WO2018233468A1 - 一种基于平动并联机构的六自由度机械臂 - Google Patents

一种基于平动并联机构的六自由度机械臂 Download PDF

Info

Publication number
WO2018233468A1
WO2018233468A1 PCT/CN2018/089138 CN2018089138W WO2018233468A1 WO 2018233468 A1 WO2018233468 A1 WO 2018233468A1 CN 2018089138 W CN2018089138 W CN 2018089138W WO 2018233468 A1 WO2018233468 A1 WO 2018233468A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
moving platform
distal
push rod
proximal
Prior art date
Application number
PCT/CN2018/089138
Other languages
English (en)
French (fr)
Inventor
赵龙海
陈强
何永和
姜纪波
张延亮
朱虹
Original Assignee
东莞松山湖国际机器人研究院有限公司
东莞爱创机器人科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞松山湖国际机器人研究院有限公司, 东莞爱创机器人科技有限公司 filed Critical 东莞松山湖国际机器人研究院有限公司
Publication of WO2018233468A1 publication Critical patent/WO2018233468A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • B25J9/1623Parallel manipulator, Stewart platform, links are attached to a common base and to a common platform, plate which is moved parallel to the base
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • B25J9/0033Programme-controlled manipulators having parallel kinematics with kinematics chains having a prismatic joint at the base
    • B25J9/0036Programme-controlled manipulators having parallel kinematics with kinematics chains having a prismatic joint at the base with kinematics chains of the type prismatic-rotary-rotary

Definitions

  • the invention relates to a six degree of freedom robotic arm based on a translational parallel mechanism.
  • the serial robot has been widely used in industrial production due to its large working space, simple structure and easy control.
  • robots are required to perform operations such as grabbing and sorting objects at high speed, smoothness, and accuracy.
  • the strength and safety of the end effector operation are sometimes higher.
  • the series robot has large inertia and poor dynamic performance. It is not suitable for high-speed and high-precision fine operation, and the safety of the system is low at high speed. Once the robot arm is released, the consequences are unimaginable.
  • the parallel mechanism is a closed-loop mechanism in which the movable platform and the static platform are connected by at least two independent kinematic chains, having two or more degrees of freedom, and being driven in parallel.
  • the parallel robot has the following advantages: small cumulative error and high precision; the driving device can be placed on the fixed platform or close to the fixed platform, the moving part is light in weight, high in speed, good in dynamic response; compact in structure. High rigidity, large carrying capacity and good safety. Therefore, parallel robots are widely used in applications where equipment stiffness, motion speed, positioning accuracy, load capacity or system safety are high.
  • Delta robot is a kind of typical parallel robot. Because of its high speed and high kinetic dexterity, it is widely used in the sorting work of food, medicine and other industries, but it can only complete the operation from one plane to another parallel plane. The ability to operate between curved surfaces or non-parallel planes, and the end effector has only one degree of freedom of rotation, the above factors limit its further promotion and application, so it is necessary to develop a new type of parallel robot, inherited Delta robot Based on the advantages of high speed, light weight, and dexterity, it solves the problem of moving and operating between non-parallel planes or curved surfaces.
  • the technical problem to be solved by the present invention is to provide a six-degree-of-freedom manipulator based on a translational parallel mechanism, which inherits the advantages of high speed, light weight, and dexterity of the Delta robot while solving the problem that the Delta robot cannot move and operate between non-parallel planes or curved surfaces. problem.
  • a six-degree-of-freedom mechanical arm based on a translational parallel mechanism comprising a base, further comprising a mechanical arm body and two sets of three-degree-of-freedom translational parallel mechanisms disposed on the base, the mechanical arm body including the proximal end
  • the movable platform, the distal moving platform, the push rod and the end effector, the proximal moving platform is connected with one of the three-degree-of-freedom parallel moving parallel mechanism, and the distal moving platform is connected with another three-degree-of-freedom parallel moving parallel mechanism, one end of the push rod
  • the proximal end of the motion pair is rotatably connected to the proximal moving platform, and the other end is connected to the end effector through the distal moving platform.
  • the push rod and the distal moving platform are connected by a distal motion pair, and the push rod moves through the distal end.
  • the pair is capable of making a rotational motion along the distal moving platform normal with respect to the distal moving platform, and a rotational motion on a horizontal axis parallel to the distal moving platform, and a moving motion with the center axis of the push rod;
  • the distal movement pair is formed by a first rotation pair, a second rotation pair and a movement pair connected in series, and the first rotation pair is formed on the distal moving platform, and the axis of the first rotation pair and the normal of the distal moving platform
  • the second rotating pair is rotatably connected with the first rotating pair, the axis of the second rotating pair is perpendicular to the normal of the distal moving platform, and the push rod and the second rotating pair are mounted in series to form a moving pair, the axis of the moving pair
  • the center axis of the push rod is coincident, and the end effector is fixedly connected with the second rotating pair;
  • the proximal motion pair is a ball pair, or the proximal motion pair is composed of two series-connected normal rotation pairs and a horizontal axis rotation pair, and a normal rotation pair is formed on the proximal movement platform, and the normal rotation pair is formed.
  • the axis coincides with the normal line of the proximal moving platform, and the horizontal axis rotating pair is rotationally connected with the normal rotating pair, and the axis of the horizontal axis rotating pair is perpendicular to the normal of the proximal moving platform;
  • the proximal moving platform is located between the distal moving platform and the base.
  • the end effector includes a fixed connecting seat, a connecting rod and a clamp.
  • the fixed connecting seat is fixedly connected with the second rotating pair of the distal moving pair, and one end of the connecting rod is rotatably connected with the push rod, and the other end is rotatably connected with the clamp.
  • the clamp is also rotatably coupled to the fixed connector.
  • the end effector is a flange that is fixedly coupled to a second rotational pair of the distal moving pair and that is coupled to the push rod to form a helical pair.
  • the invention controls the three translations of the main body of the robot by two three-degree-of-freedom translational parallel mechanism, two rotations and one tensioning movement, so that the end effector can realize high-speed and high-precision dexterous movement, and the structural rigidity is high and dynamic.
  • the response is good, the whole mechanism does not have the driving motor placed on the moving platform, and can complete the operations of grasping and clamping, and has broad application prospects in industries such as industry, agriculture, daily life and medical care.
  • Figure 1 is a perspective view of the present invention
  • Figure 2 is a schematic top plan view of the present invention
  • Figure 3 is a schematic enlarged view of the structure of Figure 2;
  • Figure 4 is a partial schematic view showing the distal movement pair of the present invention.
  • Figure 5 is a partial schematic view showing the end effector of the present invention.
  • Figure 6 is an initial schematic view showing the horizontal movement of the present invention.
  • Figure 7 is a schematic view showing a state in which the horizontal movement is completed in the present invention.
  • Figure 8 is an initial schematic view of the vertical movement of the present invention.
  • Figure 9 is a schematic view showing a state in which vertical movement is performed in the present invention.
  • Figure 10 is a schematic view showing the state in which the end effector follows the second rotating pair in the present invention.
  • Figure 11 is a schematic view showing the state in which the end effector is rotated about the first rotating pair in the present invention.
  • Figure 12 is a schematic view showing the opening movement of the end effector by the differential movement of the near-distal moving platform according to the present invention
  • Figure 13 is a schematic view of the end effector closing motion of the present invention by differential movement of the near-distal moving platform;
  • Figure 14 is a perspective view showing the three-dimensional structure of the end effector of the present invention.
  • Figure 15 is an enlarged schematic view of a portion B in Figure 14;
  • Figure 16 is a cross-sectional view of Figure 15.
  • the present invention discloses a six-degree-of-freedom robot arm based on a translational parallel mechanism, including a base 1, and also includes a mechanical arm body and two sets of three disposed on the base 1.
  • the degree of freedom translation parallel mechanism 2 the main body of the arm comprises a proximal moving platform 4, a distal moving platform 3, a push rod 7 and an end effector 5, and the proximal moving platform 4 is connected with one of the three degree of freedom translation parallel mechanisms.
  • the distal moving platform 3 is connected with another three-degree-of-freedom parallel moving mechanism.
  • One end of the push rod 7 is rotatably connected to the proximal moving platform 4 through the proximal moving pair 6, and the other end passes through the distal moving platform 3 and the end effector 5.
  • the push rod 7 and the distal moving platform 3 are connected by a distal moving pair 8 through which the push rod 7 can make a rotational movement along the distal moving platform normal with respect to the distal moving platform, And a rotational movement on a horizontal axis parallel to the distal moving platform and a moving movement in the direction of the central axis of the push rod.
  • Two three-degree-of-freedom translational parallel mechanisms respectively drive the near-end moving platform and the distal moving platform to realize three degrees of freedom motion, and realize three translational motions in the X-axis, Y-axis and Z-axis directions.
  • the three-degree-of-freedom translational parallel mechanism has no specific structure as long as it can satisfy the movement in the X-axis, the Y-axis, and the Z-axis direction.
  • the push rod utilizes a proximal motion pair to effect a rotational motion of the push rod axis and the two directions in a horizontal direction parallel to the proximal moving platform surface.
  • the proximal moving platform is disposed between the base and the distal moving platform, that is, the proximal moving platform is closer to the base than the distal moving platform.
  • the pusher is used to connect the proximal moving platform, the distal moving platform and the end effector to achieve motion transfer to the end effector.
  • the distal moving pair 8 is formed by a series connection of a first rotating pair 81, a second rotating pair 82 and a moving pair 83, and the first rotating pair 81 is formed on the distal moving platform.
  • the axis of the first rotating pair 81 coincides with the normal of the distal moving platform 3, and the second rotating pair 82 is rotationally coupled with the first rotating 81.
  • the axis of the second rotating pair 82 is perpendicular to the normal of the distal moving platform 3.
  • the push rod 7 is mounted in series with the second rotating pair 82 to form a moving pair 83.
  • the axis of the moving pair 83 coincides with the center axis of the push rod, and the end effector is fixedly coupled to the second rotating pair.
  • the push rod can accurately make a rotation about the normal direction of the distal moving platform with respect to the distal moving platform, and the horizontal axis direction of the distal moving platform
  • the rotation, as well as the movement of the push rod in its central axis direction, creates a three degree of freedom motion that further drives the end effector to make a three degree of freedom motion.
  • the three-axis translation of the distal moving platform can be transmitted to the end effector, so that the end effector moves in three directions.
  • the proximal motion pair 6 is a ball pair.
  • the proximal motion pair is composed of two series-connected normal rotation pairs and a horizontal axis rotation pair, and the normal rotation pair is formed on the proximal movement platform, and the axis of the normal rotation pair coincides with the normal of the proximal moving platform
  • the horizontal axis rotating pair is rotationally coupled to the normal rotating pair, and the axis of the horizontal axis rotating pair is perpendicular to the normal of the proximal moving platform. It is ensured that the push rod can move in two directions (the push rod axis and the proximal moving platform horizontal direction) with respect to the proximal moving platform.
  • the end effector 5 includes a fixed connecting seat 51, a connecting rod 52 and a clamp 53, and the fixed connecting base 51 is fixedly connected with the second rotating pair 82 of the distal moving pair 8, the connecting rod 52 One end is rotatably connected to the push rod 7 and the other end is rotatably connected to the clamp 53 , and the clamp 53 is also rotatably connected to the fixed connection base 51 .
  • the forward and backward movement of the push rod along its own central axis drives the opening and closing action of the clamp. Rotating in both directions of the push rod can also drive the two directions of rotation of the clamp.
  • the end effector can also be in other structural forms, and the differential motion of the proximal moving platform and the distal moving platform in the moving auxiliary direction is converted into the rotation of the end effector about the moving secondary axis, thereby realizing the space of three translations and three rotations. Full freedom of movement to adapt to the needs of different occasions.
  • the end effector is a flange 9, which is coupled to a second pivoting pair 82 of the distal moving pair 8 to form a rotating pair, at which point the flange can be rotated about the push rod axis The direction changes.
  • the flange 9 is connected with the push rod 7 to form a spiral pair, and the differential movement of the proximal moving platform 4 and the distal moving platform 3 in the direction of the central axis of the push rod is transmitted to the flange through the push rod 7 and the screw pair. It rotates around the same axis to realize the full full-degree-of-freedom movement of the three translations and three rotations.
  • two three-degree-of-freedom translational parallel mechanisms drive the translational motion of the proximal and distal moving platforms in the X-axis, Y-axis, and Z-axis, and then use the push rod.
  • the constraint relationship with the distal moving platform transmits the three-axis translation of the distal moving platform to the end effector, causing the end effector to move in three degrees of freedom.
  • the proximal motion pair connects the proximal moving platform to the push rod and cooperates with the distal motion pair to push the push rod, thereby moving the two moving platforms in the upper and lower directions.
  • the differential motion of the two orthogonal directions in the plane perpendicular to the line of the secondary (proximal motion pair and the second rotational pair) is converted into two rotations of the end effector, which are two rotational degrees of freedom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Manipulator (AREA)

Abstract

一种基于平动并联机构的六自由度机械臂,包括机座(1),还包括机械臂主体和两组设置在机座上的三自由度平动并联机构(2),机械臂主体包括近端动平台(4)、远端动平台(3)、推杆(7)和末端执行器(5),近端动平台与其中一个三自由度平动并联机构连接,远端动平台与另外一个三自由度平动并联机构连接,推杆一端通过近端运动副与近端动平台转动连接、另一端穿过远端动平台与末端执行器(5)连接,推杆与远端动平台之间通过远端运动副(8)连接,推杆通过远端运动副能够相对于远端动平台作出沿远端动平台法线的转动运动、和沿与远端动平台平行的水平轴上的转动运动、以及与推杆中心轴线方向的移动运动。该六自由度机械臂灵活、轻巧,动态响应好,可完成抓取、夹持等操作,适用范围广。

Description

一种基于平动并联机构的六自由度机械臂 技术领域
本发明涉及一种基于平动并联机构的六自由度机械臂。
背景技术
串联机器人因其工作空间大、结构简单、易于控制等优点在工业生产中得到了广泛应用。但在某些行业,需要机械手能高速、平稳、精确地执行对物体进行抓取、分拣等操作;考虑到执行对象的不同,有时也会对末端执行器操作的力度和安全性有较高的要求。串联机器人由于驱动电机和传动系统都安装在运动部件上,系统惯量大,动态性能差,不适合完成高速高精度的细微操作,而且高速下系统的安全性较低,一旦机械臂脱出后果不堪设想。
并联机构为动平台和静平台通过至少两个独立的运动链相连接,具有两个或两个以上的自由度,且以并联方式驱动的一种闭环机构。和串联机器人相比,并联机器人具有以下优点:累积误差小、精度较高;驱动装置可置于定平台上或接近定平台的位置,运动部分重量轻,速度高,动态响应好;结构紧凑,刚度高,承载能力大,安全性好。因此,并联机器人在对设备刚度、运动速度、定位精度、负载能力或系统安全性要求较高的场合应用较为广泛。
Delta机器人是一类典型的并联机器人,因其高速、高运动灵巧性在食品、医药等行业的分拣工作中应用较为普遍,但它只能完成从一个平面到另一个平行平面的操作,缺乏在曲面或非平行的平面间操作的能力,而且其末端执行器只有一个回转自由度,以上因素都限制了它的进一步推广和应用,因此有必要研发一种新型的并联机器人,在继承Delta机器人高速、轻型、灵巧等优点的基础上,解决在非平行平面间或曲面上移动和操作的问题。
技术问题
本发明要解决的技术问题是提供一种基于平动并联机构的六自由度机械臂,继承Delta机器人高速、轻型、灵巧等优点的同时解决Delta机器人无法在非平行平面间或曲面上移动和操作的问题。
技术解决方案
一种基于平动并联机构的六自由度机械臂,包括机座,其特征在于,还包括机械臂主体和两组设置在机座上的三自由度平动并联机构,机械臂主体包括近端动平台、远端动平台、推杆和末端执行器,近端动平台与其中一个三自由度平动并联机构连接,远端动平台与另外一个三自由度平动并联机构连接,推杆一端通过近端运动副与近端动平台转动连接、另一端穿过远端动平台与末端执行器连接,推杆与远端动平台之间通过远端运动副连接,推杆通过该远端运动副能够相对于远端动平台作出沿远端动平台法线的转动运动、和沿与远端动平台平行的水平轴上的转动运动、以及与推杆中心轴线方向的移动运动;
所述远端运动副由第一转动副、第二转动副和移动副串联构成,第一转动副在远端动平台上设置形成,该第一转动副的轴线与远端动平台的法线重合,第二转动副与第一转动副转动连接,该第二转动副的轴线与远端动平台的法线垂直,推杆与第二转动副串联安装形成移动副,该移动副的轴线与推杆中心轴线重合,末端执行器与第二转动副固定连接;
所述近端运动副为球副,或者近端运动副由两个串联的法线转动副和水平轴转动副构成,法线转动副在近端动平台上设置形成,该法线转动副的轴线与近端动平台的法线重合,水平轴转动副与法线转动副转动连接,该水平轴转动副的轴线与近端动平台的法线垂直;
所述近端动平台位于远端动平台与机座之间。
所述末端执行器包括固定连接座、连杆和夹钳,固定连接座与远端运动副中的第二转动副固定连接,连杆一端与推杆转动连接、另一端与夹钳转动连接,夹钳还与固定连接座转动连接。
所述末端执行器为法兰盘,该法兰盘与远端运动副中的第二转动副固定连接,并且该法兰盘与推杆连接形成螺旋副。
有益效果
本发明通过两个三自由度平动并联机构控制机械臂主体的三个平动,两个转动和一个张合运动,使得末端执行器能够实现高速高精度的灵巧运动,其结构刚度高,动态响应好,整个机构没有驱动电机安置于动平台上,可完成抓取、夹持等操作,在工业、农业、日常生活和医疗保健等行业有广泛的应用前景。
附图说明
附图1为本发明的立体示意图;
附图2为本发明的俯视结构示意图;
附图3为附图2中的A处放大结构示意图;
附图4为本发明中远端运动副的局部结构示意图;
附图5为本发明中末端执行器的局部结构示意图;
附图6为本发明完成水平方向运动的初始示意图;
附图7为本发明完成水平方向运动的状态示意图;
附图8为本发明完成竖直方向运动的初始示意图;
附图9为本发明完成竖直方向运动的状态示意图;
附图10为本发明中末端执行器跟随第二转动副转动状态示意图;
附图11为本发明中末端执行器绕第一转动副转动状态示意图。
附图12为本发明通过近远端动平台差动运动完成末端执行器张开运动的示意图;
附图13为本发明通过近远端动平台差动运动完成末端执行器闭合运动的示意图;
附图14为本实用新型末端执行器为法兰盘的立体结构示意图;
附图15为附图14中B处的放大示意图;
附图16为附图15的剖面示意图。
本发明的最佳实施方式
为能进一步了解本发明的特征、技术手段以及所达到的具体目的、功能,下面结合附图与具体实施方式对本发明作进一步详细描述。
如附图1、2和3所示,本发明揭示了一种基于平动并联机构的六自由度机械臂,包括机座1,还包括机械臂主体和两组设置在机座1上的三自由度平动并联机构2,机械臂主体包括近端动平台4、远端动平台3、推杆7和末端执行器5,近端动平台4与其中一个三自由度平动并联机构连接,远端动平台3与另外一个三自由度平动并联机构连接,推杆7一端通过近端运动副6与近端动平台4转动连接、另一端穿过远端动平台3与末端执行器5连接,推杆7与远端动平台3之间通过远端运动副8连接,推杆7通过该远端运动副8能够相对于远端动平台作出沿远端动平台法线的转动运动、和沿与远端动平台平行的水平轴上的转动运动、以及与推杆中心轴线方向的移动运动。两个三自由度平动并联机构分别带动近端动平台和远端动平台实现三个自由度的运动,实现在X轴、Y轴和Z轴方向的三个平动运动。该三自由度平动并联机构并无特定结构,只要能够满足在X轴、Y轴和Z轴方向的运动即可。推杆利用近端运动副,可实现推杆轴线、和沿与近端动平台表面平行的水平方向的两个方向的转动运动。近端动平台设置在机座与远端动平台之间,即近端动平台相对于远端动平台而言更加靠近于机座。通过推杆将近端动平台、远端动平台和末端执行器连接,实现运动传递到末端执行器。
如附图4和5所示,所述远端运动副8由第一转动副81、第二转动副82和移动副83串联构成,第一转动副81在远端动平台上设置形成,该第一转动副81的轴线与远端动平台3的法线重合,第二转动副82与第一转动81副转动连接,该第二转动副82的轴线与远端动平台3的法线垂直,推杆7与第二转动副82串联安装形成移动副83,该移动副83的轴线与推杆中心轴线重合,末端执行器与第二转动副固定连接。通过以上的第一转动副、第二转动副和移动副,使得推杆相对于远端动平台,能够精确的作出绕远端动平台法线方向的转动,和远端动平台水平轴方向的转动,以及推杆自身中心轴线方向的移动,从而形成三个自由度的运动,进一步带动末端执行器作出三自由度运动。通过该推杆与远端动平台的约束关系,可将远端动平台的三轴平动传递到末端执行器,使该末端执行器发生相应三个方向的移动。
所述近端运动副6为球副。或者近端运动副由两个串联的法线转动副和水平轴转动副构成,法线转动副在近端动平台上设置形成,该法线转动副的轴线与近端动平台的法线重合,水平轴转动副与法线转动副转动连接,该水平轴转动副的轴线与近端动平台的法线垂直。保证推杆相对于近端动平台能够做出两个方向转动(推杆轴线、近端动平台水平方向)运动即可。
如附图3所示,所述末端执行器5包括固定连接座51、连杆52和夹钳53,固定连接座51与远端运动副8中的第二转动副82固定连接,连杆52一端与推杆7转动连接、另一端与夹钳53转动连接,夹钳53还与固定连接座51转动连接。通过固定连接座与第二转动副的固定连接,并且推杆从中穿过,有效提高了末端执行器的结构强度和稳定性,从而保证输出运动的平稳可靠。利用推杆沿其自身中心轴线的前后移动,从而带动夹钳的张开和闭合动作。再利用推杆的两个方向转动,还可以带动夹钳的两个方向的转动。
另外,末端执行器还可以为其他结构形式,将近端动平台和远端动平台沿移动副方向的差动运动转换成末端执行器绕移动副轴线的转动,从而实现三平动三转动的空间全自由度运动,适应不同场合的需求。如附图14-16所示,末端执行器为法兰盘9,该法兰盘与远端运动副8中的第二转动副82连接形成转动副,此时法兰盘可绕推杆轴线方向发生转动。该法兰盘9与推杆7连接形成螺旋副,则近端动平台4和远端动平台3沿推杆中心轴线方向的差动运动通过推杆7及螺旋副配合传递到法兰盘,使其绕同一轴线发生转动,实现三平动三转动的空间全自由度运动。
如附图6-9所示,由两个三自由度平动并联机构带动近端动平台和远端动平台在X轴、Y轴和Z轴三个方向的平动运动,进而利用推杆与远端动平台的约束关系,将远端动平台的三轴平动传递到末端执行器,使该末端执行器对应的三个自由度上的运动。
如附图10和11所示,近端运动副使近端动平台与推杆相连,并与远端运动副相配合,推动推杆,从而将两个动平台的,在与上下两个运动副(近端运动副和第二转动副)连线相垂直的平面里两个正交方向的差动运动,转化成末端执行器的两个转动,为两个转动自由度。
如附图12和13所示,当推杆受到三自由度平动并联机构的带动朝向远端动平台方向移动时,连杆与推杆发生相对转动,连杆收缩靠近推杆,带动夹钳张开。当推杆向着机座方向移动时,连杆与推杆发生相对转动,连杆张开远离推杆,夹钳闭合。从而实现夹钳的张合,为一个转动自由度。
需要说明的是,以上仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但是凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

  1. 一种基于平动并联机构的六自由度机械臂,包括机座,其特征在于,还包括机械臂主体和两组设置在机座上的三自由度平动并联机构,机械臂主体包括近端动平台、远端动平台、推杆和末端执行器,近端动平台与其中一个三自由度平动并联机构连接,远端动平台与另外一个三自由度平动并联机构连接,推杆一端通过近端运动副与近端动平台转动连接、另一端穿过远端动平台与末端执行器连接,推杆与远端动平台之间通过远端运动副连接,推杆通过该远端运动副能够相对于远端动平台作出沿远端动平台法线的转动运动、和沿与远端动平台平行的水平轴上的转动运动、以及与推杆中心轴线方向的移动运动;
    所述远端运动副由第一转动副、第二转动副和移动副串联构成,第一转动副在远端动平台上设置形成,该第一转动副的轴线与远端动平台的法线重合,第二转动副与第一转动副转动连接,该第二转动副的轴线与远端动平台的法线垂直,推杆与第二转动副串联安装形成移动副,该移动副的轴线与推杆中心轴线重合,末端执行器与第二转动副固定连接;
    所述近端运动副为球副,或者近端运动副由两个串联的法线转动副和水平轴转动副构成,法线转动副在近端动平台上设置形成,该法线转动副的轴线与近端动平台的法线重合,水平轴转动副与法线转动副转动连接,该水平轴转动副的轴线与近端动平台的法线垂直;
    所述近端动平台位于远端动平台与机座之间。
  2. 根据权利要求1所述的基于平动并联机构的六自由度机械臂,其特征在于,所述末端执行器包括固定连接座、连杆和夹钳,固定连接座与远端运动副中的第二转动副固定连接,连杆一端与推杆转动连接、另一端与夹钳转动连接,夹钳还与固定连接座转动连接。
  3. 根据权利要求1所述的基于平动并联机构的六自由度机械臂,其特征在于,所述末端执行器为法兰盘,该法兰盘与远端运动副中的第二转动副固定连接,并且该法兰盘与推杆连接形成螺旋副。
PCT/CN2018/089138 2017-06-21 2018-05-31 一种基于平动并联机构的六自由度机械臂 WO2018233468A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710475415.8A CN107081760B (zh) 2017-06-21 2017-06-21 一种基于平动并联机构的六自由度机械臂
CN201710475415.8 2017-06-21

Publications (1)

Publication Number Publication Date
WO2018233468A1 true WO2018233468A1 (zh) 2018-12-27

Family

ID=59606160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089138 WO2018233468A1 (zh) 2017-06-21 2018-05-31 一种基于平动并联机构的六自由度机械臂

Country Status (2)

Country Link
CN (1) CN107081760B (zh)
WO (1) WO2018233468A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110394799A (zh) * 2019-07-10 2019-11-01 柳州铁道职业技术学院 一种可重构多构态可展数控机械手机构
CN110450142A (zh) * 2019-09-09 2019-11-15 哈工大机器人(合肥)国际创新研究院 一种基于双陀螺仪部件的六自由度并联机器人
CN110683073A (zh) * 2019-11-08 2020-01-14 上海上飞飞机装备制造有限公司 用于飞机部件对接的正交并联平台装置
CN111243374A (zh) * 2020-01-17 2020-06-05 杜建男 一种大平动行程和高响应速度的六自由度运动模拟器
CN112008697A (zh) * 2020-09-18 2020-12-01 河南科技大学 一种两转一移三自由度解耦并联机构
CN112659100A (zh) * 2020-11-17 2021-04-16 燕山大学 一种局部三自由度刚柔软耦合仿生机器人腰关节
CN113246099A (zh) * 2021-05-14 2021-08-13 江南大学 一种具有连续转轴的三自由度并联机构
CN114378793A (zh) * 2022-01-21 2022-04-22 天津工业大学 一种具有解析正解的被动杆铰接空间三自由度并联机器人

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107081760B (zh) * 2017-06-21 2023-05-09 东莞爱创机器人科技有限公司 一种基于平动并联机构的六自由度机械臂
CN110364221B (zh) 2018-11-27 2022-04-01 广东工业大学 一种基于柔性铰链的并联两自由度纳米位移定位平台
CA3149563A1 (en) 2019-08-19 2021-02-25 Cognibotics Ab A parallel-kinematic machine with versatile tool orientation
CN111300445B (zh) * 2020-03-04 2021-04-27 张梅 一种移动机器人搭载用六自由度关节型机械臂
CN111687821B (zh) * 2020-06-24 2021-06-22 哈尔滨工业大学 转动式并联型飞行机械臂系统及期望转角解算方法
CN113246098A (zh) * 2021-05-12 2021-08-13 复旦大学 一种四自由度并联机器人
CN114700927A (zh) * 2022-04-19 2022-07-05 浙江理工大学 并联机械臂与柔性机械手的组合式除草机器人及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2623648A1 (fr) * 1987-11-20 1989-05-26 Ecole Nale Equitation Perfectionnement aux plates-formes a six degres de liberte
US20100122602A1 (en) * 2008-11-17 2010-05-20 Marcroft Sacha L Parallel kinematic positioning system
WO2015016692A1 (ru) * 2013-06-12 2015-02-05 Республиканское Государственное Предприятие На Праве Хозяйственного Ведения "Казахский Национальный Технический Университет Имени К.И. Сатпаева" Министерства Образования И Науки Республики Казахстан Манипулятор платформенного робота
CN106239482A (zh) * 2016-08-31 2016-12-21 上海交通大学 六自由度Delta分拣机器人
CN107081760A (zh) * 2017-06-21 2017-08-22 东莞爱创机器人科技有限公司 一种基于平动并联机构的六自由度机械臂
CN206967494U (zh) * 2017-06-21 2018-02-06 东莞爱创机器人科技有限公司 一种基于平动并联机构的六自由度机械臂

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896473B2 (en) * 2001-09-17 2005-05-24 Robert Bosch Gmbh Device for transmitting torque
JP4659098B2 (ja) * 2009-02-13 2011-03-30 ファナック株式会社 3自由度を有する姿勢変更機構を備えたパラレルリンクロボット
CN103240729B (zh) * 2013-04-23 2015-04-29 天津大学 伸缩式空间三平动并联机械手
CN103846911B (zh) * 2014-02-28 2016-06-08 天津大学 一种高速六自由度并联机械手

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2623648A1 (fr) * 1987-11-20 1989-05-26 Ecole Nale Equitation Perfectionnement aux plates-formes a six degres de liberte
US20100122602A1 (en) * 2008-11-17 2010-05-20 Marcroft Sacha L Parallel kinematic positioning system
WO2015016692A1 (ru) * 2013-06-12 2015-02-05 Республиканское Государственное Предприятие На Праве Хозяйственного Ведения "Казахский Национальный Технический Университет Имени К.И. Сатпаева" Министерства Образования И Науки Республики Казахстан Манипулятор платформенного робота
CN106239482A (zh) * 2016-08-31 2016-12-21 上海交通大学 六自由度Delta分拣机器人
CN107081760A (zh) * 2017-06-21 2017-08-22 东莞爱创机器人科技有限公司 一种基于平动并联机构的六自由度机械臂
CN206967494U (zh) * 2017-06-21 2018-02-06 东莞爱创机器人科技有限公司 一种基于平动并联机构的六自由度机械臂

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110394799B (zh) * 2019-07-10 2024-03-08 柳州铁道职业技术学院 一种可重构多构态可展数控机械手机构
CN110394799A (zh) * 2019-07-10 2019-11-01 柳州铁道职业技术学院 一种可重构多构态可展数控机械手机构
CN110450142A (zh) * 2019-09-09 2019-11-15 哈工大机器人(合肥)国际创新研究院 一种基于双陀螺仪部件的六自由度并联机器人
CN110683073A (zh) * 2019-11-08 2020-01-14 上海上飞飞机装备制造有限公司 用于飞机部件对接的正交并联平台装置
CN110683073B (zh) * 2019-11-08 2024-04-12 上海上飞飞机装备制造股份有限公司 用于飞机部件对接的正交并联平台装置
CN111243374A (zh) * 2020-01-17 2020-06-05 杜建男 一种大平动行程和高响应速度的六自由度运动模拟器
CN111243374B (zh) * 2020-01-17 2021-12-17 杜建男 一种大平动行程和高响应速度的运动模拟器
CN112008697A (zh) * 2020-09-18 2020-12-01 河南科技大学 一种两转一移三自由度解耦并联机构
CN112659100A (zh) * 2020-11-17 2021-04-16 燕山大学 一种局部三自由度刚柔软耦合仿生机器人腰关节
CN112659100B (zh) * 2020-11-17 2022-04-19 燕山大学 一种局部三自由度刚柔软耦合仿生机器人腰关节
CN113246099A (zh) * 2021-05-14 2021-08-13 江南大学 一种具有连续转轴的三自由度并联机构
CN113246099B (zh) * 2021-05-14 2024-05-03 江南大学 一种具有连续转轴的三自由度并联机构
CN114378793B (zh) * 2022-01-21 2024-03-01 天津工业大学 一种具有解析正解的被动杆铰接空间三自由度并联机器人
CN114378793A (zh) * 2022-01-21 2022-04-22 天津工业大学 一种具有解析正解的被动杆铰接空间三自由度并联机器人

Also Published As

Publication number Publication date
CN107081760B (zh) 2023-05-09
CN107081760A (zh) 2017-08-22

Similar Documents

Publication Publication Date Title
WO2018233468A1 (zh) 一种基于平动并联机构的六自由度机械臂
TW200902259A (en) Robot and control method
CN103203741B (zh) 一种三自由度并联机器人机构
CN104999470A (zh) 一种全驱动三指灵巧机械手
CN106166739B (zh) 一种直线型并联机器人
CN109877813A (zh) 一种大转角2t2r四自由度并联机构
CN112720545A (zh) 一种仿人并联的机器人灵巧手
WO2018233469A1 (zh) 一种球面并联机构
CN109514596B (zh) 一种双十字铰三自由度并联关节机构
CN107336219A (zh) 一种具有两移动三转动五自由度的并联机构
CN109079761B (zh) 一种含闭环支链的两转一移的并联机器人
CN109927062A (zh) 一种拟人五指机械手
CN208496988U (zh) 一种含冗余驱动的六自由度并联机构
CN206967494U (zh) 一种基于平动并联机构的六自由度机械臂
CN207747038U (zh) 一种平面抓取机构
CN210850328U (zh) 一种三指欠驱动灵巧手
CN106625591B (zh) 一种三平两转五自由度并联机构
Chang et al. An end-effector wrist module for the kinematically redundant manipulation of arm-type robots
Wang et al. Design and analysis of the gripper mechanism based on generalized parallel mechanisms with configurable moving platform
CN106826767B (zh) 一种基于抓取并联结构的六自由度并联机构
CN207104907U (zh) 一种具有矩形工作空间的scara运动并联机构
CN106695766B (zh) 一种基于抓取并联机构的六自由度并联装置
CN216299295U (zh) 一种具有多自由度的机械臂
CN206048179U (zh) 一种直线型并联机器人
Angeles Design Challenges in the Development of Fast Pick-and-place Robots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18821435

Country of ref document: EP

Kind code of ref document: A1