避するためにエアを出し入れするためのバッファ空間413が形成されている。 In the first cylinder 41, a first internal space 411 is formed between the first partition plate 541 and the second partition plate 542, and a second internal space 412 is formed between the second partition plate 542 and the third partition plate 543. In the opposite side of the second inner space 412 of the third partition plate 543, there is formed a buffer space 413 for taking in and out air in order to avoid locking of the operation of the piston 5.
 第2シリンダ42において、第7仕切り板554と第4仕切り板551の間にはバッファ空間423が形成され、第4仕切り板551と第5仕切り板552の間には第3内部空間421が形成され、第5仕切り板552と第6仕切り板553の間には第4内部空間422が形成され、第6仕切り板553の第4内部空間422の反対側には、ピストン5の動作のロックを回避するためにエアを出し入れするためのバッファ空間424が形成されている。 In the second cylinder 42, a buffer space 423 is formed between the seventh partition plate 554 and the fourth partition plate 551, and a third internal space 421 is formed between the fourth partition plate 551 and the fifth partition plate 552 The fourth inner space 422 is formed between the fifth partition plate 552 and the sixth partition plate 553, and on the opposite side of the fourth inner space 422 of the sixth partition plate 553, locking of the operation of the piston 5 is performed. A buffer space 424 for taking in and out air is formed to avoid the problem.
 図5、図6に示すように、第1内部空間411乃至第4内部空間422、バッファ空間413、バッファ空間423、及びバッファ空間424は、第1連通状態、第2連通状態、及び後述の第3連通状態に関わらず以下の連通状態を維持している。すなわち、第1内部空間411は、第1供給経路561に連通し、第1導入経路571、及び第1エア導入経路581から分離している。第2内部空間412は、第1導入経路571に連通するとともに第1供給経路561及び第1エア導入経路581から分離している。バッファ空間413は、第1供給経路561、第1導入経路571、及び吐出経路21から分離するとともに第1エア導入経路581に連通している。バッファ空間423は、第2導入経路572、吸引経路22、第2エア導入経路582、及び第3エア導入経路583から分離している。第3内部空間421は、吸引経路22に連通するとともに第2エア導入経路582及び第3エア導入経路583から分離している。第4内部空間422は、第2供給経路562、吸引経路22、及び第3エア導入経路583から分離している。バッファ空間424は、第2供給経路562、第2導入経路572、吸引経路22から分離し、第3エア導入経路583に連通している。 As shown in FIGS. 5 and 6, the first internal space 411 to the fourth internal space 422, the buffer space 413, the buffer space 423, and the buffer space 424 have a first communication state, a second communication state, and a second communication state described later. 3 The following communication state is maintained regardless of the communication state. That is, the first internal space 411 communicates with the first supply path 561 and is separated from the first introduction path 571 and the first air introduction path 581. The second internal space 412 communicates with the first introduction path 571 and is separated from the first supply path 561 and the first air introduction path 581. The buffer space 413 is separated from the first supply path 561, the first introduction path 571, and the discharge path 21 and is in communication with the first air introduction path 581. The buffer space 423 is separated from the second introduction path 572, the suction path 22, the second air introduction path 582, and the third air introduction path 583. The third internal space 421 communicates with the suction path 22 and is separated from the second air introduction path 582 and the third air introduction path 583. The fourth inner space 422 is separated from the second supply path 562, the suction path 22, and the third air introduction path 583. The buffer space 424 is separated from the second supply path 562, the second introduction path 572, and the suction path 22, and is in communication with the third air introduction path 583.
 図5に示す第1連通状態において、第1内部空間411は吐出経路21と第1供給経路561とを連通し、第2内部空間412は吐出経路21から分離し、バッファ空間423は第2供給経路562に連通し、第3内部空間421は吸引経路22と第2導入経路572とを連通し、第4内部空間422は第2エア導入経路582に連通するとともに第2導入経路572から分離し、バッファ空間424は第2エア導入経路582から分離している。 In the first communication state shown in FIG. 5, the first internal space 411 communicates the discharge path 21 with the first supply path 561, the second internal space 412 is separated from the discharge path 21, and the buffer space 423 is the second supply. The third internal space 421 is in communication with the suction path 22 and the second introduction path 572, and the fourth internal space 422 is in communication with the second air introduction path 582 and separated from the second introduction path 572. The buffer space 424 is separated from the second air introduction path 582.
 図6に示す第2連通状態において、第1内部空間411は吐出経路21から分離し、第2内部空間412は吐出経路21と第1導入経路571とを連通し、バッファ空間423は第2供給経路562から分離し、第3内部空間421は吸引経路22と第2供給経路562とを連通するとともに第2導入経路572から分離し、第4内部空間422は第2導入経路572に連通するともに第2エア導入経路582から分離し、バッファ空間424は第2エア導入経路582に連通している。 In the second communication state shown in FIG. 6, the first internal space 411 is separated from the discharge path 21, the second internal space 412 communicates the discharge path 21 with the first introduction path 571 and the buffer space 423 is the second supply. The third internal space 421 communicates with the suction path 22 and the second supply path 562 and separates from the second introduction path 572, and the fourth internal space 422 communicates with the second introduction path 572. The buffer space 424 is in communication with the second air introduction path 582 separately from the second air introduction path 582.
 上記のように、バッファ空間413は第1エア導入経路581に常時連通し、バッファ空間424は第3エア導入経路583に常時連通している。これにより、アクチュエータ6がピストン5を移動させるときに、バッファ空間413及びバッファ空間424に対してエアを出し入れすることができ、ピストン5のロックを回避することができる。またモータ7内のエアをバッファ空間413及びバッファ空間424に導入するので、モータ7内の気化したオイルを包含するエアの漏洩を防止することができる。 As described above, the buffer space 413 is always in communication with the first air introduction path 581, and the buffer space 424 is always in communication with the third air introduction path 583. Thereby, when the actuator 6 moves the piston 5, air can be taken in and out of the buffer space 413 and the buffer space 424, and locking of the piston 5 can be avoided. Further, since the air in the motor 7 is introduced into the buffer space 413 and the buffer space 424, it is possible to prevent the leakage of the air including the vaporized oil in the motor 7.
 図7は、第2実施形態のモータ用冷媒循環装置1を構成する経路切替機構3(正転時)の模式図である。図8は、第2実施形態のモータ用冷媒循環装置1を構成する経路切替機構3(逆転時)の模式図である。 FIG. 7 is a schematic view of a path switching mechanism 3 (during normal rotation) constituting the motor refrigerant circulating apparatus 1 of the second embodiment. FIG. 8 is a schematic view of a path switching mechanism 3 (during reverse rotation) constituting the motor refrigerant circulating apparatus 1 of the second embodiment.
 図7、図8に示すように、第1シリンダ41には、第1供給経路561の開口部561a、吐出経路21の開口部21a、第1導入経路571の開口部571a、第1エア導入経路581の開口部581aが形成されている。第2シリンダ42には、第2供給経路562の開口部562a、吸引経路22の開口部22a、第2導入経路572の開口部572a、第2エア導入経路582の開口部582a、第3エア導入経路583の開口部583aが形成されている。このうち、開口部561a及び開口部562aは供給経路56を介して互いに連通し、開口部571a及び開口部572aは導入経路57を介して互いに連通し、開口部581a、開口部582a、及び開口部583aはエア導入経路58を介して相互に連通している。なお、エア導入経路58を第1エア導入経路581と第2エア導入経路582に分岐させているが、エア導入経路58が第1シリンダ41及び第2シリンダ42に連通するように、シリンダ4において第1シリンダ41と第2シリンダ42の間の壁面を跨ぐような大きな開口部を形成し、この開口部にエア導入経路58を接続する形態であってもよい。 As shown in FIGS. 7 and 8, in the first cylinder 41, the opening 561a of the first supply path 561, the opening 21a of the discharge path 21, the opening 571a of the first introduction path 571 and the first air introduction path An opening 581 a of 581 is formed. In the second cylinder 42, an opening 562a of the second supply path 562, an opening 22a of the suction path 22, an opening 572a of the second introduction path 572, an opening 582a of the second air introduction path 582, a third air introduction An opening 583a of the path 583 is formed. Among them, the opening 561a and the opening 562a communicate with each other through the supply path 56, the opening 571a and the opening 572a communicate with each other through the introduction path 57, and the opening 581a, the opening 582a, and the opening 583a are in communication with each other via the air introduction path 58. Although the air introduction path 58 is branched into the first air introduction path 581 and the second air introduction path 582, in the cylinder 4 so that the air introduction path 58 communicates with the first cylinder 41 and the second cylinder 42. A large opening that crosses the wall surface between the first cylinder 41 and the second cylinder 42 may be formed, and the air introduction path 58 may be connected to this opening.
 図7に示す第1連通状態において、第1内部空間411は開口部561aと開口部21aとを連通し、第2内部空間412は開口部571aに連通し、バッファ空間413は開口部581aに連通し、バッファ空間423は開口部562aに連通し、第3内部空間421は開口部22aと開口部572aとを連通し、第4内部空間422は開口部582aに連通し、バッファ空間424は開口部583aに連通している。 In the first communication state shown in FIG. 7, the first internal space 411 communicates the opening 561a with the opening 21a, the second internal space 412 communicates with the opening 571a, and the buffer space 413 communicates with the opening 581a. The buffer space 423 communicates with the opening 562a, the third internal space 421 communicates the opening 22a with the opening 572a, the fourth internal space 422 communicates with the opening 582a, and the buffer space 424 is the opening It communicates with 583a.
 図8に示す第2連通状態において、第1内部空間411は開口部561aに連通し、第2内部空間412は開口部21aと開口部571aとを連通し、バッファ空間413は開口部581aに連通し、バッファ空間423は開口部562aから分離し、第3内部空間421は開口部22aと開口部562aとを連通するとともに開口部572aから分離し、第4内部空間422は開口部572aに連通するとともに開口部582aから分離し、バッファ空間424は開口部582a及び開口部583aに連通している。 In the second communication state shown in FIG. 8, the first internal space 411 communicates with the opening 561a, the second internal space 412 communicates between the opening 21a and the opening 571a, and the buffer space 413 communicates with the opening 581a. The buffer space 423 is separated from the opening 562a, the third inner space 421 connects the opening 22a and the opening 562a, and is separated from the opening 572a, and the fourth inner space 422 communicates with the opening 572a. And the buffer space 424 is in communication with the opening 582a and the opening 583a.
 アクチュエータ6は、モータ7に取り付けた温度センサ(不図示)によりモータ7(ロータ72)の温度(T)を計測可能であり、温度(T)が所定温度(Tth)よりも高いときは、ピストン5のストローク位置を、回転方向信号(+θ、-θ)に基づいて、第1連通状態を形成するストローク位置、または第2連通状態を形成するストローク位置に移動させる。 The actuator 6 can measure the temperature (T) of the motor 7 (rotor 72) by a temperature sensor (not shown) attached to the motor 7. When the temperature (T) is higher than a predetermined temperature (Tth), the piston 6 The stroke position 5 is moved to the stroke position forming the first communication state or the stroke position forming the second communication state based on the rotation direction signal (+ θ, −θ).
 一方、アクチュエータ6は、温度(T)が所定温度(Tth)よりも低くなったときは、モータ7(ロータ72)の冷却が不要であると判断して、回転方向信号(+θ、-θ)に関わらず、ピストン5のストローク位置を、後述の第3連通状態となるストローク位置に移動させ、機械式ポンプ2を空回りさせる。 On the other hand, when the temperature (T) becomes lower than the predetermined temperature (Tth), the actuator 6 determines that cooling of the motor 7 (the rotor 72) is not necessary, and the rotation direction signal (+ θ, -θ) Regardless of the above, the stroke position of the piston 5 is moved to the stroke position in the third communication state described later, and the mechanical pump 2 idles.
 図9は、第2実施形態のモータ用冷媒循環装置1(正転空回り時)の模式図である。図10は、第2実施形態のモータ用冷媒循環装置1(逆転空回り時)の模式図である。図11は、第2実施形態のモータ用冷媒循環装置1を構成する経路切替機構3の模式図であり、実線の矢印は機械式ポンプ2が正転時のエアの流通方向を示し、破線の矢印は機械式ポンプ2が逆転時のエアの流通方向を示す。 FIG. 9 is a schematic view of a motor refrigerant circulation device 1 (in normal rotation idle) according to the second embodiment. FIG. 10 is a schematic view of a motor refrigerant circulation device 1 (during reverse rotation idle rotation) of the second embodiment. FIG. 11 is a schematic view of the route switching mechanism 3 constituting the motor refrigerant circulating apparatus 1 according to the second embodiment, and the solid line arrow indicates the flow direction of air when the mechanical pump 2 rotates forward. The arrows indicate the flow direction of air when the mechanical pump 2 reverses.
 図9乃至図11に示すように、第3連通状態は、第1連通状態に類似しているが、第2導入経路572が第3内部空間421、及び第4内部空間422に連通した状態となっている。すなわち、図11に示すように、第2導入経路572の開口部572a(第1開口部)の径が第5仕切り板552の厚みよりも大きくなっており、第3連通状態において、第5仕切り板552の両面側に開口部572aがはみ出る態様で第5仕切り板552の側面が開口部572aに対向することで、第3内部空間421と第4内部空間422が開口部572aを介して互いに連通した状態となっている。 As shown in FIGS. 9 to 11, the third communication state is similar to the first communication state, but the second introduction path 572 is in communication with the third inner space 421 and the fourth inner space 422. It has become. That is, as shown in FIG. 11, the diameter of the opening 572a (first opening) of the second introduction path 572 is larger than the thickness of the fifth partition plate 552, and in the third communication state, the fifth partition The third inner space 421 and the fourth inner space 422 communicate with each other through the opening 572 a by the side of the fifth partition plate 552 facing the opening 572 a in a manner that the opening 572 a protrudes on both sides of the plate 552 It is in a state of
 図9、図10に示すように、経路切替機構3において、第3連通状態を形成するピストン5のストローク位置は、第1連通状態を形成するピストン5のストローク位置と、第2連通状態を形成するピストン5のストローク位置との間の位置となっている。これによりアクチュエータ6のストローク量の増加を回避することができる。 As shown in FIGS. 9 and 10, in the path switching mechanism 3, the stroke position of the piston 5 forming the third communication state is the stroke position of the piston 5 forming the first communication state, and the second communication state And the stroke position of the piston 5. Thereby, an increase in the stroke amount of the actuator 6 can be avoided.
 図9、図10に示すように、エア導入経路58(第2エア導入経路582)は、第4内部空間422、第2導入経路572(開口部572a)、第3内部空間421、吸引経路22を介して機械式ポンプ2に連通することになる。また、機械式ポンプ2は、吐出経路21、第1内部空間411を介して第1供給経路561に連通している。 As shown in FIGS. 9 and 10, the air introduction path 58 (second air introduction path 582) includes a fourth internal space 422, a second introduction path 572 (opening 572a), a third internal space 421, and a suction path 22. It communicates with the mechanical pump 2 via The mechanical pump 2 is in communication with the first supply path 561 via the discharge path 21 and the first internal space 411.
 図9及び図11(実線の矢印)に示すように、モータ7及び機械式ポンプ2が正転している場合は、吸引経路22が負圧となることで、エア導入経路58(第2エア導入経路582)にエアが導入され、エアは第4内部空間422、開口部572a、第3内部空間421、吸引経路22を介して機械式ポンプ2に吸引される。このとき、エアは冷媒よりも比重が軽いため、冷媒よりも優先的に機械式ポンプ2に吸引される。また、機械式ポンプ2から吐出経路21に吐出されたエアは第1内部空間411を介して第1供給経路561(供給経路56)からモータ7(ハウジング71)に排出される。これにより、機械式ポンプ2が正転で空回りし始めるとともに、モータ7からエア導入経路58を介して導入したエアが供給経路56を介してモータ7に戻され、エアがモータ7(ハウジング71)と経路切替機構3との間を循環する。 As shown in FIG. 9 and FIG. 11 (solid arrows), when the motor 7 and the mechanical pump 2 are normally rotating, the suction passage 22 has a negative pressure, so the air introduction passage 58 (second air) Air is introduced into the introduction path 582, and the air is sucked by the mechanical pump 2 through the fourth inner space 422, the opening 572 a, the third inner space 421, and the suction path 22. At this time, since air has a specific gravity smaller than that of the refrigerant, the air is drawn by the mechanical pump 2 preferentially to the refrigerant. Further, the air discharged from the mechanical pump 2 to the discharge path 21 is discharged from the first supply path 561 (supply path 56) to the motor 7 (housing 71) via the first internal space 411. As a result, the mechanical pump 2 starts rotating in the forward direction, and the air introduced from the motor 7 via the air introduction path 58 is returned to the motor 7 via the supply path 56, and the air is motor 7 (housing 71) And the route switching mechanism 3.
 また、図10及び図11(破線の矢印)に示すように、モータ7及び機械式ポンプ2が逆転しているときは、吐出経路21が負圧となることで、供給経路56(第1供給経路561)にエアが導入され、エアは第1内部空間411、吐出経路21を介して機械式ポンプ2に吸引される。また機械式ポンプ2から吸引経路22に吐出されたエアは、第3内部空間421、開口部572a、第4内部空間422を介して、第2エア導入経路582(エア導入経路58)からモータ7(ハウジング71)に排出される。これにより、機械式ポンプ2が逆転で空回りし始めるとともに、モータ7から供給経路56を介して導入したエアがエア導入経路58を介してモータ7に戻され、エアがモータ7(ハウジング71)と経路切替機構3との間を循環する。 Further, as shown in FIG. 10 and FIG. 11 (broken line arrow), when the motor 7 and the mechanical pump 2 are reversely rotated, the discharge passage 21 has a negative pressure, so that the supply passage 56 (first supply Air is introduced into the path 561, and the air is drawn into the mechanical pump 2 via the first internal space 411 and the discharge path 21. Further, the air discharged from the mechanical pump 2 to the suction path 22 passes from the second air introduction path 582 (air introduction path 58) through the third internal space 421, the opening 572a, and the fourth internal space 422 to the motor 7. (Housing 71). As a result, the mechanical pump 2 starts rotating in reverse, and the air introduced from the motor 7 via the supply path 56 is returned to the motor 7 via the air introduction path 58, and the air is transferred to the motor 7 (housing 71). It circulates with the path switching mechanism 3.
 そして、図9、図10に示すように、エアが機械式ポンプ2に吸引される状態をしばらく維持することで、機械式ポンプ2内部はエアで満たされ、機械式ポンプ2が空回りすることになる。 Then, as shown in FIGS. 9 and 10, by maintaining the state where air is sucked by the mechanical pump 2 for a while, the inside of the mechanical pump 2 is filled with air, and the mechanical pump 2 idles. Become.
 [第2実施形態の動作]
 アクチュエータ6は、温度(T)が所定温度(Tth)よりも高いときは、ピストン5のストローク位置を、回転方向信号(+θ、-θ)に基づいて、第1連通状態を形成するストローク位置、または第2連通状態を形成するストローク位置に移動させる。
[Operation of Second Embodiment]
When the temperature (T) is higher than a predetermined temperature (Tth), the actuator 6 forms a first communication state based on the rotation direction signal (+ θ, −θ) of the stroke position of the piston 5, Or move to the stroke position that forms the second communication state.
 図5、図7に示す第1連通状態において、機械式ポンプ2が正転すると、機械式ポンプ2は、吸引経路22から冷媒を吸引し、吐出経路21に冷媒を吐出する動作を行う。このとき、タンク711に蓄えられた冷媒は、経路切替機構3において、第2導入経路572を通じて第3内部空間421に導入され、第3内部空間421に導入された冷媒が吸引経路22を介して機械式ポンプ2に吸引される。また、機械式ポンプ2から吐出経路21に吐出された冷媒は、第1内部空間411及び第1供給経路561(供給経路56)を介してモータ7(ロータ72)に供給される。 In the first communication state shown in FIGS. 5 and 7, when the mechanical pump 2 rotates forward, the mechanical pump 2 sucks the refrigerant from the suction path 22 and discharges the refrigerant to the discharge path 21. At this time, the refrigerant stored in the tank 711 is introduced into the third internal space 421 through the second introduction path 572 in the path switching mechanism 3, and the refrigerant introduced into the third internal space 421 passes through the suction path 22. It is sucked by the mechanical pump 2. Further, the refrigerant discharged from the mechanical pump 2 to the discharge path 21 is supplied to the motor 7 (rotor 72) via the first inner space 411 and the first supply path 561 (supply path 56).
 図6、図8に示す第2連通状態において、機械式ポンプ2が逆転すると、機械式ポンプ2は、吐出経路21から冷媒を吸引し、吸引経路22の冷媒を吐出する動作を行う。このとき、タンク711に蓄えられた冷媒は、経路切替機構3において、第1導入経路571を通じて第2内部空間412に導入され、第2内部空間412に導入された冷媒が吐出経路21を介して機械式ポンプ2に吸引される。また、機械式ポンプ2から吸引経路22に吐出された冷媒は、第3内部空間421及び第2供給経路562(供給経路56)を介してモータ7(ロータ72)に供給される。 In the second communication state shown in FIGS. 6 and 8, when the mechanical pump 2 reverses, the mechanical pump 2 sucks the refrigerant from the discharge passage 21 and discharges the refrigerant in the suction passage 22. At this time, the refrigerant stored in the tank 711 is introduced into the second internal space 412 through the first introduction path 571 in the path switching mechanism 3, and the refrigerant introduced into the second internal space 412 through the discharge path 21. It is sucked by the mechanical pump 2. The refrigerant discharged from the mechanical pump 2 to the suction path 22 is supplied to the motor 7 (rotor 72) via the third inner space 421 and the second supply path 562 (supply path 56).
 以上のように、第2実施形態においても、モータ7(ロータ72)及び機械式ポンプ2の回転方向に関わらず、タンク711に蓄えられた冷媒は、経路切替機構3を介してモータ7(ロータ72)に供給することができ、冷媒の循環を確実に行うことができる。 As described above, also in the second embodiment, regardless of the rotational direction of the motor 7 (the rotor 72) and the mechanical pump 2, the refrigerant stored in the tank 711 is transmitted to the motor 7 (the rotor 7 72), and circulation of the refrigerant can be reliably performed.
 一方、アクチュエータ6は、温度(T)が所定温度(Tth)よりも低くなったときは、ピストン5のストローク位置を、図9乃至図11に示すように、第3連通状態となるストローク位置に移動させ、機械式ポンプ2を空回りさせる。 On the other hand, when the temperature (T) becomes lower than the predetermined temperature (Tth), the actuator 6 sets the stroke position of the piston 5 to the stroke position where it is in the third communication state, as shown in FIGS. Move and make the mechanical pump 2 idle.
 また、アクチュエータ6は、ピストン5を第3連通状態となるストローク位置に移動させたあと、所定時間経過後に、回転方向信号(+θ、-θ)に基づいて、第1連通状態を形成するストローク位置、または第2連通状態を形成するストローク位置に一時的に移動させ、機械式ポンプ2内部に一時的に冷媒を供給して潤滑不足による磨耗を防止するようにしてもよい。 In addition, after the actuator 6 moves the piston 5 to the stroke position in the third communication state, a stroke position at which the first communication state is formed based on the rotation direction signal (+ θ, -θ) after a predetermined time has elapsed. Alternatively, the mechanical pump 2 may be temporarily moved to the stroke position where the second communication state is formed, and the refrigerant may be temporarily supplied to the inside of the mechanical pump 2 to prevent wear due to insufficient lubrication.
 その後、温度(T)が所定温度(Tth)以上になった場合には、アクチュエータ6は、回転方向信号(+θ、-θ)に基づいて、ピストン5を、第1連通状態を形成するストローク位置、または第2連通状態を形成するストローク位置に移動させモータ7(ロータ72)への冷媒の循環を再開する。 Thereafter, when the temperature (T) becomes equal to or higher than the predetermined temperature (Tth), the actuator 6 performs a stroke position for forming the first communication state based on the rotation direction signal (+ θ, −θ). Or, it is moved to the stroke position where the second communication state is formed, and the circulation of the refrigerant to the motor 7 (rotor 72) is restarted.
 [第2実施形態の効果]
 第2実施形態のモータ用冷媒循環装置1において、シリンダ4には、エアを導入するエア導入経路58が接続され、仕切り板(第5仕切り板552)は、第1連通状態を形成する位置と第2連通状態を形成する位置との間の位置において、吐出経路21を供給経路56に連通させるとともに導入経路57(第2導入経路572の開口部572a)を介して吸引経路22をエア導入経路58に連通させる内部空間を形成する第3連通状態に切り替え可能となるようにピストン5に取り付けられている。そして、アクチュエータ6は、冷媒の温度が所定温度よりも低くなったときに、第3連通状態となるようにピストン5を移動させる。
[Effect of Second Embodiment]
In the motor refrigerant circulating apparatus 1 according to the second embodiment, the cylinder 4 is connected to an air introduction path 58 for introducing air, and the partition plate (fifth partition plate 552) forms a first communication state. At a position between the position for forming the second communication state, the discharge path 21 communicates with the supply path 56 and the suction path 22 is connected to the air introduction path via the introduction path 57 (the opening 572a of the second introduction path 572). It is attached to the piston 5 so as to be switchable to a third communication state forming an internal space communicated with the valve 58. Then, the actuator 6 moves the piston 5 to be in the third communication state when the temperature of the refrigerant becomes lower than a predetermined temperature.
 上記構成により、モータ7(ロータ72)の冷却が不要な場合は、機械式ポンプ2にエアを供給して空回りさせることでモータ7のトルク(出力)の機械式ポンプ2の回転による損失を低減することができる。また、第3連通状態を形成するストローク位置を、第1連通状態を形成するストローク位置と第2連通状態を形成するストローク位置の間に設定しているので、ピストン5のストローク長を長くする必要はなく、アクチュエータ6の負担を回避できる。 With the above configuration, when it is not necessary to cool the motor 7 (the rotor 72), air is supplied to the mechanical pump 2 to make it run idle, thereby reducing the loss of the torque (output) of the motor 7 due to the rotation of the mechanical pump 2. can do. In addition, since the stroke position forming the third communication state is set between the stroke position forming the first communication state and the stroke position forming the second communication state, the stroke length of the piston 5 needs to be increased. The load on the actuator 6 can be avoided.
 シリンダ4は、供給経路56から分岐した第1供給経路561、導入経路57から分岐した第1導入経路571、及び吐出経路21に連通するとともに吸引経路22から分離している第1シリンダ41と、供給経路56から分岐した第2供給経路562、導入経路57から分岐した第2導入経路572、吸引経路22、及びエア導入経路58(第2エア導入経路582)に連通するとともに吐出経路21から分離している第2シリンダ42と、を備える。 The cylinder 4 communicates with the first supply path 561 branched from the supply path 56, the first introduction path 571 branched from the introduction path 57, and the first cylinder 41 communicated with the discharge path 21 and separated from the suction path 22; It communicates with the second supply path 562 branched from the supply path 56, the second introduction path 572 branched from the introduction path 57, the suction path 22 and the air introduction path 58 (second air introduction path 582) and is separated from the discharge path 21 And a second cylinder 42.
 ピストン5は、第1シリンダ41内に配置される第1ピストン54と、第2シリンダ42内に配置される第2ピストン55と、に分岐している。 The piston 5 is branched into a first piston 54 disposed in the first cylinder 41 and a second piston 55 disposed in the second cylinder 42.
 仕切り板は、第1ピストン54に並んで取り付けられた第1仕切り板541、第2仕切り板542、及び第3仕切り板543と、第2ピストン55に並んで取り付けられた第4仕切り板551、第5仕切り板552、及び第6仕切り板553と、を備える。
る。
The partition plates are a first partition plate 541, a second partition plate 542, and a third partition plate 543 mounted side by side with the first piston 54, and a fourth partition plate 551 mounted side by side with the second piston 55, And a fifth partition plate 552 and a sixth partition plate 553.
Ru.
 第1シリンダ41は、第1仕切り板541と第2仕切り板542の間に形成され、第1供給経路561に連通する第1内部空間411と、第2仕切り板542と第3仕切り板543の間に形成され、第1導入経路571に連通する第2内部空間412と、を備える。 The first cylinder 41 is formed between the first partition plate 541 and the second partition plate 542, and includes the first internal space 411 communicating with the first supply path 561, the second partition plate 542, and the third partition plate 543. And a second internal space 412 communicating with the first introduction path 571 formed therebetween.
 第2シリンダ42は、第4仕切り板551と第5仕切り板552の間に形成され、吸引経路22に連通する第3内部空間421と、第5仕切り板552と第6仕切り板553との間に形成された第4内部空間422と、を備える。 The second cylinder 42 is formed between the fourth partition 551 and the fifth partition 552, and is in communication between the third inner space 421 communicating with the suction path 22, and between the fifth partition 552 and the sixth partition 553. And a fourth internal space 422 formed in the
 第1連通状態において、第1内部空間411は、吐出経路21と第1供給経路561とを連通し、第3内部空間421は、吸引経路22と第2導入経路572とを連通している。 In the first communication state, the first internal space 411 communicates the discharge path 21 with the first supply path 561, and the third internal space 421 communicates the suction path 22 with the second introduction path 572.
 第2連通状態において、第2内部空間412は、吐出経路21と第1導入経路571とを連通し、第3内部空間421は、吸引経路22と第2供給経路562とを連通している。 In the second communication state, the second internal space 412 communicates the discharge path 21 with the first introduction path 571, and the third internal space 421 communicates the suction path 22 with the second supply path 562.
 第3連通状態において、第1内部空間411は、吐出経路21と第1供給経路561とを連通し、第3内部空間421は、吸引経路22に連通し、第4内部空間422は、第2エア導入経路582(エア導入経路58)に連通し、第3内部空間421と第4内部空間422が第2導入経路572(開口部572a)を介して互いに連通している。 In the third communication state, the first internal space 411 communicates the discharge path 21 with the first supply path 561, the third internal space 421 communicates with the suction path 22, and the fourth internal space 422 is the second The third internal space 421 and the fourth internal space 422 are in communication with each other through the second introduction path 572 (opening 572a) in communication with the air introduction path 582 (the air introduction path 58).
 上記構成により、ピストン5を移動させるだけでシリンダ4内に第1連通状態、第2連通状態、及び第3連通状態を形成できるので、経路切替機構3を小型化することができる。 According to the above configuration, the first communication state, the second communication state, and the third communication state can be formed in the cylinder 4 simply by moving the piston 5, so the path switching mechanism 3 can be miniaturized.
 第2導入経路572の第2シリンダ42に接続する開口部572a(第1開口部)の径は、第5仕切り板552の厚みよりも大きく、第3連通状態において、第5仕切り板552の両面側に開口部572aがはみ出る態様で第5仕切り板552の側面が開口部572aに対向することで、第3内部空間421と第4内部空間422が開口部572aを介して互いに連通している。これにより、簡易な構成で第3内部空間421と第4内部空間422を第3連通状態において互いに連通させることができる。 The diameter of the opening 572a (first opening) connected to the second cylinder 42 of the second introduction path 572 is larger than the thickness of the fifth partition plate 552, and in the third communication state, both surfaces of the fifth partition plate 552 The third inner space 421 and the fourth inner space 422 communicate with each other through the opening 572 a by the side surface of the fifth partition plate 552 facing the opening 572 a in a manner that the opening 572 a protrudes to the side. Thus, the third internal space 421 and the fourth internal space 422 can be communicated with each other in the third communication state with a simple configuration.
 アクチュエータ6は、シリンダ4の内部空間を第3連通状態にしている間、所定時間ごとにモータ7の回転方向に従って第1連通状態または第2連通状態に一時的に戻すようにしてもよい。これにより、機械式ポンプ2内部に一時的に冷媒を供給して、機械式ポンプ2の潤滑不足による磨耗を防止することができる。 The actuator 6 may be temporarily returned to the first communication state or the second communication state according to the rotation direction of the motor 7 every predetermined time while the internal space of the cylinder 4 is in the third communication state. As a result, the refrigerant can be temporarily supplied to the inside of the mechanical pump 2 and wear due to insufficient lubrication of the mechanical pump 2 can be prevented.
 エア導入経路58は、モータ7のハウジング71に連通している。これにより、経路切替機構3からエア導入経路58に冷媒が逆流したとしても、冷媒が外部に漏洩することを防止できる。なお、第2実施形態では、第1シリンダ41の底部、及び第2シリンダ42の底部を開放し、第1エア導入経路581(バッファ空間413)、第3エア導入経路583(バッファ空間424)を省略しても、第1連通状態、第2連通状態、第3連通状態を形成することが可能である。 The air introduction path 58 is in communication with the housing 71 of the motor 7. Thereby, even if the refrigerant flows backward from the path switching mechanism 3 to the air introduction path 58, it is possible to prevent the refrigerant from leaking to the outside. In the second embodiment, the bottom of the first cylinder 41 and the bottom of the second cylinder 42 are opened, and the first air introduction path 581 (buffer space 413) and the third air introduction path 583 (buffer space 424) are opened. Even if omitted, it is possible to form the first communication state, the second communication state, and the third communication state.
 第2実施形態(第1実施形態も同様)では、ピストン5をアクチュエータ6から繰り出すことにより第1連通状態を形成し、逆にピストン5を引っ込めることにより第2連通状態を形成している。しかし、例えば、吐出経路21、吸引経路22、供給経路56、導入経路57、エア導入経路58のシリンダ4の取り付け位置をシリンダ4の長手方向で反転させ、第1仕切り板541乃至第7仕切り板554(第1実施形態の第1仕切り板511乃至第5仕切り板523)の取り付け位置もピストン5の長手方向で反転させる。これにより、ピストン5をアクチュエータ6から繰り出すことで第2連通状態を形成し、逆にピストン5を引っ込めることで第1連通状態を形成することが可能である。 In the second embodiment (also in the first embodiment), the piston 5 is pulled out of the actuator 6 to form a first communication state, and the piston 5 is retracted to form a second communication state. However, for example, the mounting positions of the cylinder 4 of the discharge path 21, the suction path 22, the supply path 56, the introduction path 57, and the air introduction path 58 are reversed in the longitudinal direction of the cylinder 4 Also, the mounting positions of the first partition plate 511 to the fifth partition plate 523 of the first embodiment are reversed in the longitudinal direction of the piston 5. Thereby, it is possible to form the second communication state by drawing out the piston 5 from the actuator 6, and to form the first communication state by retracting the piston 5 on the contrary.
 [第3実施形態]
 図12は、第3実施形態のモータ用冷媒循環装置1(正転空回り時)の模式図である。図13は、第3実施形態のモータ用冷媒循環装置1(逆転空回り時)の模式図である。
Third Embodiment
FIG. 12 is a schematic view of the motor refrigerant circulation device 1 (in normal rotation idle) according to the third embodiment. FIG. 13 is a schematic view of a motor refrigerant circulation device 1 (during reverse rotation idle rotation) of the third embodiment.
 第3実施形態のモータ用冷媒循環装置1は、第2実施形態のモータ用冷媒循環装置1においてアクチュエータ6のストローク長を長くしたものである。そして、アクチュエータ6(図12、図13では不図示)は、仕切り板のいずれもが、供給経路56、吐出経路21、吸引経路22、及びエア導入経路58のシリンダ4に接続するそれぞれの開口部よりもピストン5の長手方向の一方側に位置するようにピストン5を移動可能となっている。 The motor refrigerant circulation device 1 of the third embodiment is obtained by increasing the stroke length of the actuator 6 in the motor refrigerant circulation device 1 of the second embodiment. The actuator 6 (not shown in FIG. 12 and FIG. 13) has openings for connecting all the partition plates to the supply path 56, the discharge path 21, the suction path 22 and the cylinder 4 of the air introduction path 58. The piston 5 is movable so as to be positioned on one side of the piston 5 in the longitudinal direction.
 すなわち、アクチュエータ6は、第3仕切り板543が第1供給経路561、吐出経路21、及び第1エア導入経路581のシリンダ4に接続するそれぞれの開口部よりもアクチュエータ6に近接する位置となり、また、第6仕切り板553が第2導入経路572、吸引経路22、及び第2エア導入経路582のシリンダ4に接続するそれぞれの開口部よりもアクチュエータ6に近接する位置となるようにピストン5を移動可能となっている。このようにピストン5を移動させることで、エア導入経路58からエアが第1シリンダ41、第2シリンダ42に充填される。 That is, the actuator 6 is positioned closer to the actuator 6 than the respective openings where the third partition plate 543 is connected to the cylinder 4 of the first supply path 561, the discharge path 21, and the first air introduction path 581. , Move the piston 5 so that the sixth partition plate 553 is closer to the actuator 6 than the openings of the second introduction path 572, the suction path 22, and the cylinder 4 of the second air introduction path 582. It is possible. By moving the piston 5 in this manner, air is charged from the air introduction path 58 into the first cylinder 41 and the second cylinder 42.
 図12に示すように、モータ7及び機械式ポンプ2が正転した状態で、ピストン5を上記のように移動させると、吸引経路22が負圧となることで、エア導入経路58(第2エア導入経路582、第3エア導入経路583)を経由して第2シリンダ42にエアが導入され、第2シリンダ42に連通した吸引経路22を経由して機械式ポンプ2にエアが到達する。また、機械式ポンプ2から吐出経路21に吐出されたエアは第1シリンダ41に排出され、エアは第1シリンダ41に連通した第1供給経路561(供給経路56)を経由してモータ7(ハウジング71)に排出される。これにより、機械式ポンプ2が正転で空回りするとともに、モータ7からエア導入経路58を介して導入したエアが供給経路56を介してモータ7に戻され、エアがモータ7(ハウジング71)と経路切替機構3との間を循環する。 As shown in FIG. 12, when the piston 5 is moved as described above in a state where the motor 7 and the mechanical pump 2 rotate forward, the suction path 22 becomes negative pressure, and the air introduction path 58 (second Air is introduced into the second cylinder 42 via the air introduction path 582 and the third air introduction path 583), and the air reaches the mechanical pump 2 via the suction path 22 communicated with the second cylinder 42. Further, the air discharged from the mechanical pump 2 to the discharge path 21 is discharged to the first cylinder 41, and the air is communicated via the first supply path 561 (supply path 56) in communication with the first cylinder 41 (motor 7). It is discharged into the housing 71). As a result, the mechanical pump 2 idles in normal rotation, and the air introduced from the motor 7 via the air introduction path 58 is returned to the motor 7 via the supply path 56, and the air is transferred to the motor 7 (housing 71). It circulates with the path switching mechanism 3.
 また、上記のようにエアの循環を行うと、第1シリンダ41に排出されたエアが第1エア導入経路581に流通する場合がある。この場合、当該エアは第2エア導入経路582を介して第2シリンダ42に導入され、これが第2シリンダ42に連通する吸引経路22に導入され、エアが機械式ポンプ2、第1シリンダ41、第2シリンダ42、機械式ポンプ2の順に循環する循環経路が形成される。 In addition, when the air is circulated as described above, the air discharged to the first cylinder 41 may flow through the first air introduction path 581. In this case, the air is introduced into the second cylinder 42 through the second air introduction path 582 and introduced into the suction path 22 communicating with the second cylinder 42, and the air is introduced into the mechanical pump 2, the first cylinder 41, A circulation path in which the second cylinder 42 and the mechanical pump 2 circulate in this order is formed.
 図13に示すように、モータ7及び機械式ポンプ2が逆転した状態で、ピストン5を上記のように移動させると、吐出経路21が負圧となることで、供給経路56(第1供給経路561)を経由して第1シリンダ41にエアが導入され、第1シリンダ41に連通した吐出経路21を経由して機械式ポンプ2にエアが到達する。また、機械式ポンプ2から吸引経路22に吐出されたエアは第2シリンダ42に排出され、エアは第2シリンダ42に連通した第2エア導入経路582(エア導入経路58)を経由してモータ7(ハウジング71)に排出される。これにより、機械式ポンプ2が逆転で空回りするとともに、モータ7から供給経路56を介して導入したエアがエア導入経路58を介してモータ7に戻され、エアがモータ7(ハウジング71)と経路切替機構3との間を循環する。 As shown in FIG. 13, when the piston 5 is moved as described above in a state where the motor 7 and the mechanical pump 2 are reversely rotated, the discharge passage 21 has a negative pressure, and the supply passage 56 (first supply passage Air is introduced into the first cylinder 41 via 561), and the air reaches the mechanical pump 2 via the discharge path 21 communicated with the first cylinder 41. Further, the air discharged from the mechanical pump 2 to the suction path 22 is discharged to the second cylinder 42, and the air is communicated via the second air introduction path 582 (air introduction path 58) in communication with the second cylinder 42. 7 (housing 71). As a result, the mechanical pump 2 rotates in the reverse direction and the air introduced from the motor 7 via the supply path 56 is returned to the motor 7 via the air introduction path 58, and the air and the path between the motor 7 (housing 71) It circulates with the switching mechanism 3.
 また、上記のようにエアの循環を行うと、第2エア導入経路582に導入されたエアが第1エア導入経路581を介して第1シリンダ41に導入される場合がある。この場合、当該エアは第1シリンダ41に連通する吐出経路21に導入され、エアが機械式ポンプ2、第2シリンダ42、第1シリンダ41、機械式ポンプ2の順に循環する循環経路が形成される。 In addition, when the air is circulated as described above, the air introduced into the second air introduction path 582 may be introduced into the first cylinder 41 via the first air introduction path 581. In this case, the air is introduced into the discharge path 21 communicating with the first cylinder 41, and a circulation path is formed in which the air circulates in the order of the mechanical pump 2, the second cylinder 42, the first cylinder 41, and the mechanical pump 2. Ru.
 第3実施形態のモータ用冷媒循環装置1では、アクチュエータ6のストローク量は長くなるが、シリンダ4内をただちにエアで充填できるので、モータ7の出力の機械式ポンプ2の回転による損失を短時間で低減させることができる。 In the motor refrigerant circulating apparatus 1 of the third embodiment, although the stroke amount of the actuator 6 becomes long, since the inside of the cylinder 4 can be filled with air immediately, the loss of the output of the motor 7 due to the rotation of the mechanical pump 2 can be shortened. Can be reduced.
 [第4実施形態]
 図14は、第4実施形態のモータ用冷媒循環装置1を構成する経路切替機構3(正転空周り時)の模式図である。図15は、第4実施形態のモータ用冷媒循環装置1を構成する経路切替機構3(逆転空周り時)の模式図である。第4実施形態のモータ用冷媒循環装置1は、第2実施形態のモータ用冷媒循環装置1を構成する経路切替機構3において、第2導入経路572の開口部572a(第1開口部)が、第1シリンダ41に連通したものである。また、吐出経路21の第1シリンダ41に接続する開口部21a(第2開口部)の径は、第2仕切り板542の厚みよりも大きく設計されている。
Fourth Embodiment
FIG. 14 is a schematic view of a path switching mechanism 3 (when rotating around a forward rotation air) constituting the motor refrigerant circulating apparatus 1 of the fourth embodiment. FIG. 15 is a schematic view of a path switching mechanism 3 (during reverse rotation around the air) which constitutes the motor refrigerant circulating apparatus 1 of the fourth embodiment. In the motor refrigerant circulating apparatus 1 of the fourth embodiment, the opening 572a (first opening) of the second introduction path 572 is the path switching mechanism 3 constituting the motor refrigerant circulating apparatus 1 of the second embodiment. It is in communication with the first cylinder 41. The diameter of the opening 21 a (second opening) connected to the first cylinder 41 of the discharge path 21 is designed to be larger than the thickness of the second partition plate 542.
 そして、第3連通状態において、開口部572a(第1開口部)は、第2内部空間412に連通しており、第2仕切り板542の両面側に開口部21a(第2開口部)がはみ出る態様で第2仕切り板542の側面が開口部21a(第2開口部)に対向することで、第1内部空間411と第2内部空間412が開口部21a(第2開口部)を介して互いに連通している。 Then, in the third communication state, the opening 572a (first opening) is in communication with the second internal space 412, and the opening 21a (second opening) protrudes on both sides of the second partition plate 542 In the aspect, the side surface of the second partition plate 542 is opposed to the opening 21a (second opening), so that the first internal space 411 and the second internal space 412 mutually communicate via the opening 21a (second opening). It is in communication.
 図14に示すように、モータ7及び機械式ポンプ2が正転した状態で、第3連通状態を形成する位置にピストン5を移動させると、吸引経路22が負圧となることで、エア導入経路58(第2エア導入経路582)を経由して第4内部空間422にエアが導入され、当該エアが上記理由により冷媒に優先して第2導入経路572の開口部572aを介して第3内部空間421に導入され、さらに第3内部空間421に連通する吸引経路22に導入されることで機械式ポンプ2にエアが吸引される。 As shown in FIG. 14, when the piston 5 is moved to the position where the third communication state is formed in a state in which the motor 7 and the mechanical pump 2 are rotated forward, air is introduced by the suction path 22 becoming negative pressure. The air is introduced into the fourth inner space 422 via the path 58 (the second air introduction path 582), and the air is given priority over the refrigerant for the above reason and the third via the opening 572a of the second introduction path 572 The air is sucked into the mechanical pump 2 by being introduced into the internal space 421 and further into the suction path 22 communicating with the third internal space 421.
 また、機械式ポンプ2から吐出経路21に吐出されたエアは第1内部空間411に排出され、当該エアは第1内部空間411に連通した第1供給経路561(供給経路56)を介してモータ7(ハウジング71)に排出される。これにより、機械式ポンプ2が正転で空回りするとともに、モータ7からエア導入経路58を介して導入したエアが供給経路56を介してモータ7に戻され、エアがモータ7(ハウジング71)と経路切替機構3との間を循環する。 Further, the air discharged from the mechanical pump 2 to the discharge path 21 is discharged to the first inner space 411, and the air is communicated via the first inner path 411 with the first supply path 561 (supply path 56). 7 (housing 71). As a result, the mechanical pump 2 idles in normal rotation, and the air introduced from the motor 7 via the air introduction path 58 is returned to the motor 7 via the supply path 56, and the air is transferred to the motor 7 (housing 71). It circulates with the path switching mechanism 3.
 第3連通状態において、吐出経路21の開口部21a及び第2導入経路572の開口部572aは第2内部空間412で互いに連通している。よって、上記のようにエアの循環をしばらく行うと、第2内部空間412に排出されたエアが第2導入経路572の開口部572aを介して第3内部空間421に流通する場合がある。この場合、当該エアは再び吸引経路22に導入されることで、エアが機械式ポンプ2、第2内部空間412、第3内部空間421、機械式ポンプ2の順に循環する循環経路が形成される。 In the third communication state, the opening 21 a of the discharge path 21 and the opening 572 a of the second introduction path 572 communicate with each other in the second internal space 412. Therefore, when the air is circulated for a while as described above, the air discharged to the second inner space 412 may flow to the third inner space 421 through the opening 572 a of the second introduction path 572. In this case, the air is again introduced into the suction path 22 to form a circulation path in which the air circulates in the order of the mechanical pump 2, the second internal space 412, the third internal space 421, and the mechanical pump 2. .
 図15に示すように、モータ7及び機械式ポンプ2が逆転した状態で、第3連通状態を形成する位置にピストン5を移動させると、吐出経路21が負圧となることで、供給経路56(第1供給経路561)を経由して第1内部空間411にエアが導入され、当該エアが吐出経路21に導入されることで機械式ポンプ2にエアが吸引される。 As shown in FIG. 15, when the piston 5 is moved to the position where the third communication state is formed in a state where the motor 7 and the mechanical pump 2 are reversely rotated, the discharge path 21 has a negative pressure, and the supply path 56 The air is introduced into the first internal space 411 via the (first supply path 561), and the air is sucked into the mechanical pump 2 by the introduction of the air into the discharge path 21.
 また、機械式ポンプ2から吸引経路22に吐出されたエアは第3内部空間421に排出され、当該エアは第2導入経路572の開口部572aを介して第4内部空間422に導入され、第4内部空間422に連通する第2エア導入経路582(エア導入経路58)に導入されモータ7(ハウジング71)に排出される。これにより、機械式ポンプ2が逆転で空回りするとともに、モータ7からエア導入経路58を介して導入したエアが供給経路56を介してモータ7に戻され、エアがモータ7(ハウジング71)と経路切替機構3との間を循環する。 Further, the air discharged from the mechanical pump 2 to the suction path 22 is discharged to the third inner space 421, and the air is introduced into the fourth inner space 422 through the opening 572 a of the second introduction path 572. The air is introduced into the second air introduction path 582 (air introduction path 58) communicating with the internal space 422, and is discharged to the motor 7 (housing 71). As a result, the mechanical pump 2 rotates in the reverse direction and the air introduced from the motor 7 via the air introduction path 58 is returned to the motor 7 via the supply path 56, and the air and the path between the motor 7 (housing 71) It circulates with the switching mechanism 3.
 また、上記のようにエアの循環をしばらく行うと、第3内部空間421に排出されたエアが第2導入経路572の開口部572aを介して第2内部空間412に流通する場合がある。この場合、当該エアは開口部21aから吐出経路21に導入されることで、エアが機械式ポンプ2、第3内部空間421、第2内部空間412、機械式ポンプ2の順に循環する循環経路が形成される。 In addition, if the air is circulated for a while as described above, the air discharged to the third inner space 421 may flow to the second inner space 412 through the opening 572 a of the second introduction path 572. In this case, the air is introduced into the discharge path 21 from the opening 21a, so that the circulation path in which the air circulates in the order of the mechanical pump 2, the third internal space 421, the second internal space 412, and the mechanical pump 2 is It is formed.
 第4実施形態のモータ用冷媒循環装置1では、アクチュエータ6のストローク量を長くすることなく、エアの流通経路が複数できるので、エアの流通抵抗を減少させることで、モータ7の出力の機械式ポンプ2の回転による損失をさらに低減させ、アクチュエータ6の負担を軽減することができる。 In the motor refrigerant circulating apparatus 1 of the fourth embodiment, a plurality of air flow paths can be formed without lengthening the stroke amount of the actuator 6, and therefore, the mechanical resistance of the air can be reduced to reduce the mechanical resistance of the motor 7. The loss due to the rotation of the pump 2 can be further reduced, and the load on the actuator 6 can be reduced.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 As mentioned above, although the embodiment of the present invention was described, the above-mentioned embodiment showed only a part of application example of the present invention, and in the meaning of limiting the technical scope of the present invention to the concrete composition of the above-mentioned embodiment. Absent.

Claims (10)

  1.  モータに冷媒を循環して冷却させるモータ用冷媒循環装置であって、
     前記モータに機械的に接続され、前記モータの回転方向に従って前記冷媒の吐出方向が切り替わる機械式ポンプと、
     前記モータに前記冷媒を供給する供給経路と、前記モータから排出された前記冷媒を導入する導入経路と、前記モータの正転時に前記機械式ポンプから吐出される前記冷媒を流通させる吐出経路と、前記モータの正転時に前記機械式ポンプが吸引する前記冷媒を流通させる吸引経路と、が接続され、前記モータの正転時に前記吐出経路と前記供給経路を連通させるとともに前記吸引経路と前記導入経路を連通させ、前記モータの逆転時に前記吸引経路と前記供給経路を連通させるとともに前記吐出経路と前記導入経路を連通させる経路切替機構と、を備えるモータ用冷媒循環装置。
    A refrigerant circulating apparatus for a motor, which circulates a refrigerant through a motor for cooling,
    A mechanical pump mechanically connected to the motor and the discharge direction of the refrigerant is switched according to the rotation direction of the motor;
    A supply path for supplying the refrigerant to the motor, an introduction path for introducing the refrigerant discharged from the motor, and a discharge path for circulating the refrigerant discharged from the mechanical pump when the motor rotates forward; A suction path for circulating the refrigerant drawn by the mechanical pump at the time of normal rotation of the motor is connected, and the discharge path and the supply path are communicated at the time of normal rotation of the motor and the suction path and the introduction path And a path switching mechanism for establishing communication between the suction path and the supply path at the time of reverse rotation of the motor and connecting the discharge path and the introduction path.
  2.  前記経路切替機構は、
     前記供給経路と、前記導入経路と、前記吐出経路と、前記吸引経路と、が接続されたシリンダと、
     前記シリンダの内部空間を仕切る仕切り板が取り付けられ、前記仕切り板により前記モータの正転時に前記吐出経路と前記供給経路を連通させるとともに前記吸引経路と前記導入経路とを連通させる内部空間を形成する第1連通状態と、前記モータの逆転時に前記吸引経路と前記供給経路とを連通させるとともに前記吐出経路と前記導入経路とを連通させる内部空間を形成する第2連通状態と、に切り替え可能に可動するピストンと、
     前記モータの回転方向に従って前記ピストンを移動させ、前記シリンダの内部空間を前記第1連通状態及び前記第2連通状態のいずれか一方に切り替えるアクチュエータと、を備える請求項1に記載のモータ用冷媒循環装置。
    The path switching mechanism is
    A cylinder to which the supply path, the introduction path, the discharge path, and the suction path are connected;
    A partition plate for partitioning the internal space of the cylinder is attached, and the partition plate communicates the discharge path with the supply path when the motor rotates in the normal direction, and forms an internal space communicating the suction path with the introduction path. Movable so as to be switchable between a first communication state and a second communication state in which the suction path and the supply path are communicated and the discharge path and the introduction path are communicated when the motor reversely rotates. The piston to
    The motor refrigerant circulation according to claim 1, further comprising: an actuator that moves the piston in accordance with the rotation direction of the motor, and switches the internal space of the cylinder to any one of the first communication state and the second communication state. apparatus.
  3.  前記シリンダは、
     前記供給経路から分岐した第1供給経路、前記導入経路から分岐した第1導入経路、及び前記吐出経路に連通するとともに前記吸引経路から分離している第1シリンダと、
     前記供給経路から分岐した第2供給経路、前記導入経路から分岐した第2導入経路、及び前記吸引経路に連通するとともに前記吐出経路から分離している第2シリンダと、を備え、
     前記ピストンは、
     前記第1シリンダ内に配置される第1ピストンと、
     前記第2シリンダ内に配置される第2ピストンと、に分岐しており、
     前記仕切り板は、
     前記第1ピストンに並んで取り付けられた第1仕切り板及び第2仕切り板と、
     前記第2ピストンに並んで取り付けられた第3仕切り板及び第4仕切り板と、を備え、
     前記第1シリンダは、
     前記第1仕切り板と前記第2仕切り板の間に形成され、前記第1供給経路に連通する第1内部空間と、
     前記第2仕切り板の前記第1内部空間の反対側に形成され、前記第1導入経路に連通する第2内部空間と、を備え、
     前記第2シリンダは、
     前記第3仕切り板と前記第4仕切り板の間に形成され前記吸引経路に連通する第3内部空間を備え、
     前記第1連通状態において、
     前記第1内部空間は、前記吐出経路と前記第1供給経路とを連通し、
     前記第3内部空間は、前記吸引経路と前記第2導入経路とを連通し、
     前記第2連通状態において、
     前記第2内部空間は、前記吐出経路と前記第1導入経路とを連通し、
     前記第3内部空間は、前記吸引経路と前記第2供給経路とを連通している請求項2に記載のモータ用冷媒循環装置。
    The cylinder is
    A first supply path branched from the supply path, a first introduction path branched from the introduction path, and a first cylinder in communication with the discharge path and separated from the suction path;
    And a second supply path branched from the supply path, a second introduction path branched from the introduction path, and a second cylinder communicating with the suction path and separated from the discharge path.
    The piston is
    A first piston disposed in the first cylinder;
    Branched into a second piston disposed in the second cylinder,
    The partition plate is
    A first partition plate and a second partition plate mounted side by side with the first piston;
    And a third partition plate and a fourth partition plate mounted side by side with the second piston,
    The first cylinder is
    A first internal space formed between the first partition and the second partition and in communication with the first supply path;
    And a second internal space formed on the opposite side of the first internal space of the second partition plate and in communication with the first introduction path,
    The second cylinder is
    A third internal space formed between the third partition plate and the fourth partition plate and in communication with the suction path;
    In the first communication state,
    The first internal space communicates the discharge path with the first supply path,
    The third internal space communicates the suction path with the second introduction path,
    In the second communication state,
    The second internal space communicates the discharge path with the first introduction path,
    The motor refrigerant circulating apparatus according to claim 2, wherein the third internal space communicates the suction path and the second supply path.
  4.  前記シリンダには、エアを導入するエア導入経路が接続され、
     前記仕切り板は、前記第1連通状態を形成する位置と前記第2連通状態を形成する位置との間の位置において、前記吐出経路を前記供給経路に連通させるとともに前記導入経路を介して前記吸引経路を前記エア導入経路に連通させる内部空間を形成する第3連通状態に切り替え可能となるように前記ピストンに取り付けられ、
     前記アクチュエータは、前記冷媒の温度が所定温度よりも低くなったときに、前記第3連通状態となるように前記ピストンを移動させる請求項2に記載のモータ用冷媒循環装置。
    An air introduction path for introducing air is connected to the cylinder,
    The partition plate communicates the discharge path with the supply path at a position between the position for forming the first communication state and the position for forming the second communication state, and the suction via the introduction path. The piston is attached to the piston so as to be switchable to a third communication state forming an internal space communicating the path with the air introduction path,
    The motor refrigerant circulating apparatus according to claim 2, wherein the actuator moves the piston to be in the third communication state when the temperature of the refrigerant becomes lower than a predetermined temperature.
  5.  前記シリンダは、
     前記供給経路から分岐した第1供給経路、前記導入経路から分岐した第1導入経路、及び前記吐出経路に連通するとともに前記吸引経路から分離している第1シリンダと、
     前記供給経路から分岐した第2供給経路、前記導入経路から分岐した第2導入経路、前記吸引経路、及び前記エア導入経路に連通するとともに前記吐出経路から分離している第2シリンダと、を備え、
     前記ピストンは、
     前記第1シリンダ内に配置される第1ピストンと、
     前記第2シリンダ内に配置される第2ピストンと、に分岐しており、
     前記仕切り板は、
     前記第1ピストンに並んで取り付けられた第1仕切り板、第2仕切り板、及び第3仕切り板と、
     前記第2ピストンに並んで取り付けられた第4仕切り板、第5仕切り板、及び第6仕切り板と、を備え、
     前記第1シリンダは、
     前記第1仕切り板と前記第2仕切り板の間に形成され、前記第1供給経路に連通する第1内部空間と、
     前記第2仕切り板と前記第3仕切り板の間に形成され、前記第1導入経路に連通する第2内部空間と、を備え、
     前記第2シリンダは、
     前記第4仕切り板と前記第5仕切り板の間に形成され、前記吸引経路に連通する第3内部空間と、
     前記第5仕切り板と前記第6仕切り板との間に形成された第4内部空間と、を備え、
     前記第1連通状態において、
     前記第1内部空間は、前記吐出経路と前記第1供給経路とを連通し、
     前記第3内部空間は、前記吸引経路と前記第2導入経路とを連通し、
     前記第2連通状態において、
     前記第2内部空間は、前記吐出経路と前記第1導入経路とを連通し、
     前記第3内部空間は、前記吸引経路と前記第2供給経路とを連通し、
     前記第3連通状態において、
     前記第1内部空間は、前記吐出経路と前記第1供給経路とを連通し、
     前記第3内部空間は、前記吸引経路に連通し、
     前記第4内部空間は、前記エア導入経路に連通し、
     前記第3内部空間と前記第4内部空間が前記第2導入経路を介して互いに連通している請求項4に記載のモータ用冷媒循環装置。
    The cylinder is
    A first supply path branched from the supply path, a first introduction path branched from the introduction path, and a first cylinder in communication with the discharge path and separated from the suction path;
    And a second supply path branched from the supply path, a second introduction path branched from the introduction path, the suction path, and a second cylinder communicated with the air introduction path and separated from the discharge path. ,
    The piston is
    A first piston disposed in the first cylinder;
    Branched into a second piston disposed in the second cylinder,
    The partition plate is
    A first partition plate mounted in parallel to the first piston, a second partition plate, and a third partition plate;
    And a fourth partition plate, a fifth partition plate, and a sixth partition plate, which are attached side by side to the second piston,
    The first cylinder is
    A first internal space formed between the first partition and the second partition and in communication with the first supply path;
    And a second internal space formed between the second partition plate and the third partition plate and in communication with the first introduction path,
    The second cylinder is
    A third internal space formed between the fourth partition plate and the fifth partition plate and in communication with the suction path;
    And a fourth internal space formed between the fifth partition plate and the sixth partition plate,
    In the first communication state,
    The first internal space communicates the discharge path with the first supply path,
    The third internal space communicates the suction path with the second introduction path,
    In the second communication state,
    The second internal space communicates the discharge path with the first introduction path,
    The third internal space communicates the suction path with the second supply path,
    In the third communication state,
    The first internal space communicates the discharge path with the first supply path,
    The third internal space communicates with the suction path,
    The fourth internal space is in communication with the air introduction path,
    The motor refrigerant circulating apparatus according to claim 4, wherein the third internal space and the fourth internal space are in communication with each other via the second introduction path.
  6.  前記第2導入経路の前記第2シリンダに接続する第1開口部の径は、前記第5仕切り板の厚みよりも大きく、
     前記第3連通状態において、前記第5仕切り板の両面側に前記第1開口部がはみ出る態様で前記第5仕切り板の側面が前記第1開口部に対向することで、前記第3内部空間と前記第4内部空間が前記第1開口部を介して互いに連通している請求項5に記載のモータ用冷媒循環装置。
    The diameter of the first opening connected to the second cylinder of the second introduction path is larger than the thickness of the fifth partition plate,
    In the third communication state, the side surface of the fifth partition plate faces the first opening portion in a mode in which the first opening portion protrudes on both sides of the fifth partition plate, and the third internal space The motor refrigerant circulating apparatus according to claim 5, wherein the fourth inner spaces communicate with each other through the first opening.
  7.  前記第1開口部は、前記第1シリンダに連通しており、
     前記吐出経路の前記第1シリンダに接続する第2開口部の径は、前記第2仕切り板の厚みよりも大きく、
     前記第3連通状態において、
     前記第1開口部は、前記第2内部空間に連通しており、前記第2仕切り板の両面側に前記第2開口部がはみ出る態様で前記第2仕切り板の側面が前記第2開口部に対向することで、前記第1内部空間と前記第2内部空間が前記第2開口部を介して互いに連通している請求項6に記載のモータ用冷媒循環装置。
    The first opening communicates with the first cylinder,
    The diameter of the second opening connected to the first cylinder of the discharge path is larger than the thickness of the second partition plate,
    In the third communication state,
    The first opening communicates with the second internal space, and the side surface of the second partition is in the second opening in a mode in which the second opening protrudes on both sides of the second partition. The motor refrigerant circulating apparatus according to claim 6, wherein the first internal space and the second internal space communicate with each other through the second opening by facing each other.
  8.  前記アクチュエータは、前記シリンダの内部空間を前記第3連通状態にしている間、所定時間ごとに前記モータの回転方向に従って前記第1連通状態または前記第2連通状態に一時的にもどす請求項4乃至7のいずれか1項に記載のモータ用冷媒循環装置。 4. The actuator according to claim 4, wherein the actuator temporarily returns the first communication state or the second communication state according to the rotation direction of the motor every predetermined time while the internal space of the cylinder is in the third communication state. The refrigerant | coolant circulation apparatus for motors of any one of 7.
  9.  前記シリンダには、エアを導入するエア導入経路が接続され、
     前記アクチュエータは、前記仕切り板のいずれもが、前記供給経路、前記吐出経路、前記吸引経路、及び前記エア導入経路の前記シリンダに接続するそれぞれの開口部よりも前記ピストンの長手方向の一方側に位置するように前記ピストンを移動可能である請求項2に記載のモータ用冷媒循環装置。
    An air introduction path for introducing air is connected to the cylinder,
    The actuator is located on one side in the longitudinal direction of the piston than an opening of each of the partition plates connected to the supply path, the discharge path, the suction path, and the cylinder of the air introduction path. The motor refrigerant circulating apparatus according to claim 2, wherein the piston is movable to be positioned.
  10.  前記エア導入経路は、前記モータのハウジングに連通している請求項4乃至9のいずれか1項に記載のモータ用冷媒循環装置。 The motor refrigerant circulating apparatus according to any one of claims 4 to 9, wherein the air introduction path is in communication with a housing of the motor.
PCT/JP2017/022577 2017-06-19 2017-06-19 Refrigerant circulation device for motor WO2018235143A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/022577 WO2018235143A1 (en) 2017-06-19 2017-06-19 Refrigerant circulation device for motor
JP2019524730A JP6726360B2 (en) 2017-06-19 2017-06-19 Refrigerant circulation device for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022577 WO2018235143A1 (en) 2017-06-19 2017-06-19 Refrigerant circulation device for motor

Publications (1)

Publication Number Publication Date
WO2018235143A1 true WO2018235143A1 (en) 2018-12-27

Family

ID=64736958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022577 WO2018235143A1 (en) 2017-06-19 2017-06-19 Refrigerant circulation device for motor

Country Status (2)

Country Link
JP (1) JP6726360B2 (en)
WO (1) WO2018235143A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087713A (en) * 2006-10-04 2008-04-17 Toyota Motor Corp In-wheel motor structure
JP5092919B2 (en) * 2008-06-17 2012-12-05 トヨタ自動車株式会社 Cooling mechanism
JP2013208040A (en) * 2012-03-29 2013-10-07 Sumitomo Heavy Ind Ltd Turning drive unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087713A (en) * 2006-10-04 2008-04-17 Toyota Motor Corp In-wheel motor structure
JP5092919B2 (en) * 2008-06-17 2012-12-05 トヨタ自動車株式会社 Cooling mechanism
JP2013208040A (en) * 2012-03-29 2013-10-07 Sumitomo Heavy Ind Ltd Turning drive unit

Also Published As

Publication number Publication date
JP6726360B2 (en) 2020-07-22
JPWO2018235143A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
US8358042B2 (en) Electric motor integrated hydraulic motor
WO2013146576A1 (en) Fluid pressure drive unit
EP4166819B1 (en) Power assembly and vehicle
JPH10213075A (en) Pump unit with power part cooler using force feed fluid as means
KR102176867B1 (en) Electric oil pump
WO2019208083A1 (en) Motor unit
CN114374294A (en) Power assembly and electric vehicle
WO2019208084A1 (en) Motor unit and method for controlling motor unit
WO2019208081A1 (en) Motor unit and vehicle drive device
JP2006283694A (en) Scroll type fluid machine
JP7456382B2 (en) motor unit
WO2018235143A1 (en) Refrigerant circulation device for motor
JP3955874B2 (en) Prime mover
JP5803183B2 (en) Pump and electric pump unit
JP4156951B2 (en) Hybrid compressor
WO2019208082A1 (en) Motor unit
JP2017203472A (en) Hydraulic supply device
JP2017133458A (en) Oil supply device
KR102303397B1 (en) gear pump
JP6658558B2 (en) Cooling system for electric vehicles
JP2008267222A (en) Liquid-cooled type screw compressor
JP3608688B2 (en) Oil pump device
WO2022130672A1 (en) Integrated pump device
JP2007138778A (en) Scroll compressor
JP2019186989A (en) Vehicle oil supplying device, and oil supplying method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524730

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914398

Country of ref document: EP

Kind code of ref document: A1