WO2018233643A1 - 基于CANopen协议的列车网络数据传输方法、系统及其装置 - Google Patents

基于CANopen协议的列车网络数据传输方法、系统及其装置 Download PDF

Info

Publication number
WO2018233643A1
WO2018233643A1 PCT/CN2018/092048 CN2018092048W WO2018233643A1 WO 2018233643 A1 WO2018233643 A1 WO 2018233643A1 CN 2018092048 W CN2018092048 W CN 2018092048W WO 2018233643 A1 WO2018233643 A1 WO 2018233643A1
Authority
WO
WIPO (PCT)
Prior art keywords
slave node
node
network
channel
slave
Prior art date
Application number
PCT/CN2018/092048
Other languages
English (en)
French (fr)
Inventor
磨俊生
曾文晓
赵龙
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to US16/625,438 priority Critical patent/US11356293B2/en
Priority to BR112019027653-0A priority patent/BR112019027653A2/pt
Publication of WO2018233643A1 publication Critical patent/WO2018233643A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40169Flexible bus arrangements
    • H04L12/40176Flexible bus arrangements involving redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40169Flexible bus arrangements
    • H04L12/40176Flexible bus arrangements involving redundancy
    • H04L12/40202Flexible bus arrangements involving redundancy by using a plurality of master stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40293Bus for use in transportation systems the transportation system being a train

Definitions

  • the present disclosure relates to the field of vehicle communication technologies, and in particular, to a train network data transmission method, system and device based on the CANopen protocol.
  • the train communication network is widely used in the train communication network TCN (Train Communication Network) bus technology
  • TCN covers MVB (Multifunction Vehicle Bus), WTB (Wire Train Bus) Bus, Ethernet, CAN (Controller Area Network).
  • MVB Multifunction Vehicle Bus
  • WTB Wire Train Bus
  • Ethernet Ethernet
  • CAN Controller Area Network
  • the so-called network redundancy refers to the establishment of a standby network for each communication network, that is, each node on the network will adopt the A-line and B-line two-wire connection. When the network fails, it can be used for backup.
  • the network realizes communication, ensures the smooth interaction of the products of the products on the network, and makes the running environment of the train communication network highly available.
  • CANopen a high-level communication protocol based on CAN bus, which is a kind of field bus commonly used in industrial control.
  • the definition of CANopen is based on CAN bus design.
  • the standardized application layer protocol, CANopen protocol supports a complete network management mechanism for traditional CAN to support redundant network design.
  • redundant network design based on CANopen requires all network nodes to send data simultaneously in two channels. However, by default, all nodes only obtain data from the primary network. When one or some slave nodes are disconnected from the primary network, they switch. Receiving data of the part of the node to the standby network, and receiving the unified switching of the data of the part of the node to the standby network to receive data.
  • the purpose of the present disclosure is to solve at least one of the above technical problems to some extent.
  • the first object of the present disclosure is to propose a train network data transmission method based on the CANopen protocol, which ensures good operation of the whole vehicle and improves the redundancy effect of the train network.
  • a second object of the present disclosure is to propose another train network data transmission method based on the CANopen protocol.
  • a third object of the present disclosure is to propose another method for transmitting train network data based on the CANopen protocol.
  • a fourth object of the present disclosure is to provide a train network data transmission method based on the CANopen protocol.
  • a fifth object of the present disclosure is to propose a first slave node.
  • a sixth object of the present disclosure is to propose an active master node.
  • a seventh object of the present disclosure is to propose a second slave node.
  • An eighth object of the present disclosure is to propose another active master node.
  • a ninth object of the present disclosure is to propose a train network data transmission system based on the CANopen protocol.
  • a tenth object of the present disclosure is to propose another train network data transmission system based on the CANopen protocol.
  • An eleventh object of the present disclosure is to propose a computer device.
  • a twelfth purpose of the present disclosure is to propose another computer device.
  • a thirteenth object of the present disclosure is to propose yet another computer device.
  • a fourteenth object of the present disclosure is to provide a computer device.
  • a fifteenth object of the present disclosure is to propose a storage medium.
  • a sixteenth object of the present disclosure is to propose another storage medium.
  • a seventeenth object of the present disclosure is to propose yet another storage medium.
  • the eighteenth object of the present disclosure is to propose a further storage medium.
  • a method for transmitting a train network data based on the CANopen protocol includes the following steps: when detecting the failure of the first CAN channel of the first slave node, switching to the The second CAN channel of the first slave node receives the heartbeat message and data sent by other related nodes through the standby network; if it is determined that the second slave node does not receive the relevant second slave node from the standby network within the preset heartbeat period a heartbeat message, the second CAN channel failure of the second slave node is known, and an information forwarding request including the second slave node identifier is sent to the active master node through the standby network, so that the active master node is in the Listening to the heartbeat message and data sent by the second slave node through the first CAN channel in the active network; when the active master node is listening to the second slave node in the primary network, sending through the first CAN channel Receiving, by the second CAN channel of the first slave node, the
  • another CANopen protocol-based train network data transmission method proposed by the second aspect of the present disclosure includes the following steps: receiving, by the backup network or the primary network, the first slave node to send through the second CAN channel.
  • An information forwarding request including a second slave node identifier; monitoring, in the primary network, a heartbeat message and data sent by the second slave node corresponding to the second slave node identifier through the first CAN channel;
  • the network monitors the heartbeat message and data sent by the second slave node through the first CAN channel the heartbeat message and data of the second slave node are forwarded to the first slave node by using the standby network, And causing the first slave node to receive the heartbeat message and data of the second slave node through the second CAN channel.
  • another method for transmitting a train network data based on the CANopen protocol includes the following steps: if it is determined that the second slave node is not passed within a preset heartbeat period Receiving, by the first CAN channel, the heartbeat message sent by the related first slave node, the first CAN channel of the first slave node is faulty, and the second CAN of the second slave node is detected. Channel failure; sending, by the primary network, an information forwarding request including a first slave node identifier to the active master node, so that the active master node listens to the first slave node to send through the second CAN channel in the standby network.
  • Heartbeat message and data when the active master node listens to the heartbeat message and data sent by the first slave node through the second CAN channel in the standby network, passes the first CAN of the second slave node The channel receives heartbeat messages and data of the first slave node forwarded by the active master node to the primary network.
  • a method for transmitting a train network data based on the CANopen protocol includes the following steps: receiving, by the primary network, a second slave node that is sent by using the first CAN channel, including the first Retrieving a request from the information identified by the node; listening, in the standby network, heartbeat messages and data sent by the first slave node corresponding to the first slave node identifier through the second CAN channel; when listening to the standby network When the first slave node transmits the heartbeat message and data sent by the second CAN channel, the heartbeat message and data of the first slave node are forwarded to the second slave node by using the primary network, so that the first The second slave node receives the heartbeat message and data of the first slave node through the first CAN channel.
  • the first slave node includes: a first switching module, configured to switch to the first slave when detecting a first CAN channel failure of the first slave node
  • the second CAN channel of the node receives the heartbeat message and the data sent by the other related nodes through the standby network
  • the first learning module is configured to: after determining that the second heart channel is not received from the standby network, the related second Obtaining a second CAN channel failure of the second slave node when the heartbeat message is sent by the node
  • the first sending module is configured to send, by using the standby network, an information forwarding request that includes the second slave node identifier to the active master node So that the active master node listens to the heartbeat message and data sent by the second slave node through the first CAN channel in the active network
  • the first receiving module is configured to be in the active master node Receiving, by the network, the heartbeat message and data sent by the second slave node through the first CAN channel
  • an active primary node includes: a second receiving module, configured to receive, by a secondary network or a primary network, a first slave node that is sent by using a second CAN channel.
  • a first monitoring module configured to monitor, in the primary network, a heartbeat message and data sent by the second slave node corresponding to the second slave node identifier by using the first CAN channel
  • a forwarding module configured to forward, by the backup network, the first slave node to the first slave node when the primary network listens to the heartbeat message and data sent by the second slave node through the first CAN channel
  • the heartbeat message and data of the second slave node are such that the first slave node receives the heartbeat message and data of the second slave node through the second CAN channel.
  • a second slave node which is provided by the embodiment of the seventh aspect of the present disclosure, includes: a third learning module, configured to determine, in a predetermined heartbeat period, that the second slave node is not passed When a CAN channel receives a heartbeat message sent by the associated first slave node from the primary network, the first CAN channel of the first slave node is known to be faulty, and the second CAN channel of the second slave node is detected. a fourth sending module, configured to send, by using the primary network, an information forwarding request that includes a first slave node identifier to the active master node, so that the active master node listens to the first slave node in the standby network.
  • a third receiving module configured to: at the active master node, listen to the heartbeat message and data sent by the first slave node through the second CAN channel in the standby network Receiving, by the first CAN channel of the second slave node, heartbeat messages and data of the first slave node that the active master node forwards to the primary network.
  • another active primary node includes: a fourth receiving module, configured to receive, by the primary network, a first slave node that is sent by the second slave node through the first CAN channel. a message forwarding request of the node identifier; the third monitoring module is configured to monitor, in the standby network, the heartbeat message and data sent by the first slave node corresponding to the first slave node identifier through the second CAN channel; and the second forwarding module Used to forward the first slave to the second slave node through the primary network when the backup network listens to the heartbeat message and data sent by the first slave node through the second CAN channel. The heartbeat message and data of the node, so that the second slave node receives the heartbeat message and data of the first slave node through the first CAN channel.
  • a train network data transmission system based on the CANopen protocol which is provided by the ninth aspect of the present disclosure, includes the first slave node according to the embodiment of the fifth aspect of the present disclosure. Active master node, the second slave node described in the seventh aspect embodiment.
  • a tenth aspect embodiment of the present disclosure provides a train network data transmission system based on the CANopen protocol, including the first slave node according to the fifth aspect of the present disclosure, and the eighth aspect embodiment. Active master node, the second slave node described in the seventh aspect embodiment.
  • a computer apparatus includes a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the processor executes the The computer program implements a CANopen protocol-based train network data transmission method as described in the first aspect of the present disclosure.
  • another computer apparatus includes a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the processor executes the The CANopen protocol-based train network data transmission method as described in the second aspect of the present disclosure is implemented in the computer program.
  • still another computer device includes a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the processor executes the The CANopen protocol-based train network data transmission method as described in the third aspect of the present disclosure is implemented in the computer program.
  • a computer apparatus further includes a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the processor executes the The CANopen protocol-based train network data transmission method as described in the fourth aspect of the present disclosure is implemented in the computer program.
  • a storage medium for storing an application for executing a CANopen protocol-based train network according to the first aspect of the present disclosure. Data transmission method.
  • another storage medium for storing an application for executing a CANopen-based train according to the second aspect of the present disclosure.
  • Network data transmission method is for storing an application for executing a CANopen-based train according to the second aspect of the present disclosure.
  • a storage medium for storing an application for executing a CANopen-based train according to the third aspect of the present disclosure.
  • Network data transmission method
  • a storage medium according to the eighteenth embodiment of the present disclosure is further provided for storing an application for executing a CANopen-based train according to the fourth aspect of the present disclosure.
  • Network data transmission method is further provided for storing an application for executing a CANopen-based train according to the fourth aspect of the present disclosure.
  • the slave nodes cannot communicate normally, and the forwarding request is sent to the active master node to forward the heartbeat message and data through the active master node, thereby ensuring the slave node between the nodes.
  • the normal communication ensures the good operation of the whole vehicle and improves the redundancy effect of the train network.
  • FIG. 1 is a schematic structural view of a train network according to the prior art
  • FIG. 2 is a schematic diagram of the risk of data transmission of a train network structure according to the prior art
  • FIG. 3 is a flowchart of a train network data transmission method based on a CANopen protocol according to a first embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of the risk of overcoming the data transmission of the train network structure according to the present disclosure
  • FIG. 5 is a flowchart of a train network data transmission method based on a CANopen protocol according to a second embodiment of the present disclosure
  • FIG. 6(a) is a schematic diagram of data interaction according to an embodiment of the present disclosure.
  • FIG. 6(b) is a schematic diagram of data interaction according to another embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a train network data transmission method based on a CANopen protocol according to a third embodiment of the present disclosure
  • FIG. 8 is a flowchart of a train network data transmission method based on a CANopen protocol according to a fourth embodiment of the present disclosure
  • FIG. 9(a) is a schematic diagram of data interaction between nodes according to an embodiment of the present disclosure.
  • FIG. 9(b) is a schematic diagram of data interaction between nodes according to another embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a train network data transmission method based on a CANopen protocol according to a fifth embodiment of the present disclosure
  • FIG. 11 is a flowchart of a train network data transmission method based on a CANopen protocol according to a sixth embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of a first slave node according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a first slave node according to another embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of an active master node according to an embodiment of the present disclosure.
  • 15 is a schematic structural diagram of an active master node according to another embodiment of the present disclosure.
  • 16 is a schematic structural diagram of an active master node according to still another embodiment of the present disclosure.
  • 17 is a schematic structural diagram of a second slave node according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a second slave node according to another embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of an active master node according to an embodiment of the present disclosure.
  • 20 is a schematic structural diagram of an active master node according to another embodiment of the present disclosure.
  • 21 is a schematic structural diagram of an active master node according to still another embodiment of the present disclosure.
  • 22 is a schematic structural diagram of a train network data transmission system based on a CANopen protocol according to an embodiment of the present disclosure
  • FIG. 23 is a schematic structural diagram of a train network data transmission system based on a CANopen protocol according to another embodiment of the present disclosure.
  • the data of the slave nodes B, C, D is received from the node A
  • the data of the A, E is received from the node B
  • the slave node B the D data is received from the node C
  • the slave node A C needs to receive the data from the node B
  • the slave nodes D, E do not receive the data of the slave node B.
  • the slave node A and the slave node C switch to the standby network to receive. Data, this will ensure that the data of Node B is received normally.
  • the node needs to receive the data of the slave node C from the B, and the slave node C also needs to receive the data of the slave node B, if it is the first CAN channel of the slave node B.
  • the slave node B or the slave node C actually belongs to the physical isolation state, and the two slave nodes cannot receive mutual data, thereby affecting the whole vehicle operation.
  • the train network data transmission method proposed by the present disclosure provides on the basis of the existing train network redundancy design structure.
  • a train redundant network data transmission design scheme can effectively avoid the failure phenomenon that some nodes have a primary network channel failure and some nodes cannot communicate normally when the standby network channel fails, and the practical effect of the redundant design is also improved. It is a good way to circumvent the problem that some vehicle network failures cause the whole vehicle to be blocked, and it can guarantee that under various abnormal conditions, each node of the network can still communicate normally.
  • train network data transmission method of the present disclosure is implemented based on the CANopen protocol, wherein the CANopen protocol requires that one node in the network acts as a master node to manage initialization, startup, supervision, and other slave nodes. Reset or stop work.
  • the method is applied to the first slave node side for description, wherein the first slave node may be any one.
  • the slave node of the communication failure is described as follows:
  • FIG. 3 is a flow chart of a method for transmitting data of a train network based on the CANopen protocol according to the first embodiment of the present disclosure. As shown in FIG. 3, the method includes:
  • the second CAN channel that is switched to the first slave node receives the heartbeat message and data sent by other related nodes through the standby network.
  • the network establishes two primary nodes, one is an active primary node, and the other is a backup primary node, when the active primary node fails.
  • the backup master node will replace the function of the previous active master node.
  • the nodes on all networks use A and B pairs of CAN lines.
  • the A line is defined as the primary network
  • the B line is defined as the standby network, and all nodes are running.
  • the information will be sent to the A line and the B line (including the respective heartbeat messages), but in the initial default, only the information will be received on the A line, but the node must support receiving in the A line and the B line at the same time. information.
  • both the active primary node and the backup primary node are defined as gateways, so in the default state, data needs to be transmitted to other networks, the gateway will only receive from the primary network, and then the data is transferred to the relevant according to the gateway forwarding protocol.
  • the gateway On the network (where the network contains the primary and backup networks of other networks).
  • the first slave node when the first CAN channel failure of the first slave node is detected, for example, the heartbeat message sent by the first slave node is not detected in the first CAN channel in a preset period, At this time, the first slave node cannot receive the heartbeat message sent by the other node in the first CAN channel, so that in order to ensure normal communication between the first slave node and other nodes, the second CAN channel that is switched to the first slave node passes through the standby network. Receive heartbeat messages and data sent by other related nodes.
  • the other related slave nodes are other slave nodes that the first slave node needs to communicate, that is, the source slave node that the first slave node needs to receive data.
  • the second CAN channel of the second slave node is learned to be faulty, and the active host is sent to the active host through the backup network.
  • the node sends an information forwarding request including the second slave node identifier, so that the active master node listens to the heartbeat message and data sent by the second slave node through the first CAN channel in the active network.
  • the preset heartbeat period is calibrated according to a large number of experiments. Generally, in the preset period, the heartbeat message and data sent by the relevant slave node are received in the corresponding network, for example, five heartbeat periods, etc. .
  • the second slave node identifier may include information of a second slave node, such as a Node-ID of the second slave node, location information, and the like.
  • the second CAN channel failure of the second slave node is learned, in order to receive the second Sending, from the data of the node, the information forwarding request including the second slave node identifier to the active master node through the standby network, so that the active master node listens to the heartbeat message sent by the second slave node through the first CAN channel in the active network. data.
  • the active master node listens to the heartbeat message and data sent by the second slave node through the first CAN channel on the primary network, it indicates that the first CAN channel of the second slave node communicates normally, thereby passing the first slave
  • the second CAN channel of the node receives the heartbeat message and data of the second slave node that the active master node forwards to the backup network.
  • the heartbeat message and data sent by the second slave node are received according to the CAN channel fault condition of the second slave node to be received by the first slave node, even if the second slave node fails.
  • the CAN channel is not in the same network as the CAN channel of the first slave node failure, and can still receive the heartbeat message and data sent by the second slave node by the first slave node through the forwarding of the active master node.
  • the control flow of the train network data transmission method based on the CANopen protocol is described below in conjunction with a specific application scenario.
  • the first slave node is the slave node A
  • the second slave node is the slave.
  • Node B is the slave node A
  • the heartbeat message sent by the slave node is not monitored on the active network, and the second CAN channel is switched to listen to the slave node B to be monitored.
  • the transmitted heartbeat message and data however, the second CAN channel of the slave node B is faulty, and because the first CAN channel of the slave node A is faulty, it cannot be determined whether it can receive the slave node B in the first CAN channel.
  • Heartbeat messages and data are not faulty, and because the first CAN channel of the slave node A is faulty, it cannot be determined whether it can receive the slave node B in the first CAN channel.
  • the active active node is requested to listen to the heartbeat message and data sent by the Node B in the first CAN channel, when the active master node listens to the heartbeat message and data sent by the slave node B through the first CAN channel in the active network.
  • the active master node By receiving the heartbeat message and data of the slave node B that the active master node forwards to the backup network from the second CAN channel of the node A, the fault network of the slave node A and the slave node B are different but still can be normal. data communication.
  • the CANopen protocol-based train network data transmission method of the embodiment of the present disclosure when the first CAN channel of the first slave node fails, the second CAN channel that is switched to the first slave node receives other related information through the standby network.
  • the heartbeat message and the data sent by the node if it is determined that the heartbeat message sent by the second slave node is not received from the standby network within the preset heartbeat period, the second CAN channel of the second slave node is known to be faulty.
  • the standby network And sending, by the standby network, the information forwarding request including the second slave node identifier to the active master node, so that the active master node listens to the heartbeat message and data sent by the second slave node through the first CAN channel in the active network, when the activity is active.
  • the master node receives, by the primary network, the heartbeat message and data sent by the second slave node through the first CAN channel, and receives the second slave node of the active slave node forwarded to the standby network by using the second CAN channel of the first slave node. Heartbeat messages and data. Therefore, the network where the CAN channel failure of the slave node is located is different, and the slave nodes cannot communicate normally.
  • By sending a forwarding request to the active master node the normal communication between the slave nodes is ensured, and the good operation of the whole vehicle is ensured. Improve the redundancy of the train network.
  • FIG. 5 is a flowchart of a method for transmitting data of a train network based on the CANopen protocol according to the second embodiment of the present disclosure. As shown in FIG. 5, after the step S102, the method further includes:
  • the active master node When the active master node does not monitor the heartbeat message and data sent by the second slave node through the first CAN channel, the active node sends the active master node to the standby network by using the second CAN channel of the first slave node. A node drop message containing the second slave node identifier.
  • the active master node when the active master node does not monitor the heartbeat message and data sent by the second slave node through the first CAN channel in the active network, the first CAN channel fault of the second slave node is learned, and at this time, the second A communication failure occurs between the first CAN channel and the second CAN channel of the slave node, and normal communication with the first slave node is impossible, and thus, the active master node is received to the standby network through the second CAN channel of the first slave node.
  • the node drop message containing the second slave node identifier is sent, and the first slave node records the node drop message of the second slave node.
  • the information sent by the active master node received by the first slave node is different, for example, as follows :
  • the first slave node does not detect the heartbeat message and data sent by the second slave node, it indicates that the second The network in which the CAN channel from which the node has failed may be different from the CAN channel in which the first slave node fails.
  • the first CAN channel of the first slave node fails.
  • the first slave node sends an information forwarding request including the second slave node identifier to the active master node, so that the active master node listens to the heartbeat message sent by the second slave node through the first CAN channel in the active network. data.
  • the active master node listens to the heartbeat message and data sent by the second slave node through the first CAN channel
  • the second slave node of the first slave node receives the second slave node forwarded by the active master node to the standby network. Heartbeat messages and data.
  • the active master node if the active master node does not hear the heartbeat message and data sent by the second slave node through the first CAN channel in the primary network, the activity is received through the second CAN channel of the first slave node.
  • the node sends a message to the backup network that includes the second slave node identifier, and the first slave node records the node drop message of the second slave node, and stops the request for acquiring the heartbeat message and data of the second slave node.
  • the CAN network protocol-based train network data transmission method of the embodiment of the present disclosure sends a node drop message including the second slave node identifier to the first slave node when the second slave node fails, and the first slave node Record the node drop message of the second slave node.
  • the method is focused on the active master node side description, wherein the active master node is concentrated on the first slave node side control.
  • FIG. 7 is a flowchart of a method for transmitting a train network data based on a CANopen protocol according to a third embodiment of the present disclosure. As shown in FIG. 7, the method includes:
  • S301 Receive, by the standby network or the primary network, an information forwarding request that is sent by the first slave node by using the second CAN channel and includes the second slave node identifier.
  • the active master node since the active master node receives the heartbeat message and data sent by the first slave node from the primary network by default, if the slave node's first CAN channel, it switches to the standby network and receives the heartbeat sent by the first slave node. Message and data, and when the failure of the second slave node with which the first slave node communicates is not in the same network, for example, the second CAN channel of the second slave node may be faulty at this time, and thus, the first slave node at this time In order to communicate with the second slave node, the first slave node sends an information forwarding request containing the node identity of the second slave node to the active master node.
  • the active master node receives the information forwarding request that the first slave node sends the second slave node identifier through the second CAN channel on the standby network, it indicates that the first slave node cannot be the second network on the standby network. Communicate from the node.
  • the heartbeat message and data sent by the second slave node corresponding to the second slave node identifier through the first CAN channel are monitored in the active network.
  • the second CAN channel of the second slave node may be faulty, and the first CAN channel of the first slave node is faulty, thereby The communication between the first slave node and the second slave node cannot be realized, and it is also possible that both the first CAN channel and the second CAN channel of the second slave node fail, so that communication between the first slave node and the second slave node cannot be realized.
  • the heartbeat message and data sent by the second slave node corresponding to the second slave node identifier through the first CAN channel are monitored in the active network.
  • the primary network monitors the heartbeat message and data sent by the second slave node through the first CAN channel, it indicates that the second CAN channel of the second slave node is faulty, the first CAN channel is normal, and the standby network is used. Forwarding the heartbeat message and data of the second slave node to the first slave node, so that the first slave node receives the heartbeat message and data of the second slave node through the second CAN channel.
  • the second slave node if the heartbeat message and data sent by the second slave node through the first CAN channel are not monitored in the active network, the second slave node is sent to the first slave node through the standby network.
  • the identified node drop message sends a node drop message of the second slave node to the running monitoring node, and displays it to the operator to prompt the current troubleshooting. Therefore, both the first slave node and the running monitoring node are informed of the fault message of the second slave node, so that the first slave node can stop the corresponding request, and promptly alert the relevant operator, thereby improving the stability of the vehicle network.
  • the primary node fails, and the communication between the first slave node and the second slave node cannot be performed.
  • the switch to the standby master is performed.
  • the data interaction between the node and other slave nodes or other communication networks is similar to that of the active master node and will not be described here.
  • the CANopen protocol-based train network data transmission method of the embodiment of the present disclosure receives, in the standby network or the primary network, an information forwarding request that is sent by the first slave node through the second CAN channel and includes the second slave node identifier.
  • Monitoring, in the primary network a heartbeat message and data sent by the second slave node corresponding to the second slave node identifier through the first CAN channel, so that when the primary network monitors the second slave node to send through the first CAN channel
  • the heartbeat message and data of the second slave node are forwarded to the first slave node through the backup network, so that the first slave node receives the heartbeat message and data of the second slave node through the second CAN channel.
  • the network where the CAN channel failure of the slave node is located is different, the slave node cannot communicate normally, and the forwarding of the active master node ensures the normal communication between the slave nodes, thereby ensuring the good operation of the whole vehicle and improving The redundancy effect of the train network.
  • train network data transmission method based on the CANopen protocol of the present disclosure can be applied to slave nodes in the same communication network, and is also applicable to slave nodes in different communication networks.
  • FIG. 8 is a flowchart of a method for transmitting a train network data based on a CANopen protocol according to a fourth embodiment of the present disclosure. As shown in FIG. 8, the method includes:
  • the active master node establishes a list of all the slave nodes of the network according to the topology map (and can be configured), and each slave node establishes a list of network nodes associated with it according to the topology map (all must include the active master node, And can be configured), by default, each slave node monitors the heartbeat packet transmission of the relevant node on the main network according to the network node list, and obtains its own required data from the primary network.
  • the active master node can establish a list of all network nodes (configurable) according to the network topology map, that is, one of the custom CANopen object dictionary.
  • the object index marks the identity of each node with the node identifier unique to each node, and the node identifiers of all the slave nodes (such as the node ID) are included in the object storage space, and the active master node sets one for each slave node.
  • the heartbeat timer after the active master node enters the operation state, each heartbeat timer counts down, and the active master node parses the received heartbeat message out of the corresponding slave node identifier, and then the node in its own object dictionary.
  • the list is matched, and then the heartbeat timer corresponding to the slave node on the matching is set and re-timed.
  • all the slave nodes including the active master node pass the respective node IDs on the primary network and the standby network at the same time.
  • the heartbeat message is sent in a specific cycle.
  • S402. Determine whether the first CAN channel of each slave node is faulty according to the timing of the heartbeat timer set corresponding to each slave node and the reception status of the heartbeat message.
  • the active master node can normally receive the heartbeat message sent by the slave node within a certain time, otherwise, the first CAN channel of the slave node communicates with the fault.
  • the active active node may not receive the heartbeat message sent by the slave node normally due to some other reasons, for example, the network signal is suddenly interfered, etc., so in order to avoid misjudgment, the slave nodes are accurately determined. Whether the first CAN channel is faulty or not, comprehensively considers the timing of the heartbeat timer set by each slave node and the reception status of the heartbeat message, and determines whether the first CAN channel of each slave node is faulty.
  • the active master node when there are three heartbeat cycles that do not detect the heartbeat message of a certain slave node, the active master node first resets the slave node through a network-controlled reset command, and then listens to two heartbeat cycles.
  • the heartbeat message of the slave node may be received in the two heartbeat periods, and the active master node maintains the processing of the node in the primary network, otherwise it is determined that the first CAN channel of the slave node may be faulty.
  • the timing of the heartbeat timer in the above example is only an example. According to different application requirements, a combination of other heartbeat cycles may also be used to determine whether the first CAN channel of each slave node is faulty, for example, When there is no heartbeat message of a certain slave node in five heartbeat cycles, the first CAN channel failure of the slave node is directly determined.
  • the first CAN channel fault of the third slave node is learned, and the standby network is intercepted to listen to the third slave.
  • the third slave node is any node that exchanges information with other communication networks.
  • the heartbeat message of the third slave node is not received in the preset heartbeat period, it indicates that the active master node does not receive the heartbeat message sent by the third slave node, and is the first CAN channel fault.
  • the active master node in order to ensure that the active master node can normally receive the data of the third slave node, maintain the normal operation of the whole vehicle, and switch to the standby network to listen to the heartbeat message sent by the third slave node through the second CAN channel.
  • the heartbeat message sent by the third slave node through the second CAN channel is received within the preset heartbeat period, it indicates that the second CAN channel functions normally, so that the data sent by the third slave node is received on the standby network. .
  • S405. Perform protocol conversion on the data sent by the third slave node according to a preset communication protocol with the target communication network, and send the data to the target communication network.
  • the data sent by the third slave node is protocol-transferred and sent to the target communication network according to a preset communication protocol with the target communication network.
  • step S405 is performed, and the third slave node is sent according to the preset communication protocol with the target communication network.
  • the data is transmitted to the target communication network by protocol conversion.
  • the active master node acts as a bridge for intermediate data forwarding to realize information interaction between the two communication network fingers.
  • the active master node receives heartbeat messages and data from the node A and the slave node B.
  • the heartbeat message and data of the node A and the slave node B are protocol-converted according to a preset communication protocol with the target communication network, and are forwarded to the slave network through the network (the primary network or the backup network) of the communication network 2.
  • the active master node is on the active network.
  • the heartbeat message and data are protocol converted and forwarded to the slave node D through the primary network of the communication network 2.
  • the CANopen protocol-based train network data transmission method of the embodiment of the present disclosure can be applied not only to the communication between the inter-point nodes of a communication network, but also to the communication between the inter-point nodes of different communication networks, thereby ensuring different
  • the normal communication between the nodes of the communication network further ensures the good operation of the whole vehicle and improves the redundancy effect of the train network.
  • the method is described below focusing on the second slave node side.
  • the second slave node is any slave node that communicates with the first slave node.
  • FIG. 10 is a flowchart of a method for transmitting a train network data based on a CANopen protocol according to a fifth embodiment of the present disclosure. As shown in FIG. 10, the method includes:
  • the first node of the first slave node is learned.
  • the CAN channel fails and a second CAN channel failure of the second slave node is detected.
  • the first CAN channel of the second slave node receives the heartbeat message sent by the related first slave node from the primary network, indicating that the first slave node may not be able to send related data from the first CAN channel, thereby obtaining the first slave node.
  • the first CAN channel is faulty.
  • the first slave node now transmits data from the second CAN channel, and in the present embodiment, the second CAN channel of the second slave node is detected to be faulty.
  • the information forwarding request including the first slave node identifier is sent to the active master node by using the active network, so that the active master node listens to the heartbeat message and data sent by the first slave node through the second CAN channel in the standby network.
  • the second slave node can only communicate on the primary network, and the first CAN channel of the first slave node fails, and the related data cannot be sent on the primary network, so that the second slave node can be normal.
  • the second slave node receives data sent by the second slave node, the second slave node sends an information forwarding request including the first slave node identifier to the active master node through the primary network, so that the active master node listens to the first slave node in the standby network.
  • Heartbeat messages and data sent by the two CAN channels are examples of the two CAN channels.
  • the active master node when the active master node listens to the heartbeat message and data sent by the first slave node through the second CAN channel in the standby network, it indicates that the second slave node is second at this time.
  • the CAN channel is normal, and thus, the heartbeat message and data of the first slave node that the active master node forwards to the active network is received through the first CAN channel of the second slave node.
  • both CAN channels of the first slave node fail, and therefore, communication between the second slave node and the first slave node cannot be realized at this time.
  • the secondary slave records the fault so that it can be reported and prompts the relevant personnel to handle the fault.
  • the active master node when the active master node does not monitor the heartbeat message and data sent by the first slave node through the second CAN channel in the standby network, the active master node receives the active master node from the first CAN channel of the second slave node.
  • the node drop message containing the first slave node identifier sent by the network records the node drop message of the first slave node, and stops the request for acquiring the heartbeat message and data of the first slave node.
  • the CANopen protocol-based train network data transmission method described on the second slave node side corresponds to the CANopen protocol-based train network data transmission method described on the first slave node side, and is implemented on the second slave node side. Details not disclosed in the examples are not described here.
  • the CANopen protocol-based train network data transmission method of the embodiment of the present disclosure receives, in the standby network or the primary network, an information forwarding request that is sent by the first slave node through the second CAN channel and includes the second slave node identifier.
  • Monitoring, in the primary network a heartbeat message and data sent by the second slave node corresponding to the second slave node identifier through the first CAN channel, so that when the primary network monitors the second slave node to send through the first CAN channel
  • the heartbeat message and data of the second slave node are forwarded to the first slave node through the backup network, so that the first slave node receives the heartbeat message and data of the second slave node through the second CAN channel.
  • the network where the CAN channel failure of the slave node is located is different, and the slave nodes cannot communicate normally.
  • the normal communication between the slave nodes is ensured, and the good operation of the whole vehicle is ensured.
  • the following describes the active master node in the method set, wherein the active master node is concentrated on the second slave node side control.
  • FIG. 11 is a flowchart of a method for transmitting a train network data based on a CANopen protocol according to a sixth embodiment of the present disclosure. As shown in FIG. 11, the method includes:
  • the active master node since the active master node receives the heartbeat message and data sent by the first slave node by default from the primary network, if the first CAN channel of the first slave node, it switches to the standby network to receive the first slave node. Sending a heartbeat message and data, and when the failure of the second slave node with which the first slave node communicates is not in the same network, for example, the second CAN channel of the second slave node is faulty, and thus, the second In order for the slave node to communicate with the first slave node, the second slave node sends an information forwarding request containing the node identity of the first slave node to the active master node.
  • the active master node receives, on the primary network, the information forwarding request that is sent by the second slave node through the first CAN channel and includes the first slave node identifier, it indicates that the second slave node cannot be associated with the primary network.
  • the first slave communicates.
  • the heartbeat message and data sent by the first slave node corresponding to the first slave node identifier through the second CAN channel are monitored in the standby network.
  • the first CAN channel of the first slave node may be faulty, and the second CAN channel of the second slave node may be faulty, thereby The communication between the second slave node and the first slave node cannot be realized, and it is also possible that both the first CAN channel and the second CAN channel of the first slave node fail, so that communication between the first slave node and the second slave node cannot be realized.
  • the heartbeat message and data sent by the first slave node corresponding to the first slave node identifier through the second CAN channel are monitored in the standby network.
  • the standby network listens to the heartbeat message and data sent by the first slave node through the second CAN channel, it indicates that the first CAN channel of the first slave node is faulty, and the second CAN channel is normal, and passes through the active network. Forwarding the heartbeat message and data of the first slave node to the second slave node, so that the second slave node receives the heartbeat message and data of the first slave node through the first CAN channel.
  • the first slave node is sent to the second slave node by using the primary network.
  • the identified node drop message sends a node drop message of the first slave node to the running monitoring node, and displays it to the operator to prompt the current troubleshooting. Therefore, both the second slave node and the operation monitoring node are informed of the fault message of the first slave node, so that the second slave node can stop the corresponding request, and promptly alert the relevant operator, thereby improving the stability of the vehicle network.
  • the primary node fails, and the communication between the first slave node and the second slave node cannot be performed.
  • the switch to the standby master is performed.
  • the data interaction between the node and other slave nodes or other communication networks is similar to that of the active master node and will not be described here.
  • the CANopen protocol-based train network data transmission method of the embodiment of the present disclosure receives, in the primary network, an information forwarding request that includes the first slave node identifier sent by the second slave node through the first CAN channel, in the standby network.
  • the heartbeat message and data sent by the first slave node corresponding to the first slave node identifier through the second CAN channel are monitored, and then, when the standby network listens to the heartbeat message sent by the first slave node through the second CAN channel, During the data, the heartbeat message and data of the first slave node are forwarded to the second slave node through the primary network, so that the second slave node receives the heartbeat message and data of the first slave node through the first CAN channel.
  • the network where the CAN channel failure of the slave node is located is different, the slave node cannot communicate normally, and the forwarding of the active master node ensures the normal communication between the slave nodes, thereby ensuring the good operation of the whole vehicle and improving The redundancy effect of the train network.
  • train network data transmission method based on the CANopen protocol of the present disclosure can be applied to slave nodes in the same communication network, and is also applicable to slave nodes in different communication networks.
  • execution method and technical effects of the present embodiment correspond to the execution method and technical effects of the CANopen protocol-based train network data transmission method according to the fourth embodiment of the present disclosure described in conjunction with FIG. 8 , and Let me repeat.
  • FIG. 12 is a schematic structural diagram of a first slave node according to an embodiment of the present disclosure.
  • the first slave node includes a first The switching module 110, the first learning module 120, the first sending module 130, and the first receiving module 140.
  • the first switching module 110 is configured to: when detecting the first CAN channel failure of the first slave node, switch to the second CAN channel of the first slave node to receive the heartbeat message and data sent by other related nodes through the standby network. .
  • the first learning module 120 is configured to learn that the second CAN channel of the second slave node is faulty when it is determined that the heartbeat message sent by the related second slave node is not received from the standby network within the preset heartbeat period.
  • the first sending module 130 is configured to send, by using the standby network, an information forwarding request including the second slave node identifier to the active master node, so that the active master node listens to the heartbeat sent by the second slave node through the first CAN channel in the active network. Messages and data.
  • the first receiving module 140 is configured to receive, by the active master node, the active primary node by using the second CAN channel of the first slave node when the primary network monitors the heartbeat message and data sent by the second slave node through the first CAN channel. Heartbeat messages and data of the second slave node forwarded to the backup network.
  • the first slave node of the embodiment of the present disclosure when the first CAN channel of the first slave node fails, the second CAN channel that is switched to the first slave node receives the heartbeat report sent by other related nodes through the standby network. And the data and the data, if it is determined that the heartbeat message sent by the second slave node is not received from the standby network within the preset heartbeat period, the second CAN channel of the second slave node is learned to be faulty, and the The active master node sends an information forwarding request including the second slave node identifier, so that the active master node listens to the heartbeat message and data sent by the second slave node through the first CAN channel in the active network, when the active master node is in the active role.
  • the second slave node of the first slave node receives the heartbeat message and data of the second slave node that is forwarded by the active master node to the standby network. . Therefore, the network where the CAN channel failure of the slave node is located is different, and the slave nodes cannot communicate normally. By sending a forwarding request to the active master node, the normal communication between the slave nodes is ensured, and the good operation of the whole vehicle is ensured. Improve the redundancy of the train network.
  • FIG. 13 is a schematic structural diagram of a first slave node according to another embodiment of the present disclosure. As shown in FIG. 13, the first slave node further includes a first record module 150, as shown in FIG.
  • the first receiving module 140 is further configured to: when the active primary node does not monitor the heartbeat message and data sent by the second slave node through the first CAN channel, the second CAN channel of the first slave node Receiving a node drop message containing the second slave node identifier sent by the active master node to the standby network.
  • the first recording module 150 is configured to record a node drop message of the second slave node.
  • the first slave node of the embodiment of the present disclosure sends a node drop message including the second slave node identifier to the first slave node when the second slave node fails, and the first slave node records the second slave node. Node dropped message.
  • the stability and reliability of the vehicle system are improved, and the relevant operator is facilitated to perform fault repair in time according to the information recorded from the node.
  • FIG. 14 is a schematic structural diagram of an active master node according to an embodiment of the present disclosure.
  • the active master node includes: a second receiving module. 210.
  • the second receiving module 210 is configured to receive, by the standby network or the primary network, an information forwarding request that is sent by the first slave node by using the second CAN channel and includes the second slave node identifier.
  • the first monitoring module 220 is configured to monitor, in the primary network, heartbeat messages and data sent by the second slave node corresponding to the second slave node identifier through the first CAN channel.
  • the first forwarding module 230 is configured to: when the primary network monitors the heartbeat message and the data sent by the second slave node through the first CAN channel, forward the heartbeat message of the second slave node to the first slave node through the standby network. Data, such that the first slave node receives the heartbeat message and data of the second slave node through the second CAN channel.
  • FIG. 15 is a schematic structural diagram of an active master node according to another embodiment of the present disclosure. As shown in FIG. 15, the active master node further includes: a second sending module 240, and a first prompt. Module 250 and second switching module 260.
  • the second sending module 240 is configured to send, when the primary network does not listen to the heartbeat message and data sent by the second slave node through the first CAN channel, send the second slave node to the first slave node through the standby network.
  • the identified node dropped message when the primary network does not listen to the heartbeat message and data sent by the second slave node through the first CAN channel, send the second slave node to the first slave node through the standby network. The identified node dropped message.
  • the first prompting module 250 is configured to send a node drop message of the second slave node to the running monitoring node, and display the message to the operator to prompt the current troubleshooting.
  • the second switching module 260 is configured to switch to the standby primary node to perform data interaction with other secondary nodes or other communication networks after detecting that the active primary node fails.
  • the active master node in the embodiment of the present disclosure receives the information forwarding request including the second slave node identifier sent by the first slave node through the second CAN channel in the standby network or the primary network, and monitors in the active network.
  • a heartbeat message and data sent by the second slave node corresponding to the second slave node identifier through the first CAN channel so that when the primary network monitors the heartbeat message and data sent by the second slave node through the first CAN channel
  • the heartbeat message and data of the second slave node are forwarded to the first slave node through the backup network, so that the first slave node receives the heartbeat message and data of the second slave node through the second CAN channel.
  • the network where the CAN channel failure of the slave node is located is different, the slave node cannot communicate normally, and the forwarding of the active master node ensures the normal communication between the slave nodes, thereby ensuring the good operation of the whole vehicle and improving The redundancy effect of the train network.
  • FIG. 16 is a schematic structural diagram of an active master node according to still another embodiment of the present disclosure. As shown in FIG. 16, the active master node further includes a second intercepting module 270 and a first judging module. 280. The second learning module 290 and the third sending module 2100.
  • the second monitoring module 270 is configured to monitor, on the primary network, the heartbeat messages and data sent by the slave nodes related to the active master node through the first CAN channel according to the pre-configured network node list.
  • the first determining module 280 is configured to determine whether the first CAN channel of each slave node is faulty according to the timing of the heartbeat timer and the receiving condition of the heartbeat message set corresponding to each slave node.
  • the second learning module 290 is configured to learn that the first CAN channel of the third slave node is faulty when it is determined that the heartbeat message of the third slave node is not received from the active network within the preset heartbeat period.
  • the second monitoring module 270 is further configured to switch to the standby network to listen to the heartbeat message sent by the third slave node through the second CAN channel, where the third slave node communicates with the other one.
  • the second receiving module 210 is further configured to receive the data sent by the third slave node on the standby network when receiving the heartbeat message sent by the third slave node through the second CAN channel in the preset heartbeat period;
  • the third sending module 2100 is configured to perform protocol conversion on the data sent by the third slave node according to a preset communication protocol with the target communication network, and send the data to the target communication network, and
  • the second receiving module 210 receives the third slave node on the primary network.
  • the transmitted data, the third sending module 2100 performs protocol conversion on the data sent by the third slave node according to a preset communication protocol with the target communication network, and sends the data to the target communication network.
  • the active master node of the embodiment of the present disclosure can be applied not only to the communication between the nodes of a communication network, but also to the communication between the fingers of different communication networks, thereby ensuring the communication between different communication networks.
  • the normal communication of the nodes further ensures the good operation of the whole vehicle and improves the redundancy effect of the train network.
  • FIG. 17 is a schematic structural diagram of a second slave node according to an embodiment of the present disclosure. As shown in FIG. 17, the second slave node includes a third. The module 310, the fourth sending module 320, and the third receiving module 330 are learned.
  • the third learning module 310 is configured to: when it is determined that the heartbeat message sent by the related first slave node is not received from the primary network by the first CAN channel of the second slave node in the preset heartbeat period, The first CAN channel failure of the first slave node is known, and the second CAN channel failure of the second slave node is detected.
  • the fourth sending module 320 is configured to send, by using the primary network, an information forwarding request that includes the first slave node identifier, so that the active master node listens to the heartbeat sent by the first slave node through the second CAN channel in the standby network. Messages and data.
  • the third receiving module 330 is configured to receive, by the active master node, the active primary node by using the first CAN channel of the second slave node when the standby network monitors the heartbeat message and data sent by the first slave node through the second CAN channel. The heartbeat message and data of the first slave node forwarded by the primary network.
  • FIG. 18 is a schematic structural diagram of a second slave node according to another embodiment of the present disclosure. As shown in FIG. 18, the second slave node further includes a second record module 340.
  • the third receiving module 330 is further configured to: when the active primary node does not hear the heartbeat message and data sent by the first slave node through the second CAN channel, the standby node receives the first CAN channel through the second slave node.
  • the second recording module 340 is configured to record a node drop message of the first slave node.
  • the second slave node of the embodiment of the present disclosure receives, in the standby network or the primary network, an information forwarding request that is sent by the first slave node through the second CAN channel and includes the second slave node identifier, in the active network.
  • the network where the CAN channel failure of the slave node is located is different, and the slave nodes cannot communicate normally.
  • the normal communication between the slave nodes is ensured, and the good operation of the whole vehicle is ensured.
  • FIG. 19 is a schematic structural diagram of an active master node according to an embodiment of the present disclosure.
  • the active master node includes: a fourth receiving module. 410.
  • the fourth receiving module 410 is configured to receive, by the primary network, an information forwarding request that is sent by the second slave node by using the first CAN channel and includes the first slave node identifier.
  • the third monitoring module 420 is configured to monitor, in the standby network, heartbeat messages and data sent by the first slave node corresponding to the first slave node identifier through the second CAN channel.
  • the second forwarding module 430 is configured to forward the heartbeat message of the first slave node to the second slave node through the primary network when the standby network listens to the heartbeat message and data sent by the first slave node through the second CAN channel. And data, so that the second slave node receives the heartbeat message and data of the first slave node through the first CAN channel.
  • FIG. 20 is a schematic structural diagram of an active master node according to another embodiment of the present disclosure. As shown in FIG. 20, the active master node further includes a fifth sending module 440 and a second prompting module. 450 and a third switching module 460.
  • the fifth sending module 440 is configured to send, by the primary network, the first slave node to the second slave node when the heartbeat message and data sent by the first slave node through the second CAN channel are not monitored in the standby network.
  • the identified node dropped message is configured to send, by the primary network, the first slave node to the second slave node when the heartbeat message and data sent by the first slave node through the second CAN channel are not monitored in the standby network. The identified node dropped message.
  • the second prompting module 450 is configured to send a node drop message of the first slave node to the running monitoring node, and display the message to the operator to prompt the current troubleshooting.
  • the third switching module 460 is configured to switch to the standby primary node to perform data interaction with other secondary nodes or other communication networks after detecting that the active primary node fails.
  • the active master node of the embodiment of the present disclosure receives, on the primary network, an information forwarding request that is sent by the second slave node through the first CAN channel and includes the first slave node identifier, and listens to the first slave in the standby network.
  • the heartbeat message and data sent by the first slave node corresponding to the node through the second CAN channel and then, when the standby network listens to the heartbeat message and data sent by the first slave node through the second CAN channel,
  • the network forwards the heartbeat message and data of the first slave node to the second slave node, so that the second slave node receives the heartbeat message and data of the first slave node through the first CAN channel.
  • the network where the CAN channel failure of the slave node is located is different, the slave node cannot communicate normally, and the forwarding of the active master node ensures the normal communication between the slave nodes, thereby ensuring the good operation of the whole vehicle and improving The redundancy effect of the train network.
  • FIG. 21 is a schematic structural diagram of an active master node according to still another embodiment of the present disclosure. As shown in FIG. 21, the active master node further includes: a fourth monitoring module 470, and a second determination. The module 480, the fourth learning module 490, and the sixth sending module 4100.
  • the fourth monitoring module 470 is configured to monitor, on the primary network, the heartbeat messages and data sent by the slave nodes related to the active master node through the first CAN channel according to the pre-configured network node list.
  • the second determining module 480 is configured to determine, according to the timing of the heartbeat timer that is set corresponding to the slave nodes, and the receiving situation of the heartbeat packet, whether the first CAN channel of each slave node is faulty;
  • the fourth learning module 490 is configured to determine that the first CAN channel of the third slave node is faulty when the heartbeat message of the third slave node is not received from the active network within a preset heartbeat period.
  • the third monitoring module 420 is further configured to switch to the standby network to listen to the heartbeat message sent by the third slave node through the second CAN channel, where the third slave node is any node that performs information interaction with other communication networks;
  • the fourth receiving module 410 is further configured to: when receiving the heartbeat message sent by the third slave node through the second CAN channel in the preset heartbeat period, receive the data sent by the third slave node on the standby network;
  • the sixth sending module 4100 is configured to perform protocol conversion on the data sent by the third slave node according to a preset communication protocol with the target communication network, and send the data to the target communication network, and
  • the fourth receiving module 410 receives the third slave node on the primary network when it is determined that the heartbeat message of the third slave node is received from the primary network within the preset heartbeat period.
  • the transmitted data, the sixth sending module 4100 performs protocol conversion on the data sent by the third slave node according to the preset communication protocol with the target communication network, and sends the data to the target communication network.
  • the active master node of the embodiment of the present disclosure can be applied not only to the communication between the nodes of a communication network, but also to the communication between the fingers of different communication networks, thereby ensuring the communication between different communication networks.
  • the normal communication of the nodes further ensures the good operation of the whole vehicle and improves the redundancy effect of the train network.
  • FIG. 22 is a schematic structural diagram of a train network data transmission system based on the CANopen protocol according to an embodiment of the present disclosure, as shown in FIG.
  • the train network data transmission system based on the CANopen protocol includes a first slave node 100, an active master node 200, and a second slave node 300.
  • the first slave node 100 includes the first slave node described in this disclosure in conjunction with FIG. 12 and FIG. 13 , and the implementation principle is similar, and details are not described herein again.
  • the active master node 200 includes the active master node described in the following with reference to FIG. 14 to FIG. 16 , and its implementation principle is similar, and details are not described herein again.
  • the second slave node 300 includes the second slave node described in connection with FIG. 17 and FIG. 18, and the implementation principle is similar, and details are not described herein again.
  • the train network data transmission system based on the CANopen protocol of the embodiment of the present disclosure avoids that the network where the CAN channel fault of the slave node is located is different, the slave nodes cannot communicate normally, and the forwarding request is sent to the active master node. It ensures the normal communication between the slave nodes, ensures the good operation of the whole vehicle, and improves the redundancy effect of the train network.
  • FIG. 23 is a schematic structural diagram of a train network data transmission system based on the CANopen protocol according to another embodiment of the present disclosure, as shown in FIG.
  • the train network data transmission system based on the CANopen protocol includes a first slave node 100, an active master node 400, and a second slave node 300.
  • the first slave node 100 includes the first slave node described in this disclosure in conjunction with FIG. 12 and FIG. 13 , and the implementation principle is similar, and details are not described herein again.
  • the active master node 400 includes the active master node described in the present disclosure in conjunction with FIG. 19 to FIG. 21, and its implementation principle is similar, and details are not described herein again.
  • the second slave node 300 includes the second slave node described in connection with FIG. 17 and FIG. 18, and the implementation principle is similar, and details are not described herein again.
  • the train network data transmission system based on the CANopen protocol of the embodiment of the present disclosure avoids that the network where the CAN channel fault of the slave node is located is different, the slave nodes cannot communicate normally, and the forwarding request is sent to the active master node. It ensures the normal communication between the slave nodes, ensures the good operation of the whole vehicle, and improves the redundancy effect of the train network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Small-Scale Networks (AREA)

Abstract

本公开公开了一种基于CANopen协议的列车网络数据传输方法、系统及其装置,其中,应用在第一从节点的方法包括:当检测到第一从节点的第一CAN通道故障时,切换到第一从节点的第二CAN通道通过备用网络接收其他相关节点发送的心跳报文和数据;若判断获知在预设的心跳周期内没有从备用网络接收到相关的第二从节点发送的心跳报文,则使活动主节点在主用网络中监听第二从节点通过第一CAN通道发送的心跳报文和数据;当活动主节点在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过第一从节点的第二CAN通道接收活动主节点向备用网络转发的第二从节点的心跳报文和数据。由此,保证了整车的良好运行,提高了列车网络的冗余效果。

Description

基于CANopen协议的列车网络数据传输方法、系统及其装置
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2017年06月21日提交的、公开名称为“基于CANopen协议的列车网络数据传输方法、系统及其装置”的、中国专利申请号“201710476532.6”的优先权。
技术领域
本公开涉及车辆通信技术领域,尤其涉及一种基于CANopen协议的列车网络数据传输方法、系统及其装置。
背景技术
目前列车通信网络应用比较广泛的是列车通信网络TCN(Train Communication Network,列车通信网络)总线技术,TCN涵盖了MVB(Multifunction Vehicle Bus,多功能车辆总线)、WTB(Wire Train Bus,绞线式列车总线)、以太网、CAN(Controller Area Network,现场总线)这四种总线。在对于MVB、WTB、以太网、CAN这四种总线的设计要求中,一个共同的要求是网络冗余设计。所谓的网络冗余,指的是为每个通信网络都应再设立一个备用网络,即网络上每个节点都会采用A线和B线的双线连接方式,当网络出现故障时,可以通过备用网络实现通信,确保网络上各产品数据交互畅通,使列车通信网络的运行环境具备高可用性。
通常列车通信网络设计如果应用CAN总线进行数据交互,多数情况都会基于CANopen(一种基于CAN总线的高层通信协议,是目前工业控制常用的一种现场总线)设计,CANopen的定义是基于CAN总线设计的标准化应用层协议,CANopen协议为传统CAN支援了一套完善的网络管理机制,以支撑冗余网络设计。目前基于CANopen的冗余网络设计都是要求所有网络节点双路同时发送数据,但默认情况所有节点只从主用网络获取数据,当某个或某些从节点在主用网络掉线时,切换到备用网络接收该部分节点的数据,接收该部分节点数据的统一切换到备用网络接收数据。
发明内容
本公开的目的旨在至少在一定程度上解决上述的技术问题之一。
为此,本公开的第一个目的在于提出一种基于CANopen协议的列车网络数据传输方法,该方法保证了整车的良好运行,提高了列车网络的冗余效果。
本公开的第二个目的在于提出另一种基于CANopen协议的列车网络数据传输方法。
本公开的第三个目的在于提出又一种基于CANopen协议的列车网络数据传输方法。
本公开的第四个目的在于提出还一种基于CANopen协议的列车网络数据传输方法。
本公开的第五个目的在于提出一种第一从节点。
本公开的第六个目的在于提出一种活动主节点。
本公开的第七个目的在于提出一种第二从节点。
本公开的第八个目的在于提出另一种活动主节点。
本公开的第九个目的在于提出一种基于CANopen协议的列车网络数据传输系统。
本公开的第十个目的在于提出另一种基于CANopen协议的列车网络数据传输系统。
本公开的第十一个目的在于提出一种计算机设备。
本公开的第十二个目的在于提出另一种计算机设备。
本公开的第十三个目的在于提出又一种计算机设备。
本公开的第十四个目的在于提出还一种计算机设备。
本公开的第十五个目的在于提出一种存储介质。
本公开的第十六个目的在于提出另一种存储介质。
本公开的第十七个目的在于提出又一种存储介质。
本公开的第十八个目的在于提出还一种存储介质。
为了实现上述目的,本公开第一方面实施例提出的一种基于CANopen协议的列车网络数据传输方法,包括以下步骤:当检测到所述第一从节点的第一CAN通道故障时,切换到所述第一从节点的第二CAN通道通过备用网络接收其他相关节点发送的心跳报文和数据;若判断获知在预设的心跳周期内没有从所述备用网络接收到相关的第二从节点发送的心跳报文,则获知所述第二从节点的第二CAN通道故障,并通过所述备用网络向活动主节点发送包含第二从节点标识的信息转发请求,以使所述活动主节点在主用网络中监听所述第二从节点通过第一CAN通道发送的心跳报文和数据;当所述活动主节点在所述主用网络监听到所述第二从节点通过第一CAN通道发送的心跳报文和数据时,通过所述第一从节点的第二CAN通道接收所述活动主节点向所述备用网络转发的所述第二从节点的心跳报文和数据。
为了实现上述目的,本公开第二方面实施例提出的另一种基于CANopen协议的列车网络数据传输方法,包括以下步骤:在备用网络或主用网络接收第一从节点通过第二CAN通道发送的包含第二从节点标识的信息转发请求;在主用网络中监听与所述第二从节点标识 对应的第二从节点通过第一CAN通道发送的心跳报文和数据;当在所述主用网络监听到所述第二从节点通过第一CAN通道发送的心跳报文和数据时,通过所述备用网络向所述第一从节点转发所述第二从节点的心跳报文和数据,以使所述第一从节点通过第二CAN通道接收所述第二从节点的心跳报文和数据。
为了实现上述目的,本公开第三方面实施例提出的又一种基于CANopen协议的列车网络数据传输方法,包括以下步骤:若判断获知在预设的心跳周期内没有通过所述第二从节点的第一CAN通道从主用网络接收到相关的第一从节点发送的心跳报文,则获知所述第一从节点的第一CAN通道故障,并且检测到所述第二从节点的第二CAN通道故障;通过所述主用网络向活动主节点发送包含第一从节点标识的信息转发请求,以使所述活动主节点在备用网络中监听所述第一从节点通过第二CAN通道发送的心跳报文和数据;当所述活动主节点在所述备用网络监听到所述第一从节点通过第二CAN通道发送的心跳报文和数据时,通过所述第二从节点的第一CAN通道接收所述活动主节点向所述主用网络转发的所述第一从节点的心跳报文和数据。
为了实现上述目的,本公开第四方面实施例提出的还一种基于CANopen协议的列车网络数据传输方法,包括以下步骤:在主用网络接收第二从节点通过第一CAN通道发送的包含第一从节点标识的信息转发请求;在备用网络中监听与所述第一从节点标识对应的第一从节点通过第二CAN通道发送的心跳报文和数据;当在所述备用网络监听到所述第一从节点通过第二CAN通道发送的心跳报文和数据时,通过所述主用网络向所述第二从节点转发所述第一从节点的心跳报文和数据,以使所述第二从节点通过第一CAN通道接收所述第一从节点的心跳报文和数据。
为了实现上述目的,本公开第五方面实施例提出的第一从节点,包括:第一切换模块,用于在检测到第一从节点的第一CAN通道故障时,切换到所述第一从节点的第二CAN通道通过备用网络接收其他相关节点发送的心跳报文和数据;第一获知模块,用于在判断获知在预设的心跳周期内没有从所述备用网络接收到相关的第二从节点发送的心跳报文时,获知所述第二从节点的第二CAN通道故障;第一发送模块,用于通过所述备用网络向活动主节点发送包含第二从节点标识的信息转发请求,以使所述活动主节点在主用网络中监听所述第二从节点通过第一CAN通道发送的心跳报文和数据;第一接收模块,用于在所述活动主节点在所述主用网络监听到所述第二从节点通过第一CAN通道发送的心跳报文和数据时,通过所述第一从节点的第二CAN通道接收所述活动主节点向所述备用网络转发的所述第二从节点的心跳报文和数据。
为了实现上述目的,本公开第六方面实施例提出的一种活动主节点,包括:第二接收模块,用于在备用网络或主用网络接收第一从节点通过第二CAN通道发送的包含第二从节 点标识的信息转发请求;第一监听模块,用于在主用网络中监听与所述第二从节点标识对应的第二从节点通过第一CAN通道发送的心跳报文和数据;第一转发模块,用于在所述主用网络监听到所述第二从节点通过第一CAN通道发送的心跳报文和数据时,通过所述备用网络向所述第一从节点转发所述第二从节点的心跳报文和数据,以使所述第一从节点通过第二CAN通道接收所述第二从节点的心跳报文和数据。
为了实现上述目的,本公开第七方面实施例提出的一种第二从节点,包括:第三获知模块,用于在判断获知在预设的心跳周期内没有通过所述第二从节点的第一CAN通道从主用网络接收到相关的第一从节点发送的心跳报文时,获知所述第一从节点的第一CAN通道故障,并且检测到所述第二从节点的第二CAN通道故障;第四发送模块,用于通过所述主用网络向活动主节点发送包含第一从节点标识的信息转发请求,以使所述活动主节点在备用网络中监听所述第一从节点通过第二CAN通道发送的心跳报文和数据;第三接收模块,用于在所述活动主节点在所述备用网络监听到所述第一从节点通过第二CAN通道发送的心跳报文和数据时,通过所述第二从节点的第一CAN通道接收所述活动主节点向所述主用网络转发的所述第一从节点的心跳报文和数据。
为了实现上述目的,本公开第八方面实施例提出的另一种活动主节点,包括:第四接收模块,用于在主用网络接收第二从节点通过第一CAN通道发送的包含第一从节点标识的信息转发请求;第三监听模块,用于在备用网络中监听与所述第一从节点标识对应的第一从节点通过第二CAN通道发送的心跳报文和数据;第二转发模块,用于当在所述备用网络监听到所述第一从节点通过第二CAN通道发送的心跳报文和数据时,通过所述主用网络向所述第二从节点转发所述第一从节点的心跳报文和数据,以使所述第二从节点通过第一CAN通道接收所述第一从节点的心跳报文和数据。
为了实现上述目的,本公开第九方面实施例提出的一种基于CANopen协议的列车网络数据传输系统,包括本公开第五方面实施例所述的第一从节点,第六方面实施例所述的活动主节点,第七方面实施例所述的第二从节点。
为了实现上述目的,本公开第十方面实施例提出的一种基于CANopen协议的列车网络数据传输系统,包括本公开第五方面实施例所述的第一从节点,第八方面实施例所述的活动主节点,第七方面实施例所述的第二从节点。
为了实现上述目的,本公开第十一方面实施例提出的一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如本公开第一方面实施例所述的基于CANopen协议的列车网络数据传输方法。
为了实现上述目的,本公开第十二方面实施例提出的另一种计算机设备,包括存储器、 处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如本公开第二方面实施例所述的基于CANopen协议的列车网络数据传输方法。
为了实现上述目的,本公开第十三方面实施例提出的又一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如本公开第三方面实施例所述的基于CANopen协议的列车网络数据传输方法。
为了实现上述目的,本公开第十四方面实施例提出的还一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如本公开第四方面实施例所述的基于CANopen协议的列车网络数据传输方法。
为了实现上述目的,本公开第十五方面实施例提出的一种存储介质,用于存储应用程序,所述应用程序用于执行如本公开第一方面实施例所述的基于CANopen协议的列车网络数据传输方法。
为了实现上述目的,本公开第十六方面实施例提出的另一种存储介质,用于存储应用程序,所述应用程序用于执行如本公开第二方面实施例所述的基于CANopen协议的列车网络数据传输方法。
为了实现上述目的,本公开第十七方面实施例提出的又一种存储介质,用于存储应用程序,所述应用程序用于执行如本公开第三方面实施例所述的基于CANopen协议的列车网络数据传输方法。
为了实现上述目的,本公开第十八方面实施例提出的还一种存储介质,用于存储应用程序,所述应用程序用于执行如本公开第四方面实施例所述的基于CANopen协议的列车网络数据传输方法。
本公开实施例提供的技术方案可以包括以下有益效果:
避免了从节点的CAN通道故障所在网络不同时,从节点之间无法正常通信,通过向活动主节点发送转发请求,以通过活动主节点进行心跳报文和数据的转发,保证了从节点之间的正常通信,保证了整车的良好运行,提高了列车网络的冗余效果。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和 容易理解,其中:
图1是根据现有技术的列车网络结构示意图;
图2是根据现有技术的列车网络结构数据传输存在风险示意图;
图3是根据本公开第一个实施例的基于CANopen协议的列车网络数据传输方法的流程图;
图4是根据本公开的列车网络结构数据传输克服风险示意图;
图5是根据本公开第二个实施例的基于CANopen协议的列车网络数据传输方法的流程图;
图6(a)是根据本公开一个实施例的数据交互示意图;
图6(b)是根据本公开另一个实施例的数据交互示意图;
图7是根据本公开第三个实施例的基于CANopen协议的列车网络数据传输方法的流程图;
图8是根据本公开第四个实施例的基于CANopen协议的列车网络数据传输方法的流程图;
图9(a)是根据本公开一个实施例的节点间数据交互示意图;
图9(b)是根据本公开另一个实施例的节点间数据交互示意图;
图10是根据本公开第五个实施例的基于CANopen协议的列车网络数据传输方法的流程图;
图11是根据本公开第六个实施例的基于CANopen协议的列车网络数据传输方法的流程图;
图12是根据本公开一个实施例的第一从节点的结构示意图;
图13是根据本公开另一个实施例的第一从节点的结构示意图;
图14是根据本公开一个实施例的活动主节点的结构示意图;
图15是根据本公开另一个实施例的活动主节点的结构示意图;
图16是根据本公开又一个实施例的活动主节点的结构示意图;
图17是根据本公开一个实施例的第二从节点的结构示意图;
图18是根据本公开另一个实施例的第二从节点的结构示意图;
图19是根据本公开一个实施例的活动主节点的结构示意图;
图20是根据本公开另一个实施例的活动主节点的结构示意图;
图21是根据本公开又一个实施例的活动主节点的结构示意图;
图22是根据本公开一个实施例基于CANopen协议的列车网络数据传输系统的结构示意图;以及
图23是根据本公开另一个实施例基于CANopen协议的列车网络数据传输系统的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例的基于CANopen协议的列车网络数据传输方法、系统及其装置。
具体地,由当前现有技术中的冗余网络设计方式可知,由于目前使用CAN总线作为通信网络的列车应用比较少,即以CAN总线搭建的网络架构较为简单,甚至现阶段已应用CAN总线的列车上都未妥善地考虑网络冗余设计,即使是有这方面考虑,很多车辆制造商由于技术条件有限,同时为了使网络节点软件逻辑处理简单,能快速地满足网络搭建,所以现有比较完善的策略就是所有节点同时在主用网络与备用网络都发送数据,但是只会选其中一个网络接收数据,不管主用网络上哪个节点已经掉线,跟其相关的节点统一切换到备用网络上接收处理掉线节点的数据以及其他关联节点的数据。
举例而言,如附图1示例所示,从节点A接收从节点B、C、D的数据,从节点B接收A、E的数据,从节点C接收从节点B、D数据,从节点A、C需要接收从节点B的数据,而从节点D、E不接收从节点B的数据,当从节点B的第一CAN通道故障时,从节点A与从节点C就切换到备用网络上去接收数据,这样就能保证正常接收到节点B的数据。
然而,这样的处理方式会存在一种风险,如附图2所示,节点从B需要接收从节点C的数据,从节点C也需要接收从节点B的数据,若是从节点B第一CAN通道故障且从节点C第二CAN通道故障时,从节点B或从节点C实际上已经属于物理隔绝状态,两个从节点都无法接收到相互的数据,进而影响整车运行。
为了解决现有技术中,多个节点不同通道故障时出现部分节点数据无法正常接收的技术问题,本公开提出的列车网络数据传输方法中,在现有列车网络冗余设计结构的基础上,提供一种列车冗余网络数据传输设计方案,可有效避免部分节点主用网络通道故障而部分节点备用网络通道故障时节点之间无法正常通信的故障现象,同时也提升了冗余设计的实际效果,很好地规避了一些车辆网络故障导致整车运行受阻的问题,能保证在一些异常情况下,网络各个节点依然可以正常通信。
其中,需要强调的是,本公开的列车网络数据传输方法是基于CANopen协议执行的,其中,CANopen协议要求网络中有一个节点充当主节点的角色,以管理其他从节点的初始 化、启动、监管、复位或停止等工作。
为了更加清楚的对本公开的基于CANopen协议的列车网络数据传输方法进行说明,下面结合具体实施例,集中在该方法应用在第一从节点侧进行描述,其中,第一从节点可以是任意一个发生通信故障的从节点,说明如下:
图3是根据本公开第一个实施例的基于CANopen协议的列车网络数据传输方法的流程图,如图3所示,该方法包括:
S101,当检测到第一从节点的第一CAN通道故障时,切换到第一从节点的第二CAN通道通过备用网络接收其他相关节点发送的心跳报文和数据。
可以理解,本公开实施例的基于CANopen协议的列车网络的架构中,继续参照图1,网络设立两个主节点,一个为活动主节点,另一个为备份主节点,当活动主节点出现故障时,备份主节点才会替代之前活动主节点的功能,另外所有网络上的节点都采用A、B两对CAN线连接,A线路定义为主用网络,B线路定义为备用网络,所有节点在运行时,会同时往A线与B线上发送信息(包括各自的心跳报文),但在初始默认情况下只会在A线上接收信息,但节点必须支持同时在A线与B线中接收信息。
在本公开中,活动主节点与备份主节点都定义为网关,所以在默认状态下,需要传输到其他网络的数据,网关只会从主网上接收,然后再根据网关转发协议把数据转到相关网络(此处网络包含其他网络的主用网络与备用网络)上。
在本公开的一个实施例中,当检测到第一从节点的第一CAN通道故障时,比如在预设的周期内在第一CAN通道检测不到第一从节点发送的心跳报文,则表明此时第一从节点在第一CAN通道不能接收到其他节点发送的心跳报文,从而为了保证第一从节点与其他节点的正常通信,切换到第一从节点的第二CAN通道通过备用网络接收其他相关节点发送的心跳报文和数据。
其中,上述其他相关从节点是第一从节点需要进行通信的其他从节点,即第一从节点需要接收数据的来源从节点。
S102,若判断获知在预设的心跳周期内没有从备用网络接收到相关的第二从节点发送的心跳报文,则获知第二从节点的第二CAN通道故障,并通过备用网络向活动主节点发送包含第二从节点标识的信息转发请求,以使活动主节点在主用网络中监听第二从节点通过第一CAN通道发送的心跳报文和数据。
其中,上述预设的心跳周期是根据大量实验标定的,通常在该预设周期内,可在对应的网络中接收到相关从节点发送的心跳报文和数据,比如,为5个心跳周期等。
另外,第二从节点标识可以包括第二从节点的Node-ID、位置信息等能唯一标识第二从节点的信息。
具体地,如果判断获知在预设的心跳周期内没有从备用网络接收到相关的第二从节点发送的心跳报文,则获知第二从节点的第二CAN通道故障,则为了接收到第二从节点的数据,通过备用网络向活动主节点发送包含第二从节点标识的信息转发请求,以使得活动主节点在主用网络中监听第二从节点通过第一CAN通道发送的心跳报文和数据。
S103,当活动主节点在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过第一从节点的第二CAN通道接收活动主节点向备用网络转发的第二从节点的心跳报文和数据。
具体地,当活动主节点在主用网络上监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,表明第二从节点的第一CAN通道通信正常,从而通过第一从节点的第二CAN通道接收活动主节点向备用网络转发的第二从节点的心跳报文和数据。
也就是说,在本公开的实施例中,根据第一从节点要接收的第二从节点的CAN通道故障情况,接收第二从节点发送的心跳报文和数据,即使第二从节点故障的CAN通道与第一从节点故障的CAN通道不在同一个网络,仍能通过活动主节点的转发,实现第一从节点正常接收到第二从节点发送的心跳报文和数据。
为了更加清楚的说明,本公开基于CANopen协议的列车网络数据传输方法的控制流程,下面结合具体的应用场景进行说明,在该示例中,第一从节点为从节点A,第二从节点为从节点B:
如图4所示,当从节点A的第一CAN通道故障时,在主用网络上监听不到该从节点发送的心跳报文等,切换到第二CAN通道监听其所要监听的从节点B发送的心跳报文和数据,然而,从节点B的第二CAN通道故障,且由于该从节点A的第一CAN通道故障,无法判断其在第一CAN通道是否能接收到从节点B发送的心跳报文和数据。
由此,请求活动主节点在第一CAN通道监听从节点B发送的心跳报文和数据,当活动主节点在主用网络监听到从节点B通过第一CAN通道发送的心跳报文和数据时,通过从节点A的第二CAN通道接收活动主节点向备用网络转发的从节点B的心跳报文和数据,由此,从节点A和从节点B的故障网络虽然不同但是仍能进行正常的数据通信。
综上所述,本公开实施例的基于CANopen协议的列车网络数据传输方法,当第一从节点的第一CAN通道故障时,切换到第一从节点的第二CAN通道通过备用网络接收其他相关节点发送的心跳报文和数据,若判断获知在预设的心跳周期内没有从备用网络接收到相关的第二从节点发送的心跳报文,则获知第二从节点的第二CAN通道故障,并通过备用网络向活动主节点发送包含第二从节点标识的信息转发请求,以使活动主节点在主用网络中监听第二从节点通过第一CAN通道发送的心跳报文和数据,当活动主节点在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过第一从节点的第二CAN 通道接收活动主节点向备用网络转发的第二从节点的心跳报文和数据。由此,避免了从节点的CAN通道故障所在网络不同时,从节点之间无法正常通信,通过向活动主节点发送转发请求,保证了从节点之间的正常通信,保证了整车的良好运行,提高了列车网络的冗余效果。
基于以上实施例,应当理解的是,在实际应用中,有可能第二从节点的两个CAN通道均发生故障,因此,此时无法实现第一从节点和第二从节点的通信,此时,需要及时在第一从节点记录故障以便于上报并提示相关人员进行故障处理。
图5是根据本公开第二个实施例的基于CANopen协议的列车网络数据传输方法的流程图,如图5所示,在上述步骤S102之后,该方法还包括:
S201,当活动主节点没有在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过第一从节点的第二CAN通道接收活动主节点向备用网络发送的包含第二从节点标识的节点掉线消息。
S202,记录第二从节点的节点掉线消息。
具体地,当活动主节点没有在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,则获知第二从节点的第一CAN通道故障,此时,第二从节点的第一CAN通道和第二CAN通道均发生了通信故障,无法与第一从节点进行正常的通信,因而,此时通过第一从节点的第二CAN通道接收活动主节点向备用网络发送的包含第二从节点标识的节点掉线消息,第一从节点记录第二从节点的节点掉线消息。
也就是说,本公开实施例的基于CANopen协议的列车网络数据传输方法中,根据第二从节点故障的具体情况的不同,第一从节点接收到的活动主节点发送的信息不同,举例说明如下:
如图6(a)所示,在本公开实施例的基于CANopen协议的列车网络数据传输方法中,如果第一从节点检测不到第二从节点发送的心跳报文和数据,则表明第二从节点发生故障的CAN通道所在网络可能和第一从节点发生故障的CAN通道不同,在本示例中,第一从节点的第一CAN通道故障。
因而,此时第一从节点向活动主节点发送包含第二从节点标识的信息转发请求,以使活动主节点在主用网络中监听第二从节点通过第一CAN通道发送的心跳报文和数据。当活动主节点在对应网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过第一从节点的第二CAN通道接收活动主节点向备用网络转发的第二从节点的心跳报文和数据。
如图6(b)所示,如果活动主节点没有在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过第一从节点的第二CAN通道接收活动主节点向备用网 络发送的包含第二从节点标识的节点掉线消息,第一从节点记录第二从节点的节点掉线消息,停止获取第二从节点的心跳报文和数据的请求。
综上所述,本公开实施例的基于CANopen协议的列车网络数据传输方法,在第二从节点故障时,向第一从节点发送包含第二从节点标识的节点掉线消息,第一从节点记录第二从节点的节点掉线消息。由此,提高了整车系统的稳定性和可靠性,便于相关操作人员根据从节点记录的信息及时进行故障修复等。
为了更加清楚的说明本公开实施例的基于CANopen协议的列车网络数据传输方法,下面以该方法集中在主动主节点侧描述,其中,活动主节点集中于在第一从节点侧控制。
图7是根据本公开第三个实施例的基于CANopen协议的列车网络数据传输方法的流程图,如图7所示,该方法包括:
S301,在备用网络或主用网络接收第一从节点通过第二CAN通道发送的包含第二从节点标识的信息转发请求。
可以理解,由于活动主节点默认从主用网络上接收第一从节点发送的心跳报文和数据,如果从节点的第一CAN通道,则会切换到备用网络上接收第一从节点发送的心跳报文和数据,而当第一从节点与其通信的第二从节点的故障不在同一个网络时,比如,此时可能第二从节点的第二CAN通道故障,从而,此时第一从节点为了与第二从节点通信,第一从节点向活动主节点发送包含第二从节点的节点标识的信息转发请求。
具体而言,如果活动主节点在备用网络上接收到第一从节点通过第二CAN通道发送的包含第二从节点标识的信息转发请求,则表明第一从节点在备用网络上无法与第二从节点进行通信。
S302,在主用网络中监听与第二从节点标识对应的第二从节点通过第一CAN通道发送的心跳报文和数据。
由于在实际操作过程中,第一从节点和第二从节点无法在备用网络上的原因,可能是第二从节点的第二CAN通道故障,而第一从节点的第一CAN通道故障,从而无法实现第一从节点和第二从节点的通信,也有可能是第二从节点的第一CAN通道和第二CAN通道均发生故障,从而无法实现第一从节点和第二从节点的通信。
因而,为了判断第二从节点的具体情况,在主用网络中监听与第二从节点标识对应的第二从节点通过第一CAN通道发送的心跳报文和数据。
S303,当在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过备用网络向第一从节点转发第二从节点的心跳报文和数据,以使第一从节点通过第二CAN通道接收第二从节点的心跳报文和数据。
具体地,当在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据 时,则表明第二从节点的第二CAN通道故障,第一CAN通道正常,通过备用网络向第一从节点转发第二从节点的心跳报文和数据,以使第一从节点通过第二CAN通道接收第二从节点的心跳报文和数据。
在本公开的一个实施例中,若在主用网络中没有监听到第二从节点通过第一CAN通道发送的心跳报文和数据,则通过备用网络向第一从节点发送包含第二从节点标识的节点掉线消息,向运行监控节点发送第二从节点的节点掉线消息,并显示给操作员,提示当前故障检修。由此,无论是第一从节点还是运行监控节点均获知第二从节点的故障消息,使得第一从节点可以停止相应的请求,且及时提醒相关操作人员,提高了整车网络的稳定性。
当然了,在一些应用场景下,有可能是主节点发生故障而导致第一从节点和第二从节点的通信无法进行,此时,当检测到活动主节点出现故障后,则切换到备用主节点与其他从节点或其他通信网络进行数据交互,由于备份主节点与活动主节点的工作原理类似,在此不再赘述。
综上所述,本公开实施例的基于CANopen协议的列车网络数据传输方法,在备用网络或主用网络接收第一从节点通过第二CAN通道发送的包含第二从节点标识的信息转发请求,在主用网络中监听与第二从节点标识对应的第二从节点通过第一CAN通道发送的心跳报文和数据,从而,当在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过备用网络向第一从节点转发第二从节点的心跳报文和数据,以使第一从节点通过第二CAN通道接收第二从节点的心跳报文和数据。由此,避免了从节点的CAN通道故障所在网络不同时,从节点之间无法正常通信,通过活动主节点的转发,保证了从节点之间的正常通信,保证了整车的良好运行,提高了列车网络的冗余效果。
基于以上实施例,需要强调的是,本公开基于CANopen协议的列车网络数据传输方法,即可应用于同一个通信网络中的从节点,也同样适用于不同通信网络中的从节点。
图8是根据本公开第四个实施例的基于CANopen协议的列车网络数据传输方法的流程图,如图8所示,该方法包括:
S401,根据预先配置的网络节点列表在主用网络上监听与活动主节点相关的各从节点通过第一CAN通道发送的心跳报文和数据。
在实际数据传输过程中,活动主节点根据拓扑图建立一个网络所有从节点列表(并可配置),而每个从节点根据拓扑图建立一个与其相关的网络节点列表(均须包含活动主节点,并可配置),默认情况下各个从节点根据网络节点列表在主网上监测相关节点的心跳包发送情况,并且从主用网络上获取自身所需数据。
具体而言,活动主节点在自身操作状态后,执行心跳报文监测机制,活动主节点可根据网络拓扑图建立一个所有网络节点列表(可配置的),即自定义CANopen的对象字典中 的一个对象索引以各节点独有的节点标识来标记各节点身份,把所有从节点的节点标识(比如从节点ID)都包含在该对象存储空间内,活动主节点会为每个从节点都设置一个心跳计时器,活动主节点在进入操作状态后,每个心跳计时器就会进行倒计时,活动主节点把收到的心跳报文解析出相应的从节点标识,然后再与其自身对象字典中的节点列表匹配,再把匹配上的从节点对应的心跳计时器置位,重新计时,根据此特性要求,包含活动主节点在内所有从节点都会同时在主用网络与备用网络上以各自节点ID通过特定的周期循环发送心跳报文。
S402,根据与各从节点对应设置的心跳计时器的计时情况和心跳报文的接收情况,判断各从节点的第一CAN通道是否故障。
举例而言,如果从节点的第一CAN通道通信良好,则在一定的时间内,活动主节点可以正常接收从节点发送的心跳报文,否则,从节点的第一CAN通道通信故障。
当然,在某些情况下,可能因为一些其他原因导致活动主节点没有正常接收从节点发送的心跳报文,比如,网络信号受到突然的干扰等,因而为了避免误判,准确确定各从节点的第一CAN通道是否故障,综合考量各从节点对应设置的心跳计时器的计时情况和心跳报文的接收情况,判断各从节点的第一CAN通道是否故障。
举例而言,当有三个心跳周期未监测到某个从节点的心跳报文时,活动主节点首先会通过网络控制的复位指令先使该从节点进行复位,之后再监听两个心跳周期,在两个心跳周期内可以收到从节点的心跳报文,活动主节点维持在主用网络处理该节点处理,否则判断该从节点的第一CAN通道可能故障。
需要强调的是,上述示例中的心跳计时器的计时情况仅仅是一种示例,根据具体应用需求的不同,也可采取其他心跳周期的组合判断各从节点的第一CAN通道是否故障,比如,当有5个心跳周期未检测到某个从节点的心跳报文时,则直接判断该从节点的第一CAN通道故障。
S403,若判断获知在预设的心跳周期内没有从主用网络接收到第三从节点的心跳报文,则获知第三从节点的第一CAN通道故障,并切换到备用网络监听第三从节点通过第二CAN通道发送的心跳报文。
其中,第三从节点为任意一个与其他通信网络进行信息交互的节点。
具体地,在预设的心跳周期内如果没有接收到第三从节点的心跳报文,则表明导致活动主节点接收不到第三从节点发送的心跳报文的原因,是第一CAN通道故障导致的,从而为了保证活动主节点可正常接收到第三从节点的数据,维持整车的正常运行,切换到备用网络监听第三从节点通过第二CAN通道发送的心跳报文。
S404,如果在预设的心跳周期内接收到第三从节点通过第二CAN通道发送的心跳报 文,则在备用网络上接收第三从节点发送的数据。
具体地,如果在预设的心跳周期内接收到第三从节点通过第二CAN通道发送的心跳报文,则表明第二CAN通道功能正常,从而在备用网络上接收第三从节点发送的数据。
S405,根据预设的与目标通信网络之间的通信协议对第三从节点发送的数据进行协议转换发送给目标通信网络。
具体地,为了保证其他网络能正常接收到第三从节点发送的数据,根据预设的与目标通信网络之间的通信协议对第三从节点发送的数据进行协议转换发送给目标通信网络。
S406,若判断获知在预设的心跳周期内从主用网络接收到第三从节点的心跳报文,则在主用网络上接收第三从节点发送的数据。
具体地,若判断获知在预设的心跳周期内从主用网络接收到第三从节点的心跳报文,则表明第三从节点的的第一CAN通道通信正常,从而在主用网络上接收第三从节点发送的数据,并且,为了保证其他网络能正常接收到第三从节点发送的数据,执行步骤S405,根据预设的与目标通信网络之间的通信协议对第三从节点发送的数据进行协议转换发送给目标通信网络。
为了更加清楚的说明上述实施过程,举例说明如下:
如图9(a)所示,当整车列车网络中通信网络1和通信网络2中的从节点进行数据交互时,活动主节点作为中间数据转发的桥梁实现两个通信网络指间的信息交互,比如,如果通信网络2中的从节点D需要接收通信网络1中从节点A和从节点B的心跳报文和数据,则活动主节点接收从节点A和从节点B的心跳报文和数据后,根据预设的与目标通信网络之间的通信协议将从节点A和从节点B的心跳报文和数据进行协议转换,通过通信网络2的网络(主用网络或备用网络)转发至从节点D。
在一些应用场景下,如图9(b)所示,当通信网络1中的从节点A的第一CAN通道故障,从节点B的第二CAN通道故障时,活动主节点在主用网络上接收从节点B发送的心跳报文和数据,在备用网络上接收从节点A发送的心跳报文和数据,根据预设的与目标通信网络之间的通信协议将从节点A和从节点B的心跳报文和数据进行协议转换,通过通信网络2的主用网络转发至从节点D。
综上所述,本公开实施例的基于CANopen协议的列车网络数据传输方法不但可以应用于一个通信网络指间从节点的通信,还可应用于不同通信网络指间从节点的通信,保证了不同通信网络之间从节点的正常通信,进一步保证了整车的良好运行,提高了列车网络的冗余效果。
为了更加清楚的说明本公开实施例的基于CANopen协议的列车网络数据传输方法,下面以该方法集中在第二从节点侧描述。由以上描述可知,第二从节点为与第一从节点通信 的任意从节点。
图10是根据本公开第五个实施例的基于CANopen协议的列车网络数据传输方法的流程图,如图10所示,该方法包括:
S501,若判断获知在预设的心跳周期内没有通过第二从节点的第一CAN通道从主用网络接收到相关的第一从节点发送的心跳报文,则获知第一从节点的第一CAN通道故障,并且检测到第二从节点的第二CAN通道故障。
具体地,如果判断获知在预设的心跳周期内没有通过第二从节点的第一CAN通道从主用网络接收到相关的第一从节点发送的心跳报文,比如连续五个心跳周期没有通过第二从节点的第一CAN通道从主用网络接收到相关的第一从节点发送的心跳报文,则表明第一从节点可能无法从第一CAN通道发送相关数据,从而获知第一从节点的第一CAN通道故障。
应当理解的是,第一从节点此时从第二CAN通道发送数据,而在本实施例中,经检测,第二从节点的第二CAN通道故障。
S502,通过主用网络向活动主节点发送包含第一从节点标识的信息转发请求,以使活动主节点在备用网络中监听第一从节点通过第二CAN通道发送的心跳报文和数据。
可以理解,此时第二从节点只能在主用网络上进行通信,而第一从节点的第一CAN通道故障,无法在主用网络上发送相关数据,从而,第二从节点为了能够正常接收到第二从节点发送的数据,第二从节点通过主用网络向活动主节点发送包含第一从节点标识的信息转发请求,以使活动主节点在备用网络中监听第一从节点通过第二CAN通道发送的心跳报文和数据。
S503,当活动主节点在备用网络监听到第一从节点通过第二CAN通道发送的心跳报文和数据时,通过第二从节点的第一CAN通道接收活动主节点向主用网络转发的第一从节点的心跳报文和数据。
具体地,在本公开的一个实施例中,当活动主节点在备用网络监听到第一从节点通过第二CAN通道发送的心跳报文和数据时,则表明此时第一从节点的第二CAN通道正常,因而,通过第二从节点的第一CAN通道接收活动主节点向主用网络转发的第一从节点的心跳报文和数据。
在本公开的另一个实施例中,有可能第一从节点的两个CAN通道均发生故障,因此,此时无法实现第二从节点和第一从节点的通信,此时,需要及时在第二从节点记录故障以便于上报并提示相关人员进行故障处理。
在本实施例中,当活动主节点没有在备用网络监听到第一从节点通过第二CAN通道发送的心跳报文和数据时,通过第二从节点的第一CAN通道接收活动主节点向主用网络发送的包含第一从节点标识的节点掉线消息,记录第一从节点的节点掉线消息,停止获取第一 从节点的心跳报文和数据的请求。
需要说明的是,基于第二从节点侧描述的基于CANopen协议的列车网络数据传输方法,与基于第一从节点侧描述的基于CANopen协议的列车网络数据传输方法对应,对于第二从节点侧实施例中未披露的细节,在此不再赘述。
综上所述,本公开实施例的基于CANopen协议的列车网络数据传输方法,在备用网络或主用网络接收第一从节点通过第二CAN通道发送的包含第二从节点标识的信息转发请求,在主用网络中监听与第二从节点标识对应的第二从节点通过第一CAN通道发送的心跳报文和数据,从而,当在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过备用网络向第一从节点转发第二从节点的心跳报文和数据,以使第一从节点通过第二CAN通道接收第二从节点的心跳报文和数据。由此,避免了从节点的CAN通道故障所在网络不同时,从节点之间无法正常通信,通过向活动主节点发送转发请求,保证了从节点之间的正常通信,保证了整车的良好运行,提高了列车网络的冗余效果。
为了更加清楚的说明本公开实施例的基于CANopen协议的列车网络数据传输方法,下面以该方法集中的活动主节点进行描述,其中,活动主节点集中于在第二从节点侧控制。
图11是根据本公开第六个实施例的基于CANopen协议的列车网络数据传输方法的流程图,如图11所示,该方法包括:
S601,在主用网络接收第二从节点通过第一CAN通道发送的包含第一从节点标识的信息转发请求。
可以理解,由于活动主节点默认从主用网络上接收第一从节点发送的心跳报文和数据,如果,第一从节点的第一CAN通道,则会切换到备用网络上接收第一从节点发送的心跳报文和数据,而当第二从节点与其通信的第一从节点的故障不在同一个网络时,比如,此时第二从节点的第二CAN通道故障,从而,此时第二从节点为了与第一从节点通信,第二从节点向活动主节点发送包含第一从节点的节点标识的信息转发请求。
具体而言,如果活动主节点在主用网络上接收到第二从节点通过第一CAN通道发送的包含第一从节点标识的信息转发请求,则表明第二从节点在主用网络上无法与第一从节点进行通信。
S602,在备用网络中监听与第一从节点标识对应的第一从节点通过第二CAN通道发送的心跳报文和数据。
由于在实际操作过程中,第一从节点和第二从节点无法在备用网络上的原因,可能是第一从节点的第一CAN通道故障,而第二从节点的第二CAN通道故障,从而无法实现第二从节点和第一从节点的通信,也有可能是第一从节点的第一CAN通道和第二CAN通道均发生故障,从而无法实现第一从节点和第二从节点的通信。
因而,为了判断第一从节点的具体情况,在备用网络中监听与第一从节点标识对应的第一从节点通过第二CAN通道发送的心跳报文和数据。
S603,当在备用网络监听到第一从节点通过第二CAN通道发送的心跳报文和数据时,通过主用网络向第二从节点转发第一从节点的心跳报文和数据,以使第二从节点通过第一CAN通道接收第一从节点的心跳报文和数据。
具体地,当在备用网络监听到第一从节点通过第二CAN通道发送的心跳报文和数据时,则表明第一从节点的第一CAN通道故障,第二CAN通道正常,通过主用网络向第二从节点转发第一从节点的心跳报文和数据,以使第二从节点通过第一CAN通道接收第一从节点的心跳报文和数据。
在本公开的一个实施例中,若在备用网络中没有监听到第一从节点通过第二CAN通道发送的心跳报文和数据,则通过主用网络向第二从节点发送包含第一从节点标识的节点掉线消息,向运行监控节点发送第一从节点的节点掉线消息,并显示给操作员,提示当前故障检修。由此,无论是第二从节点还是运行监控节点均获知第一从节点的故障消息,使得第二从节点可以停止相应的请求,且及时提醒相关操作人员,提高了整车网络的稳定性。
需要说明的是,基于控制第一从节点侧描述的基于CANopen协议的列车网络数据传输方法,与基于控制第二从节点侧描述的基于CANopen协议的列车网络数据传输方法对应,对于第二从节点侧实施例中未披露的细节,在此不再赘述。
当然了,在一些应用场景下,有可能是主节点发生故障而导致第一从节点和第二从节点的通信无法进行,此时,当检测到活动主节点出现故障后,则切换到备用主节点与其他从节点或其他通信网络进行数据交互,由于备份主节点与活动主节点的工作原理类似,在此不再赘述。
综上所述,本公开实施例的基于CANopen协议的列车网络数据传输方法,在主用网络接收第二从节点通过第一CAN通道发送的包含第一从节点标识的信息转发请求,在备用网络中监听与第一从节点标识对应的第一从节点通过第二CAN通道发送的心跳报文和数据,进而,当在备用网络监听到第一从节点通过第二CAN通道发送的心跳报文和数据时,通过主用网络向第二从节点转发第一从节点的心跳报文和数据,以使第二从节点通过第一CAN通道接收第一从节点的心跳报文和数据。由此,避免了从节点的CAN通道故障所在网络不同时,从节点之间无法正常通信,通过活动主节点的转发,保证了从节点之间的正常通信,保证了整车的良好运行,提高了列车网络的冗余效果。
基于以上实施例,需要强调的是,本公开基于CANopen协议的列车网络数据传输方法,即可应用于同一个通信网络中的从节点,也同样适用于不同通信网络中的从节点。
需要说明的是,本实施例的执行方法和技术效果,与结合图8描述的本公开第四个实 施例的基于CANopen协议的列车网络数据传输方法的执行方法和技术效果相对应,在此不再赘述。
为了实现上述实施例,本公开还提出了一种第一从节点,图12是根据本公开一个实施例的第一从节点的结构示意图,如图12所示,该第一从节点包括第一切换模块110、第一获知模块120、第一发送模块130和第一接收模块140。
其中,第一切换模块110,用于在检测到第一从节点的第一CAN通道故障时,切换到第一从节点的第二CAN通道通过备用网络接收其他相关节点发送的心跳报文和数据。
第一获知模块120,用于在判断获知在预设的心跳周期内没有从备用网络接收到相关的第二从节点发送的心跳报文时,获知第二从节点的第二CAN通道故障。
第一发送模块130,用于通过备用网络向活动主节点发送包含第二从节点标识的信息转发请求,以使活动主节点在主用网络中监听第二从节点通过第一CAN通道发送的心跳报文和数据。
第一接收模块140,用于在活动主节点在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过第一从节点的第二CAN通道接收活动主节点向备用网络转发的第二从节点的心跳报文和数据。
需要说明的是,前述集中在第一从节点侧描述的基于CANopen协议的列车网络数据传输方法相对应,其实现原理类似,在此不再赘述。
综上所述,本公开实施例的第一从节点,当第一从节点的第一CAN通道故障时,切换到第一从节点的第二CAN通道通过备用网络接收其他相关节点发送的心跳报文和数据,若判断获知在预设的心跳周期内没有从备用网络接收到相关的第二从节点发送的心跳报文,则获知第二从节点的第二CAN通道故障,并通过备用网络向活动主节点发送包含第二从节点标识的信息转发请求,以使活动主节点在主用网络中监听第二从节点通过第一CAN通道发送的心跳报文和数据,当活动主节点在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过第一从节点的第二CAN通道接收活动主节点向备用网络转发的第二从节点的心跳报文和数据。由此,避免了从节点的CAN通道故障所在网络不同时,从节点之间无法正常通信,通过向活动主节点发送转发请求,保证了从节点之间的正常通信,保证了整车的良好运行,提高了列车网络的冗余效果。
图13是根据本公开另一个实施例的第一从节点的结构示意图,如图13所示,在如图12所示的基础上,该第一从节点还包括第一记录模块150。
其中,第一接收模块140,还用于在活动主节点没有在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过第一从节点的第二CAN通道接收活动主节 点向备用网络发送的包含第二从节点标识的节点掉线消息。
第一记录模块150,用于记录第二从节点的节点掉线消息。
需要说明的是,前述集中在第一从节点侧描述的基于CANopen协议的列车网络数据传输方法相对应,其实现原理类似,在此不再赘述。
综上所述,本公开实施例的第一从节点,在第二从节点故障时,向第一从节点发送包含第二从节点标识的节点掉线消息,第一从节点记录第二从节点的节点掉线消息。由此,提高了整车系统的稳定性和可靠性,便于相关操作人员根据从节点记录的信息及时进行故障修复等。
为了实现上述实施例,本公开还提出了一种活动主节点,图14是根据本公开一个实施例的活动主节点的结构示意图,如图14所示,该活动主节点包括:第二接收模块210、第一监听模块220和第一转发模块230。
其中,第二接收模块210,用于在备用网络或主用网络接收第一从节点通过第二CAN通道发送的包含第二从节点标识的信息转发请求。
第一监听模块220,用于在主用网络中监听与第二从节点标识对应的第二从节点通过第一CAN通道发送的心跳报文和数据。
第一转发模块230,用于在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过备用网络向第一从节点转发第二从节点的心跳报文和数据,以使第一从节点通过第二CAN通道接收第二从节点的心跳报文和数据。
图15是根据本公开另一个实施例的活动主节点的结构示意图,如图15所示,在如图14所示的基础上,该活动主节点还包括:第二发送模块240、第一提示模块250和第二切换模块260。
其中,第二发送模块240,用于在主用网络中没有监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过备用网络向第一从节点发送包含第二从节点标识的节点掉线消息。
第一提示模块250,用于向运行监控节点发送第二从节点的节点掉线消息,并显示给操作员,提示当前故障检修。
第二切换模块260,用于在检测到活动主节点出现故障后,切换到备用主节点与其他从节点或其他通信网络进行数据交互。
需要说明的是,前述集中在控制第一从节点侧的活动主节点描述的基于CANopen协议的列车网络数据传输方法,与本公开实施例的活动主节点对应,其实现原理类似,在此不再赘述。
综上所述,本公开实施例的活动主节点,在备用网络或主用网络接收第一从节点通过 第二CAN通道发送的包含第二从节点标识的信息转发请求,在主用网络中监听与第二从节点标识对应的第二从节点通过第一CAN通道发送的心跳报文和数据,从而,当在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过备用网络向第一从节点转发第二从节点的心跳报文和数据,以使第一从节点通过第二CAN通道接收第二从节点的心跳报文和数据。由此,避免了从节点的CAN通道故障所在网络不同时,从节点之间无法正常通信,通过活动主节点的转发,保证了从节点之间的正常通信,保证了整车的良好运行,提高了列车网络的冗余效果。
图16是根据本公开又一个实施例的活动主节点的结构示意图,如图16所示,在如图14所示的基础上,该活动主节点还包括第二监听模块270、第一判断模块280、第二获知模块290和第三发送模块2100。
其中,第二监听模块270,用于根据预先配置的网络节点列表在主用网络上监听与活动主节点相关的各从节点通过第一CAN通道发送的心跳报文和数据。
第一判断模块280,用于根据与各从节点对应设置的心跳计时器的计时情况和心跳报文的接收情况,判断各从节点的第一CAN通道是否故障。
第二获知模块290,用于在判断获知在预设的心跳周期内没有从主用网络接收到第三从节点的心跳报文时,获知第三从节点的第一CAN通道故障。
在本公开的一个实施例中,第二监听模块270,还用于切换到备用网络监听第三从节点通过第二CAN通道发送的心跳报文,其中,第三从节点为任意一个与其他通信网络进行信息交互的节点。
第二接收模块210,还用于在预设的心跳周期内接收到第三从节点通过第二CAN通道发送的心跳报文时,在备用网络上接收第三从节点发送的数据;
第三发送模块2100,用于根据预设的与目标通信网络之间的通信协议对第三从节点发送的数据进行协议转换发送给目标通信网络,以及,
在本公开的一个实施例中,若判断获知在预设的心跳周期内从主用网络接收到第三从节点的心跳报文,则第二接收模块210在主用网络上接收第三从节点发送的数据,第三发送模块2100根据预设的与目标通信网络之间的通信协议对第三从节点发送的数据进行协议转换发送给目标通信网络。
需要说明的是,前述集中在控制第一从节点侧的活动主节点描述的基于CANopen协议的列车网络数据传输方法,与本公开实施例的活动主节点对应,其实现原理类似,在此不再赘述。
综上所述,本公开实施例的活动主节点,不但可以应用于一个通信网络指间从节点的通信,还可应用于不同通信网络指间从节点的通信,保证了不同通信网络之间从节点的正常通信,进一步保证了整车的良好运行,提高了列车网络的冗余效果。
为了实现上述实施例,本公开还提出了一种第二从节点,图17是根据本公开一个实施例的第二从节点的结构示意图,如图17所示,该第二从节点包括第三获知模块310、第四发送模块320和第三接收模块330。
其中,第三获知模块310,用于在判断获知在预设的心跳周期内没有通过第二从节点的第一CAN通道从主用网络接收到相关的第一从节点发送的心跳报文时,获知第一从节点的第一CAN通道故障,并且检测到第二从节点的第二CAN通道故障。
第四发送模块320,用于通过主用网络向活动主节点发送包含第一从节点标识的信息转发请求,以使活动主节点在备用网络中监听第一从节点通过第二CAN通道发送的心跳报文和数据。
第三接收模块330,用于在活动主节点在备用网络监听到第一从节点通过第二CAN通道发送的心跳报文和数据时,通过第二从节点的第一CAN通道接收活动主节点向主用网络转发的第一从节点的心跳报文和数据。
图18是根据本公开另一个实施例的第二从节点的结构示意图,如图18所示,在如图17所示的基础上,该第二从节点还包括第二记录模块340。
其中,第三接收模块330,还用于在活动主节点没有在备用网络监听到第一从节点通过第二CAN通道发送的心跳报文和数据时,通过第二从节点的第一CAN通道接收活动主节点向主用网络发送的包含第一从节点标识的节点掉线消息。
第二记录模块340,用于记录第一从节点的节点掉线消息。
需要说明的是,前述集中在第二从节点侧描述的基于CANopen协议的列车网络数据传输方法,也适用于本公开实施例的第二从节点,其实现原理类似,在此不再赘述。
综上所述,本公开实施例的第二从节点,在备用网络或主用网络接收第一从节点通过第二CAN通道发送的包含第二从节点标识的信息转发请求,在主用网络中监听与第二从节点标识对应的第二从节点通过第一CAN通道发送的心跳报文和数据,从而,当在主用网络监听到第二从节点通过第一CAN通道发送的心跳报文和数据时,通过备用网络向第一从节点转发第二从节点的心跳报文和数据,以使第一从节点通过第二CAN通道接收第二从节点的心跳报文和数据。由此,避免了从节点的CAN通道故障所在网络不同时,从节点之间无法正常通信,通过向活动主节点发送转发请求,保证了从节点之间的正常通信,保证了整车的良好运行,提高了列车网络的冗余效果。
为了实现上述实施例,本公开还提出了一种活动主节点,图19是根据本公开一个实施例的活动主节点的结构示意图,如图19所示,该活动主节点包括:第四接收模块410、第三监听模块420和第二转发模块430。
其中,第四接收模块410,用于在主用网络接收第二从节点通过第一CAN通道发送的包含第一从节点标识的信息转发请求。
第三监听模块420,用于在备用网络中监听与第一从节点标识对应的第一从节点通过第二CAN通道发送的心跳报文和数据。
第二转发模块430,用于当在备用网络监听到第一从节点通过第二CAN通道发送的心跳报文和数据时,通过主用网络向第二从节点转发第一从节点的心跳报文和数据,以使第二从节点通过第一CAN通道接收第一从节点的心跳报文和数据。
图20是根据本公开另一个实施例的活动主节点的结构示意图,如图20所示,在如图19所示的基础上,该活动主节点还包括第五发送模块440、第二提示模块450和第三切换模块460。
其中,第五发送模块440,用于在备用网络中没有监听到第一从节点通过第二CAN通道发送的心跳报文和数据时,通过主用网络向第二从节点发送包含第一从节点标识的节点掉线消息。
第二提示模块450,用于向运行监控节点发送第一从节点的节点掉线消息,并显示给操作员,提示当前故障检修。
第三切换模块460,用于在检测到活动主节点出现故障后,切换到备用主节点与其他从节点或其他通信网络进行数据交互。
需要说明的是,前述集中在控制第二从节点侧描述的基于CANopen协议的列车网络数据传输方法,也适用于本公开实施例的活动主节点,其实现原理类似,在此不再赘述。
综上所述,本公开实施例的活动主节点,在主用网络接收第二从节点通过第一CAN通道发送的包含第一从节点标识的信息转发请求,在备用网络中监听与第一从节点标识对应的第一从节点通过第二CAN通道发送的心跳报文和数据,进而,当在备用网络监听到第一从节点通过第二CAN通道发送的心跳报文和数据时,通过主用网络向第二从节点转发第一从节点的心跳报文和数据,以使第二从节点通过第一CAN通道接收第一从节点的心跳报文和数据。由此,避免了从节点的CAN通道故障所在网络不同时,从节点之间无法正常通信,通过活动主节点的转发,保证了从节点之间的正常通信,保证了整车的良好运行,提高了列车网络的冗余效果。
图21是根据本公开又一个实施例的活动主节点的结构示意图,如图21所示,在如图19所示的基础上,该活动主节点还包括:第四监听模块470、第二判断模块480、第四获 知模块490和第六发送模块4100。
其中,第四监听模块470,用于根据预先配置的网络节点列表在主用网络上监听与所述活动主节点相关的各从节点通过第一CAN通道发送的心跳报文和数据。
第二判断模块480,用于根据与所述各从节点对应设置的心跳计时器的计时情况和所述心跳报文的接收情况,判断所述各从节点的第一CAN通道是否故障;
第四获知模块490,用于判断获知在预设的心跳周期内没有从所述主用网络接收到第三从节点的心跳报文时,获知所述第三从节点的第一CAN通道故障。
第三监听模块420,还用于切换到备用网络监听第三从节点通过第二CAN通道发送的心跳报文,其中,第三从节点为任意一个与其他通信网络进行信息交互的节点;
第四接收模块410,还用于在预设的心跳周期内接收到第三从节点通过第二CAN通道发送的心跳报文时,在备用网络上接收第三从节点发送的数据;
第六发送模块4100,用于根据预设的与目标通信网络之间的通信协议对第三从节点发送的数据进行协议转换发送给目标通信网络,以及,
在本公开的一个实施例中,在判断获知在预设的心跳周期内从主用网络接收到第三从节点的心跳报文时,第四接收模块410在主用网络上接收第三从节点发送的数据,第六发送模块4100根据预设的与目标通信网络之间的通信协议对第三从节点发送的数据进行协议转换发送给目标通信网络。
需要说明的是,前述集中在控制第二从节点侧描述的基于CANopen协议的列车网络数据传输方法,也适用于本公开实施例的活动主节点,其实现原理类似,在此不再赘述。
综上所述,本公开实施例的活动主节点,不但可以应用于一个通信网络指间从节点的通信,还可应用于不同通信网络指间从节点的通信,保证了不同通信网络之间从节点的正常通信,进一步保证了整车的良好运行,提高了列车网络的冗余效果。
为了实现上述实施例,本公开还提出了一种基于CANopen协议的列车网络数据传输系统,图22是根据本公开一个实施例基于CANopen协议的列车网络数据传输系统的结构示意图,如图22所示,该基于CANopen协议的列车网络数据传输系统包括第一从节点100、活动主节点200和第二从节点300。
其中,第一从节点100包括本公开结合图12和图13描述的第一从节点,其实现原理类似,在此不再赘述。
活动主节点200包括本公开结合图14-图16描述的活动主节点,其实现原理类似,在此不再赘述。
第二从节点300包括本公开结合图17和图18描述的第二从节点,其实现原理类似, 在此不再赘述。
综上所述,本公开实施例的基于CANopen协议的列车网络数据传输系统,避免了从节点的CAN通道故障所在网络不同时,从节点之间无法正常通信,通过向活动主节点发送转发请求,保证了从节点之间的正常通信,保证了整车的良好运行,提高了列车网络的冗余效果。
为了实现上述实施例,本公开还提出了一种基于CANopen协议的列车网络数据传输系统,图23是根据本公开另一个实施例基于CANopen协议的列车网络数据传输系统的结构示意图,如图23所示,该基于CANopen协议的列车网络数据传输系统包括第一从节点100、活动主节点400和第二从节点300。
其中,第一从节点100包括本公开结合图12和图13描述的第一从节点,其实现原理类似,在此不再赘述。
活动主节点400包括本公开结合图19-图21描述的活动主节点,其实现原理类似,在此不再赘述。
第二从节点300包括本公开结合图17和图18描述的第二从节点,其实现原理类似,在此不再赘述。
综上所述,本公开实施例的基于CANopen协议的列车网络数据传输系统,避免了从节点的CAN通道故障所在网络不同时,从节点之间无法正常通信,通过向活动主节点发送转发请求,保证了从节点之间的正常通信,保证了整车的良好运行,提高了列车网络的冗余效果。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种基于CANopen协议的列车网络数据传输方法,其特征在于,所述方法应用在活动主节点,包括以下步骤:
    在备用网络或主用网络接收第一从节点通过第二CAN通道发送的包含第二从节点标识的信息转发请求;
    在主用网络中监听与所述第二从节点标识对应的第二从节点通过第一CAN通道发送的心跳报文和数据;
    当在所述主用网络监听到所述第二从节点通过第一CAN通道发送的心跳报文和数据时,通过所述备用网络向所述第一从节点转发所述第二从节点的心跳报文和数据,以使所述第一从节点通过第二CAN通道接收所述第二从节点的心跳报文和数据。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    若在所述主用网络中没有监听到所述第二从节点通过第一CAN通道发送的心跳报文和数据,则通过所述备用网络向所述第一从节点发送包含第二从节点标识的节点掉线消息;
    向运行监控节点发送所述第二从节点的节点掉线消息,并显示给操作员,提示当前故障检修。
  3. 如权利要求1或2所述的方法,其特征在于,还包括:
    当检测到所述活动主节点出现故障后,则切换到备用主节点与其他从节点或其他通信网络进行数据交互。
  4. 如权利要求1-3任一所述的方法,其特征在于,还包括:
    根据预先配置的网络节点列表在主用网络上监听与所述活动主节点相关的各从节点通过第一CAN通道发送的心跳报文和数据;
    根据与所述各从节点对应设置的心跳计时器的计时情况和所述心跳报文的接收情况,判断所述各从节点的第一CAN通道是否故障;
    若判断获知在预设的心跳周期内没有从所述主用网络接收到第三从节点的心跳报文,则获知所述第三从节点的第一CAN通道故障,并切换到所述备用网络监听所述第三从节点通过第二CAN通道发送的心跳报文,其中,所述第三从节点为任意一个与其他通信网络进行信息交互的节点;
    如果在预设的心跳周期内接收到所述第三从节点通过第二CAN通道发送的心跳报文,则在所述备用网络上接收所述第三从节点发送的数据;
    根据预设的与目标通信网络之间的通信协议对所述第三从节点发送的数据进行协议转换发送给所述目标通信网络,以及,
    若判断获知在预设的心跳周期内从所述主用网络接收到第三从节点的心跳报文,则在所述主用网络上接收所述第三从节点发送的数据,并根据预设的与目标通信网络之间的通信协议对所述第三从节点发送的数据进行协议转换发送给所述目标通信网络。
  5. 一种基于CANopen协议的列车网络数据传输方法,其特征在于,所述方法应用在活动主节点,包括以下步骤:
    在主用网络接收第二从节点通过第一CAN通道发送的包含第一从节点标识的信息转发请求;
    在备用网络中监听与所述第一从节点标识对应的第一从节点通过第二CAN通道发送的心跳报文和数据;
    当在所述备用网络监听到所述第一从节点通过第二CAN通道发送的心跳报文和数据时,通过所述主用网络向所述第二从节点转发所述第一从节点的心跳报文和数据,以使所述第二从节点通过第一CAN通道接收所述第一从节点的心跳报文和数据。
  6. 如权利要求5所述的方法,其特征在于,还包括:
    若在所述备用网络中没有监听到所述第一从节点通过第二CAN通道发送的心跳报文和数据,则通过所述主用网络向所述第二从节点发送包含第一从节点标识的节点掉线消息;
    向运行监控节点发送所述第一从节点的节点掉线消息,并显示给操作员,提示当前故障检修。
  7. 如权利要求5或6所述的方法,其特征在于,还包括:
    当检测到所述活动主节点出现故障后,则切换到备用主节点与其他从节点或其他通信网络进行数据交互。
  8. 如权利要求5-7任一所述的方法,其特征在于,还包括:
    根据预先配置的网络节点列表在主用网络上监听与所述活动主节点相关的各从节点通过第一CAN通道发送的心跳报文和数据;
    根据与所述各从节点对应设置的心跳计时器的计时情况和所述心跳报文的接收情况,判断所述各从节点的第一CAN通道是否故障;
    若判断获知在预设的心跳周期内没有从所述主用网络接收到第三从节点的心跳报文,则获知所述第三从节点的第一CAN通道故障,并切换到所述备用网络监听所述第三从节点通过第二CAN通道发送的心跳报文,其中,所述第三从节点为任意一个与其他通信网络进行信息交互的节点;
    如果在预设的心跳周期内接收到所述第三从节点通过第二CAN通道发送的心跳报文,则在所述备用网络上接收所述第三从节点发送的数据;
    根据预设的与目标通信网络之间的通信协议对所述第三从节点发送的数据进行协议转 换发送给所述目标通信网络,以及,
    若判断获知在预设的心跳周期内从所述主用网络接收到第三从节点的心跳报文,则在所述主用网络上接收所述第三从节点发送的数据,并根据预设的与目标通信网络之间的通信协议对所述第三从节点发送的数据进行协议转换发送给所述目标通信网络。
  9. 一种活动主节点,其特征在于,包括:
    第二接收模块,用于在备用网络或主用网络接收第一从节点通过第二CAN通道发送的包含第二从节点标识的信息转发请求;
    第一监听模块,用于在主用网络中监听与所述第二从节点标识对应的第二从节点通过第一CAN通道发送的心跳报文和数据;
    第一转发模块,用于在所述主用网络监听到所述第二从节点通过第一CAN通道发送的心跳报文和数据时,通过所述备用网络向所述第一从节点转发所述第二从节点的心跳报文和数据,以使所述第一从节点通过第二CAN通道接收所述第二从节点的心跳报文和数据。
  10. 如权利要求9所述的活动主节点,其特征在于,还包括:
    第二发送模块,用于在所述主用网络中没有监听到所述第二从节点通过第一CAN通道发送的心跳报文和数据时,通过所述备用网络向所述第一从节点发送包含第二从节点标识的节点掉线消息;
    第一提示模块,用于向运行监控节点发送所述第二从节点的节点掉线消息,并显示给操作员,提示当前故障检修。
  11. 如权利要求9或10所述的活动主节点,其特征在于,还包括:
    第二切换模块,用于在检测到所述活动主节点出现故障后,切换到备用主节点与其他从节点或其他通信网络进行数据交互。
  12. 如权利要求9-11任一所述的活动主节点,其特征在于,还包括:
    第二监听模块,用于根据预先配置的网络节点列表在主用网络上监听与所述活动主节点相关的各从节点通过第一CAN通道发送的心跳报文和数据;
    第一判断模块,用于根据与所述各从节点对应设置的心跳计时器的计时情况和所述心跳报文的接收情况,判断所述各从节点的第一CAN通道是否故障;
    第二获知模块,用于在判断获知在预设的心跳周期内没有从所述主用网络接收到第三从节点的心跳报文时,获知所述第三从节点的第一CAN通道故障;
    所述第二监听模块,还用于切换到所述备用网络监听所述第三从节点通过第二CAN通道发送的心跳报文,其中,所述第三从节点为任意一个与其他通信网络进行信息交互的节点;
    所述第二接收模块,还用于在预设的心跳周期内接收到所述第三从节点通过第二CAN 通道发送的心跳报文时,在所述备用网络上接收所述第三从节点发送的数据;
    第三发送模块,用于根据预设的与目标通信网络之间的通信协议对所述第三从节点发送的数据进行协议转换发送给所述目标通信网络,以及,
    若判断获知在预设的心跳周期内从所述主用网络接收到第三从节点的心跳报文,则所述第二接收模块在所述主用网络上接收所述第三从节点发送的数据,所述第三发送模块根据预设的与目标通信网络之间的通信协议对所述第三从节点发送的数据进行协议转换发送给所述目标通信网络。
  13. 一种基于CANopen协议的列车网络数据传输系统,其特征在于,包括:如权利要求9-12任一所述的活动主节点;
    第一从节点,所述第一从节点包括第一切换模块,用于在检测到第一从节点的第一CAN通道故障时,切换到所述第一从节点的第二CAN通道通过备用网络接收其他相关节点发送的心跳报文和数据;第一获知模块,用于在判断获知在预设的心跳周期内没有从所述备用网络接收到相关的第二从节点发送的心跳报文时,获知所述第二从节点的第二CAN通道故障;第一发送模块,用于通过所述备用网络向活动主节点发送包含第二从节点标识的信息转发请求,以使所述活动主节点在主用网络中监听所述第二从节点通过第一CAN通道发送的心跳报文和数据;第一接收模块,用于在所述活动主节点在所述主用网络监听到所述第二从节点通过第一CAN通道发送的心跳报文和数据时,通过所述第一从节点的第二CAN通道接收所述活动主节点向所述备用网络转发的所述第二从节点的心跳报文和数据;以及
    第二从节点,所述第二从节点包括第三获知模块,用于在判断获知在预设的心跳周期内没有通过所述第二从节点的第一CAN通道从主用网络接收到相关的第一从节点发送的心跳报文时,获知所述第一从节点的第一CAN通道故障,并且检测到所述第二从节点的第二CAN通道故障;第四发送模块,用于通过所述主用网络向活动主节点发送包含第一从节点标识的信息转发请求,以使所述活动主节点在备用网络中监听所述第一从节点通过第二CAN通道发送的心跳报文和数据;第三接收模块,用于在所述活动主节点在所述备用网络监听到所述第一从节点通过第二CAN通道发送的心跳报文和数据时,通过所述第二从节点的第一CAN通道接收所述活动主节点向所述主用网络转发的所述第一从节点的心跳报文和数据。
PCT/CN2018/092048 2017-06-21 2018-06-20 基于CANopen协议的列车网络数据传输方法、系统及其装置 WO2018233643A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/625,438 US11356293B2 (en) 2017-06-21 2018-06-20 Canopen-based train network data transmission method, system and apparatus
BR112019027653-0A BR112019027653A2 (pt) 2017-06-21 2018-06-20 método, sistema e aparelho de transmissão de dados de rede de trem com base em canopen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710476532.6A CN109104348B (zh) 2017-06-21 2017-06-21 基于CANopen协议的列车网络数据传输方法、系统及其装置
CN201710476532.6 2017-06-21

Publications (1)

Publication Number Publication Date
WO2018233643A1 true WO2018233643A1 (zh) 2018-12-27

Family

ID=64735932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092048 WO2018233643A1 (zh) 2017-06-21 2018-06-20 基于CANopen协议的列车网络数据传输方法、系统及其装置

Country Status (4)

Country Link
US (1) US11356293B2 (zh)
CN (1) CN109104348B (zh)
BR (1) BR112019027653A2 (zh)
WO (1) WO2018233643A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109587015B (zh) * 2019-01-28 2024-02-23 大连交通大学 一种tcn-can网络通信测试平台
CN110287151B (zh) * 2019-05-20 2023-08-22 平安科技(深圳)有限公司 分布式存储系统、数据写入方法、装置和存储介质
EP3761568B1 (en) * 2019-07-01 2023-05-31 Volvo Car Corporation Method of controlling communication over a local interconnect network bus
CN112911520B (zh) * 2019-12-04 2022-05-31 哈尔滨海能达科技有限公司 自组网中确定主节点的方法、装置及存储介质
CN115442173B (zh) * 2022-06-07 2024-02-06 北京车和家信息技术有限公司 车辆报文转发、处理方法、装置、电子设备及存储介质
CN115174447B (zh) * 2022-06-27 2023-09-29 京东科技信息技术有限公司 一种网络通信方法、装置、系统、设备及存储介质
CN115390490B (zh) * 2022-08-23 2024-04-26 南京芯传汇电子科技有限公司 一种远程控制终端余度管理方法、装置、设备及存储介质
US11824682B1 (en) * 2023-01-27 2023-11-21 Schlumberger Technology Corporation Can-open master redundancy in PLC-based control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908974A (zh) * 2010-07-16 2010-12-08 北京航天发射技术研究所 Can总线双冗余热切换系统及热切换方法
US20130080585A1 (en) * 2010-03-31 2013-03-28 Schneider Electric Automation Gmbh Method for transmitting data via a canopen bus
US20130332636A1 (en) * 2012-06-12 2013-12-12 Lsis Co., Ltd. Method for configurating canopen network, method for operating slave device of canopen network and system for controlling plc device using canopen network
CN106302064A (zh) * 2016-08-16 2017-01-04 新誉集团有限公司 电动汽车用双通道冗余can总线的数据传输优化方法及系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI235299B (en) * 2004-04-22 2005-07-01 Univ Nat Cheng Kung Method for providing application cluster service with fault-detection and failure-recovery capabilities
DE102005037723B4 (de) 2005-08-10 2014-03-13 Continental Teves Ag & Co. Ohg Steuerungseinheit für Verbundbetrieb
CA2630014C (en) * 2007-05-18 2014-05-27 Nec Infrontia Corporation Main device redundancy configuration and main device replacing method
CN101471837B (zh) * 2007-12-27 2011-07-06 华为技术有限公司 光信道数据单元共享保护环、信号传输方法及网络节点
CN101598758B (zh) * 2009-07-03 2011-06-29 清华大学 一种用于汽车智能电器系统不变线束的导线断路检测方法
CN102549979A (zh) * 2009-07-10 2012-07-04 诺基亚西门子通信公司 用于传送业务的方法和设备
CN102204188B (zh) * 2011-05-25 2013-03-20 华为技术有限公司 虚拟网络单元中的路由计算方法和主节点设备
CN102724065B (zh) * 2012-05-22 2016-02-17 长沙中联消防机械有限公司 一种网络通信系统及包括该系统的工程机械设备
CN103139060B (zh) * 2013-03-01 2015-10-28 哈尔滨工业大学 基于双dsp的高容错性can总线数字网关
CN103516571B (zh) * 2013-07-22 2016-10-05 浙江中控研究院有限公司 一种双can总线保证数据通信可靠性的系统架构及其方法
KR101603546B1 (ko) 2014-08-25 2016-03-15 현대자동차주식회사 차량 통신 네트워크 제공 방법 및 장치
US10505757B2 (en) * 2014-12-12 2019-12-10 Nxp Usa, Inc. Network interface module and a method of changing network configuration parameters within a network device
CN105991325B (zh) * 2015-02-10 2019-06-21 华为技术有限公司 处理至少一个分布式集群中的故障的方法、设备和系统
CN204465546U (zh) * 2015-03-31 2015-07-08 北京经纬恒润科技有限公司 一种测试网关模型
CN106452870A (zh) * 2016-10-13 2017-02-22 中车株洲电力机车研究所有限公司 一种CANopen网络主设备冗余控制方法
CN106656663A (zh) 2016-12-07 2017-05-10 中国电子产品可靠性与环境试验研究所 Can总线数据链路层的位翻转故障注入方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130080585A1 (en) * 2010-03-31 2013-03-28 Schneider Electric Automation Gmbh Method for transmitting data via a canopen bus
CN101908974A (zh) * 2010-07-16 2010-12-08 北京航天发射技术研究所 Can总线双冗余热切换系统及热切换方法
US20130332636A1 (en) * 2012-06-12 2013-12-12 Lsis Co., Ltd. Method for configurating canopen network, method for operating slave device of canopen network and system for controlling plc device using canopen network
CN106302064A (zh) * 2016-08-16 2017-01-04 新誉集团有限公司 电动汽车用双通道冗余can总线的数据传输优化方法及系统

Also Published As

Publication number Publication date
BR112019027653A2 (pt) 2021-03-23
CN109104348B (zh) 2020-09-15
CN109104348A (zh) 2018-12-28
US20210152391A1 (en) 2021-05-20
US11356293B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2018233643A1 (zh) 基于CANopen协议的列车网络数据传输方法、系统及其装置
CN109104349B (zh) 基于CANopen协议的列车网络数据传输方法、系统及其装置
US7869376B2 (en) Communicating an operational state of a transport service
CN105607590B (zh) 用于在过程控制系统中提供冗余性的方法和装置
US8169896B2 (en) Connectivity fault management traffic indication extension
WO2016023436A1 (zh) 一种虚拟路由器冗余协议故障检测的方法及路由设备
CN109104346B (zh) 基于CANopen协议的列车网络数据传输方法、系统及其装置
WO2018233642A1 (zh) 列车网络节点和基于CANopen协议的列车网络节点监测方法
TW200907697A (en) System and method for providing multi-protocol access to remote computers
AU2011229566B2 (en) Load sharing method and apparatus
US20210367808A1 (en) Canopen-based data transmission gateway changeover method, system and apparatus thereof
US9246796B2 (en) Transmitting and forwarding data
WO2011150780A1 (zh) 触发路由切换的方法和服务运营商侧运营商边缘设备
WO2011137766A2 (zh) 确定网元运行状态的方法以及相关设备和系统
US8965993B2 (en) Entrusted management method for a plurality of rack systems
US20170070410A1 (en) System and method for providing redundant ethernet network connections
US9118540B2 (en) Method for monitoring a plurality of rack systems
KR100940489B1 (ko) BACnet에서 라우터 이중화를 위한 스위칭 장치와시스템 그리고 그 이중화 방법
JP2011259064A (ja) 光通信ネットワークシステム、子局通信装置及び親局通信装置
JP6022948B2 (ja) 通信ネットワークの制御装置の管理装置及びプログラム
JP7135790B2 (ja) リンクアグリゲーション管理装置、中継装置、リンクアグリゲーション管理方法及びプログラム
JP5630611B2 (ja) ネットワーク監視システムおよびその監視対象装置の登録方法
JP7468566B2 (ja) 情報処理装置、情報処理方法、及びプログラム
TWI451264B (zh) 具有備援機制的訊號轉換系統與備援方法
US20220141123A1 (en) Network device, network system, network connection method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019027653

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 18821383

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112019027653

Country of ref document: BR

Free format text: ESCLARECA A OMISSAO DA PRIORIDADE 201710476532.6 (CN) DE 21.06.2017, POIS A MESMA FOI REIVINDICADA NO DEPOSITO INTERNACIONAL E NAO CONSTA NA SOLICITACAO DE ENTRADA NA FASE NACIONAL. ALEM DISSO, APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA MESMA, CONTENDO TODOS OS DADOS IDENTIFICADORES DESTA (TITULARES, NUMERO DE REGISTRO, DATA E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013. CABE SALIENTAR QUE NAO FOI POSSIVEL INDIVIDUALIZAR OS TITULARES DA CITADA PRIORIDADE, INFORMACAO NECESSARIA PARA O EXAME DA CESSAO DO DOCUMENTO DE PRIORIDADE.

ENP Entry into the national phase

Ref document number: 112019027653

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191223