WO2018233515A1 - 无人搬运车 - Google Patents

无人搬运车 Download PDF

Info

Publication number
WO2018233515A1
WO2018233515A1 PCT/CN2018/090824 CN2018090824W WO2018233515A1 WO 2018233515 A1 WO2018233515 A1 WO 2018233515A1 CN 2018090824 W CN2018090824 W CN 2018090824W WO 2018233515 A1 WO2018233515 A1 WO 2018233515A1
Authority
WO
WIPO (PCT)
Prior art keywords
guided vehicle
automated guided
link
assembly
disposed
Prior art date
Application number
PCT/CN2018/090824
Other languages
English (en)
French (fr)
Inventor
林传凯
Original Assignee
广东美的智能机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710465685.0A external-priority patent/CN107672692B/zh
Priority claimed from CN201720720900.2U external-priority patent/CN207157329U/zh
Application filed by 广东美的智能机器人有限公司 filed Critical 广东美的智能机器人有限公司
Publication of WO2018233515A1 publication Critical patent/WO2018233515A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D63/00Motor vehicles or trailers not otherwise provided for
    • B62D63/02Motor vehicles

Definitions

  • the invention relates to an automated guided vehicle.
  • the unmanned van has no turntable structure.
  • the racks are turned at the same time, the shelf inertia is very large, causing the vehicle body to be unstable, and when the rack needs to be turned, the steering of the rack is driven by the body steering, and the overall structure of the vehicle body is obtained by this method.
  • Complex reducing steering efficiency and increasing manufacturing costs.
  • the present invention aims to solve at least one of the above technical problems to some extent.
  • the present invention proposes an automated guided vehicle that is stable, easy to use, and low in production cost.
  • An unmanned vehicle includes: a bottom plate; a top plate, the top plate is disposed opposite to the bottom plate in an up-and-down direction; and a jacking device, the jacking device is located at the bottom plate and the top plate a driving device, the driving device is disposed to the bottom plate for driving the unmanned vehicle to drive; the rotating device, the rotating device is disposed to the lifting device, the rotating device includes: a turntable assembly, The turntable assembly is adapted to be disposed on the top tray; the loading tray is disposed on the turntable assembly for supporting the shelf; and the driver drives the turntable assembly to rotate relative to the top plate to drive The loading tray rotates synchronously.
  • the unmanned vehicle according to the embodiment of the present invention can be effectively controlled by the rotation of the top plate by being provided to the turntable assembly on the chassis and rotating by the drive to drive the turntable assembly, thereby effectively controlling the state of the shelf. Easy to use and low in production cost.
  • automated guided vehicle may further have the following additional technical features:
  • the drive drives the turntable assembly to rotate in an opposite direction.
  • the angle at which the automated guided vehicle turns is ⁇ , and the angle at which the drive drives the turntable assembly to synchronize the counter-rotation is ⁇ , where 0° ⁇ ⁇ ⁇ 180°.
  • the drive drives the turntable assembly to rotate when the automated guided vehicle is stationary.
  • the turntable assembly includes: a large toothed disc having a large gear on an inner peripheral wall thereof; a pinion gear connected to a drive shaft of the drive and disposed at the The inner side of the large toothed disc cooperates with the large gear; the outer ring is supported, and the support outer ring is disposed to the chassis and sleeved on the outer circumference of the large toothed disc.
  • the outer peripheral edge of the large chainring is flush with the outer circumference of the top plate.
  • the turntable assembly further includes: an oil retaining piece, the oil retaining piece being disposed on an inner side of the large toothed disc and disposed opposite to the large gear.
  • the oil retaining piece includes: an arc portion that is concentrically disposed with the large toothed disc and spaced apart from the large gear by a predetermined distance; a flat plate portion, the flat plate portion Both ends are respectively connected to the curved portion to define an installation space between the large chainring and the flat plate portion.
  • the circumferential direction of the chassis is formed with an oil groove, and the oil groove is disposed opposite to the large toothed plate in the up and down direction.
  • the oil sump extends obliquely from the inside to the outside.
  • the chassis is provided with an oil hole and an oil plug for closing the oil hole, wherein the oil hole communicates with the oil groove.
  • the automated guided vehicle further includes: a non-slip mat, the anti-slip mat being disposed on the top tray.
  • the chassis, the top plate, the turntable assembly, and the anti-slip mat have through holes communicating with each other.
  • the jacking device includes: a first link assembly; a fixing post, the fixing post is mounted on the bottom plate, and one end of the first link assembly is movably connected to the fixing a lifting rod, one end of the lifting rod is movably connected to the first connecting rod assembly, the other end of the lifting rod supports the top plate; a driving member, the driving member drives the first connecting member The rod assembly moves back and forth between the first position and the second position to drive the jacking rod up and down to change the height of the top disc.
  • the first link assembly includes: a first pin shaft, the first pin shaft is axially provided with a plurality of first links and a plurality of second links, the first a link extending obliquely in the front-rear direction, the second link extending obliquely in the up-and-down direction, one end of the first link and the second link being rigidly connected to the first pin; the second pin a shaft, the second pin shaft is opposite to and parallel to the first pin shaft, and the other end of the second link is rotatably coupled to the second pin shaft, and the driving member is driven The shaft is abutted against the second pin shaft.
  • the first pin shaft is provided with two first links and two second links in the axial direction, wherein the two second links are located in the two first
  • the jacks are respectively disposed between the connecting rods and the first ends of the first pin shafts.
  • the driving device further includes: a second link assembly, the second link assembly and the first link assembly are symmetrically disposed on the bottom plate, the second link
  • the assembly includes: a third pin shaft, the third pin shaft is axially provided with a plurality of third links and a plurality of fourth links, the third link extending obliquely in the front-rear direction, the fourth connection
  • the rod extends obliquely in the up and down direction, and the third link and the fourth link are both rigidly connected to the third pin shaft; the fourth pin shaft, the fourth pin shaft and the third pin shaft Opposite and parallel in the up and down direction, the other end of the fourth link is rotatably coupled to the fourth pin.
  • the third pin shaft is provided with two third links and two fourth links in the axial direction, wherein the two third links are located in the two fourth
  • the jacking rods are respectively disposed between the connecting rods and the two ends of the third pin shaft.
  • a fifth link and a sixth link that are parallel to each other are disposed between the fourth pin and the second pin.
  • the driving member is disposed between the fifth link and the sixth link.
  • the driving member is disposed adjacent to one of the fifth link and the sixth link.
  • the driving device a driving unit having a running wheel and a driving shaft for driving the driving wheel; a base, the driving unit is provided to the base; and a pre-pressing unit
  • the pre-pressing unit abuts against the driving unit to apply a pre-pressure to the driving shaft, and the pre-pressing unit is vertically displaced with the running wheel, so that the driving shaft always applies a constant downward to the running wheel pressure.
  • the driving unit includes: a motor seat, the motor seat is disposed to the base, the motor seat is formed with a through hole; a driving motor, the driving motor is coupled to the motor seat, A drive shaft of the drive motor is coupled to the travel wheel through the through hole.
  • the driving device further includes: a top plate suspended above the motor base, and the pre-pressing unit is disposed in a space defined by the top plate and the motor seat.
  • the top plate is positioned on the motor base by a plurality of support columns, the motor block being provided with mounting holes for mounting the support columns.
  • the pre-compression unit includes: a bracket that abuts against an upper surface of the motor base; and a spring that is sleeved in a compressed state on an outer peripheral wall of the bracket to A pre-pressure is applied to the upper surface of the motor block.
  • the automated guided vehicle further includes: an anti-collision device, the anti-collision device comprising: a cavity assembly, the cavity assembly being disposed at a periphery of the automated guided vehicle,
  • the cavity assembly defines an air chamber that is compressed by an external force and returns to an initial state after the external force disappears;
  • the air pressure detecting device is coupled to the cavity assembly for detecting the air chamber a controller, the controller is electrically connected to the air pressure detecting device for receiving a signal sent by the air pressure detecting device; wherein, when the controller receives the air pressure in the air chamber is greater than or equal to a preset air pressure value, The controller issues a parking command to cause the automated guided vehicle to stop traveling.
  • the automated guided vehicle further includes: a camera mechanism, the camera mechanism includes: a bracket having a first leg, a second leg, and a connecting plate, the first branch a leg and the second leg are opposite and spaced apart and connected by the connecting plate, wherein one end of the first leg and the first leg are mounted on a bottom plate, the first leg and the The other end of the second leg extends obliquely upward; and the camera group is mounted on the bracket.
  • a camera mechanism includes: a bracket having a first leg, a second leg, and a connecting plate, the first branch a leg and the second leg are opposite and spaced apart and connected by the connecting plate, wherein one end of the first leg and the first leg are mounted on a bottom plate, the first leg and the The other end of the second leg extends obliquely upward; and the camera group is mounted on the bracket.
  • the automated guided vehicle further includes: a light source assembly disposed on the bottom plate for providing a light source to the camera mechanism, the light source assembly comprising: a light source; and an adjusting device The adjusting device is coupled to the light source for adjusting an illumination range of the light source.
  • the automated guided vehicle further includes: a housing assembly including an upper housing and a lower housing, the lower end of the lower housing being coupled to a periphery of the bottom plate, The upper end of the housing extends upwardly, and the upper housing is a cavity structure that is open at both ends, and the lower end of the upper housing is connected to the upper end of the lower housing, and is configured by the upper housing and the lower housing to be suitable for the housing.
  • the hoisting device, the driving device, the turntable device, the image pickup mechanism, and the accommodating chamber of the light source assembly are examples of the light source assembly.
  • FIG. 1 is an exploded view of an automated guided vehicle in accordance with one embodiment of the present invention
  • FIG. 2 is a perspective view of an automated guided vehicle in accordance with one embodiment of the present invention.
  • Figure 3 is a partial exploded view of an automated guided vehicle in accordance with one embodiment of the present invention.
  • Figure 4 is a partial perspective view of an automated guided vehicle in accordance with one embodiment of the present invention.
  • Figure 5 is a partial perspective view of an automated guided vehicle in accordance with one embodiment of the present invention.
  • Figure 6 is a front elevational view of Figure 5;
  • Figure 7 is a partial perspective view of another angle of the automated guided vehicle in accordance with one embodiment of the present invention.
  • Figure 8 is a front elevational view of Figure 7;
  • Figure 9 is a partial perspective view of an automated guided vehicle in accordance with one embodiment of the present invention.
  • Figure 10 is a partial exploded view of an automated guided vehicle in accordance with one embodiment of the present invention.
  • Figure 11 is a perspective view of a driving device of an automated guided vehicle according to an embodiment of the present invention.
  • Figure 12 is a perspective view of another angle of the driving device of the automated guided vehicle according to an embodiment of the present invention.
  • Figure 13 is a front elevational view showing a driving device of an automated guided vehicle according to an embodiment of the present invention.
  • Figure 14 is an exploded view of a driving device of an automated guided vehicle according to an embodiment of the present invention.
  • 15 is a schematic structural view of an anti-collision device of an automated guided vehicle according to an embodiment of the present invention.
  • 16 is a front elevational view of a cavity assembly of an anti-collision device for an automated guided vehicle in accordance with an embodiment of the present invention
  • Figure 17 is a cross-sectional view taken along line A-A;
  • Figure 18 is a partial perspective view of an automated guided vehicle in accordance with one embodiment of the present invention.
  • Figure 19 is an enlarged view of B in Figure 18;
  • FIG. 20 is a perspective view of a support structure in accordance with an embodiment of the present invention.
  • Figure 21 is a plan view of Figure 18;
  • Figure 22 is a cross-sectional view taken along line C-C of Figure 21;
  • Figure 23 is an enlarged view of the portion D in Figure 22.
  • Turntable assembly 20 large toothed disc 21; large gear 211; pinion 22; oil retaining piece 23; curved portion 231; flat portion 232; supporting outer ring 24;
  • Driver 40 drive motor 41; reducer 42; drive shaft 422;
  • Top plate 200 oil tank 201; oil hole 202;
  • first link assembly 410 a first pin shaft 411; a first link 4111; a second link 4112; a second pin shaft 412;
  • a second link assembly 450 a third pin 451; a third link 4511; a fourth link 4512; a fourth pin 452;
  • U-shaped connector 470 first mounting plate 471; second mounting plate 472; third mounting plate 473;
  • Driving unit 510 running wheel 511; motor base 512; connecting hole 5121; mounting hole 5122; sliding groove 5123; driving motor 513; driving shaft 5131;
  • Pre-pressing unit 530 upper bracket 531; positioning post 5311; first positioning flange 5312; first lug 5313; lower bracket 532; positioning hole 5321; second positioning flange 5322; slider 5323; second lug 5324 Spring 533; link structure 534; mounting bracket 535;
  • top plate 540 a top plate 540; a side plate 541; an upper sliding groove 5411;
  • Air pressure detecting device 612 Air pressure detecting device 612
  • Connection assembly 613 pipe body 6131; first connector 6132; second connector 6133;
  • the unmanned vehicle has no turntable structure, and when the body is turned, the shelf is turned at the same time, the shelf inertia is very large, and the body is unstable; when the shelf needs to be turned, the steering is generally turned by the body steering, and the method makes the overall body
  • the structure is complicated, the steering efficiency is lowered, and the manufacturing cost is increased. Therefore, the present invention solves the above technical problems.
  • an automated guided vehicle 1000 includes a bottom plate 300, a top plate 200, a jacking device 400, a driving device 500, a turntable device 100, a camera mechanism 720, a light source assembly 830, and a housing assembly.
  • the top plate 200 is disposed opposite to the bottom plate 300 in the up and down direction.
  • the jacking device 400 is located between the bottom plate 300 and the top plate 200.
  • the driving device 500 is provided to the bottom plate 300 for driving the automated guided vehicle 1000 to travel.
  • the housing assembly includes an upper housing 901 and a lower housing 902, and the lower end of the lower housing 902 is coupled to the periphery of the bottom plate 300.
  • the upper end of the lower housing 902 is upwardly extended, and the upper housing 901 is a cavity structure that is open at both ends.
  • the lower end of the upper housing 901 is connected to the upper end of the lower housing 902, and is configured by the upper housing 901 and the lower housing 902.
  • a receiving chamber adapted to accommodate the jacking device 400, the driving device 500, the turntable device 100, the camera mechanism 720, and the light source assembly 830 is disposed, wherein the upper end surface of the turntable device 100 is substantially flush with the end surface of the upper housing 901.
  • a carousel apparatus 100 for an automated guided vehicle 1000 according to an embodiment of the present invention will now be described with reference to FIGS. 2 through 3.
  • the automated guided vehicle 1000 can generally include a bottom plate 300, a turntable assembly 20, a top plate 30, and a drive 40.
  • the bottom plate 300, the turntable assembly 20, and the top plate 30 are disposed in order from bottom to top.
  • the driver 40 may include a drive motor 41 and a reducer 42 connected to the drive motor.
  • the turntable assembly 20 is adapted to be disposed on the top tray 200 of the automated guided vehicle.
  • the loading tray 30 is disposed on the turntable assembly 20 for supporting the rack, and the driver 40 drives the turntable assembly 20 to the top.
  • the disk 200 is rotated to drive the loading tray 30 to rotate synchronously.
  • the top plate 200 is a part of the vehicle body, that is, when the vehicle body rotates, the top plate 200 rotates synchronously with the vehicle body, and when the vehicle body does not rotate, the top plate 200 does not rotate.
  • the driver 40 can drive the turntable assembly 20 to rotate in an opposite direction, that is, the top plate 200 rotates in the opposite direction to the turntable assembly 20, for example, when the top plate 10 is rotated clockwise, the turntable assembly 20 and the loading tray 30 counterclockwise rotation; when the top plate 200 rotates counterclockwise, the turntable assembly 20 and the loading tray 30 rotate clockwise, thereby making the shelf stand still relative to the ground, avoiding the problem that the body is unstable when the body is turned at the same time. .
  • the angle at which the automated guided vehicle 1000 is turned is ⁇
  • the angle at which the driver 10 drives the turntable assembly 20 to synchronize the counter-rotation is ⁇ , where 0° ⁇ ⁇ ⁇ 180°. That is, the steering speed of the automated guided vehicle 1000 is the same as the angular velocity at which the drive 10 drives the turntable assembly 20 to rotate in the opposite direction.
  • the top plate 10 is rotated 90 degrees with the vehicle body, and the turntable assembly 20 and the loading tray 30 are synchronously rotated 90 degrees in reverse, thereby causing the shelf to stand still relative to the ground.
  • the shelf is rotated at the same time.
  • the carousel assembly 20 can be driven by the drive 40 to rotate counterclockwise or clockwise to change the position of the shelf, i.e., the body is stationary and the shelf is rotated.
  • the automated guided vehicle 1000 can effectively control the state of being supported on the shelf by being provided to the turntable assembly 20 on the top tray 200 and driving the turntable assembly 20 to rotate relative to the top tray 10 by the driver 40.
  • the unmanned vehicle 1000 is convenient to use and has low production cost.
  • the turntable assembly 20 includes a large chainring 21, a pinion 22, and a support outer ring 24.
  • the large toothed disc 21 is rotatable relative to the support outer ring 24.
  • the inner peripheral wall of the large toothed disc 21 is provided with a large gear 211.
  • the pinion gear 22 is coupled to the drive shaft of the driver 40 and is disposed on the inner side of the large chain gear 21 to cooperate with the large gear 211. That is, the drive shaft of the driver 40 drives the pinion 22 to rotate, thereby causing the large toothed disc 21 to rotate.
  • the support outer ring 24 is provided to the bottom plate 300 and is sleeved on the outer circumference of the large toothed disc 21.
  • a ball is provided between the support outer ring 24 and the large toothed disc 21, whereby the frictional force between the outer peripheral wall of the large chainring 21 and the inner wall of the support outer ring 24 can be reduced, and the rotational efficiency of the large chainring 21 can be improved.
  • the outer peripheral edge of the large chainring 21 is flush with the outer circumference of the top plate 30. Therefore, the contact area between the lower surface of the top plate 30 and the upper surface of the large toothed disc 21 can be increased, and the large toothed disc 21 can be effectively driven to synchronously rotate the top plate 30, thereby improving the rotation efficiency.
  • the turntable assembly 20 further includes an oil retaining piece 23.
  • the oil retaining piece 23 is provided on the inner side of the large toothed disc 21 so as to be opposed to the large gear 211.
  • the bottom plate 300, the oil retaining piece 23 and the top plate 30 can effectively cover the turntable assembly 10, so that the lubricating grease does not splash outward during the rotation of the large toothed disc 21, thereby avoiding contamination of other components.
  • the oil retaining piece 23 includes an arcuate portion 231 and a flat plate portion 232.
  • the curved portion 231 is concentrically arranged with the large toothed disc 21 and spaced apart from the large gear 211 by a predetermined distance.
  • the two ends of the flat plate portion 232 are respectively connected to the curved portion 231 to define a mounting space 50 between the large toothed disc 21 and the flat plate portion 232.
  • the pinion gear 22 is disposed in the mounting space 50, and the driver 40 is mounted on the bottom of the bottom plate 300. And its drive shaft extends into the installation space 50 to cooperate with the pinion gear 22.
  • the circumferential direction of the bottom plate 300 is formed with an oil groove 201 which is disposed opposite to the large toothed plate 21 in the up and down direction, and the oil groove 201 is used for collecting the lubricating grease dripping from the large gear 211. Thereby, it is possible to further prevent the lubricating grease from contaminating other components.
  • the oil sump 201 extends obliquely from the inside to the outside. Thereby, the lubricating grease can be caused to flow outward, which is convenient for collection and cleaning.
  • the bottom plate 300 is provided with an oil hole 202 and an oil plug 60 for closing the oil hole 202, and the oil hole 202 communicates with the oil groove 201.
  • the oil plug 60 can be removed to extract the lubricating grease.
  • the oil plug 60 can be a dustproof bolt, and the dustproof bolt can effectively block dust from entering the oil groove 201.
  • the automated guided vehicle 1000 further includes an anti-skid pad 70.
  • the anti-slip mat 70 is disposed on the top plate 30, and the shelf is crimped onto the anti-slip mat 70.
  • the movement of the shelf on the top tray 30 can be reduced, the stability of the shelf on the top tray 30 can be improved, and the shelf can be prevented from directly acting on the top.
  • the shelf is worn against the top plate 30.
  • the bottom plate 300, the top plate 30, the turntable assembly 20, and the anti-skid pad 70 have mutually communicating through holes 301.
  • the through hole 301 is disposed opposite to the imaging mechanism 720 under the bottom plate 300.
  • the imaging mechanism 720 can collect information on the shelf through the through hole 301 to ensure that the automated transportation vehicle 1000 accurately carries the shelf.
  • a jacking device 400 for an automated guided vehicle according to an embodiment of the present invention will now be described with reference to FIGS. 5 through 10.
  • the jacking device 400 can generally include a first linkage assembly 410, a mounting post 420, a jacking rod 430, and a drive member 440.
  • the driving member 440 can be a stepping motor.
  • the fixing post 420 is mounted on the bottom plate 200, and one end of the first connecting rod assembly 410 (such as the rear end in FIG. 5) is movably connected to the fixing post 420.
  • One end of the jacking rod 430 (such as the lower end in FIG. 5) is movably coupled to the first link assembly 410, and the other end of the jacking rod 430 (such as the upper end in FIG. 5) supports the top tray 300.
  • the first link assembly 410 is disposed between the bottom plate 200 and the top plate 300, and the jacking rod 430 supports the top plate 300 and transmits the gravity of the top plate 300 to the fixed post 420 through the first link assembly 410.
  • the driving member 440 drives the first link assembly 410 to move back and forth between the first position and the second position, and drives the jacking rod 430 to move up and down to change the height of the top plate 300. That is, the driving member 440 changes the position of the first link assembly 410 in the front-rear direction of the bottom plate 200 such that the jacking rod 430 is displaced up and down within a certain range, thereby changing the height of the top plate 300.
  • the height of the top plate 300 is H1; when the first link assembly 410 is at the second position b, the height of the top plate 300 Is H2, where H2 is greater than H1.
  • the jacking device 400 for an automated guided vehicle of the embodiment of the present invention drives the first link assembly 410 in the first position and the second position by the driving member 440, as compared to the large screw lift jack. Moving forward and backward, the jacking rod 430 is rotated to change the height of the top disc 300, the lifting efficiency is high, the occupied space is small, and the production cost is low.
  • the first linkage assembly 410 includes a first pin 411 and a second pin 412.
  • the first pin 4111 has a plurality of first links 4111 and a plurality of second links 4112 in the axial direction (the left and right direction in FIG. 5), and the first link 4111 extends obliquely in the front-rear direction, and the second link 4112 extends obliquely in the up and down direction, and one ends of the first link 4111 and the second link 4112 are rigidly connected to the first pin 411. That is, the first link 4111 and the second link 4112 are integrally connected with the first pin 411, and the first link assembly 410 can be integrally moved relative to the fixed post 420 under the action of an external force.
  • the second pin 412 is opposite to the first pin 411 in the up-and-down direction and is parallel, and the other end of the second link 4112 (such as the front end in FIG. 5) is rotatably coupled to the second pin 412, the driver 440
  • the drive shaft 441 abuts against the second pin shaft 412.
  • the driver 440 can apply a forward thrust to the second pin 412 such that the first link assembly 410 moves forward as a whole, or the driver 440 can apply a rearward pulling force to the second pin 412 such that the first link The assembly 410 moves rearward as a whole; or the drive member 440 can apply a braking force to the second pin 412 such that the first linkage assembly 410 is stationary.
  • the driving member 440 applies a force in different directions to the second pin shaft 412 to change the motion state of the first link assembly 410, thereby driving the lifting rod 430 up and down to adjust the height of the top plate 300, thereby realizing the unmanned vehicle. Lifting.
  • the jacking device 400 further includes a damper 490.
  • a damper 490 Referring to FIGS. 5 and 9 in conjunction with FIG. 10, one end of the damper 490 is coupled to the top plate 300, and the other end of the damper 490 is coupled to the second pin 412.
  • the damper 490 can make the jacking device 400 more gradual during the movement, so that the shelf carried on the top tray 300 does not have a large amplitude of vibration, which improves the stability of the shelf.
  • the first pin 411 has two first links 4111 and two second links in the axial direction (the left and right direction in FIG. 5).
  • the rod 4112 wherein the two second links 4112 are located between the two first links 4111, and the first pin shaft 411 is respectively provided with a lifting rod 430 at both ends.
  • Each of the first links 4111 corresponds to one fixing post 420, and the first pin shaft 411 and the second pin shaft 412 are disposed in parallel up and down and connected by two second links 4112.
  • the two first links 4111, the two second links 4112, the first pin 411, and the second pin 412 can be integrally displaced to drive the jacking.
  • the rod 430 is displaced up and down to change the height of the top plate 300. It should be understood that the foregoing is merely illustrative and is not intended to limit the scope of the present invention.
  • the number of the first link 4111 and the second link 4112 may be the same or different, and may be based on the overall structure of the automated guided vehicle. Depending on the layout.
  • the jacking device 400 further includes a second linkage assembly 450.
  • the second link assembly 450 and the first link assembly 410 are symmetrically disposed on the bottom plate 200.
  • the plurality of jacking rods 430 are synchronously displaced up and down, thereby lifting the top tray 300 quickly and smoothly.
  • the second link assembly 450 includes a third pin 451 and a fourth pin 452.
  • the axial direction of the third pin shaft 451 (such as the left-right direction in FIG. 5) is provided with a plurality of third links 4511 and a plurality of fourth links 4512, and the third link 4511 extends obliquely in the front-rear direction, and the fourth link The 4512 extends obliquely in the up and down direction, and one ends of the third link 4511 and the fourth link 4512 are rigidly connected to the third pin 451. That is to say, the third link 4511 and the fourth link 4512 are integrally connected with the third pin 451, and the second link assembly 450 can move in the entire front-rear direction with respect to the fixed post 420 under the action of an external force.
  • the fourth pin shaft 452 and the third pin shaft 451 are oppositely and parallelly disposed in the up and down direction, and the other end of the fourth link 4512 (such as the front end in FIG. 5) is rotatably coupled to the fourth pin shaft 452, and the driving member 440 is The drive shaft 441 can stop against the fourth pin 452.
  • the driver 440 can apply a forward thrust to the fourth pin 452 such that the second link assembly 450 moves forward integrally, or the driver 440 can apply a rearward pulling force to the fourth pin 452 such that the second link
  • the assembly 450 moves rearward as a whole; or the drive member 440 can apply a braking force to the fourth pin 452 such that the second linkage assembly 450 is stationary.
  • the driving member 440 applies a force in different directions to the fourth pin shaft 452 to change the motion state of the second link assembly 450, thereby driving the lifting rod 430 up and down to adjust the height of the top plate 300, thereby realizing the unmanned vehicle. Lifting.
  • the third pin 451 has two third links 4511 and two fourth links in the axial direction (the left and right direction in FIG. 5).
  • the rod 4512 wherein the two fourth links 4512 are located between the two third links 4511, and the third pin 451 is respectively provided with a lifting rod 430 at both ends.
  • Each of the third links 4511 corresponds to one fixing post 420, and the third pin shaft 451 and the fourth pin shaft 452 are disposed in parallel up and down and connected by two fourth links 4512.
  • the driving member 440 applies a force to the fourth pin 452
  • the two third links 4511, the two fourth links 4512, the third pin 451, and the fourth pin 452 can be integrally displaced to drive the jacking.
  • the rod 430 is displaced up and down to change the height of the top plate 300. It is to be understood that the foregoing is only illustrative and is not intended to limit the scope of the present invention.
  • the number of the third link 4511 and the fourth link 4512 may be the same or different, and may be based on the overall structure of the automated guided vehicle. Depending on the layout.
  • the angle between the first link 4111 and the second link 4112 and the third link 4511 and the fourth link 4512 is ⁇ , where 0 ⁇ 90°. It can be understood that the magnitude of ⁇ determines the range of motion of the first link assembly 410 and the second link assembly 450, that is, by changing the first link 4111 and the second link 4112 and the third link 4511 and the fourth.
  • the angle between the links 4512 can adjust the distance that the jacking device 400 is displaced up and down.
  • first link assembly 410 and the second link assembly 450 may respectively correspond to one driving member 440, that is, one driving member 440 drives the first connecting rod assembly 410 to act, and the other driving member 440 drives the second.
  • the link assembly 450 is actuated simultaneously with the first link assembly 410; or the first link assembly 410 and the second link assembly 450 are simultaneously actuated by a drive member 440, whereby the production cost of the jacking device 400 can be reduced.
  • a fifth link 461 and a sixth link 462 which are parallel to each other are disposed between the fourth pin shaft 452 and the second pin shaft 412.
  • the fourth pin 452 and the second pin 412 are coupled by a fifth link 461 and a sixth link 462 such that the first link assembly 410 and the second link assembly 450 can be driven by a drive member 440.
  • the linkage reduces the production cost of the jacking device 400.
  • the driving member 440 is disposed between the fifth link 461 and the sixth link 462. That is, the driving member 440 is located between the first link assembly 410 and the second link assembly 450, and the driving shaft 441 of the driving member 440 can stop against the second pin 412 or the fourth pin 452 to interlock the first link assembly. 410 and second linkage assembly 450.
  • the driver 440 is disposed adjacent one of the fifth link 461 and the sixth link 462. As shown in FIG. 7, the driving member 440 is located at the side of the first link assembly 410 and the second link assembly 450, that is, the driving member 440 is disposed away from the center line of the jacking device 400, thereby being available in the jacking device 400.
  • the central part vacates the space for setting up the camera mechanism, making the structure of the unmanned van more reasonable.
  • the jacking device 400 further includes a U-shaped connector 470.
  • the U-shaped connector 470 includes a first mounting plate 471, a second mounting plate 472, and a third mounting plate 473.
  • the second mounting plate 472 and the third mounting plate 473 are coupled to the first mounting plate 471, and the drive shaft is passed through the first mounting.
  • the second pin 412 of the plate 471 and the second pin 412 respectively pass through the second mounting plate 472 and the third mounting plate 473.
  • the first link assembly 410 and the drive member 440 are coupled by a U-shaped connector 470.
  • the angle between the driving shaft of the driving member 440 and the second pin shaft 412 in the horizontal direction may be 90 degrees, that is, the driving shaft and the second pin shaft 412 are perpendicular to each other in the horizontal direction.
  • the jacking device 400 further includes a connecting arm 480.
  • One end of the connecting arm 480 is connected to the driving member 440, and the other end of the connecting arm 480 is extended upward to be connected to the bottom of the top plate 300. That is, the driving member 440 is fixed to the top plate 300 by the connecting arm 480, and can be moved as the top plate 300 is displaced up and down. Thereby, the structure of the jacking device 400 can be made more reasonable.
  • a driving device 500 for an automated guided vehicle will now be described with reference to FIGS. 11 through 14.
  • a plurality of sets of driving devices 500 may be distributed in the left and right direction of the automated guided vehicle.
  • the driving device 500 can generally include a driving unit 510 , a base 520 and a pre-pressing unit 530 .
  • the drive unit 510 has a travel wheel 511 and a drive shaft 5131 that drives the travel wheel 511 to move.
  • An automated guided vehicle generally includes: a chassis (not shown), a driving device 500, a jacking device (not shown), and a control system (not shown), wherein the driving device 500, the jacking device, and the control system All are provided to the chassis, and the bottom of the chassis may be provided with a plurality of support wheels 514 and a plurality of running wheels 511, wherein the movement of the running wheels 511 drives the movement of the entire vehicle body. In order to ensure stable operation of the vehicle body, it is necessary to maintain sufficient pre-pressure of the running wheel 511 and the ground.
  • the driving unit 510 is disposed to the base 520.
  • the pre-pressing unit 530 is abutted against the driving unit 510 to apply a pre-pressure to the driving shaft 5131.
  • the pre-pressing unit is vertically displaced with the running wheel 511, thereby causing the driving shaft 5131.
  • a constant downforce is always applied to the running wheel 511. That is to say, when the running wheel 511 fluctuates up and down with the height of the ground, the pre-pressing unit 530 also fluctuates up and down, that is, the pre-pressing unit 530 and the running wheel 511 form a whole motion, so that the pre-pressing unit 530 acts on the driving unit 510.
  • the pre-pressure does not change with the height of the ground.
  • the driving device 500 for an automated guided vehicle applies a pre-pressure to the driving shaft 5131 by stopping the pre-pressing unit 530 against the driving unit 510, and the pre-pressing unit 530 follows the traveling wheel 511.
  • the upper and lower displacements are synchronized, so that the drive shaft 5131 applies a constant downforce to the running wheel 511 to ensure that the unmanned vehicle is stably traveling.
  • the driving unit 510 may include a motor base 512 and a driving unit 510.
  • the motor base 512 is provided to the base 520, and the motor base 512 is formed with a connecting hole 521.
  • the driving motor 513 is connected to the motor base 512, and the driving shaft 5131 of the driving motor 513 is drivingly connected to the running wheel 511 through the connecting hole 521.
  • the drive shaft 5131 extends from one side of the motor base 512 to the other side and is connected to the motor connection hole of the running wheel 511, so that the driving motor 513 can drive the driving wheel 511 to rotate. The body moves.
  • the driving device 500 further includes a top plate 540.
  • the top plate 540 is suspended above the motor base 512, and the pre-pressing unit 530 is disposed in the space defined by the top plate 540 in the motor base 512.
  • the motor base 512 is stacked on the upper surface of the base 520, and the top plate 540 is spaced apart from the upper surface of the motor base 512 by a predetermined distance, thereby defining a pre-installation between the top plate 540 and the motor base 512.
  • the space of the pressure unit 530 is provided to the motor base 512.
  • the top plate 540 is positioned above the motor mount 512 by a plurality of support posts 550 that are provided with mounting holes 5122 for mounting the support posts 550.
  • one end of the support post 550 (such as the lower end in FIGS. 11 and 12) is coupled to the motor mount 512, and the other end of the support post 550 (such as the upper end in FIGS. 11 and 12) extends upward for supporting the top plate 540.
  • the motor base 512 is generally a square body, and a mounting hole 5122 for positioning the support post 550 is provided at a joint between the short side and the long side of the upper surface.
  • the pre-compression unit 530 may include a bracket and a spring 533.
  • the bracket abuts against the upper surface of the motor base 512.
  • the spring 533 is sleeved on the outer peripheral wall of the bracket in a compressed state to apply a pre-pressure to the upper surface of the motor base 512.
  • the motor base 512 transmits a pre-pressure to the drive shaft 5131, and a downward downward pressure is applied to the running wheel 511 through the drive shaft 5131, so that the running wheel 511 has a constant frictional force with the ground.
  • the bracket may include an upper bracket 531 and a lower bracket 532 having an upwardly extending positioning post 5311 and a first positioning flange 5312 extending in the circumferential direction.
  • the lower bracket 532 has an upwardly extending positioning hole 5321 and a second positioning flange 5322 extending in the circumferential direction.
  • the spring 533 is sleeved on the peripheral wall of the lower bracket 532.
  • the positioning post 5311 extends into the positioning hole 5321 and compresses the spring 533 through the first positioning flange 5312 and the second positioning flange 5322 to form a pre-pressure.
  • the first positioning flange 5312 defines the degree of freedom in which the spring 533 moves upward
  • the second positioning flange 5322 defines the degree of freedom in which the spring 533 moves downward
  • the amount of compression of the spring 533 determines the magnitude of the preload applied to the drive shaft 5131.
  • the bottom of the top plate 540 is provided with a side plate 541.
  • the side plate 541 has an upper sliding groove 5411.
  • the upper bracket 531 has a first lug 5313.
  • the first lug 5313 passes through the pin structure 56060 and the upper sliding slot 5411. connection. That is to say, under the action of the external force, the pin structure 56060 can slide along the upper sliding groove 5411 to drive the upper end of the bracket to move.
  • the end of the lower bracket 532 is provided with a slider 5323
  • the upper surface of the motor base 512 is provided with a sliding groove 5123 that cooperates with the slider 5323.
  • the motor block 512 is provided with a sliding groove 5123 in the front-rear direction, and the slider 5323 is locked in the sliding groove 5123. Under the external force, the slider 5323 can follow the sliding groove 5123. Sliding to drive the lower end of the bracket to move, that is, the upper end of the bracket is movably connected to the top plate, and the lower end of the bracket is movably connected to the motor base 512.
  • one of the upper chute 5411 and the down groove 5123 extends obliquely upward, and the upper chute 5411 and the down groove 5123 extend in another horizontal direction.
  • the upper sliding groove 5411 extends obliquely upward, and the sliding groove 5123 extends in the horizontal direction.
  • the motor base 512 is lifted up by the drive shaft 5131, so that the slider 5323 is forced to slide in the horizontal direction along the sliding groove 5123.
  • the first lug 5313 is in the pin structure 560.
  • the motor base 512 Guided to slide upward along the upper chute 5411; when the ground is recessed downward, the motor base 512 is lowered, so that the slider 5323 is forced to slide in the horizontal direction along the sliding groove 5123, at this time, the first lug 5313 is
  • the pin structure 560 is guided to slide down the upper chute 5411.
  • the pre-compression unit 530 may further include: a link structure 534.
  • the lower bracket 532 has a second lug 5324.
  • One end of the link structure 534 is coupled to the second lug 5324 via a pin structure 560, and the other end of the link structure 534 is coupled to the support post 550.
  • the second lug 5324 can be pulled or pushed by the link structure 534 such that the second lug 5324 can move horizontally along the glide groove 5123.
  • the sliding groove 5123 is substantially in line with the mounting hole 5122.
  • the slider 5323 and the link structure 534 are substantially in the same horizontal direction.
  • the second lug 5324 can be pulled or pushed by the link structure 534 to move horizontally, so that the pre-press unit 530 moves up and down in synchronization with the motor base 512.
  • the link structure 534 can include a lower link structure and an upper link structure.
  • the lower end of the lower link structure is connected to the second lug 5324, and the lower link structure extends upward in the horizontal direction.
  • the upper link structure is connected to the upper end of the lower link structure, and the upper link structure extends upward in the vertical direction.
  • the pre-pressing unit 530 further includes: a mounting bracket 535.
  • the mounting bracket 535 is sleeved on the support column 550.
  • the mounting bracket 535 has an open slot, and the upper link structure is sandwiched in the open slot by the pin structure 560.
  • the open slot is open toward the side of the spring 533, and the upper end of the link structure 534 is coupled to the mounting bracket 535 by a pin structure 560, and the lower end of the link structure 534 is coupled to the second by the pin structure 560.
  • Lug 5324 That is, the two ends of the link structure 534 are rotatable relative to the two pin structures 560.
  • the link structure 534 can slide the slider 5323 horizontally along the sliding groove 5123 through the second lug 5324.
  • the first lug 5313 is further driven to slide up and down along the upper sliding slot 5411 through the pin structure 560, so that the pre-pressing unit 530 and the motor base 512 can move up and down in synchronization.
  • the pre-pressing unit 530 is two, and the two pre-pressing units 530 are diagonally disposed in the space defined by the top plate 540 and the motor base 512.
  • the bottom plate 540 is provided with two side plates 541, and each side plate is respectively provided with an upper sliding groove 5411.
  • One upper sliding groove 5411 extends obliquely upward and rearward in the horizontal direction, and the other upper sliding groove 5411 is horizontally upward. Stretching forwardly, so that in the case of uneven ground, the sliders 5323 of the two pre-pressing units 530 are moved in the reverse direction, so that the weight of the entire driving device 500 can be evenly distributed at any time, and the unmanned vehicle can be improved. Stability.
  • the automated guided vehicle includes the driving device in the above embodiment, and the driving device 500 in the above embodiment can cause the driving shaft 5131 to apply a constant downward pressure to the running wheel 511, and thus, according to an embodiment of the present invention
  • the unmanned van runs stably.
  • FIGS. 15 through 17 An automated guided vehicle 1000 according to an embodiment of the present invention will now be described with reference to FIGS. 15 through 17.
  • the automated guided vehicle 1000 includes an anti-collision device 600 and a controller (not shown), wherein the anti-collision device 600 includes a cavity assembly 611 and a gas pressure detecting device 612.
  • the cavity assembly 611 is disposed at the periphery of the automated guided vehicle 1000, and the cavity assembly 611 defines an air outlet chamber 6111.
  • the air chamber 6111 is compressed by an external force and is restored to an initial state after the external force disappears. That is to say, the air chamber 6111 has a telescopic deformation capability, and will be compressed after being hit by an external force, and the volume of the air chamber 6111 will be reduced, and the air chamber 6111 is extended to an initial state without an external force.
  • the air pressure in the air chamber 6111 increases with the decrease of the volume, and decreases with the increase of the volume, that is, the air pressure of the air chamber 6111 indirectly reflects the magnitude of the collision force, the unmanned vehicle 1000 and the obstacle. The greater the collision force, the smaller the air chamber 6111 is compressed and the higher the air pressure.
  • peripheral refers to a portion of the automated guided vehicle 1000 that can be in contact with the outside world.
  • the front side or the rear side of the vehicle body may be provided with the collision avoidance device 600.
  • the air pressure detecting device 612 is connected to the cavity assembly 611 for detecting the air pressure of the air chamber 6111.
  • the air pressure detecting device 612 may be an air pressure sensor.
  • the air pressure detecting device 612 can detect the air pressure of the air chamber 6111 in real time, and the controller is electrically connected to the air pressure detecting device 612 for receiving a signal from the air pressure detecting device 612.
  • the controller receives that the air pressure in the air chamber 6111 is greater than or equal to the preset air pressure value, the controller issues a parking command to cause the automated guided vehicle 1000 to stop traveling.
  • the anti-collision device 600 is disposed on the periphery of the automated guided vehicle 1000, and the air pressure in the air chamber 6111 of the cavity assembly 611 is detected by the air pressure detecting device 612.
  • the controller can The running state of the automated guided vehicle 1000 is controlled based on the air pressure value signal.
  • the cavity assembly 611 includes a hose 6112 having a plug 6113 at one end and the other end of the hose 6112 open. That is, one end of the hose 6112 is closed by a plug 6113 to form an open plenum 6111 structure. Since the hose 6112 has a good deformability, when the automated guided vehicle 1000 collides with an obstacle, the hose 6112 can be deformed such that the gas in the hose 6112 is compressed and the air pressure is increased; when the automated guided vehicle 1000 is When the obstacle is separated, the hose 6112 can be restored to the initial state again, and the air pressure is reduced.
  • the mounting surface of the hose 6112 may be a flat surface or a large curvature surface.
  • the anti-collision device 600 can be made to satisfy different body structure designs to improve the applicability of the anti-collision device 600.
  • the plug 6113 can include an insert portion 61131 and a seal portion 61132.
  • the one end of the insertion portion 61131 extends into the hose 6112, and the sealing portion 61132 is connected to the other end of the insertion portion 61131.
  • the radial dimension of the sealing portion 61132 is larger than the radial dimension of the insertion portion 61131 to form a stepped surface 611321 at the junction of the sealing portion 61132 and the insertion portion 61131, and one end surface of the hose 6112 is in close contact with the stepped surface 611321.
  • the threaded joint 6114 includes a screw 61141 and a sealing flange 61142.
  • the screw 61141 is formed with an air passage 611411 penetrating the axial direction of the screw 61141.
  • One end of the screw 61141 protrudes into the hose 6112, and the other end of the screw 61141 is located outside the hose 6112. That is, the hose 6112 is in communication with the screw 61141, and the air pressure change of the hose 6112 can be transmitted to the air pressure detecting device 612 through the air passage 611411.
  • one end of the hose 6112 is provided with a first clamp 6115 to define the degree of freedom of the insertion portion 61131 in the axial direction, and the other end of the hose 6112 is provided with a second clamp 6116 to define the screw 61141 on the shaft. Degree of freedom in the direction.
  • the automated guided vehicle 1000 further includes a housing (shown in the figures).
  • the hose 6112 is wound around the outer circumference of the casing, and the air pressure detecting device 612 is disposed in the casing.
  • the length of the hose 6112 can be set according to actual needs.
  • the hose 6112 can be partially wound around the outer circumference of the casing, and the hose 6112 can also be wound around the outer circumference of the entire casing.
  • the anti-collision device 600 further includes a connection assembly 613.
  • the connecting assembly 613 includes a pipe body 6131, wherein the two ends of the pipe body 6131 are respectively provided with a first connecting head 6132 having a first passage and a second connecting head 6133 having a second passage, and the other end of the screw 61141 protrudes into the first In the passage, the second connector 6133 is connected to the air pressure detecting device 612.
  • the air passage 611411 of the hose 6112, the screw 61141, the first passage, the pipe body 6131, and the second passage are configured to communicate with each other, that is, the air passage of the hose 6112 and the screw 61141.
  • the air pressure of the first passage, the pipe body 6131, and the second passage structure is the same.
  • the hardness of the pipe body 6131 is greater than the hardness of the hose 6112, and thus, the assembly efficiency and ease of use of the collision avoidance device 600 can be improved.
  • the other end of the screw 61141 is provided with an external thread
  • the first passage is provided with an internal thread that cooperates with the external thread. That is, the other end of the screw 61141 extends into the first passage to connect the hose 6112 to the joint assembly 613 by screwing.
  • the automated guided vehicle 1000 includes a bottom plate 200 and an image pickup mechanism 720.
  • the bottom plate 200 is provided with a through hole 201, and the through hole 201 communicates with the ground.
  • the camera mechanism 720 can scan the ground two-dimensional code through the through hole 201 to guide the vehicle to walk.
  • the camera mechanism 720 of the embodiment of the present invention can also scan the two-dimensional code on the material to accurately carry and place the goods.
  • the camera mechanism 720 includes a support structure 721 and a camera group 722, wherein the support structure 721 has a first leg 7211, a second leg 7212 and a connecting plate 7213, and the first leg 7211 and the second leg 7212 are opposite. Interposed and connected by a connecting plate 7213, one end of the first leg 7211 and the first leg 7211 (such as the lower end in FIG. 18) is mounted on the bottom plate 200, and the other end of the first leg 7211 and the second leg 7212 (upper end in Fig. 18) extends obliquely upward.
  • the connecting plate 7213 is located between the first leg 7221 and the second leg 7212 such that the supporting structure 721 is generally configured in a "human" shape, spanning over the through hole 201, and the camera group The 722 is mounted to the connecting plate 7213.
  • the automated guided vehicle 1000 of the embodiment of the present invention by mounting the camera group 722 on the support structure 721, one ends of the first leg 7211 and the second leg 7212 are mounted on the bottom plate 200, thereby improving the entire imaging.
  • the stability of the mechanism 720 avoids the deviation of the camera mechanism 720 during the running of the unmanned vehicle 1000, and ensures that the camera mechanism 720 and the two-dimensional code are accurately focused.
  • the support structure 721 also includes a horizontal positioning plate 7214.
  • the horizontal positioning plates 7214 are connected to one ends of the first leg 7211 and the second leg 7212, respectively. As shown in FIG. 18 in conjunction with FIG. 20, the horizontal positioning plate 7214 is attached to the bottom plate 200 and extends horizontally toward a side away from the center of the support structure 721.
  • the horizontal positioning plate 7214 connected to the first leg 7211 extends in the right direction, and the horizontal positioning plate 7214 connected to the second leg 7212 extends in the left direction.
  • the support structure 721 is carried on the bottom plate 200 through the horizontal positioning plate 7214, thereby effectively improving the stability of the structure of the support structure 721.
  • the horizontal positioning plate 7214 is provided with a plurality of tapered holes 72141, and the fastener passes through the tapered hole 72141 to position the horizontal positioning plate.
  • the 7214 is fixed to the bottom plate 200. It can be understood that, by the geometric principle of the cone, it can be ensured that the horizontal positioning plate 7214 and the bottom plate 200 are more stably and accurately connected, the error during the installation is avoided, the step of adjusting the orientation of the camera group 722 is reduced, and the stability of the camera mechanism 720 is improved. Sex.
  • camera group 722 includes a first camera 7221.
  • the camera of the first camera 7221 is disposed opposite to the through hole 201.
  • the through hole 201 communicates with the ground. Therefore, the first camera 7221 scans the two-dimensional code on the ground to guide the driving path of the automated guided vehicle 1000.
  • the side wall of the connecting plate 7213 is provided with at least one boss 72131, and the first camera 7221 is predetermined to be located at the boss 72131.
  • the first camera 7221 can be predetermined on the boss 72131, and then the first camera 7221 can be fixed to the connecting plate 7213 by fasteners. Thereby, assembly and disassembly of the first camera 7221 can be facilitated, and the stability of the first camera 7221 can be enhanced.
  • the automated guided vehicle 1000 further includes at least two running wheels.
  • the two running wheels are respectively symmetrically disposed on two sides of the bottom plate 200, and the centers of the two running wheel wires are opposite to the camera of the first camera 7221. That is to say, the two-dimensional code on the ground, the center of the two traveling wheel wirings, and the camera of the first camera 7221 are arranged in the vertical direction, thereby ensuring that the automated guided vehicle 1000 follows the set route. Forward.
  • the other ends of the first leg 7211 and the second leg 7212 are provided with a mounting plate 7215, and the mounting plate 7215 is disposed in parallel with the bottom plate 200.
  • the mounting plate 7215 is located at the top end of the first leg 7211 and the second leg 7212 along the length of the bottom plate 200, and the second camera 7222 is fixed to the mounting plate 7215, wherein the first camera 7221 It is disposed opposite to the second camera 7222. Therefore, the first camera 7221 and the second camera 7222 can be integrated on the support structure 721, so that the structural layout of the automated guided vehicle 1000 is more reasonable, and the layout of the line is more favorable.
  • first leg 7211, the second leg 7212, and the connecting plate 7213 are integrally formed. Thereby, the stability of the structure of the support structure 721 can be further improved.
  • the automated guided vehicle 1000 further includes a light source 723.
  • the light source 723 is disposed on the mounting board 7215 and disposed around the circumference of the second camera 7222. Thereby, the imaging resolution of the first camera 7221 and the second camera 7222 can be improved, and the imaging effect can be improved.
  • Still another embodiment of the present invention is for an automated guided vehicle 1000.
  • the automated guided vehicle 1000 can generally include a bottom plate 200, a camera mechanism 720, and a light source assembly.
  • the bottom plate 200 is provided with a through hole 201, and the imaging mechanism 720 is disposed on the bottom plate 200 opposite to the through hole 201 in the up and down direction.
  • the camera mechanism 720 can capture the road surface two-dimensional code information through the through hole 201, and the controller guides the automated guided vehicle 1000 to travel according to the set path according to the two-dimensional code information collected by the imaging mechanism 720.
  • the light source assembly can be used to fill light, so that the camera mechanism 720 can clearly collect the two-dimensional code information.
  • the light source assembly is disposed on the bottom plate 200, and the light source assembly comprises: a light source and an adjusting device.
  • the adjustment device is coupled to the light source for adjusting the illumination range of the light source. That is to say, the position of the light source can be adjusted in advance by the adjusting device so that the two-dimensional code is clearly recognized, and the imaging mechanism 720 is ensured to have an optimal imaging effect.
  • the automated guided vehicle 1000 adjusts the illumination range of the light source by the adjusting device to ensure that the imaging mechanism 720 has an optimal imaging effect, so that the automated guided vehicle 1000 travels according to the set path.
  • the light source assembly and camera mechanism 720 are located in the same axial direction of the base plate 200. Thereby, the light of the light source assembly can be better illuminated within the visible range of the camera mechanism 720.
  • the camera mechanism 720 is disposed between the two light source components.
  • the two light source components can be simultaneously turned on; in the case where the illumination mechanism of the imaging mechanism 720 is bright, only one of the light source components can be turned on.
  • the two ends of the through hole 201 are respectively provided with beams 202, and the light source components are respectively disposed on the beam 202.
  • the beam 202 extends in the width direction of the bottom plate 200, and the lateral width of the light source substantially coincides with the lateral width of the through hole 201. Thereby, it is possible to cause the light in the area of the through hole 201 to be irradiated.
  • the axial distance between the two light source assemblies is greater than the visual range of the camera mechanism 720. Thereby, the imaging effect of the imaging mechanism 720 is further improved.
  • the adjustment device can include: two mounting brackets and a swivel mount.
  • the two mounting brackets are spaced apart from the beam 202, and a connecting shaft is disposed between the two mounting brackets.
  • the rotating base is rotatably disposed on the connecting shaft and connected to the light source. That is, the position of the light source can be changed by rotating the rotating base, thereby changing the illumination range of the light source to provide sufficient light for the camera mechanism 720.
  • the rotating base comprises: a trigger plate and a connecting plate.
  • the upper end of the trigger plate has a locking hole
  • one end of the connecting plate is connected with the trigger plate
  • the other end of the connecting plate is connected to the light source.
  • the mounting bracket is provided with an oblong hole, and the oblong hole corresponds to the locking hole.
  • the oblong hole is curved.
  • the arc length can satisfy the position change of the light source within a certain range, and can be locked through the long hole through the screw, thereby facilitating the position adjustment of the light source.
  • the adjusting device is detachably connected to the light source 10, and the light source assembly further comprises: a connecting piece.
  • the connecting piece is provided to the back of the light source, and the rotating seat is detachably connected to the connecting piece. That is to say, the adjusting device 32 can be separated from the light source. For example, when the light source 32 has been adjusted to a proper position, the light source can be directly fixed to the bottom plate 200, and the adjusting device 32 can be detached from the light source, thereby being Small overall body weight.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature “above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly above and above the second feature, or merely the first feature level being less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)

Abstract

一种无人搬运车(1000),包括:底板(300);顶盘(200),顶盘(200)与底板(300)上下方向相对设置;顶升装置(400),顶升装置(400)位于底板(300)和顶盘(200)之间;驱动装置(500),驱动装置(500)设至底板(300)用于驱动无人搬运车(1000)行驶;转盘装置(100),转盘装置(100)设至顶升装置(400),转盘装置(100)包括:转盘组件(20),转盘组件(20)适于设于顶盘(200);装载盘(30),装载盘(30)设于转盘组件(20)上用于支承货架;驱动器(40),驱动器(40)驱动转盘组件(20)相对顶盘(200)转动,以带动装载盘(30)同步转动。

Description

无人搬运车 技术领域
本发明涉及无人搬运车。
背景技术
相关技术中,无人搬运车没有转盘结构,车身转向时,货架同时转向,货架惯量非常大,引起车身不稳,且当货架需要转向时,通过车身转向带动货架转向,此方法使得车身整体结构复杂,降低了转向效率,增加了制造成本。
发明内容
本发明旨在至少在一定程度上解决上述技术问题之一。
为此,本发明提出一种无人搬运车,该无人搬运车稳定高,使用方便且生产成本低。
根据本发明实施例的无人搬运车,包括:底板;顶盘,所述顶盘与所述底板上下方向相对设置;顶升装置,所述顶升装置位于所述底板和所述顶盘之间;驱动装置,所述驱动装置设至所述底板用于驱动所述无人搬运车行驶;转盘装置,所述转盘装置设至所述顶升装置,所述转盘装置包括:转盘组件,所述转盘组件适于设于所述顶盘;装载盘,所述装载盘设于所述转盘组件上用于支承货架;驱动器,所述驱动器驱动所述转盘组件相对所述顶盘转动,以带动所述装载盘同步转动。
根据本发明实施例的无人搬运车,通过在底盘上设至转盘组件,并通过驱动器驱动转盘组件转动,从而带动顶盘转动,进而可以有效控制货架的状态,该无人搬运车稳定性高,使用方便且生产成本低。
另外,根据本发明实施例的无人搬运车,还可以具有如下附加的技术特征:
根据本发明的一个实施例,在无人搬运车转向的情况,所述驱动器驱动所述转盘组件同步异向转动。
根据本发明的一个实施例,在无人搬运车转向的角度为β,驱动器驱动转盘组件同步异向转动的角度为β,其中0°<β≤180°。
根据本发明的一个实施例,在无人搬运车静止的情况,所述驱动器驱动所述转盘组件转动。
根据本发明的一个实施例,所述转盘组件包括:大齿盘,所述大齿盘的内周壁设有大 齿轮;小齿轮,所述小齿轮与所述驱动器的驱动轴连接并设于所述大齿盘的内侧与所述大齿轮相配合;支承外圈,所述支承外圈设至所述底盘并套设于所述大齿盘的外周。
根据本发明的一个实施例,所述大齿盘的外周沿与所述顶盘的外周沿平齐。
根据本发明的一个实施例,所述转盘组件还包括:挡油片,所述挡油片设于所述大齿盘的内侧与所述大齿轮相对设置。
根据本发明的一个实施例,所述挡油片包括:弧形部,所述弧形部与所述大齿盘同心设置且与所述大齿轮间隔预定距离;平板部,所述平板部的两端分别与所述弧形部连接以在所述大齿盘与所述平板部之间限定出安装空间。
根据本发明的一个实施例,所述底盘的周向方向形成有油槽,所述油槽与所述大齿盘在上下方向相对设置。
根据本发明的一个实施例,所述油槽自内向外倾斜延伸。
根据本发明的一个实施例,所述底盘设有油孔和用于封闭所述油孔的油塞,其中,所述油孔与所述油槽相通。
根据本发明的一个实施例,所述无人搬运车还包括:防滑垫,所述防滑垫设于所述顶盘上。
根据本发明的一个实施例,所述底盘、所述顶盘、所述转盘组件和所述防滑垫具有相互连通的通孔。
根据本发明的一个实施例,所述顶升装置包括:第一连杆组件;固定柱,所述固定柱安装于所述底板上,所述第一连杆组件的一端活动连接于所述固定柱;顶升杆,所述顶升杆一端活动连接于所述第一连杆组件,所述顶升杆的另一端支撑所述顶盘;驱动件,所述驱动件驱动所述第一连杆组件在第一位置和第二位置之间前后移动,带动所述顶升杆上下位移从而改变顶盘的高度。
根据本发明的一个实施例,所述第一连杆组件包括:第一销轴,所述第一销轴的轴向设有多个第一连杆和多个第二连杆,所述第一连杆沿前后方向倾斜延伸,所述第二连杆沿上下方向倾斜延伸,所述第一连杆和所述第二连杆的一端均与所述第一销轴刚性连接;第二销轴,所述第二销轴与所述第一销轴在上下方向相对且平行设置,所述第二连杆的另一端可转动地连接于所述第二销轴,所述驱动件的驱动轴止抵于所述第二销轴。
根据本发明的一个实施例,所述第一销轴的轴向设有两个第一连杆和两个第二连杆,其中,两个所述第二连杆位于两个所述第一连杆之间,且所述第一销轴两端分别设有所述顶升杆。
根据本发明的一个实施例,所述驱动装置还包括:第二连杆组件,所述第二连杆组件和所述第一连杆组件对称设置于所述底板上,所述第二连杆组件包括:第三销轴,所述第 三销轴的轴向设有多个第三连杆和多个第四连杆,所述第三连杆沿前后方向倾斜延伸,所述第四连杆沿上下方向倾斜延伸,所述第三连杆和所述第四连杆一端均与所述第三销轴刚性连接;第四销轴,所述第四销轴与所述第三销轴在上下方向相对且平行设置,所述第四连杆的另一端可转动地连接于所述第四销轴。
根据本发明的一个实施例,所述第三销轴的轴向设有两个第三连杆和两个第四连杆,其中,两个所述第三连杆位于两个所述第四连杆之间,且所述第三销轴两端分别设有所述顶升杆。
根据本发明的一个实施例,所述第四销轴和所述第二销轴之间设有相互平行的第五连杆和第六连杆。
根据本发明的一个实施例,所述驱动件设于所述第五连杆和所述第六连杆之间。
根据本发明的一个实施例,所述驱动件与所述第五连杆和第六连杆的其中一个相邻设置。
根据本发明的一个实施例,所述驱动装置:驱动单元,所述驱动单元具有行驶轮和驱动所述行驶轮运动的驱动轴;底座,所述驱动单元设至所述底座;预压单元,所述预压单元止抵于所述驱动单元以向所述驱动轴施加预压力,所述预压单元随行驶轮同步上下位移,从而使得所述驱动轴始终向所述行驶轮施加恒定的下压力。
根据本发明的一个实施例,驱动单元包括:电机座,所述电机座设至所述底座,所述电机座形成有通孔;驱动电机,所述驱动电机连接于所述电机座,所述驱动电机的驱动轴贯穿所述通孔与所述行驶轮传动连接。
根据本发明的一个实施例,所述驱动装置还包括:顶板,所述顶板悬设于所述电机座的上方,所述预压单元设于所述顶板与所述电机座限定的空间内。
根据本发明的一个实施例,所述顶板通过多个支撑柱定位于所述电机座,所述电机座设有用于安装支撑柱的安装孔。
根据本发明的一个实施例,所述预压单元包括:支架,所述支架止抵于所述电机座的上表面;弹簧,所述弹簧呈压缩状态套设于所述支架的外周壁以向所述电机座的上表面施加预压力。
根据本发明的一个实施例,所述无人搬运车还包括:防撞装置,所述防撞装置包括:腔体组件,所述腔体组件设于所述无人搬运车的外围,所述腔体组件限定出气室,所述气室受到外力碰撞后压缩且在外力消失后恢复至初始状态;气压检测装置,所述气压检测装置与所述腔体组件连接用于检测所述气室的气压;控制器,所述控制器与气压检测装置电连接用于接收所述气压检测装置发出的信号;其中,所述控制器接收到所述气室内的气压大于或等于预设气压值时,所述控制器发出停车指令使得所述无人搬运车停止行驶。
根据本发明的一个实施例,所述无人搬运车还包括:摄像机构,所述摄像机构包括:支架,所述支架具有第一支腿、第二支腿和连接板,所述第一支腿和所述第二支腿相对且间隔设置并通过所述连接板相连,其中,所述第一支腿和所述第一支腿的一端安装于底板上,所述第一支腿和所述第二支腿的另一端向上倾斜延伸;摄像组,所述摄像组安装于所述支架上。
根据本发明的一个实施例,所述无人搬运车还包括:光源组件,所述光源组件设于所述底板上用于向所述摄像机构提供光源,所述光源组件包括:光源;调节装置,所述调节装置连接于所述光源用于调节所述光源的照射范围。
根据本发明的一个实施例,所述无人搬运车还包括:壳体组件,所述壳体组件包括上壳体和下壳体,所述下壳体下端连接于所述底板的周缘,所述下壳体的上端向上延伸,上壳体为两端敞开的腔体结构,上壳体的下端与下壳体的上端连接,通过上壳体和下壳体共同构设出适于容纳所述顶升装置、所述驱动装置、所述转盘装置、所述摄像机构和所述光源组件的容纳腔。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的无人搬运车的分解图;
图2是根据本发明一个实施例的无人搬运车的立体图;
图3是根据本发明一个实施例的无人搬运车的局部分解图;
图4是根据本发明一个实施例的无人搬运车局部立体图;
图5是根据本发明一个实施例的无人搬运车的局部立体图;
图6是图5的主视图;
图7是根据本发明一个实施例的无人搬运车另一个角度的局部立体图;
图8是图7的主视图;
图9是根据本发明一个实施例的无人搬运车的局部立体图;
图10是根据本发明一个实施例的无人搬运车的局部分解图;
图11是根据本发明一个实施例的无人搬运车的驱动装置的立体图;
图12是根据本发明一个实施例的无人搬运车的驱动装置另一个角度的立体图;
图13是根据本发明一个实施例的无人搬运车的驱动装置的主视图;
图14是根据本发明一个实施例的无人搬运车的驱动装置的分解图;
图15是根据本实用新型一个实施例的无人搬运车的防撞装置的结构示意图;
图16是根据本实用新型一个实施例的无人搬运车的防撞装置的腔体组件的主视图;
图17是图沿A-A线的剖视图;
图18是根据本实用新型一个实施例的无人搬运车的局部立体图;
图19是图18中B处的放大图;
图20是根据本实用新型一个实施例的支撑结构的立体图;
图21是图18的俯视图;
图22是图21中沿C-C线的剖视图;
图23是图22中D处的放大图。
附图标记:
无人搬运车1000;
转盘装置100;
转盘组件20;大齿盘21;大齿轮211;小齿轮22;挡油片23;弧形部231;平板部232;支承外圈24;
装载盘30;
驱动器40;驱动电机41;减速机42;驱动轴422;
安装空间50;
油塞60;
防滑垫70;
顶盘200;油槽201;油孔202;
底板300;通孔301;横梁302;
顶升装置400;
第一连杆组件410;第一销轴411;第一连杆4111;第二连杆4112;第二销轴412;
固定柱420;
顶升杆430;
驱动件440;驱动轴441;
第二连杆组件450;第三销轴451;第三连杆4511;第四连杆4512;第四销轴452;
第五连杆460;第六连杆461;第七连杆462;
U形连接头470;第一安装板471;第二安装板472;第三安装板473;
连接臂480;
阻尼器490;
驱动装置500;
驱动单元510;行驶轮511;电机座512;连接孔5121;安装孔5122;下滑槽5123;驱动电机513;驱动轴5131;支撑轮514;
底座520;
预压单元530;上支架531;定位柱5311;第一定位凸缘5312;第一凸耳5313;下支架532;定位孔5321;第二定位凸缘5322;滑块5323;第二凸耳5324;弹簧533;连杆结构534;安装架535;
顶板540;侧板541;上滑槽5411;
支撑柱550;
销轴结构560;
防撞装置600
腔体组件611;气室6111;软管6112;堵头6113;插入部61131;密封部61132;台阶面611321;螺纹连接头6114;螺杆61141;气道611411;密封凸缘61142;第一卡箍6115;第二卡箍6116;
气压检测装置612;
连接组件613;管体6131;第一连接头6132;第二连接头6133;
摄像机构720;
支撑结构721;第一支腿7211;第二支腿7212;连接板7213;凸台72131;水平定位板7214;锥形孔72141;安装板7215;摄像组722;第一摄像机7221;第二摄像机7222;灯源723;
上壳体901;
下壳体902。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
相关技术中,无人搬运车没有转盘结构,车身转向时,货架同时转向,货架惯量非常大,容易引起车身不稳;当货架需要转向时一般,通过车身转向带动货架转向,此方法使得车身整体结构复杂,降低了转向效率,增加了制造成本,因此,本发明着力解决上述技术问题。
参照图1,根据本发明实施例的无人搬运车1000包括:底板300、顶盘200、顶升装置400、驱动装置500、转盘装置100、摄像机构720、光源组件830和壳体组件。其中,顶盘200与底板300上下方向相对设置。顶升装置400位于底板300和顶盘200之间。驱动装置500设至底板300用于驱动无人搬运车1000行驶。
其中,壳体组件包括上壳体901和下壳体902,下壳体902下端连接于底板300的周缘。下壳体902的上端向上延伸,上壳体901为两端敞开的腔体结构,上壳体901的下端与下壳体902的上端连接,通过上壳体901和下壳体902共同构设出适于容纳顶升装置400、驱动装置500、转盘装置100、摄像机构720和光源组件830的容纳腔,其中,转盘装置100的上端面大体与上壳体901的端面平齐。
下面参照图2至图3描述根据本发明实施例的用于无人搬运车1000的转盘装置100。
如图2-图3所示,该无人搬运车1000大体可以包括:底板300、转盘组件20、顶盘30和驱动器40。底板300、转盘组件20和顶盘30自下而上依次设置。其中,驱动器40可以包括:驱动电机41和与驱动电机相连的减速机42。
具体地,如图3结合图2所示,转盘组件20适于设于无人搬运车的顶盘200,装载盘30设于转盘组件20上用于支承货架,驱动器40驱动转盘组件20相对顶盘200转动,以带动装载盘30同步转动。其中,顶盘200为车身的一部分,即车身转动时,顶盘200随车身同步转动,车身不转动时,顶盘200也不转动。
在无人搬运车1000转向的情况,驱动器40可以驱动转盘组件20同步异向转动,即顶盘200与转盘组件20转动方向相反,例如,顶盘10顺时针转动时,转盘组件20和装载盘30逆时针转动;顶盘200逆时针转动时,转盘组件20和装载盘30顺时针转动,由此使得货架相对于地面静止不动,避免了车身转向时,货架同时转动引起车身不稳的问题。
在一些具体实施实施例中,在无人搬运车1000转向的角度为β,驱动器10驱动转盘组件20同步异向转动的角度为β,其中,其中0°<β≤180°。即无人搬运车1000转向速度与驱动器10驱动转盘组件20同步异向转动的角速度相同。
一个具体示例中,在无人搬运车1000直角转弯的情况下,顶盘10随着车身转动90度,转盘组件20和装载盘30同步逆向转动90度,由此使得货架相对于地面静止不动,避免了车身转向时,货架同时转动引起车身不稳的问题。
另一些实施例中,在仅需要货架转向的情况,可以通过驱动器40驱动转盘组件20逆 时针或顺时针转动以改变货架的位置,即车身不动,货架转动。
简言之,根据本发明实施例的无人搬运车1000,通过在顶盘200上设至转盘组件20,并通过驱动器40驱动转盘组件20相对顶盘10转动,可以有效控制支承于货架的状态,该无人搬运车1000使用方便且生产成本低。
在本发明的一些实施例中,转盘组件20包括:大齿盘21、小齿轮22和支承外圈24。大齿盘21相对支承外圈24可转动。
具体地,如图3所示,大齿盘21的内周壁设有大齿轮211。小齿轮22与驱动器40的驱动轴连接并设于大齿盘21的内侧与大齿轮211相配合。即驱动器40的驱动轴驱动小齿轮22转动,从而带动大齿盘21转动。
支承外圈24设至底板300并套设于大齿盘21的外周。通过将支承外圈24绕设于大齿盘21的外周从而可以限制大齿盘21在径向方向的位移,保证大齿轮211与小齿轮22始终处于配合状态。
在支承外圈24与大齿盘21之间设有滚珠,由此,可以降低大齿盘21的外周壁与支承外圈24的内壁之间的摩擦力,提高大齿盘21的转动效率。
可选地实施例中,大齿盘21的外周沿与顶盘30的外周沿平齐。由此,可以增大顶盘30的下表面与大齿盘21的上表面的接触面积,保证大齿盘21有效带动顶盘30同步转动,提高转动效率。
在本发明另一些实施例中,转盘组件20还包括:挡油片23。挡油片23设于大齿盘21的内侧与大齿轮211相对设置。这样,底板300、挡油片23和顶盘30可以对转盘组件10进行有效遮盖,使得大齿盘21转动过程中润滑油脂不会向外飞溅,从而避免了对其他部件造成污染。
一些实施例中,如图3所示,挡油片23包括弧形部231和平板部232。其中,弧形部231与大齿盘21同心设置且与大齿轮211间隔预定距离。平板部232的两端分别与弧形部231连接以在大齿盘21与平板部232之间限定出安装空间50,小齿轮22设在该安装空间50内,驱动器40安装于底板300的底部且其驱动轴伸入安装空间50内与小齿轮22配合。
在本发明再一些实施例中,底板300的周向方向形成有油槽201,油槽201与大齿盘21在上下方向相对设置,该油槽201用于收集从大齿轮211上滴落的润滑油脂,由此,可以进一步防止润滑油脂对其他部件造成污染。
可选实施例中,油槽201自内向外倾斜延伸。由此,可以使得润滑油脂向外侧方向流动,便于收集和清理。
进一步可选实施例中,底板300设有油孔202和用于封闭油孔202的油塞60,油孔202与油槽201相通。这样,当需要清理油槽201内的润滑油脂时,挪开油塞60,就可以导出 润滑油脂。其中,油塞60可以为防尘螺栓,防尘螺栓可以有效阻挡灰尘进入油槽201内。
在本发明再一些实施例中,无人搬运车1000还包括:防滑垫70。防滑垫70设于顶盘30上,货架压接于该防滑垫70上,这样,可以减少货架在顶盘30上移动,提高货架在顶盘30上的稳定性,且避免货架直接作用于顶盘30上,降低货架对顶盘30磨损。
可选实施例中,底板300、顶盘30、转盘组件20和防滑垫70具有相互连通通孔301。该通孔301与底板300下方的摄像机构720相对设置,摄像机构720可以透过该通孔301采集货架上的信息,以保证无人搬运车1000准确搬运货架。
下面参照图5至图10描述根据本发明实施例的用于无人搬运车的顶升装置400。
如图5-图8结合图10所示,该顶升装置400大体可以包括:第一连杆组件410、固定柱420、顶升杆430和驱动件440。其中,驱动件440可以为步进电机。
具体地,如图5-图8所示,固定柱420安装于底板200上,第一连杆组件410的一端(如图5中的后端)活动连接于固定柱420。顶升杆430一端(如图5中的下端)可活动连接于第一连杆组件410,顶升杆430的另一端(如图5中的上端)支撑顶盘300。换言之,第一连杆组件410设于底板200与顶盘300之间,顶升杆430托承顶盘300并将顶盘300的重力通过第一连杆组件410传至固定柱420。
驱动件440驱动第一连杆组件410在第一位置和第二位置之间前后移动,带动顶升杆430上下位移从而改变顶盘300的高度。也就是说,驱动件440通过改变第一连杆组件410相对底板200前后方向的位置,从而使得顶升杆430在一定范围内上下位移,进而改变顶盘300高度。
参照图6和图7所示,当第一连杆组件410位于第一位置a时,顶盘300的高度为H1;当第一连杆组件410位于第二位置b时,顶盘300的高度为H2,其中,H2大于H1。
相比于通过大型丝杆升降顶盘而言,本发明实施例的用于无人搬运车的顶升装置400,通过驱动件440驱动第一连杆组件410在第一位置和第二位置之间前后移动,带动顶升杆430转动从而改变顶盘300的高度,升降效率高,占用空间小且生产成本低。
在本发明的一些实施例中,如图5-图10所示,第一连杆组件410包括:第一销轴411和第二销轴412。第一销轴411的轴向(如图5中的左右方向)设有多个第一连杆4111和多个第二连杆4112,第一连杆4111沿前后方向倾斜延伸,第二连杆4112沿上下方向倾斜延伸,第一连杆4111和第二连杆4112的一端均与第一销轴411刚性连接。也就是说,第一连杆4111和第二连杆4112与第一销轴411连接形成整体,在外力的作用下,第一连杆组件410相对固定柱420可以整体移动。
第二销轴412与第一销轴411在上下方向相对且平行设置,第二连杆4112的另一端(如图5中的前端)可转动地连接于第二销轴412,驱动件440的驱动轴441止抵于第二销轴 412。这样,驱动件440可以向第二销轴412施加向前的推力使得第一连杆组件410整体向前移动,或者驱动件440可以向第二销轴412施加向后的拉力使得第一连杆组件410整体向后移动;或者驱动件440可以向第二销轴412施加制动力使得第一连杆组件410静止不动。通过驱动件440向第二销轴412施加不同方向的作用力以改变第一连杆组件410的运动状态,进而带动顶升杆430上下位移从而调整顶盘300的高度,实现无人搬运车的升降。
可选实施例中,顶升装置400还包括:阻尼器490。参考图5和图9结合图10,阻尼器490的一端与顶盘300连接,阻尼器490的另一端与第二销轴412连接。阻尼器490可以使得顶升装置400在运动过程中更加平缓,从而使得承载于顶盘300上的货架不至发生较大幅度的震动,提高了货架的稳定性。
可选实施例中,如图5、图7结合图10所示,第一销轴411的轴向(如图5中的左右方向)设有两个第一连杆4111和两个第二连杆4112,其中,两个第二连杆4112位于两个第一连杆4111之间,且第一销轴411两端分别设有顶升杆430。其中,每一个第一连杆4111对应一个固定柱420,第一销轴411和第二销轴412上下平行设置并通过两个第二连杆4112连接。这样,驱动件440向第二销轴412施加作用力时,两个第一连杆4111、两个第二连杆4112、第一销轴411和第二销轴412可以整体位移,带动顶升杆430上下位移从而改变顶盘300的高度。可以理解的是,上述仅是示意性的,并不是对本发明保护范围的限制,第一连杆4111和第二连杆4112数量可以相同,也可以不相同,可以根据无人搬运车的整体结构布局而定。
在本发明另一些实施例中,顶升装置400还包括:第二连杆组件450。第二连杆组件450和第一连杆组件410对称设置于底板200上。通过第一连杆组件410和第二连杆组件450联动,使得多个顶升杆430上下同步位移,从而快速且平稳地升降顶盘300。
如图5-图10所示,第二连杆组件450包括:第三销轴451和第四销轴452。第三销轴451的轴向(如图5中的左右方向)设有多个第三连杆4511和多个第四连杆4512,第三连杆4511沿前后方向倾斜延伸,第四连杆4512沿上下方向倾斜延伸,第三连杆4511和第四连杆4512的一端均与第三销轴451刚性连接。也就是说,第三连杆4511和第四连杆4512与第三销轴451连接形成整体,在外力的作用下,第二连杆组件450相对固定柱420可以整体前后方向移动。
第四销轴452与第三销轴451在上下方向相对且平行设置,第四连杆4512的另一端(如图5中的前端)可转动地连接于第四销轴452,驱动件440的驱动轴441可以止抵于第四销轴452。这样,驱动件440可以向第四销轴452施加向前的推力使得第二连杆组件450整体向前移动,或者驱动件440可以向第四销轴452施加向后的拉力使得第二连杆组件450整体向后移动;或者驱动件440可以向第四销轴452施加制动力使得第二连杆组件450静 止不动。通过驱动件440向第四销轴452施加不同方向的作用力以改变第二连杆组件450的运动状态,进而带动顶升杆430上下位移从而调整顶盘300的高度,实现无人搬运车的升降。
可选实施例中,如图5、图7结合图10所示,第三销轴451的轴向(如图5中的左右方向)设有两个第三连杆4511和两个第四连杆4512,其中,两个第四连杆4512位于两个第三连杆4511之间,且第三销轴451两端分别设有顶升杆430。其中,每一个第三连杆4511对应一个固定柱420,第三销轴451和第四销轴452上下平行设置并通过两个第四连杆4512连接。这样,驱动件440向第四销轴452施加作用力时,两个第三连杆4511、两个第四连杆4512、第三销轴451和第四销轴452可以整体位移,带动顶升杆430上下位移从而改变顶盘300的高度。可以理解的是,上述仅是示意性的,并不是对本发明保护范围的限制,第三连杆4511和第四连杆4512数量可以相同,也可以不相同,可以根据无人搬运车的整体结构布局而定。
其中,第一连杆4111和第二连杆4112及第三连杆4511和第四连杆4512之间角度为α,其中,0<α<90°。可以理解的是,α的大小决定了第一连杆组件410和第二连杆组件450的运动范围,即通过改变第一连杆4111和第二连杆4112及第三连杆4511和第四连杆4512之间的夹角可以调整顶升装置400上下位移的距离。
需要说明的是,第一连杆组件410和第二连杆组件450可以分别对应一个驱动件440,即其中一个驱动件440驱动第一连杆组件410作动,另一个驱动件440驱动第二连杆组件450与第一连杆组件410同时作动;或者通过一个驱动件440同时作动第一连杆组件410和第二连杆组件450,由此,可以降低顶升装置400的生产成本。
例如,如图10所示,第四销轴452和第二销轴412之间设有相互平行第五连杆461和第六连杆462。通过第五连杆461和第六连杆462将第四销轴452和第二销轴412连接起来,这样,通过一个驱动件440就可以驱动第一连杆组件410和第二连杆组件450联动,降低顶升装置400的生产成本。
可选实施方式中,驱动件440设于第五连杆461和第六连杆462之间。即驱动件440位于第一连杆组件410和第二连杆组件450之间,驱动件440的驱动轴441可以止抵于第二销轴412或第四销轴452以联动第一连杆组件410和第二连杆组件450。
可选实施方式中,驱动件440与第五连杆461和第六连杆462的其中一个相邻设置。如图7所示,驱动件440位于第一连杆组件410和第二连杆组件450的侧边,即驱动件440偏离顶升装置400的中心线设置,由此,可以在顶升装置400的中部腾出设置摄像机构的空间,使得无人搬运车的结构布局更加合理。
进一步可选实施方式中,如图9和图10所示,顶升装置400还包括:U形连接头470。 U形连接头470包括第一安装板471、第二安装板472和第三安装板473,第二安装板472和第三安装板473连接于第一安装板471,驱动轴穿设第一安装板471,第二销轴412分别穿设第二安装板472和第三安装板473。通过U形连接头470将第一连杆组件410和驱动件440连接起来。其中,驱动件440的驱动轴与第二销轴412在水平方向的夹角可以为90度,即驱动轴与第二销轴412在水平方向相互垂直。
可以理解的是,驱动件440设置于第一连杆组件410和第二连杆组件450的一侧的情况,第二销轴412两端的受力不平衡,久而久之,第二销轴412因受力不均匀会出现弯曲现象。通过在第一销轴411上设置第七连杆463,其中,第七连杆463的一端与第一销轴411连接,第七连杆463的另一端与第二销轴412连接,U形连接头470夹设于所述第七连杆463和第二连杆4112之间。由此,防止第二销轴412出现变形,提高第二销轴412的结构稳定性。
一些实施方式中,顶升装置400还包括:连接臂480。连接臂480的一端与驱动件440连接,连接臂480的另一端向上延伸连接于顶盘300的底部。即驱动件440通过连接臂480固接于顶盘300,并可以随着顶盘300上下位移而移动。由此,可以使得顶升装置400的结构更加合理。
下面参照图11至图14描述根据本发明实施例的用于无人搬运车的驱动装置500。无人搬运车的左右方向可以分布有多组驱动装置500。
如图11-图13结合图14所示,该驱动装置500大体可以包括:驱动单元510、底座520和预压单元530。
具体地,如图11-图13所示,驱动单元510具有行驶轮511和驱动行驶轮511运动的驱动轴5131。无人搬运车通常包括:底盘(图未示出)、驱动装置500、顶升装置(图未示出)和控制系统(图未示出),其中,驱动装置500、顶升装置和控制系统均设至底盘,底盘的底部可以设有多个支撑轮514和多个行驶轮511,其中,行驶轮511的运动带动整个车体的移动。为保证车体的稳定运行必须使得行驶轮511与地面保持足够的预压力。
参照图11-图13,驱动单元510设至底座520,预压单元530止抵于驱动单元510以向驱动轴5131施加预压力,预压单元随行驶轮511同步上下位移,从而使得驱动轴5131始终向行驶轮511施加恒定的下压力。也就是说,行驶轮511随着地面高低上下波动时,预压单元530也随之上下波动,即预压单元530与行驶轮511构成一个运动整体,这样,预压单元530作用于驱动单元510的预压力不会随着地面的高低起伏而发生变化。
由此,根据本发明实施例的用于无人搬运车的驱动装置500,通过将预压单元530止抵于驱动单元510以向驱动轴5131施加预压力,且预压单元530随行驶轮511同步上下位移,从而使得驱动轴5131向行驶轮511施加恒定的下压力,保证无人搬运车稳定行驶。
在本发明的一些实施例中,驱动单元510可以包括:电机座512和驱动单元510。电机座512设至底座520,电机座512形成有连接孔5121。驱动电机513连接于电机座512,驱动电机513的驱动轴5131贯穿连接孔5121与行驶轮511传动连接。如图14结合图11和图12所示,驱动轴5131从电机座512的一侧向另一侧伸出与行驶轮511的电机连接孔连接,从而使得驱动电机513可以驱动行驶轮511旋转带动车体移动。
一些实施例中,驱动装置500还包括:顶板540。顶板540悬设于电机座512的上方,预压单元530设于顶板540于电机座512限定的空间内。如图11和图12所示,电机座512叠设于底座520的上表面,顶板540与电机座512的上表面间隔预定距离,从而在顶板540和电机座512之间限定出用于安装预压单元530的空间。
可选实施例中,顶板540通过多个支撑柱550定位于电机座512的上方,电机座512设有用于安装支撑柱550的安装孔5122。其中,支撑柱550的一端(如图11和图12中的下端)连接于电机座512,支撑柱550的另一端(如图11和图12中的上端)向上延伸用于支承顶板540。如图14所示,电机座512大体为方形体,其上表面短边和长边的连接处设有用于定位支撑柱550的安装孔5122。
在本发明另一些实施例中,预压单元530可以包括:支架和弹簧533。支架止抵于电机座512的上表面。弹簧533呈压缩状态套设于支架的外周壁以向电机座512的上表面施加预压力。电机座512将预压力传递于驱动轴5131,通过驱动轴5131对行驶轮511施加向下的下压力,从而使得行驶轮511与地面具有恒定的摩擦力。
具体地,支架可以包括:上支架531和下支架532,上支架531具有向上延伸的定位柱5311和沿周向方向延伸的第一定位凸缘5312。下支架532具有向上延伸的定位孔5321和沿周向方向延伸的第二定位凸缘5322。弹簧533套设于下支架532的周壁,定位柱5311伸入定位孔5321内并通过第一定位凸缘5312和第二定位凸缘5322压缩弹簧533以形成预压力。换言之,第一定位凸缘5312限定弹簧533向上移动的自由度,第二定位凸缘5322限定弹簧533向下移动的自由度,弹簧533的压缩量决定了对驱动轴5131施加预压力的大小。
可选实施例中,顶板540的底部设有侧板541,侧板541具有上滑槽5411,上支架531具有第一凸耳5313,第一凸耳5313通过销轴结构56060与上滑槽5411连接。也就是说,在外力的作用下,销轴结构56060可以沿着上滑槽5411滑动从而带动支架上端移动。
进一步可选实施例中,下支架532的端部设有滑块5323,电机座512的上表面设有与滑块5323相配合的下滑槽5123。如图11和图12结合图14所示,电机座512的前后方向设有下滑槽5123,滑块5323卡设于下滑槽5123内,在外力的作用下,滑块5323可以沿 着下滑槽5123滑动从而带动支架下端移动,即支架的上端可活动地连接于顶板,支架的下端可活动地连接于电机座512。
一些具体示例中,上滑槽5411和下滑槽5123其中一个向上倾斜延伸,上滑槽5411和下滑槽5123的另一个水平方向延伸。如图11和图12结合图14所示,上滑槽5411向上倾斜延伸,下滑槽5123沿水平方向延伸。例如,地面向上凸起的情况,电机座512被驱动轴5131向上顶起,从而使得滑块5323受力沿着下滑槽5123水平方向滑动,此时,第一凸耳5313在销轴结构560的引导下沿着上滑槽5411向上滑动;地面向下凹陷的情况,电机座512下降,从而使得滑块5323受力反向沿着下滑槽5123水平方向滑动,此时,第一凸耳5313在销轴结构560的引导下沿着上滑槽5411向下滑动。通过预压单元530与上滑槽5411和下滑槽5123的配合,从而使得预压单元530的弹簧533压缩量可以保持不变,即向驱动轴5131提供的预压力保持不变,进一步可以保证驱动轴5131向行驶轮511施加恒定的下压力。
在本发明再一些实施例中,预压单元530还可以包括:连杆结构534。下支架532具有第二凸耳5324,连杆结构534的一端通过销轴结构560与第二凸耳5324连接,连杆结构534的另一端与支撑柱550连接。这样,在电机座512向下或向上移动过程中,可以通过连杆结构534牵拉或推动第二凸耳5324使得第二凸耳5324可以沿着下滑槽5123水平方向移动。
进一步可选地,下滑槽5123与安装孔5122大体位于同一直线上。换言之,滑块5323与连杆结构534大体位于同一水平方向,这样,可以通过连杆结构534牵拉或推动第二凸耳5324水平方向移动,使得预压单元530与电机座512同步上下移动。
一些具体实施例中,如图11和图12结合图14所示,连杆结构534可以包括:下段连杆结构和上段连杆结构。下段连杆结构的下端与第二凸耳5324连接,下段连杆结构沿水平方向向上延伸。上段连杆结构与下段连杆结构的上端连接,上段连杆结构沿竖直方向向上延伸。
进一步可选实施例中,预压单元530还包括:安装架535。安装架535套设于支撑柱550,安装架535具有开口槽,上段连杆结构通过销轴结构560夹设于开口槽内。如图11和图12所示,开口槽朝向弹簧533一侧敞开,连杆结构534的上端通过销轴结构560连接于安装架535,连杆结构534的下端通过销轴结构560连接于第二凸耳5324。即连杆结构534两端相对于两个销轴结构560可旋转,这样,电机座512上下位移时,连杆结构534可以通过第二凸耳5324带动滑块5323沿下滑槽5123水平方向滑动,进而驱动第一凸耳5313通过销轴结构560沿着上滑槽5411上下滑动,从而使得预压单元530与电机座512可以同步上下移动。
如图11所示,预压单元530为两个,两个预压单元530对角设置于顶板540与电机座512限定的空间内。顶板540的底部设有两个侧板541,每个侧板分别设有上滑槽5411,其中,一个上滑槽5411沿水平方向向上向后倾斜延伸,另一个上滑槽5411沿水平方向向上向前倾斜延伸,这样,在地面不平整的情况下,两个预压单元530的滑块5323逆向方向运动,从而可以使得整个驱动装置500重量在任何时候都可以均匀分布,提高无人搬运车的稳定性。
根据本发明实施例的无人搬运车包括上述实施例中的驱动装置,由于上述实施例中的驱动装置500可以使得驱动轴5131对行驶轮511施加恒定的下压力,因此,根据本发明实施例的无人搬运车运行稳定。
下面参照图15至图17描述根据本发明实施例的无人搬运车1000。
如图15所示,该无人搬运车1000包括:防撞装置600和控制器(图未示出),其中,防撞装置600包括:腔体组件611和气压检测装置612。
具体地,腔体组件611设于无人搬运车1000的外围,腔体组件611限定出气室6111,气室6111受到外力碰撞后压缩且在外力消失后恢复至初始状态。也就是说,气室6111具有伸缩变形能力,在受到外力碰撞后将会压缩,气室6111的体积将缩小,没有外力作用的情况下气室6111伸展至初始状态。可以理解的是,气室6111内的气压随体积的减小而增大,随体积的增大而缩小,即气室6111的气压大小间接反应了碰撞力的大小,无人搬运车1000与障碍物碰撞力越大,气室6111被压缩的越小,气压越大。
这里需要说明的是,“外围”指的是无人搬运车1000所有可以与外界接触的部位,例如,车身的前侧或后侧均可以设置防撞装置600。
气压检测装置612与腔体组件611连接用于检测气室6111的气压。其中,气压检测装置612可以为气压传感器。气压检测装置612可以实时检测气室6111的气压,控制器与气压检测装置612电连接用于接收气压检测装置612发出的信号。在控制器接收到气室6111内的气压大于或等于预设气压值时,控制器发出停车指令使得无人搬运车1000停止行驶。
简言之,根据本发明实施例的无人搬运车1000,在无人搬运车1000的外围设置防撞装置600,通过气压检测装置612检测腔体组件611气室6111内的气压,控制器可以根据气压值信号来控制无人搬运车1000的行驶状态。
在本发明的一些实施例中,如图17所示,腔体组件611包括软管6112,软管6112的一端设有堵头6113,软管6112的另一端敞开。即软管6112的一端通过堵头6113封闭以形成敞开的气室6111结构。由于软管6112形变能力较好,因此,当无人搬运车1000与障碍物碰撞时,软管6112可以发生形变使得软管6112内的气体被压缩,气压增大;当无人搬运车1000与障碍物分离时,软管6112又可以恢复至初始状态,气压减小。
由于软管6112具有较好的形变能力,因此,软管6112的安装面可以为平面,也可以为大曲率面。由此,可以使得防撞装置600满足于不同车身结构设计,以提高防撞装置600的适用性。
在一些可选实施例中,如图17结合图16所示,堵头6113可以包括:插入部61131和密封部61132。其中,插入部61131的一端伸入软管6112内,密封部61132与插入部61131的另一端连接。密封部61132的径向尺寸大于插入部61131的径向尺寸以在密封部61132和插入部61131的连接处形成台阶面611321,软管6112的一端端面与台阶面611321紧密接触。由此,避免气体从插入部61131与软管6112之间的接触面渗漏,可以提高堵头6113与软管6112之间的密封性。
进一步可选实施例中,如图17所示,螺纹连接头6114包括:螺杆61141和密封凸缘61142。具体地,螺杆61141形成有贯穿螺杆61141轴向方向的气道611411,螺杆61141的一端伸入软管6112内,螺杆61141的另一端位于软管6112外。即软管6112与螺杆61141气路相通,软管6112气压变化可以通过气道611411向气压检测装置612传递。
进一步可选示例中,软管6112的一端设有第一卡箍6115以限定插入部61131在轴向方向的自由度,软管6112的另一端设有第二卡箍6116以限定螺杆61141在轴向方向的自由度。由此,可以提高软管6112与堵头6113和螺杆61141之间连接的紧密程度,且提高软管6112的密封性。
在本发明的一个具体实施例中,无人搬运车1000还包括:壳体(图为示出)。软管6112绕设于壳体的外周,气压检测装置612设于壳体内。其中,软管6112绕设长度可以根据实际需要设定,例如,软管6112可以局部绕设于壳体的外周,软管6112也可以绕设于整个壳体的外周。
在本发明再一些实施例中,防撞装置600还包括:连接组件613。连接组件613包括管体6131,其中,管体6131的两端分别设有具有第一通道的第一连接头6132和具有第二通道的第二连接头6133,螺杆61141的另一端伸入第一通道内,第二连接头6133与气压检测装置612连接。如图15结合图17所示,软管6112、螺杆61141的气道611411、第一通道、管体6131和第二通道构设成相互连通的气路,即软管6112、螺杆61141的气道611411、第一通道、管体6131和第二通道构的气压相同。
优选地,管体6131的硬度大于软管6112的硬度,如此,可以提高防撞装置600组装效率和使用方便性。
在一个具体示例中,螺杆61141的另一端设有外螺纹,第一通道内设有与外螺纹相配合的内螺纹。即螺杆61141的另一端伸入第一通道内通过螺纹连接将软管6112与连接组件613连接。
下面参照图18至图23描述根据本发明实施例的无人搬运车1000。
如图18所示,无人搬运车1000包括:底板200和摄像机构720。其中,底板200设有通孔201,该通孔201与地面相通,这样,无人搬运车1000在行驶过程中,摄像机构720可以通过该通孔201扫描地面二维码以指引车子行走,当然,本发明实施例的摄像机构720也可以扫描物料上的二维码以准确搬运和放置货物。
具体地,摄像机构720包括:支撑结构721和摄像组722,其中,支撑结构721具有第一支腿7211、第二支腿7212和连接板7213,第一支腿7211和第二支腿7212相对间隔设置并通过连接板7213相连,第一支腿7211和第一支腿7211的一端(如图18中的下端)安装于底板200上,第一支腿7211和第二支腿7212的另一端(如图18中的上端)向上倾斜延伸。
如图18结合图20所示,连接板7213位于第一支腿7211和第二支腿7212之间使得支撑结构721整体大体构设成“人”字形,横跨于通孔201上方,摄像组722安装于连接板7213。
由此,根据本发明实施例的无人搬运车1000,通过将摄像组722安装于支撑结构721,第一支腿7211和第二支腿7212的一端安装于底板200上,从而提高了整个摄像机构720的稳定性,避免了无人搬运车1000在行驶过程中摄像机构720发生偏移,保证了摄像机构720与二维码准确对焦。
在本发明的一些实施例中,支撑结构721还包括水平定位板7214。水平定位板7214分别与第一支腿7211和第二支腿7212的一端连接。如图18结合图20所示,水平定位板7214贴合于底板200上并朝远离支撑结构721中心的一侧方向水平延伸。其中,连接于第一支腿7211的水平定位板7214朝右侧方向延伸,连接于第二支腿7212的水平定位板7214朝左侧方向延伸。支撑结构721通过水平定位板7214承载于底板200上,从而有效提高支撑结构721结构的稳定性。
可选实施方式中,如图19-图20和图22-图23结合图21所示,水平定位板7214设有多个锥形孔72141,紧固件穿过锥形孔72141将水平定位板7214固定于底板200。可以理解的是,通过锥形几何原理,可以确保水平定位板7214与底板200连接更加稳定和精准,避免人为安装时的误差,减少调校摄像组722方位的步骤,提高了摄像机构720的稳定性。
在本发明另一些实施例中,摄像组722包括第一摄像机7221。第一摄像机7221的摄像头与通孔201相对设置。其中,通孔201与地面相通,因此,通过第一摄像机7221扫描地面上的二维码以指引无人搬运车1000的行车路径。
可选实施方式中,连接板7213的侧壁设有至少一个凸台72131,第一摄像机7221预定 位于凸台72131。这样,可以先将第一摄像机7221预定于凸台72131上,然后通过紧固件将第一摄像机7221固定于连接板7213。由此,可以提高便于第一摄像机7221的组装和拆卸,且加强了第一摄像机7221的稳定性。
可选实施方式中,无人搬运车1000还包括至少两个行驶轮。两个行驶轮分别对称设置于底板200的两侧,两个行驶轮连线的中心与第一摄像机7221的摄像头相对。也就是说,地面上的二维码、两个行驶轮连线的中心和第一摄像机7221的摄像头三者在竖直方向相对设置,由此,可以保证无人搬运车1000按照设定的路线前行。
进一步可选实施方式中,第一支腿7211和第二支腿7212的另一端(如图18中的上端)设有安装板7215,安装板7215与底板200相对平行设置。如图18和图20所示,安装板7215位于第一支腿7211和第二支腿7212的顶端沿底板200的长度方向延伸,第二摄像机7222固定于安装板7215,其中,第一摄像机7221与第二摄像机7222上下相对设置。由此,可以将第一摄像机7221和和第二摄像机7222集成设置于支撑结构721上,使得无人搬运车1000的结构布局更加合理,更有利于线路的布局。
可选实施方式中,第一支腿7211、第二支腿7212和连接板7213一体形成。由此,可以进一步提高支撑结构721结构的稳定性。
在本发明再一些实施例中,无人搬运车1000还包括:灯源723。灯源723设于安装板7215且环绕第二摄像机7222的周向设置。由此,可以提高第一摄像机7221和第二摄像机7222的摄像清晰度,提高摄像效果。
在本发明再一些实施例的用于无人搬运车1000。
该无人搬运车1000大体可以包括:底板200、摄像机构720和光源组件。
具体地,底板200设有通孔201,摄像机构720设置于底板200上与通孔201上下方向相对。摄像机构720可以通过该通孔201拍摄路面二维码信息,控制器根据摄像机构720采集的二维码信息指引无人搬运车1000按照设定路径行驶。
可以理解的是,由于光线被车身所阻挡,二维码无法被清楚地识别,因此,可以通过光源组件进行补光,使得摄像机构720可以清楚地采集二维码信息。
光源组件设于底板200上,光源组件包括:光源和调节装置。调节装置连接于光源用于调节光源的照射范围。也就是说,可以预先通过调节装置调节光源位置使得二维码被清楚地识别,保证摄像机构720具有最佳的摄像效果。
由此,根据本发明实施例的无人搬运车1000,通过调节装置调节光源的照射范围,保证摄像机构720具有最佳的摄像效果,从而使得无人搬运车1000按照设定路径行驶。
在本发明的一些实施例中,光源组件与摄像机构720位于底板200的同一轴向方向。 由此,可以使得光源组件光线更好地照射于摄像机构720的可视范围内。
可选实施例中,光源组件为两个,摄像机构720设至于两个光源组件之间。这样,在摄像机构720照射环境较黑暗的情况下,可以同时开启两个光源组件;在摄像机构720照射环境较明亮的情况下,可以仅开启其中一个光源组件。由此,可以保证摄像机构720始终具有最佳的摄像效果,使得无人搬运车1000按照设定路径安全的行驶。
进一步可选实施例中,通孔201的轴向两端分别设有横梁202,光源组件分别设于横梁202上。横梁202沿底板200的宽度方向延伸,光源的横向宽度与通孔201的横向宽度大体一致。由此,可以使得通孔201区域内均被光线照射。
进一步可选实施示例中,两个光源组件之间的轴向距离大于摄像机构720的可视范围。由此,进一步提高摄像机构720的摄像效果。
在本发明另一些实施例中,调节装置可以包括:两个安装支架和旋转座。其中,两个安装支架间隔设置于横梁202上,在两个安装支架之间设有连接轴。旋转座可转动地设于连接轴上并与光源连接。即可以通过转动旋转座改变光源的位置,从而改变光源的照射范围,为摄像机构720提供足够的光线。
可选实施例中,旋转座包括:触动板和连接板。其中,触动板的上端具有锁孔,连接板的一端与触动板连接,连接板的另一端连接于光源。安装支架上设有长圆孔,长圆孔与锁孔相对应。光源位置调节时,可以手动旋转触动板以改变光源的位置,在光源被调节至合适位置时,将螺丝穿过长圆孔伸入锁孔内,锁定旋转座使得光源保持静止不动。
进一步可选实施方式中,长圆孔呈弧形。这样,弧形长度可以满足光源在一定范围内位置改变均可以通过螺丝穿过长圆孔进行锁定,便于光源位置调节。
调节装置可拆卸地与光源10连接,光源组件还包括:连接片。连接片设至光源的背部,旋转座可拆卸地与连接片相连。也就是说,调整装置32可以与光源分离,例如,在光源32已经调整至合适位置时,可以直接将光源固定于底板200上,并将调整装置32从光源上拆卸下来,由此,可以减小整个车体的重量。
对于无人搬运车1000的其他构成以及操作属于本领域普通技术人员所理解并容易获得的,在此不再进行赘述。
在本发明的描述中,需要理解的是,术语“上”、“下”“、底”、“内”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它 们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (30)

  1. 一种无人搬运车,其特征在于,包括:
    底板;
    顶盘,所述顶盘与所述底板上下方向相对设置;
    顶升装置,所述顶升装置位于所述底板和所述顶盘之间;
    驱动装置,所述驱动装置设至所述底板用于驱动所述无人搬运车行驶;
    转盘装置,所述转盘装置设至所述顶升装置,所述转盘装置包括:
    转盘组件,所述转盘组件适于设于所述顶盘;
    装载盘,所述装载盘设于所述转盘组件上用于支承货架;
    驱动器,所述驱动器驱动所述转盘组件相对所述顶盘转动,以带动所述装载盘同步转动。
  2. 根据权利要求1所述的无人搬运车,其特征在于,在无人搬运车转向的情况,所述驱动器驱动所述转盘组件同步异向转动。
  3. 根据权利要求2所述的无人搬运车,其特征在于,在无人搬运车转向的角度为β,驱动器驱动转盘组件同步异向转动的角度为β,其中0°<β≤180°。
  4. 根据权利要求1所述的无人搬运车,其特征在于,在无人搬运车静止的情况,所述驱动器驱动所述转盘组件转动。
  5. 根据权利要求1所述的无人搬运车,其特征在于,所述转盘组件包括:
    大齿盘,所述大齿盘的内周壁设有大齿轮;
    小齿轮,所述小齿轮与所述驱动器的驱动轴连接并设于所述大齿盘的内侧与所述大齿轮相配合;
    支承外圈,所述支承外圈设至所述顶盘并套设于所述大齿盘的外周。
  6. 根据权利要求5所述的无人搬运车,其特征在于,所述大齿盘的外周沿与所述装载盘的外周沿平齐。
  7. 根据权利要求5所述的无人搬运车,其特征在于,所述转盘组件还包括:挡油片,所述挡油片设于所述大齿盘的内侧与所述大齿轮相对设置。
  8. 根据权利要求7所述的无人搬运车,其特征在于,所述挡油片包括:
    弧形部,所述弧形部与所述大齿盘同心设置且与所述大齿轮间隔预定距离;
    平板部,所述平板部的两端分别与所述弧形部连接以在所述大齿盘与所述平板部之间限定出安装空间。
  9. 根据权利要求5所述的无人搬运车,其特征在于,所述顶盘的周向方向形成有油槽,所述油槽与所述大齿盘在上下方向相对设置。
  10. 根据权利要求9所述的无人搬运车,其特征在于,其特征在于,所述油槽自内向外倾斜延伸。
  11. 根据权利要求9所述的无人搬运车,其特征在于,所述顶盘设有油孔和用于封闭所述油孔的油塞,其中,所述油孔与所述油槽相通。
  12. 根据权利要求1-11任一项中所述的无人搬运车,其特征在于,还包括:防滑垫,所述防滑垫设于所述装载盘上。
  13. 根据权利要求12所述的无人搬运车,其特征在于,所述顶盘、所述装载盘、所述转盘组件和所述防滑垫具有相互连通的通孔。
  14. 根据权利要求1所述的无人搬运车,其特征在于,所述顶升装置包括:
    第一连杆组件;
    固定柱,所述固定柱安装于所述底板上,所述第一连杆组件的一端活动连接于所述固定柱;
    顶升杆,所述顶升杆一端活动连接于所述第一连杆组件,所述顶升杆的另一端支撑所述顶盘;
    驱动件,所述驱动件驱动所述第一连杆组件在第一位置和第二位置之间前后移动,带动所述顶升杆上下位移从而改变顶盘的高度。
  15. 根据权利要求14所述的无人搬运车置,其特征在于,所述第一连杆组件包括:
    第一销轴,所述第一销轴的轴向设有多个第一连杆和多个第二连杆,所述第一连杆沿前后方向倾斜延伸,所述第二连杆沿上下方向倾斜延伸,所述第一连杆和所述第二连杆的一端均与所述第一销轴刚性连接;
    第二销轴,所述第二销轴与所述第一销轴在上下方向相对且平行设置,所述第二连杆的另一端可转动地连接于所述第二销轴,所述驱动件的驱动轴止抵于所述第二销轴。
  16. 根据权利要求15所述的无人搬运车,其特征在于,所述第一销轴的轴向设有两个第一连杆和两个第二连杆,其中,两个所述第二连杆位于两个所述第一连杆之间,且所述第一销轴两端分别设有所述顶升杆。
  17. 根据权利要求16所述的无人搬运车,其特征在于,所述驱动装置还包括:第二连杆组件,所述第二连杆组件和所述第一连杆组件对称设置于所述底板上,所述第二连杆组件包括:
    第三销轴,所述第三销轴的轴向设有多个第三连杆和多个第四连杆,所述第三连杆沿前后方向倾斜延伸,所述第四连杆沿上下方向倾斜延伸,所述第三连杆和所述第四连杆一端均与所述第三销轴刚性连接;
    第四销轴,所述第四销轴与所述第三销轴在上下方向相对且平行设置,所述第四连杆的另一端可转动地连接于所述第四销轴。
  18. 根据权利要求17所述的无人搬运车,其特征在于,所述第三销轴的轴向设有两个第三连杆和两个第四连杆,其中,两个所述第三连杆位于两个所述第四连杆之间,且所述第三销轴两端分别设有所述顶升杆。
  19. 根据权利要求18所述的无人搬运车,其特征在于,所述第四销轴和所述第二销轴之间设有相互平行的第五连杆和第六连杆。
  20. 根据权利要求19所述的无人搬运车,其特征在于,所述驱动件设于所述第五连杆和所述第六连杆之间。
  21. 根据权利要求19所述的无人搬运车,其特征在于,所述驱动件与所述第五连杆和第六连杆的其中一个相邻设置。
  22. 根据权利要求1所述的无人搬运车,所述驱动装置:
    驱动单元,所述驱动单元具有行驶轮和驱动所述行驶轮运动的驱动轴;
    底座,所述驱动单元设至所述底座;
    预压单元,所述预压单元止抵于所述驱动单元以向所述驱动轴施加预压力,所述预压单元随行驶轮同步上下位移,从而使得所述驱动轴始终向所述行驶轮施加恒定的下压力。
  23. 根据权利要求22所述的无人搬运车,其特征在于,驱动单元包括:
    电机座,所述电机座设至所述底座,所述电机座形成有通孔;
    驱动电机,所述驱动电机连接于所述电机座,所述驱动电机的驱动轴贯穿所述通孔与 所述行驶轮传动连接。
  24. 根据权利要求23所述的无人搬运车,其特征在于,所述驱动装置还包括:顶板,所述顶板悬设于所述电机座的上方,所述预压单元设于所述顶板与所述电机座限定的空间内。
  25. 根据权利要求24所述的无人搬运车,其特征在于,所述顶板通过多个支撑柱定位于所述电机座,所述电机座设有用于安装支撑柱的安装孔。
  26. 根据权利要求23所述的无人搬运车,其特征在于,所述预压单元包括:
    支架,所述支架止抵于所述电机座的上表面;
    弹簧,所述弹簧呈压缩状态套设于所述支架的外周壁以向所述电机座的上表面施加预压力。
  27. 根据权利要求1所述的无人搬运车,其特征在于,所述无人搬运车还包括:防撞装置,所述防撞装置包括:
    腔体组件,所述腔体组件设于所述无人搬运车的外围,所述腔体组件限定出气室,所述气室受到外力碰撞后压缩且在外力消失后恢复至初始状态;
    气压检测装置,所述气压检测装置与所述腔体组件连接用于检测所述气室的气压;
    控制器,所述控制器与气压检测装置电连接用于接收所述气压检测装置发出的信号;
    其中,所述控制器接收到所述气室内的气压大于或等于预设气压值时,所述控制器发出停车指令使得所述无人搬运车停止行驶。
  28. 根据权利要求1所述的无人搬运车,其特征在于,还包括:摄像机构,所述摄像机构包括:
    支架,所述支架具有第一支腿、第二支腿和连接板,所述第一支腿和所述第二支腿相对且间隔设置并通过所述连接板相连,其中,所述第一支腿和所述第一支腿的一端安装于底板上,所述第一支腿和所述第二支腿的另一端向上倾斜延伸;
    摄像组,所述摄像组安装于所述支架上。
  29. 根据权利要求28所述的无人搬运车,其特征在于,所述无人搬运车还包括:光源组件,所述光源组件设于所述底板上用于向所述摄像机构提供光源,
    所述光源组件包括:
    光源;
    调节装置,所述调节装置连接于所述光源用于调节所述光源的照射范围。
  30. 根据权利要求29所述的无人搬运车,其特征在于,所述无人搬运车还包括:壳体组件,所述壳体组件包括上壳体和下壳体,所述下壳体下端连接于所述底板的周缘,所述下壳体的上端向上延伸,上壳体为两端敞开的腔体结构,上壳体的下端与下壳体的上端连接,通过上壳体和下壳体共同构设出适于容纳所述顶升装置、所述驱动装置、所述转盘装置、所述摄像机构和所述光源组件的容纳腔。
PCT/CN2018/090824 2017-06-19 2018-06-12 无人搬运车 WO2018233515A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710465685.0A CN107672692B (zh) 2017-06-19 2017-06-19 无人搬运车
CN201710465685.0 2017-06-19
CN201720720900.2 2017-06-19
CN201720720900.2U CN207157329U (zh) 2017-06-19 2017-06-19 无人搬运车

Publications (1)

Publication Number Publication Date
WO2018233515A1 true WO2018233515A1 (zh) 2018-12-27

Family

ID=64735484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090824 WO2018233515A1 (zh) 2017-06-19 2018-06-12 无人搬运车

Country Status (1)

Country Link
WO (1) WO2018233515A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112238908A (zh) * 2019-07-19 2021-01-19 上海星沿工业智能科技有限公司 小型物料搬动自导航车
CN112660268A (zh) * 2019-10-16 2021-04-16 丰田自动车株式会社 物品输送机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872707A (ja) * 1994-06-29 1996-03-19 Bridgestone Corp 無人搬送車
CN203211419U (zh) * 2013-05-02 2013-09-25 天津雅飞科技有限公司 无人搬运车可切换定向导轮
CN104015647A (zh) * 2014-05-29 2014-09-03 安徽新荣钢构有限公司 一种建筑钢构自动装卡搬运车
CN106043480A (zh) * 2016-05-25 2016-10-26 刘明月 一种新能源汽车零部件仓库作业机器人
CN107672692A (zh) * 2017-06-19 2018-02-09 广东美的智能机器人有限公司 无人搬运车
CN207157329U (zh) * 2017-06-19 2018-03-30 广东美的智能机器人有限公司 无人搬运车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872707A (ja) * 1994-06-29 1996-03-19 Bridgestone Corp 無人搬送車
CN203211419U (zh) * 2013-05-02 2013-09-25 天津雅飞科技有限公司 无人搬运车可切换定向导轮
CN104015647A (zh) * 2014-05-29 2014-09-03 安徽新荣钢构有限公司 一种建筑钢构自动装卡搬运车
CN106043480A (zh) * 2016-05-25 2016-10-26 刘明月 一种新能源汽车零部件仓库作业机器人
CN107672692A (zh) * 2017-06-19 2018-02-09 广东美的智能机器人有限公司 无人搬运车
CN207157329U (zh) * 2017-06-19 2018-03-30 广东美的智能机器人有限公司 无人搬运车

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112238908A (zh) * 2019-07-19 2021-01-19 上海星沿工业智能科技有限公司 小型物料搬动自导航车
CN112660268A (zh) * 2019-10-16 2021-04-16 丰田自动车株式会社 物品输送机器人
CN112660268B (zh) * 2019-10-16 2023-08-04 丰田自动车株式会社 物品输送机器人

Similar Documents

Publication Publication Date Title
CN107672692B (zh) 无人搬运车
EP3366868A1 (en) Fastening plate-type parking device
WO2018233515A1 (zh) 无人搬运车
US8714533B2 (en) Clay model support device
CN106882746A (zh) 重卡变速箱装配用自动精确翻转机
CN1605681A (zh) 具有操作控制装置的路面铣削机
CN106285097A (zh) 立体自动化车库
US9315201B2 (en) Hopper gate opener
CN207157329U (zh) 无人搬运车
CN205524643U (zh) 一种多功能两轮快递车箱
CN110815158B (zh) 一种汽车底盘系统检测用的移动装置
CN107221271A (zh) 一种用于检测显示屏的治具
CN207028744U (zh) 用于行走装置的悬挂机构和具有其的行走机器人
CN103643815A (zh) 一种侧悬臂式停车设备
CN205445033U (zh) 一种立体停车车库
CN104085831A (zh) 带模具盒的多尺度试样抓升翻机构
CN107538346A (zh) 一种多功能可调节式抛光设备
CN107939105A (zh) 纵移车库
CN209793781U (zh) 机械手升降回转连接结构
CN105818898A (zh) 一种多功能两轮快递车箱
JP2006144529A (ja) 駐車場の出庫阻止装置
JP2009232715A (ja) 苗植機
CN208122066U (zh) 一种高度可调式立体仓库
CN210189544U (zh) 一种管材旋转牵引用支撑装置
CN220098437U (zh) 一种搬运机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30/04/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18821586

Country of ref document: EP

Kind code of ref document: A1