JP2008267222A - Liquid-cooled type screw compressor - Google Patents

Liquid-cooled type screw compressor Download PDF

Info

Publication number
JP2008267222A
JP2008267222A JP2007109509A JP2007109509A JP2008267222A JP 2008267222 A JP2008267222 A JP 2008267222A JP 2007109509 A JP2007109509 A JP 2007109509A JP 2007109509 A JP2007109509 A JP 2007109509A JP 2008267222 A JP2008267222 A JP 2008267222A
Authority
JP
Japan
Prior art keywords
screw
rotor
liquid
oil
injection hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007109509A
Other languages
Japanese (ja)
Inventor
Seiji Yoshimura
省二 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007109509A priority Critical patent/JP2008267222A/en
Publication of JP2008267222A publication Critical patent/JP2008267222A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid-cooled type screw compressor reducing power loss after injection of coolant to a rotor chamber housing a screw rotor. <P>SOLUTION: The liquid-cooled type screw compressor has a pair of mutually meshed male and female screw rotors 2a, 2b. In the liquid-cooled type screw compressor, a liquid injection hole 15 is formed to a screw suction end surface 16 of the rotor chamber 4 housing the screw rotors 2a, 2b, and the coolant can be injected from the liquid injection hole 15 to a screw discharge direction. The liquid injection hole 15 is formed to the screw suction end surface of the rotor chamber 4 adjacent to suction side end surfaces of the screw rotors 2a, 2b, or is formed to a screw suction end surface 16 on a female rotor 2b side of the rotor chamber 4, so that the coolant can be injected from the liquid injection hole 15 to the screw discharge direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、互いに噛み合う雌雄一対のスクリュロータを有する液冷式スクリュ圧縮機において、前記スクリュロータを収納するロータ室への冷却液の注入機構の改善に関する。   The present invention relates to an improvement in a mechanism for injecting a coolant into a rotor chamber that houses a screw rotor in a liquid-cooled screw compressor having a pair of male and female screw rotors that mesh with each other.

スクリュ圧縮機のスクリュロータ(以下、ロータとも言う)の温度は流体が圧縮されるのに伴って上昇する。従って、スクリュロータを冷却する冷却機構が必須である。このような冷却機構として、一般的に外部の冷却装置による冷却空気や冷却液の供給等が従来より用いられてきた。   The temperature of the screw rotor (hereinafter also referred to as the rotor) of the screw compressor increases as the fluid is compressed. Therefore, a cooling mechanism for cooling the screw rotor is essential. As such a cooling mechanism, supply of cooling air or cooling liquid by an external cooling device has been conventionally used.

そこで先ず、上記冷却液として冷却油を用いた従来例に係る油冷式スクリュ圧縮機の一般的な冷却機構につき、以下図7を参照しながら説明する。図7は従来例に係る油冷式スクリュ圧縮機の断面図である。   First, a general cooling mechanism of an oil-cooled screw compressor according to a conventional example using cooling oil as the cooling liquid will be described below with reference to FIG. FIG. 7 is a sectional view of an oil-cooled screw compressor according to a conventional example.

この油冷式スクリュ圧縮機21は、ロータケーシング20内に互いに噛み合う雌雄一対のスクリュロータ22を備えている。このスクリュロータ22は、吸込側の軸受部23及び吐出側の軸受部24によって回転可能に支持されており、これらの軸受部23,24とスクリュロータ22との間に、軸封部25,26が夫々設けてある。また、軸受部23,24、軸封部25,26及びスクリュ圧縮機21内のガス圧縮空間部であるロータ室27等の注油箇所に注油するための注油孔28,29及び30が設けられている。更に、注入した油を排出して吸込口32に戻す排油戻し流路33,34が設けられている。   The oil-cooled screw compressor 21 includes a pair of male and female screw rotors 22 that mesh with each other in the rotor casing 20. The screw rotor 22 is rotatably supported by a suction-side bearing portion 23 and a discharge-side bearing portion 24, and shaft sealing portions 25, 26 are interposed between the bearing portions 23, 24 and the screw rotor 22. Are provided respectively. Also, lubrication holes 28, 29, and 30 are provided for lubricating the bearing portions 23, 24, the shaft seal portions 25, 26, and the lubrication locations such as the rotor chamber 27 that is a gas compression space in the screw compressor 21. Yes. Furthermore, drain oil return passages 33 and 34 for discharging the injected oil and returning it to the suction port 32 are provided.

そして、吸込流路35より、スクリュ圧縮機21に吸い込まれた気体は注油孔30から油注入を受けつつ圧縮され、油と共に圧縮ガスとして吐出口36より吐出されている。ここで、前記ロータ室27に注入された油は、気体圧縮部の冷却、スクリュロータ22同士の間、及びスクリュロータ22とロータケーシング20の内壁部との間のシール及び潤滑の働きをしている。   The gas sucked into the screw compressor 21 from the suction passage 35 is compressed while receiving oil injection from the oil injection hole 30 and is discharged from the discharge port 36 as compressed gas together with the oil. Here, the oil injected into the rotor chamber 27 functions as cooling of the gas compression portion, sealing between the screw rotors 22 and between the screw rotor 22 and the inner wall portion of the rotor casing 20, and lubrication. Yes.

また、前記軸受部23,24及び軸封部25,26に注入された油は、排油戻し流路33,34により吸込口32に戻され、気体と共に吸い込まれ、吐出口36より吐出される。吐出された圧縮気体及び油は図示しない油分離回収器において互いに分離され、圧縮ガスは吐出流路37に送り出される。   The oil injected into the bearing portions 23 and 24 and the shaft seal portions 25 and 26 is returned to the suction port 32 by the drain oil return passages 33 and 34, sucked together with the gas, and discharged from the discharge port 36. . The discharged compressed gas and oil are separated from each other in an oil separation / recovery unit (not shown), and the compressed gas is sent out to the discharge passage 37.

更に他の従来例に係るスクリュ圧縮機につき、以下図8,9を参照しながら説明する。図8は従来例に係るスクリュ圧縮機のロータケーシングを、スクリュロータを省略した状態で示した正断面図で、図9の矢視J−Jを示す断面図、図9は図8の矢視K−Kを示す断面図である。   A screw compressor according to another conventional example will be described below with reference to FIGS. FIG. 8 is a front sectional view showing a rotor casing of a screw compressor according to a conventional example in a state where the screw rotor is omitted. FIG. 8 is a sectional view taken along line JJ in FIG. 9, and FIG. It is sectional drawing which shows KK.

この従来例に係るスクリュ圧縮機は、互いに噛み合う雌雄一対のスクリュロータを収納したケーシング41のロータ室39の吸込側開口部を形成する吸込ポート40の縁部に、ロータ室39への冷却用液体を注入する注液用開口部42と、この吸込ポート40の壁部46の表層部に沿って延在し、上記注液用開口部42に至る冷却部43と、この冷却部43に上記冷却用液体を導く導入部44とからなる冷却液注入孔45を設けている。   The screw compressor according to this conventional example is a liquid for cooling into the rotor chamber 39 at the edge of the suction port 40 forming the suction side opening of the rotor chamber 39 of the casing 41 housing a pair of male and female screw rotors that mesh with each other. A liquid injection opening 42, a cooling portion 43 extending along the surface layer of the wall portion 46 of the suction port 40, and reaching the liquid injection opening 42. A cooling liquid injection hole 45 comprising an introduction part 44 for guiding the working liquid is provided.

この様に構成することによって、吸込ポート40の壁部46が冷却液により冷却され、吸込ポート部40のガスが冷却されると共に、前記注液用開口部42から注入される冷却液によりスクリュロータに吸い込まれたガスが冷却される(特許文献1参照)。   With this configuration, the wall portion 46 of the suction port 40 is cooled by the coolant, the gas of the suction port portion 40 is cooled, and the screw rotor is cooled by the coolant injected from the liquid injection opening 42. The gas sucked in is cooled (see Patent Document 1).

しかしながら、従来例に係るスクリュ圧縮機の冷却液注入機構は、前図7及び9に示す様に、前記スクリュロータを収納するロータケーシングのロータ室側壁や吸込ポートの縁部に、前記スクリュロータの軸心に対して直角方向に注液孔を設け、この注液孔から冷却液を注入する様に構成されている。この様な冷却液注入機構による問題点につき、以下図10,11を参照しながら説明する。図10は従来例に係る液冷式スクリュ圧縮機のロータ室を示す正断面図で、図11の矢視U−Uを示す断面図、図11は図10の矢視V−Vを示す断面図である。   However, as shown in FIGS. 7 and 9, the coolant injection mechanism of the screw compressor according to the conventional example is provided on the rotor chamber side wall of the rotor casing that houses the screw rotor and the edge of the suction port. A liquid injection hole is provided in a direction perpendicular to the axis, and the cooling liquid is injected from the liquid injection hole. Problems with such a coolant injection mechanism will be described below with reference to FIGS. 10 is a front cross-sectional view showing a rotor chamber of a liquid-cooled screw compressor according to a conventional example, a cross-sectional view showing an arrow U-U in FIG. 11, and FIG. 11 is a cross-section showing an arrow V-V in FIG. FIG.

今、ロータケーシング50に設けられたロータ室51内において、雌雄一対のロータ52a,52bが図の矢印Rの方向に夫々回転しているとすれば、注液孔53からロータ52a,52bの軸心に直角方向(矢印Aの方向)に注入された冷却液は、雌ロータ52bの歯に衝突してこのロータ52bの回転方向、即ち、矢印Bの方向に向きを変える。その反作用として、雌ロータ52bの歯に矢印Dの方向の反力が働く。次いで、ロータ52a,52bの噛み合い部分で、矢印Cの方向に運動方向が変わる。   Now, in the rotor chamber 51 provided in the rotor casing 50, if the pair of male and female rotors 52a and 52b rotate in the direction of the arrow R in the figure, the shafts of the rotors 52a and 52b from the liquid injection hole 53, respectively. The coolant injected in the direction perpendicular to the center (in the direction of arrow A) collides with the teeth of the female rotor 52b and changes its direction in the direction of rotation of the rotor 52b, that is, in the direction of arrow B. As a reaction, a reaction force in the direction of arrow D acts on the teeth of the female rotor 52b. Next, the direction of movement changes in the direction of arrow C at the meshing portion of the rotors 52a and 52b.

前記注液孔からロータ52a,52bの軸心に直角方向、即ち矢印Aの方向に注入された冷却液は、矢印B,C方向への運動量を持っていないため、前記方向転換に伴う反力は雌ロータ52bに作用し、圧縮機を駆動する図示しない駆動モータにロス動力として加算される。このロス量は前記モータ軸動力の2〜3%程度にもなるが、この様な動力ロスを低減することを目的とした冷却液の注入機構の改善に関する従来例は見当たらない。
実開平6−34189号公報
Since the coolant injected from the liquid injection hole in the direction perpendicular to the axial center of the rotors 52a and 52b, that is, in the direction of the arrow A does not have the momentum in the directions of the arrows B and C, the reaction force accompanying the direction change Acts on the female rotor 52b and is added as loss power to a drive motor (not shown) that drives the compressor. Although this loss amount is about 2 to 3% of the motor shaft power, there is no conventional example relating to the improvement of the coolant injection mechanism for the purpose of reducing such power loss.
Japanese Utility Model Publication No. 6-34189

従って、本発明の目的は、スクリュロータを収納するロータ室への冷却液注入後の動力ロスを低減し得る液冷式スクリュ圧縮機を提供することにある。   Accordingly, an object of the present invention is to provide a liquid-cooled screw compressor that can reduce power loss after injecting coolant into a rotor chamber that houses a screw rotor.

前記目的を達成するために、本発明の請求項1に係る液冷式スクリュ圧縮機が採用した手段は、互いに噛み合う雌雄一対のスクリュロータを有するスクリュ圧縮機において、前記スクリュロータを収納するロータ室のスクリュ吸込端面に注液孔を設け、この注液孔からスクリュ吐出方向に向かって冷却液を注入可能に構成することを特徴とするものである。   In order to achieve the above object, the liquid-cooled screw compressor according to claim 1 of the present invention employs a screw compressor having a pair of male and female screw rotors that mesh with each other, and a rotor chamber that houses the screw rotor. A liquid injection hole is provided in the screw suction end face, and a coolant can be injected from the liquid injection hole toward the screw discharge direction.

本発明の請求項2に係る液冷式スクリュ圧縮機が採用した手段は、請求項1に記載の液冷式スクリュ圧縮機において、前記注液孔を、スクリュロータの吸込側端面に近接する前記ロータ室のスクリュ吸込端面に設けることを特徴とするものである。   The means employed by the liquid-cooled screw compressor according to claim 2 of the present invention is the liquid-cooled screw compressor according to claim 1, wherein the liquid injection hole is close to the suction side end surface of the screw rotor. It is provided on the screw suction end face of the rotor chamber.

本発明の請求項3に係る液冷式スクリュ圧縮機が採用した手段は、請求項1または2に記載の液冷式スクリュ圧縮機において、前記注液孔を、前記ロータ室の雌ロータ側のスクリュ吸込端面に設けることを特徴とするものである。   The means employed by the liquid-cooled screw compressor according to claim 3 of the present invention is the liquid-cooled screw compressor according to claim 1 or 2, wherein the liquid injection hole is formed on the female rotor side of the rotor chamber. It is provided on the screw suction end face.

本発明の請求項1に係る液冷式スクリュ圧縮機によれば、前記スクリュロータを収納するロータ室のスクリュ吸込端面に注液孔を設け、この注液孔からスクリュ吐出方向に向かって冷却液を注入するので、前記冷却液は、注入時からスクリュ吐出方向に向かう運動量を保有しており、冷却液注入後の運動方向転換による動力ロスが解消される。   According to the liquid-cooled screw compressor according to claim 1 of the present invention, a liquid injection hole is provided in the screw suction end face of the rotor chamber housing the screw rotor, and the coolant is supplied from the liquid injection hole toward the screw discharge direction. Therefore, the coolant has a momentum from the time of injection toward the screw discharge direction, and power loss due to the change of the motion direction after the coolant injection is eliminated.

また、本発明の請求項2に係る液冷式スクリュ圧縮機によれば、前記注液孔を、前記ロータ室のスクリュ吸込端面がスクリュロータの吸込側端面に接する壁面に設け、この注液孔からスクリュ吐出方向に向かって冷却液を注入するので、前記スクリュロータの歯溝が閉じ込んだ状態の注液となり、冷却液が逆流する恐れがない。   In the liquid-cooled screw compressor according to claim 2 of the present invention, the liquid injection hole is provided on a wall surface where the screw suction end surface of the rotor chamber is in contact with the suction side end surface of the screw rotor. Since the cooling liquid is injected from the direction toward the screw discharge direction, the screw rotor is in a state where the tooth groove of the screw rotor is closed, and there is no possibility that the cooling liquid flows backward.

更に、本発明の請求項3に係る液冷式スクリュ圧縮機によれば、前記注液孔を、前記ロータ室の歯厚の薄い雌ロータ側のスクリュ吸込端面に設けるので、前記スクリュの歯によって注液孔の開孔が塞がれる時間が短くなり、小径の注液孔で十分注液可能となる。   Furthermore, according to the liquid-cooled screw compressor according to claim 3 of the present invention, the liquid injection hole is provided in the screw suction end surface on the female rotor side where the tooth thickness of the rotor chamber is thin. The time required to close the opening of the liquid injection hole is shortened, and the liquid injection can be sufficiently performed with the small diameter liquid injection hole.

先ず、本発明の実施の形態1に係る液冷式スクリュ圧縮機について、以下図1〜4を参照しながら説明する。図1は、本発明の実施の形態1に係る液冷式スクリュ圧縮機の冷却系統を示す模式的説明図である。図2は図1のスクリュ圧縮機の矢視X−Xを示す断面図で、図3の矢視Z−Zを示す断面図である。図3は図2の矢視Y−Yを示す断面図である。   First, a liquid-cooled screw compressor according to Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic explanatory view showing a cooling system of a liquid-cooled screw compressor according to Embodiment 1 of the present invention. 2 is a cross-sectional view taken along the line XX of the screw compressor of FIG. 1, and is a cross-sectional view taken along the line ZZ of FIG. 3 is a cross-sectional view taken along the line YY of FIG.

本発明の実施の形態1に係る液冷式スクリュ圧縮機は、雌雄一対のスクリュロータ2a,2bが噛み合って、ロータケーシング3の内部に形成されたロータ室4に回転可能に収容されてなる圧縮機本体1を備えている。圧縮機本体1の吸込口1aには、吸込流路5が接続され、その吐出口1bには吐出流路6の一端側が接続されている。そして、圧縮機本体1を構成する前記雌雄一対のスクリュロータ2a,2bのうちの一方、雄ロータ2aのみが、駆動モータMの駆動軸7に接続されている。   The liquid-cooled screw compressor according to the first embodiment of the present invention is a compression in which a pair of male and female screw rotors 2a and 2b mesh with each other and are rotatably accommodated in a rotor chamber 4 formed inside the rotor casing 3. A machine body 1 is provided. A suction flow path 5 is connected to the suction port 1a of the compressor body 1, and one end side of the discharge flow path 6 is connected to the discharge port 1b. Only one male rotor 2 a of the pair of male and female screw rotors 2 a and 2 b constituting the compressor body 1 is connected to the drive shaft 7 of the drive motor M.

この駆動モータMにより、スクリュロータ2a,2bを、図2の矢印Rに示す方向に回転させることによって、吸込流路5から供給される気体を、圧縮機本体1のスクリュロータ2a,2bの吸込側(図2のロータ左側)から吸い込み、圧縮して前記スクリュロータ2a,2bの吐出側(図2のロータ右側)から高圧流体として吐出流路6に吐出する。   By rotating the screw rotors 2a and 2b in the direction indicated by the arrow R in FIG. 2 by the drive motor M, the gas supplied from the suction passage 5 is sucked into the screw rotors 2a and 2b of the compressor body 1. The air is sucked in from the side (the left side of the rotor in FIG. 2), compressed, and discharged from the discharge side (the right side of the rotor in FIG. 2) of the screw rotors 2a and 2b as a high-pressure fluid into the discharge channel 6.

上記駆動モータMは、モータケーシング8内部のモータハウジングに収納され、このモータケーシング8は、ロータケーシング3と一体的に結合されている。前記駆動モータMは、前記モータケーシング8内面に固定された図示しない固定子と、駆動軸7を中心に回転する図示しない回転子からなり、制御器により回転制御されている。そして、この駆動モータMは、吸込側軸受9aと吐出側軸受9bとによって軸支された前記駆動軸7の回転力を、圧縮機本体1のスクリュロータ2a,2bへ伝達している。   The drive motor M is housed in a motor housing inside the motor casing 8, and the motor casing 8 is integrally coupled to the rotor casing 3. The drive motor M includes a stator (not shown) fixed to the inner surface of the motor casing 8 and a rotor (not shown) that rotates about the drive shaft 7 and is controlled to rotate by a controller. The drive motor M transmits the rotational force of the drive shaft 7 supported by the suction side bearing 9a and the discharge side bearing 9b to the screw rotors 2a and 2b of the compressor body 1.

一方、前記吸込流路5には、その吸込流路5を通過する気体の流量を調整する吸込調整弁5aが備えられており、制御器によりその弁開度が制御される。また、吐出流路6には油分離回収器10が介装され、油分離回収器10内部には油分離エレメント10aが備えられている。この油分離回収器10に流入した高圧気体には僅かに油が混入しているので、この油を油分離回収器10の内部に備えられた油分離エレメント10aにて捕捉する。油分離エレメント10aにて捕捉された油は自重により滴下し、油分離回収器10内部の下方に油溜り10bが形成される。   On the other hand, the suction flow path 5 is provided with a suction adjustment valve 5a for adjusting the flow rate of the gas passing through the suction flow path 5, and the valve opening degree is controlled by a controller. An oil separation / recovery device 10 is interposed in the discharge flow path 6, and an oil separation element 10 a is provided inside the oil separation / recovery device 10. Since the oil is slightly mixed in the high-pressure gas flowing into the oil separation / recovery device 10, the oil is captured by the oil separation element 10 a provided in the oil separation / recovery device 10. The oil trapped by the oil separation element 10a is dropped by its own weight, and an oil reservoir 10b is formed below the oil separation / recovery device 10 inside.

このようにして油溜り10bに回収された油は、前記油分離回収器10から前記圧縮機本体1に連通する油循環流路11を通して、図示しないオイルポンプによって循環される。この油循環流路11にはオイルクーラ12が介装され、図示しない制御器によって温度制御することによって通過する油が冷却される。そして、オイルクーラ12によって冷却された油は、油の供給の必要な部位にロータケーシング3に設けられた注油流路を介して供給される。このような注油流路は、吸込側軸受(及び軸封部)9aへの注油流路13,吐出側軸受(及び軸封部)9bへの注油流路14及びスクリュロータ2a,2bとロータケーシング3が形成する圧縮空間への注油流路15から構成される。   The oil recovered in the oil reservoir 10b in this manner is circulated by an oil pump (not shown) through an oil circulation passage 11 communicating from the oil separator / collector 10 to the compressor body 1. An oil cooler 12 is interposed in the oil circulation passage 11, and the passing oil is cooled by controlling the temperature by a controller (not shown). And the oil cooled by the oil cooler 12 is supplied to the site | part which needs supply of oil through the oil supply flow path provided in the rotor casing 3. FIG. Such an oil supply passage includes an oil supply passage 13 to the suction side bearing (and shaft seal portion) 9a, an oil supply passage 14 to the discharge side bearing (and shaft seal portion) 9b, the screw rotors 2a and 2b, and the rotor casing. 3 is composed of an oil injection flow path 15 to the compression space formed by 3.

そして、前記スクリュロータ2a,2bとロータケーシング3が形成する圧縮空間への注油流路15は、図2及び3に示す如く、前記スクリュロータ2a,2bを収納するロータケーシング3に、ロータ軸心と略直角方向に設けられた油導入孔15aと、この油導入孔15aと連通してロータ室4のスクリュ吸込端面16に至るまで吐出側に向かって穿設された注油孔15b(注油孔)を含む。即ち、注油孔15bは、ロータ軸心と略同方向に穿設されている。この注油流路15、特に注油流路15のうちの注油孔15bによって、吐出方向に向かう矢印Qで示す注入方向に冷却油を注入することができる。   And, as shown in FIGS. 2 and 3, an oil flow path 15 to the compression space formed by the screw rotors 2a and 2b and the rotor casing 3 is provided on the rotor casing 3 that houses the screw rotors 2a and 2b. And an oil introduction hole 15b (oil supply hole) drilled toward the discharge side until reaching the screw suction end face 16 of the rotor chamber 4 in communication with the oil introduction hole 15a. including. That is, the oil supply hole 15b is formed in substantially the same direction as the rotor shaft center. Cooling oil can be injected in the injection direction indicated by the arrow Q toward the discharge direction by the oil supply passage 15, particularly the oil supply hole 15 b in the oil supply passage 15.

ここで、図3におけるハッチング部は、スクリュロータ2a,2bの吸込側端面に近接するロータ室4のスクリュ吸込端面16に該当する壁面16aを示す。また、2つの円の部分を除く他のハッチングしていない部分は、ロータ室4の吸込部通路16bを示している。この様に、本発明に係る冷却油注入機構は、冷却油の注油孔15bを、スクリュロータ2a,2bの吸込側端面に近接する前記ロータ室4のスクリュ吸込端面16に該当する壁面16aに設けて、この注油孔15bから吐出方向に向かって冷却油を注入するのが好ましい。   3 indicates a wall surface 16a corresponding to the screw suction end surface 16 of the rotor chamber 4 adjacent to the suction side end surfaces of the screw rotors 2a and 2b. Moreover, the part which is not hatched other than the part of two circles has shown the suction part channel | path 16b of the rotor chamber 4. FIG. As described above, the cooling oil injection mechanism according to the present invention has the cooling oil injection hole 15b provided on the wall surface 16a corresponding to the screw suction end face 16 of the rotor chamber 4 adjacent to the suction side end faces of the screw rotors 2a and 2b. Thus, it is preferable to inject cooling oil from the oil injection hole 15b toward the discharge direction.

尚、壁面16aとスクリュロータ2a,2bの吸込側端面とは上述の通り近接しており、両者の間には、例えば0.2mm程度の微小な間隙が形成されている。この様な冷却油の注入によって、スクリュロータ2a,2bの歯溝が閉じ込んだ状態で注油するため、冷却油が逆流する恐れがない。   Note that the wall surface 16a and the suction side end surfaces of the screw rotors 2a and 2b are close to each other as described above, and a minute gap of, for example, about 0.2 mm is formed between them. By injecting the cooling oil in this manner, the oil is poured in a state where the tooth grooves of the screw rotors 2a and 2b are closed, so that the cooling oil does not flow backward.

更に、前記注油孔15bは、前記ロータ室4の雌ロータ2b側のスクリュ吸込端面16に設けられることが好ましい。雌ロータ2bの歯厚は、雄ロータ2aの歯厚に比べて薄い。このため、雌ロータ2b側のスクリュ吸込端面16に注油孔15bを設けて注油する方が、雄ロータ2a側のスクリュ吸込端面16に注油孔15bを設けて注油するよりも、注油孔15bの開孔を前記ロータの歯によって閉塞する確率が低いためである。   Further, it is preferable that the oil supply hole 15 b is provided in the screw suction end face 16 on the female rotor 2 b side of the rotor chamber 4. The tooth thickness of the female rotor 2b is thinner than the tooth thickness of the male rotor 2a. For this reason, providing the oil supply hole 15b in the screw suction end face 16 on the female rotor 2b side and opening the oil supply hole 15b is more effective than providing the oil supply hole 15b in the screw intake end face 16 on the male rotor 2a side. This is because the probability that the hole is blocked by the teeth of the rotor is low.

前記注油孔15bから注油された冷却油の注入速度が、ロータ2a,2bの周速×tan(リード角)より大きい場合、図2の点Pで雌ロータ2bの歯に衝突する。この衝突により、雌ロータ2bは回転方向成分を有する力を受けるために、従来例に示した図9の矢印Dと逆に、駆動モータMの軸動力が軽減される方向に作用する。   When the injection speed of the cooling oil injected from the oil injection hole 15b is higher than the peripheral speed of the rotors 2a and 2b × tan (lead angle), the teeth collide with the teeth of the female rotor 2b at point P in FIG. Due to this collision, the female rotor 2b receives a force having a rotational direction component, and thus acts in the direction in which the shaft power of the drive motor M is reduced, contrary to the arrow D in FIG.

この様にロータ室4内に注入された冷却油は、注入された時点から図2の矢印Qに示した運動量を保有しているため、従来であれば生じていたロータ室4に注入後の方向転換による動力ロスが低減される。尚、前記注油孔15bから注油された冷却油の注入速度が、ロータ2a,2bの周速×tan(リード角)以下の場合でも、その効果の程度は縮小されるものの、冷却油の注入速度がロータ2a,2bの周速×tan(リード角)より大の場合と同様に動力ロスが低減される。   Since the cooling oil injected into the rotor chamber 4 in this manner has the momentum indicated by the arrow Q in FIG. 2 from the time of injection, the cooling oil injected into the rotor chamber 4 which has been generated in the prior art is obtained. Power loss due to direction change is reduced. Even when the injection speed of the cooling oil injected from the oil injection hole 15b is equal to or less than the peripheral speed of the rotors 2a and 2b × tan (lead angle), the effect is reduced, but the cooling oil injection speed is reduced. Is larger than the peripheral speed x tan (lead angle) of the rotors 2a and 2b, the power loss is reduced.

次に、本発明の実施の形態2に係る液冷式スクリュ圧縮機を、図4を用いて以下に説明する。図4は本発明の実施の形態2に係り、図3と同じ方向の断面図である。尚、本発明の実施の形態2が上記実施の形態1と相違するところは、注油孔15b及び油導入孔15aの配置に相違があり、その他は全く同構成であるから、注油孔15bの構成についての説明に止めるものとする。   Next, a liquid-cooled screw compressor according to Embodiment 2 of the present invention will be described below with reference to FIG. FIG. 4 is a cross-sectional view in the same direction as FIG. 3 according to the second embodiment of the present invention. The difference between the second embodiment of the present invention and the first embodiment is that the arrangement of the oil injection holes 15b and the oil introduction holes 15a is different, and the others are completely the same. The explanation about is to be stopped.

本発明の形態1においては、前記注油孔15bは、図3に示した通り、スクリュロータ2a,2bの吸込側端面に近接するロータ室4のスクリュ吸込端面16に該当する壁面16a(ハッチング部)に設けられ、この注油孔15から吐出方向に向かって冷却油を注入する構成とした。これに対し、本発明の形態2においては、前記注油孔15bは、図4に示す様に、前記ロータ室4の吸込部通路16b(非ハッチング部)に設けられ、この注油孔15から吐出方向に向かって冷却油を注入する構成とした。この様な構成とすることにより、ロータ室4内に注入された冷却油のロータ室4に注入後の方向転換による動力ロスが従来より低減され、前記実施の形態1と同様な効果を得ることが出来るのである。   In the first embodiment of the present invention, the lubrication hole 15b is a wall surface 16a (hatching portion) corresponding to the screw suction end surface 16 of the rotor chamber 4 adjacent to the suction side end surfaces of the screw rotors 2a and 2b, as shown in FIG. The cooling oil is injected from the oil injection hole 15 toward the discharge direction. On the other hand, in the second embodiment of the present invention, the oil supply hole 15b is provided in the suction passage 16b (non-hatched part) of the rotor chamber 4 as shown in FIG. The cooling oil was injected toward the end. By adopting such a configuration, the power loss due to the change in direction of the cooling oil injected into the rotor chamber 4 after the injection into the rotor chamber 4 is reduced as compared with the prior art, and the same effect as in the first embodiment can be obtained. Is possible.

尚、本発明に係る液冷式スクリュ圧縮機は、前記実施の形態1及び実施の形態2の何れでも構わない。但し、実施の形態2では、雌スクリュロータ2bの歯溝が閉じ込んだ状態にない吸込部通路16bに注油するため、冷却油が逆流する恐れがあり、実施の形態1の方が望ましい。   Note that the liquid-cooled screw compressor according to the present invention may be either the first embodiment or the second embodiment. However, in the second embodiment, the oil is injected into the suction portion passage 16b where the tooth groove of the female screw rotor 2b is not closed, so that the cooling oil may flow backward, and the first embodiment is preferable.

以上の様に、本発明に係る液冷式スクリュ圧縮機は、スクリュロータを収納するロータケーシングのロータ室を形成するスクリュ吸込端面に注液孔を設け、この注液孔からスクリュ吐出方向に向かって冷却液を注入可能に構成するので、前記冷却液は、注入時からスクリュ吐出方向に向かう運動量を保有しており、冷却液注入後の運動方向転換による動力ロスが解消される。そしてまた、前記注液孔を、歯厚の薄い雌ロータ側のスクリュ吸込端面に設けるので、前記スクリュの歯によって注液孔の孔が塞がれる時間が短くなり、小径の注液孔で冷却することが可能となる。   As described above, the liquid-cooled screw compressor according to the present invention is provided with the liquid injection hole in the screw suction end surface forming the rotor chamber of the rotor casing that houses the screw rotor, and the liquid injection hole is directed from the liquid injection hole toward the screw discharge direction. Thus, the cooling liquid can be injected, so that the cooling liquid has a momentum in the screw discharge direction from the time of injection, and the power loss due to the change of the movement direction after the cooling liquid is injected is eliminated. In addition, since the liquid injection hole is provided on the screw suction end surface on the female rotor side where the tooth thickness is thin, the time during which the hole of the liquid injection hole is blocked by the teeth of the screw is shortened, and cooling is performed with the small diameter liquid injection hole. It becomes possible to do.

尚、本発明の実施の形態においては、冷却液としては冷却油を用いた油冷式スクリュ圧縮機の例を述べた。しかしながら、本発明に係る液冷式スクリュ圧縮機の冷却液の注入機構に用いる冷却液は、冷却油に限定されない。本発明は、冷媒(ヒートポンプ、冷凍機の場合)や冷却水を用いるスクリュ圧縮機にも適用可能である。   In the embodiment of the present invention, the example of the oil-cooled screw compressor using the cooling oil as the coolant has been described. However, the coolant used in the coolant injection mechanism of the liquid-cooled screw compressor according to the present invention is not limited to coolant oil. The present invention is also applicable to a screw compressor using a refrigerant (in the case of a heat pump or a refrigerator) or cooling water.

また、上述の本発明の実施の形態1,2では、注油孔15bはロータ軸心と略同方向に穿設されたものを示したが、本発明はこれに限らない。例えば、図5及び6は本発明の実施の形態3に係り、図5は図2と同じ方向の断面図、図6は図3及び4と同じ方向の断面図である。図5及び6に示される様に、注油孔15bは吐出側に延びるにつれて雄ロータ2aの軸と雌ロータ2bの軸との間に位置する線分Sに近づく様に傾斜して構成されても良い。   In the first and second embodiments of the present invention described above, the oil supply hole 15b is formed in the substantially same direction as the rotor shaft center, but the present invention is not limited to this. For example, FIGS. 5 and 6 relate to Embodiment 3 of the present invention, FIG. 5 is a sectional view in the same direction as FIG. 2, and FIG. 6 is a sectional view in the same direction as FIGS. As shown in FIGS. 5 and 6, the lubrication hole 15b may be configured to be inclined so as to approach a line segment S located between the axis of the male rotor 2a and the axis of the female rotor 2b as it extends to the discharge side. good.

本発明は、例えばヒートポンプや冷凍機にも適用可能である。   The present invention can also be applied to, for example, a heat pump and a refrigerator.

本発明の実施の形態1に係る液冷式スクリュ圧縮機の冷却系統を示す模式的説明図である。It is typical explanatory drawing which shows the cooling system of the liquid cooling type screw compressor which concerns on Embodiment 1 of this invention. 図1のスクリュ圧縮機の矢視X−Xを示す断面図で、図3の矢視Z−Zを示す断面図である。It is sectional drawing which shows arrow XX of the screw compressor of FIG. 1, and is sectional drawing which shows arrow ZZ of FIG. 本発明の実施の形態1に係り、図2の矢視Y−Yを示す断面図である。It is sectional drawing which concerns on Embodiment 1 of this invention and shows the arrow YY of FIG. 本発明の実施の形態2に係り、図3と同じ方向の断面図である。FIG. 4 is a cross-sectional view in the same direction as FIG. 3 according to the second embodiment of the present invention. 本発明の実施の形態3に係り、図2と同じ方向の断面図である。FIG. 6 is a cross-sectional view in the same direction as FIG. 2 according to the third embodiment of the present invention. 本発明の実施の形態3に係り、図3,4と同じ方向の断面図である。FIG. 4 is a cross-sectional view in the same direction as FIGS. 3 and 4 according to the third embodiment of the present invention. 従来例に係る液冷式スクリュ圧縮機の断面図である。It is sectional drawing of the liquid cooling type screw compressor which concerns on a prior art example. 従来例に係るスクリュ圧縮機のロータケーシングを、スクリュロータを省略した状態で示した正断面図で、図9の矢視J−Jを示す断面図である。It is sectional drawing which showed the rotor casing of the screw compressor which concerns on a prior art example in the state which abbreviate | omitted the screw rotor, and is sectional drawing which shows JJ of FIG. 図8の矢視K−Kを示す断面図ある。It is sectional drawing which shows the arrow KK of FIG. 従来例に係る液冷式スクリュ圧縮機のロータ室を示す平断面図で、図11の矢視U−Uを示す断面図である。FIG. 12 is a cross-sectional plan view showing a rotor chamber of a liquid-cooled screw compressor according to a conventional example, and is a cross-sectional view showing UU in FIG. 11. 図10の矢視V−Vを示す断面図である。It is sectional drawing which shows arrow VV of FIG.

符号の説明Explanation of symbols

M:駆動モータ, P:注入された冷却液が雌ロータの歯に衝突する点,
Q:注油方向, R:ロータ回転方向,
1:圧縮機本体, 1a:吸込口, 1b:吐出口,
2a:雄ロータ, 2b:雌ロータ,
3:ロータハウジング, 4:ロータ室, 5:吸込流路, 6:吐出流路,
7:駆動軸, 8:モータケーシング,
9a:吸込側軸受, 9b:吐出側軸受,
10:油分離回収器, 10a:油分離エレメント, 10b:油溜り,
11:油循環流路, 12:オイルクーラ,
13:吸込側軸受(及び軸封部)への注油流路,
14:吐出側軸受(及び軸封部)への注油流路,
15:スクリュロータとロータケーシングが形成する圧縮空間への注油流路,
15a:油導入孔, 15b:注油孔,
16:ロータ室のスクリュ吸込端面,
16a:ロータ室のスクリュ吸込端面がスクリュロータの吸込側端面に接触する壁面,
16b:吸込部通路
M: drive motor, P: point where the injected coolant collides with the teeth of the female rotor,
Q: Lubrication direction, R: Rotor rotation direction,
1: compressor body, 1a: suction port, 1b: discharge port,
2a: male rotor, 2b: female rotor,
3: rotor housing, 4: rotor chamber, 5: suction flow path, 6: discharge flow path,
7: Drive shaft, 8: Motor casing,
9a: suction side bearing, 9b: discharge side bearing,
10: Oil separation and recovery device, 10a: Oil separation element, 10b: Oil reservoir,
11: Oil circulation channel, 12: Oil cooler,
13: Lubrication channel to the suction side bearing (and shaft seal),
14: Lubrication flow path to the discharge side bearing (and shaft seal),
15: Lubrication channel to the compression space formed by the screw rotor and the rotor casing,
15a: oil introduction hole, 15b: oil injection hole,
16: Screw suction end face of the rotor chamber,
16a: a wall surface where the screw suction end surface of the rotor chamber contacts the suction side end surface of the screw rotor;
16b: suction part passage

Claims (3)

互いに噛み合う雌雄一対のスクリュロータを有する液冷式スクリュ圧縮機において、前記スクリュロータを収納するロータ室のスクリュ吸込端面に注液孔を設け、この注液孔からスクリュ吐出方向に向かって冷却液を注入可能に構成することを特徴とする液冷式スクリュ圧縮機。   In a liquid-cooled screw compressor having a pair of male and female screw rotors that mesh with each other, a liquid injection hole is provided in a screw suction end surface of a rotor chamber that houses the screw rotor, and cooling liquid is supplied from the liquid injection hole toward the screw discharge direction. A liquid-cooled screw compressor characterized in that it can be injected. 前記注液孔を、スクリュロータの吸込側端面に近接する前記ロータ室のスクリュ吸込端面に設けることを特徴とする請求項1に記載の液冷式スクリュ圧縮機。   The liquid-cooled screw compressor according to claim 1, wherein the liquid injection hole is provided in a screw suction end surface of the rotor chamber adjacent to a suction side end surface of the screw rotor. 前記注液孔を、前記ロータ室の雌ロータ側のスクリュ吸込端面に設けることを特徴とする請求項1または2に記載の液冷式スクリュ圧縮機。


















3. The liquid-cooled screw compressor according to claim 1, wherein the liquid injection hole is provided in a screw suction end face on a female rotor side of the rotor chamber.


















JP2007109509A 2007-04-18 2007-04-18 Liquid-cooled type screw compressor Pending JP2008267222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109509A JP2008267222A (en) 2007-04-18 2007-04-18 Liquid-cooled type screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109509A JP2008267222A (en) 2007-04-18 2007-04-18 Liquid-cooled type screw compressor

Publications (1)

Publication Number Publication Date
JP2008267222A true JP2008267222A (en) 2008-11-06

Family

ID=40047048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109509A Pending JP2008267222A (en) 2007-04-18 2007-04-18 Liquid-cooled type screw compressor

Country Status (1)

Country Link
JP (1) JP2008267222A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093469A1 (en) * 2008-01-23 2009-07-30 Daikin Industries, Ltd. Screw compressor
CN103671050A (en) * 2012-09-21 2014-03-26 珠海格力电器股份有限公司 Spray control method and device for compressor and air conditioning system
CN111279080A (en) * 2017-11-09 2020-06-12 株式会社神户制钢所 Liquid-cooled screw compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10196575A (en) * 1997-01-07 1998-07-31 Hokuetsu Kogyo Co Ltd Oil feeding structure of oil-cooled screw compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10196575A (en) * 1997-01-07 1998-07-31 Hokuetsu Kogyo Co Ltd Oil feeding structure of oil-cooled screw compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093469A1 (en) * 2008-01-23 2009-07-30 Daikin Industries, Ltd. Screw compressor
US8708677B2 (en) 2008-01-23 2014-04-29 Daikin Industries, Ltd. Screw compressor having injection having injection mechanism that injects oil or refrigerant toward a starting end of an extending direction of a helical groove of the female rotor or the male rotor
CN103671050A (en) * 2012-09-21 2014-03-26 珠海格力电器股份有限公司 Spray control method and device for compressor and air conditioning system
CN111279080A (en) * 2017-11-09 2020-06-12 株式会社神户制钢所 Liquid-cooled screw compressor

Similar Documents

Publication Publication Date Title
EP1900943B1 (en) Method of controlling the stopping operation of vacuum pump
JP5798331B2 (en) Water jet screw compressor
JP5904961B2 (en) Screw compressor
EP3382205B1 (en) Compressor
JP2007040294A (en) Two-stage screw compressor
CN111295518A (en) Liquid-cooled screw compressor
JP5422260B2 (en) Oil-free screw compressor
JP2006283694A (en) Scroll type fluid machine
JP6616891B2 (en) Oil-cooled screw compressor
JP2008267222A (en) Liquid-cooled type screw compressor
JP6113259B2 (en) Screw compressor
JP2008303781A (en) Screw compressor
JP6511321B2 (en) Refueling displacement compressor
JP2008240579A (en) Double-screw type air compressor
CN114599884B (en) Liquid-feeding screw compressor
WO2022224727A1 (en) Screw compressor
JP2004324601A (en) Single screw compressor
JP5775016B2 (en) Screw compressor
JP2017147880A (en) Motor that rotates rotating machine body
JP2011074807A (en) Screw compressor
JP2007138778A (en) Scroll compressor
JP2005188431A (en) Compressor
JP2008190452A (en) Electrically-driven compressor
JP2005069062A (en) Oil injection type screw compressor
JP2023070489A (en) screw compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

RD03 Notification of appointment of power of attorney

Effective date: 20110527

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Effective date: 20110609

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830