WO2018233469A1 - 一种球面并联机构 - Google Patents

一种球面并联机构 Download PDF

Info

Publication number
WO2018233469A1
WO2018233469A1 PCT/CN2018/089140 CN2018089140W WO2018233469A1 WO 2018233469 A1 WO2018233469 A1 WO 2018233469A1 CN 2018089140 W CN2018089140 W CN 2018089140W WO 2018233469 A1 WO2018233469 A1 WO 2018233469A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
moving platform
platform
connecting rod
base
Prior art date
Application number
PCT/CN2018/089140
Other languages
English (en)
French (fr)
Inventor
赵龙海
陈强
何永和
姜纪波
张延亮
朱虹
Original Assignee
东莞松山湖国际机器人研究院有限公司
东莞爱创机器人科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞松山湖国际机器人研究院有限公司, 东莞爱创机器人科技有限公司 filed Critical 东莞松山湖国际机器人研究院有限公司
Publication of WO2018233469A1 publication Critical patent/WO2018233469A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • B25J9/0045Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • B25J9/0045Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base
    • B25J9/0048Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base with kinematics chains of the type rotary-rotary-rotary

Definitions

  • the invention relates to a spherical parallel mechanism.
  • the spherical five-bar mechanism is a two-degree-of-freedom mechanism, which is connected end to end by five rods through five rotating pairs, and the axes of all the rotating pairs meet at one point (ie, the center of rotation), and the output reference point of the mechanism is along the spherical surface.
  • the two degrees of freedom of translation Compared with the single-degree-of-freedom four-bar mechanism, it can complete more complex motion trajectories, and has the advantages of simple structure, flexible motion, and easy control.
  • the parallel mechanism is a closed-loop mechanism in which the movable platform and the static platform are connected by at least two independent kinematic chains, having two or more degrees of freedom, and being driven in parallel.
  • the parallel robot has the following advantages: small cumulative error and high precision; the driving device can be placed on the fixed platform or close to the fixed platform, the moving part is light in weight, high in speed, good in dynamic response; compact in structure. High rigidity and large carrying capacity. Therefore, parallel robots are widely used in applications where equipment stiffness, motion speed, positioning accuracy or load capacity are high.
  • the spherical parallel mechanism is one of the important parallel mechanisms, and has been applied in practical fields such as satellite tracking follower, digital rotary table, and electronic smart eye.
  • the redundant drive parallel mechanism is a parallel mechanism in which the number of input members is more than the number of degrees of freedom of the output member. Some parallel mechanisms will assist the platform to span the singular configuration by adding redundant drive branches, thereby obtaining greater rotation capability, but redundant drive. It will lead to over-constraint and generate internal forces, which will cause the organization to face complex control problems. There are also some parallel-connected mechanisms that choose to add redundant drives to some branches, but this leads to the emergence of hybrid structures, which changes the original parallel mechanism. Load transfer characteristics.
  • the technical problem to be solved by the invention is to provide a spherical parallel mechanism with strong load capacity, high positioning precision, large working space, no need to install a driving mechanism on the moving platform, and the structure is simple and light.
  • a spherical parallel mechanism includes a base and a movable platform, and at least two sets of motion branches are disposed between the base and the movable platform, and one set of motion branches includes two active links and two driven links;
  • two active links are respectively rotatably connected to the base through the rotating base of the base, and one active link is rotatably connected with a driven link through a connecting rod rotating pair, and two driven links
  • the output point of the two driven links is an output reference point, and the output reference point is rotatably connected to the moving platform through the rotating platform of the moving platform;
  • the number of motion branches is equal to N, N ⁇ 2;
  • the moving platform is composed of two connecting rods, and the two connecting rods are connected by rotating connecting rods, and the two sets of motion branches form two output reference points, and the two output reference points respectively
  • the rotating platform of the moving platform is rotatably connected with the connecting rod, and the rotating base of the moving platform does not coincide with the rotating pair of the connecting rod.
  • the moving platform is formed by four connecting rods rotating through the connecting rod rotating pair of head and tail rotation joints, and the two sets of moving branches are rotatably connected with the moving platform through two rotating platform rotating pairs, wherein the two moving The platform rotating pair corresponds to the two connecting rod rotating pairs symmetrically on the moving platform.
  • the moving platform is formed by six connecting rods connected by a rotating joint of the connecting rods, and the three sets of moving branches are rotatably connected to the moving platform through the rotating bases of the three moving platforms, wherein the three moving platforms are connected.
  • the rotating pair corresponds to the three connecting rod rotating pairs on the moving platform.
  • the invention increases the load capacity and the movement precision and improves the work by increasing the movement branch, assisting the movable platform to span the singular configuration to obtain greater rotation capacity, and increasing the practical working space, and at the same time improving the rigidity of the mechanism. performance.
  • the motion of the two sets of motion branches is relatively decoupled, making its kinematics more simple. It is easy to control and calibrate; it also enables its moving platform part to carry a variety of different types of mechanisms at the same time, while completing a number of different tasks, thereby expanding its application range.
  • an additional actuator that can convert the dynamic platform reconstruction capability into a normal movement along the spherical surface can be added to the moving platform to avoid installing additional motors on the moving platform. Or use the refactoring ability to directly use the moving platform as an end effector to implement operations such as grabbing.
  • Figure 1 is a schematic view showing the structure of the present invention
  • Figure 2 is a schematic perspective view of the present invention
  • Figure 3 is a schematic view of the movement of the present invention.
  • FIG. 4 is a schematic diagram of platform reconstruction according to the present invention.
  • Figure 5 is a schematic view of the motion of the present invention and the reconstruction of the platform
  • Figure 6 is a schematic view showing the structure of the driving end effector moving along the normal direction of the sphere according to the present invention.
  • Figure 7 is a partial schematic view showing the process of driving the end effector along the normal direction of the sphere according to the present invention.
  • Figure 8 is a schematic view showing the process of clamping a workpiece directly as an end effector according to the present invention.
  • Figure 9 is a schematic view showing the process of clamping a workpiece directly as an end effector according to the present invention.
  • Figure 10 is a schematic view showing the process of clamping a workpiece directly as an end effector according to the present invention
  • Figure 11 is a schematic view showing the process of clamping a workpiece directly as an end effector according to the present invention.
  • Figure 12 is a schematic view showing the process of clamping a workpiece directly as an end effector according to the present invention
  • Figure 13 is a schematic view showing only one moving platform of the present invention.
  • Figure 14 is a schematic view showing the mounting of a plurality of moving platforms according to the present invention.
  • Figure 15 is a schematic view showing a plurality of different moving platforms of the present invention.
  • Figure 16 is a schematic view showing the structure of a five-degree-of-freedom spherical parallel mechanism in the present invention.
  • the present invention discloses a spherical parallel mechanism including a base 1 and a movable platform 2, and at least two sets of motion branches, one set between the base 1 and the movable platform 2,
  • the motion branch includes two active links 51 and two driven links 52.
  • the two active links 51 are respectively rotatably connected to the base 1 through the base rotating pair 6, one active link 51 is rotatably connected to a driven link 52 through a connecting rod rotating pair 53.
  • the two driven connecting rods are rotatably connected by the output rotating pair 4, and the connecting points of the two driven connecting rods are output reference points, that is, The output reference point is located on the output rotary pair 4, which is rotatably coupled to the movable platform by the rotary table of the movable platform.
  • the active link is actuated by the driving force of the outside, and the driven link is driven by the rotating pair of the connecting rod to transmit the force to the output reference point, and then the force is transmitted to the moving platform through the output reference point, thereby moving the moving platform.
  • the active link and the driven link are curved.
  • the number of motion branches is equal to N, NN ⁇ 2.
  • the axes of the rotating base of the base, the rotating pair of the connecting rod, the rotating pair of the rotating shaft and the rotating pair of the moving platform meet at the same point, thereby ensuring that the movement of the moving platform is completed on the spherical surface.
  • the movable platform can be formed by combining at least two connecting rods according to actual needs.
  • the moving platform is composed of two connecting rods, and the two connecting rods are rotatably connected by a connecting rod rotating pair, and two sets of motion branches form two output reference points, and the two output reference points are formed. Rotating connection with the connecting rod through the rotating platform of the moving platform respectively.
  • the movable platform is formed by four connecting rods rotating through the connecting rod rotating pair of head and tail rotation joints, and the two sets of motion branches are rotatably connected to the moving platform through two rotating platform rotating pairs, wherein The two rotating platform rotating pairs correspond to the two connecting rod rotating pairs on the moving platform.
  • FIG. 5 is a schematic diagram of the simultaneous movement of the position, the corner and the moving platform when the moving platform is in normal motion, and the movement of the two sets of motion branches transmits the force to the moving platform, so that the position of the moving platform and the two adjacent connecting rods are The corners change.
  • an end effector can be mounted on the moving platform. As shown in Figures 6 and 7, the end effector can be mounted on the rotating table of the moving platform by means of a threaded connection.
  • the connecting rod B of the end effector A and the moving platform form a spiral pair by threading, and the connecting rod C of the moving platform forms a moving pair; when the moving platform is reconstructed, the moving branch moves the platform, and the connecting rod B is connected.
  • the rod C is relatively rotated and transmits the motion to the end effector A by threaded engagement, and the movement pair between the end effector A and the connecting rod C in turn limits the rotation of the end effector A, so the end effector A only It can be translated along the common axis of the end effector A, the connecting rod B and the connecting rod C, that is, the normal direction of the spherical surface.
  • the reconstructed motion of the moving platform is converted into a translational motion of the end effector A along the spherical normal, thereby avoiding the installation of the motor on the moving platform, thereby reducing the inertia of the moving parts of the mechanism.
  • the mobile platform can also be used directly as an end effector to implement operations such as grabbing.
  • the movable platform is directly used as an end effector, and the workpiece is clamped by the movable platform, and the moving platform is moved by two sets of motion branches to realize the purpose of clamping the workpiece.
  • the motion branches are two groups, and the movements of the two sets of motion branches are relatively decoupled, so that the moving platform can be simultaneously carried
  • a variety of different types of organizations can accomplish different tasks at the same time, thus expanding its range of applications.
  • the moving platform is composed of a plurality of connecting rods.
  • the moving platform is formed by six connecting rods rotating through the connecting rod rotating pair of head and tail rotation joints. At this time, there are three sets of motion branches, and the three sets of motion branches are rotated by three moving platforms.
  • the platform is rotatably connected, wherein the three moving platform rotating pairs correspond to the three connecting rod rotating pairs on the moving platform.
  • the connecting rod parameters of the mechanisms of the motion branches and the movable platform, and the latitude and uniformity of the motor arrangement for driving the active link motion are not particularly limited, and may be based on the required motion space and load requirements. Make adjustments to achieve different sports effects.
  • the above description mainly uses a spherical parallel mechanism in which the number of motion branches is two as an example.
  • the above description is not a limitation of the present invention, and is the same type of mechanism as described above, and any spherical parallel of the same type. The mechanism is within the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Manipulator (AREA)

Abstract

一种球面并联机构,包括机座(1)和动平台(2),机座(1)和动平台(2)之间设有至少两组运动支链,一组运动支链包括两个主动连杆(51)和两个从动连杆(52);同一组运动支链中,两个主动连杆(51)分别通过机座转动副(6)与机座(1)转动连接,一个主动连杆(51)对应通过一个连杆转动副(53)与一个从动连杆(52)转动连接,两个从动连杆(52)通过输出转动副(4)转动连接,该两个从动连杆(52)的连接点为输出参考点,该输出参考点通过动平台转动副与动平台(2)转动连接;机座转动副(6)、连杆转动副(53)、输出转动副(4)和动平台转动副的轴线交汇于同一点。该机构负载能力强,定位精度高,工作空间大,整个机构没有驱动电机安置于运动部件上,结构简单轻便。

Description

一种球面并联机构 技术领域
本发明涉及一种球面并联机构。
背景技术
球面五杆机构是一种两自由度机构,它由五根杆件通过五个转动副首尾相连,并且所有转动副的轴线汇交于一点(即转动中心),机构的输出参考点有沿球面的两个平动自由度。与单自由度的四杆机构相比,它能完成更加复杂的运动轨迹,并具有结构简单、运动灵活、易于控制等优点。
并联机构为动平台和静平台通过至少两个独立的运动链相连接,具有两个或两个以上的自由度,且以并联方式驱动的一种闭环机构。和串联机器人相比,并联机器人具有以下优点:累积误差小、精度较高;驱动装置可置于定平台上或接近定平台的位置,运动部分重量轻,速度高,动态响应好;结构紧凑,刚度高,承载能力大。因此,并联机器人在对设备刚度、运动速度、定位精度或载重要求较高的场合应用较为广泛。其中,球面并联机构是重要的并联机构之一,目前在卫星跟踪随动装置、数控回转台,电子灵巧眼等实际工程领域中已经得到一定的应用。
但由于受到奇异位形的限制,并联机构动平台的转动能力往往都比较小,即使是相对简单的平面并联机构,在理论上能达到的转动范围也不超过180°,实际上会更小;奇异位形还影响了动平台运动的灵活性,因为靠近奇异位形时动平台的载荷传递效率急速下降;此外,机构的运动支链较少时承载能力也较差,从而影响动平台的工作性能。
冗余驱动并联机构是输入构件数目多于输出构件自由度数的并联机构,有些并联机构会通过增加冗余驱动支链来辅助平台跨越奇异位形,从而得到更大的转动能力,但冗余驱动会导致过约束从而产生内力,使机构面临复杂的控制问题;还有一部分并联机构则选择在某些支链中增加冗余驱动,但这导致了混合结构的出现,从而改变原有并联机构的载荷传递特性。
技术问题
本发明要解决的技术问题是提供一种球面并联机构,负载能力强,定位精度高,工作空间大,动平台上不用安装驱动机构,结构简单轻便。
技术解决方案
一种球面并联机构,包括机座和动平台,所述机座和动平台之间设有至少两组运动支链,一组运动支链包括两个主动连杆和两个从动连杆;
同一组运动支链中,两个主动连杆分别通过机座转动副与机座转动连接,一个主动连杆对应通过一个连杆转动副与一个从动连杆转动连接,两个从动连杆通过输出转动副转动连接,该两个从动连杆的连接点为输出参考点,该输出参考点通过动平台转动副与动平台转动连接;
运动支链的数量等于N,N≥2;
机座转动副、连杆转动副、输出转动副和动平台转动副的轴线交汇于同一点。
作为一种方案,所述动平台由2根连接杆构成,该2根连接杆之间通过连接杆转动副转动连接,两组运动支链形成两个输出参考点,该两个输出参考点分别通过动平台转动副与连接杆转动连接,该动平台转动副与连接杆转动副不重合。
作为另一种方案,所述动平台由四根连接杆通过连接杆转动副首尾转动连接围合形成,两组运动支链通过两个动平台转动副与动平台转动连接,其中该两个动平台转动副对应与该动平台上对称的两个连接杆转动副重合。
作为另外一种方案,所述动平台由六根连接杆通过连接杆转动副首尾转动连接围合形成,三组运动支链通过三个动平台转动副与动平台转动连接,其中该三个动平台转动副对应与该动平台上的三个连接杆转动副重合。
有益效果
本发明通过增加运动支链,辅助动平台跨越奇异位形从而得到更大的转动能力,并增大实际可用的工作空间,同时提高机构的刚度,从而提高其负载能力和运动精度,改善其工作性能。
两组运动支链的运动是相对解耦的,从而使得其运动学特性更加简单。易于控制、标定;也使得其动平台部分能够同时搭载多种不同类型的机构,同时完成多项不同的工作,从而扩大了它的应用范围。
另外,可以通过在动平台上增加一个能够将动平台重构能力转化为沿球面法向移动的末端执行器,避免在动平台上安装额外的电机。或者利用重构能力将动平台直接用作末端执行器,实现诸如抓取等操作。
附图说明
附图1为本发明的结构示意图;
附图2为本发明的立体结构示意图;
附图3为本发明的运动示意图;
附图4为本发明的平台重构示意图;
附图5为本发明的运动并发生平台重构的示意图;
附图6为本发明驱动末端执行器沿球面法向移动的结构示意图;
附图7为本发明驱动末端执行器沿球面法向移动的局部过程示意图;
附图8为本发明直接作为末端执行器夹持工件的过程示意图;
附图9为本发明直接作为末端执行器夹持工件的过程示意图;
附图10为本发明直接作为末端执行器夹持工件的过程示意图;
附图11为本发明直接作为末端执行器夹持工件的过程示意图;
附图12为本发明直接作为末端执行器夹持工件的过程示意图;
附图13为本发明只搭载一个动平台的示意图;
附图14为本发明搭载多个动平台的示意图;
附图15为本发明搭载多种不同动平台的示意图;
附图16为本发明中五自由度球面并联机构的结构示意图。
本发明的最佳实施方式
为了便于本领域技术人员的理解,下面结合附图对本发明作进一步的描述。
如附图1和2所示,本发明揭示了一种球面并联机构,包括机座1和动平台2,所述机座1和动平台2之间设有至少两组运动支链,一组运动支链包括两个主动连杆51和两个从动连杆52;同一组运动支链中,两个主动连杆51分别通过机座转动副6与机座1转动连接,一个主动连杆51对应通过一个连杆转动副53与一个从动连杆52转动连接,两个从动连杆通过输出转动副4转动连接,该两个从动连杆的连接点为输出参考点,即该输出参考点就位于输出转动副4上,该输出参考点通过动平台转动副与动平台转动连接。主动连杆受到外界的驱动力而动作,通过连杆转动副带动从动连杆转动,将力传递至输出参考点,再通过输出参考点将力传递到动平台上,从而使动平台运动。主动连杆和从动连杆呈弧形。
运动支链的数量等于N,NN≥2。
机座转动副、连杆转动副、输出转动副和动平台转动副的轴线交汇于同一点,从而保证了动平台的运动是在球面上完成。
另外,动平台可根据实际需要由至少两根的连接杆组合形成。
如附图13所示,所动平台由2根连接杆构成,该2根连接杆之间通过连接杆转动副转动连接,两组运动支链形成两个输出参考点,该两个输出参考点分别通过动平台转动副与连接杆转动连接。
如附图1~12所示,此时动平台由四根连接杆通过连接杆转动副首尾转动连接围合形成,两组运动支链通过两个动平台转动副与动平台转动连接,其中该两个动平台转动副对应与该动平台上对称的两个连接杆转动副重合。
如附图4所示,动平台可利用原系统冗余的自由度对自身进行重构,各个连接杆进行一定的转动,其重构效果图可见附图4。附图5为动平台正常运动时,同时发生位置、转角和动平台变动的示意图,两组运动支链的动作,将力传递给动平台,使得动平台的位置、相邻两根连接杆的转角都发生变化。
此外,动平台上可以安装一个末端执行器,如附图6和7所示,该末端执行器可通过螺纹连接方式安装在动平台转动副上。末端执行器A与动平台的连接杆B通过螺纹配合形成螺旋副,与动平台的连接杆C 形成移动副;动平台发生重构时,由运动支链带动动平台动作,连接杆B相对连接杆C发生相对转动,并通过螺纹啮合将运动传递到末端执行器A,而末端执行器A与连接杆C之间的移动副又限制了该末端执行器A的转动,因此末端执行器A只能沿着末端执行器A、连接杆B和连接杆C三者共同的轴线,即球面法线方向作平动。通过这个过程,将动平台的重构运动转换成末端执行器A沿球面法向的平动,由此可以避免在动平台上安装电机,从而减小机构运动部件的惯量。利用该重构能力还可以将动平台直接用作末端执行器,实现诸如抓取等操作。
如附图8~12所示,直接将动平台作为末端执行器,利用该动平台夹持工件,通过两组运动支链带动动平台实现夹持工件动作的目的。
在附图1~12所揭示的由四根连接杆构成的动平台的结构上,运动支链为两组,该两组运动支链的运动是相对解耦的,从而使得动平台可以同时搭载多种不同类型的机构,即可同时完成不同的工作,从而扩大了它的应用范围。如附图1和2所示,只搭载一个动平台。如附图14和15所示,动平台由多根连接杆构成。
如附图16所示,所述动平台由六根连接杆通过连接杆转动副首尾转动连接围合形成,此时具有三组运动支链,三组运动支链通过三个动平台转动副与动平台转动连接,其中该三个动平台转动副对应与该动平台上的三个连接杆转动副重合。
本发明中,各运动支链和动平台搭载的机构的连接杆参数,以及驱动主动连杆运动的电机布置的纬度、是否均布等并无特别限定,可以根据需要的运动空间和负载要求来进行调整,以达到不同的运动效果。
需要说明的是,以上所述主要以运动支链数量为两个的球面并联机构为例做展示,以上所述并非是对本发明的限定,与上述为同一类机构,而任何同类型的球面并联机构,均在本发明的保护范围之内。

Claims (1)

  1. 一种球面并联机构,包括机座和动平台,其特征在于,所述机座和动平台之间设有至少两组运动支链,一组运动支链包括两个主动连杆和两个从动连杆;
    同一组运动支链中,两个主动连杆分别通过机座转动副与机座转动连接,一个主动连杆对应通过一个连杆转动副与一个从动连杆转动连接,两个从动连杆通过输出转动副转动连接,该两个从动连杆的连接点为输出参考点,该输出参考点通过动平台转动副与动平台转动连接;
    运动支链的数量等于N,N≥2;
    机座转动副、连杆转动副、输出转动副和动平台转动副的轴线交汇于同一点;
    所述动平台由2根连接杆构成,该2根连接杆之间通过连接杆转动副转动连接,两组运动支链形成两个输出参考点,该两个输出参考点分别通过动平台转动副与连接杆转动连接,该动平台转动副与连接杆转动副不重合;
    或者所述动平台由四根连接杆通过连接杆转动副首尾转动连接围合形成,两组运动支链通过两个动平台转动副与动平台转动连接,其中该两个动平台转动副对应与该动平台上对称的两个连接杆转动副重合;
    或者所述动平台由六根连接杆通过连接杆转动副首尾转动连接围合形成,三组运动支链通过三个动平台转动副与动平台转动连接,其中该三个动平台转动副对应与该动平台上的三个连接杆转动副重合。
PCT/CN2018/089140 2017-06-21 2018-05-31 一种球面并联机构 WO2018233469A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710475411.XA CN107139164B (zh) 2017-06-21 2017-06-21 一种球面并联机构
CN201710475411.X 2017-06-21

Publications (1)

Publication Number Publication Date
WO2018233469A1 true WO2018233469A1 (zh) 2018-12-27

Family

ID=59782777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089140 WO2018233469A1 (zh) 2017-06-21 2018-05-31 一种球面并联机构

Country Status (2)

Country Link
CN (1) CN107139164B (zh)
WO (1) WO2018233469A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112405499A (zh) * 2020-10-27 2021-02-26 北京工业大学 一种三自由度对称并联机构
CN112549000A (zh) * 2020-12-22 2021-03-26 辰星(天津)自动化设备有限公司 六轴机器人动平台及其六轴机器人
CN114314030A (zh) * 2022-01-11 2022-04-12 河北工业大学 基于并联机构的酒醅出醅装置
CN116749158A (zh) * 2023-08-16 2023-09-15 国机重型装备集团股份有限公司 具有一定轴线两变轴线球面三自由度定向装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107139164B (zh) * 2017-06-21 2023-03-10 东莞爱创机器人科技有限公司 一种球面并联机构
CN110202551B (zh) * 2019-07-04 2021-03-30 燕山大学 一种二自由度球面运动连杆机构
CN112192551B (zh) * 2020-10-30 2021-07-30 燕山大学 二自由度球面运动并联机构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1429692A (zh) * 2003-01-26 2003-07-16 河北工业大学 串并联人形机器人
US6658962B1 (en) * 2001-10-31 2003-12-09 Ross-Hime Designs, Incorporated Robotic manipulator
CN102275163A (zh) * 2011-07-08 2011-12-14 常州大学 一种球面并联运动机构
CN204160473U (zh) * 2014-09-11 2015-02-18 南京工程学院 一种新型多支路液控球面并联机构
CN105773578A (zh) * 2016-03-24 2016-07-20 褚宏鹏 多支链耦合球面两转动并联机器人关节
CN107139164A (zh) * 2017-06-21 2017-09-08 东莞爱创机器人科技有限公司 一种球面并联机构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2762940Y (zh) * 2005-01-04 2006-03-08 浙江理工大学 球面三自由度并联机构
IT1394602B1 (it) * 2009-05-19 2012-07-05 Univ Bologna Alma Mater Meccanismi rotazionali in catena chiusa con attuazione disaccoppiata ed omocinetica.
CN102275161A (zh) * 2011-07-08 2011-12-14 常州大学 一种三转动球面运动机构
WO2013070938A1 (en) * 2011-11-08 2013-05-16 Ross-Hime Designs, Incorporated Robotic manipulator with spherical joints
CN104827463A (zh) * 2015-05-07 2015-08-12 上海交通大学 具有弧形移动副的三自由度球面并联机构
JP2016223482A (ja) * 2015-05-28 2016-12-28 株式会社日立製作所 リンク機構
JP2017064892A (ja) * 2015-10-02 2017-04-06 国立大学法人九州大学 球面パラレルリンク
CN105619391A (zh) * 2016-03-24 2016-06-01 褚宏鹏 两自由度并联机构
CN206899230U (zh) * 2017-06-21 2018-01-19 东莞爱创机器人科技有限公司 一种球面并联机构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6658962B1 (en) * 2001-10-31 2003-12-09 Ross-Hime Designs, Incorporated Robotic manipulator
CN1429692A (zh) * 2003-01-26 2003-07-16 河北工业大学 串并联人形机器人
CN102275163A (zh) * 2011-07-08 2011-12-14 常州大学 一种球面并联运动机构
CN204160473U (zh) * 2014-09-11 2015-02-18 南京工程学院 一种新型多支路液控球面并联机构
CN105773578A (zh) * 2016-03-24 2016-07-20 褚宏鹏 多支链耦合球面两转动并联机器人关节
CN107139164A (zh) * 2017-06-21 2017-09-08 东莞爱创机器人科技有限公司 一种球面并联机构

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112405499A (zh) * 2020-10-27 2021-02-26 北京工业大学 一种三自由度对称并联机构
CN112405499B (zh) * 2020-10-27 2023-07-28 北京工业大学 一种三自由度对称并联机构
CN112549000A (zh) * 2020-12-22 2021-03-26 辰星(天津)自动化设备有限公司 六轴机器人动平台及其六轴机器人
CN114314030A (zh) * 2022-01-11 2022-04-12 河北工业大学 基于并联机构的酒醅出醅装置
CN114314030B (zh) * 2022-01-11 2023-09-12 河北工业大学 基于并联机构的酒醅出醅装置
CN116749158A (zh) * 2023-08-16 2023-09-15 国机重型装备集团股份有限公司 具有一定轴线两变轴线球面三自由度定向装置
CN116749158B (zh) * 2023-08-16 2023-10-13 国机重型装备集团股份有限公司 具有一定轴线两变轴线球面三自由度定向装置

Also Published As

Publication number Publication date
CN107139164A (zh) 2017-09-08
CN107139164B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2018233469A1 (zh) 一种球面并联机构
CN108621130B (zh) 具有2r1t和2t1r两种运动模式的并联机构
CN1326671C (zh) 并联机器人连接分支结构及六自由度并联机器人机构
CN107336219B (zh) 一种具有两移动三转动五自由度的并联机构
CN110154045B (zh) 一种柔索驱动串联四自由度喷涂机械臂
US10814478B2 (en) Joint module and multi-joint modular robot arm
CN109877813A (zh) 一种大转角2t2r四自由度并联机构
Jin et al. Structure synthesis and singularity analysis of a parallel manipulator based on selective actuation
CN109079761B (zh) 一种含闭环支链的两转一移的并联机器人
CN104608146A (zh) 基于双斜面偏转关节的新型机械臂
CN110524516B (zh) 一种既含冗余支链又含闭环单元冗余驱动并联机构
JP2021505419A (ja) 平面多関節ロボットアームシステム
JP4062040B2 (ja) 微小運動制御方法および微小運動ステージ
Tahmasebi et al. Jacobian and stiffness analysis of a novel class of six-DOF parallel minimanipulators
CN109848969B (zh) 一种用于虚轴机床和机器人的解耦三转动自由度并联机构
CN101497193B (zh) 一种激光加工机器人机构
CN115922674A (zh) 一种基于2upr-2rru机构的三自由度冗余并联末端力控执行器
CN114888780B (zh) 一种三分支6+3自由度运动冗余并联机构
JP2013107155A (ja) 小型多自由度の力覚提示マニピュレータ
Umemura et al. The rigidity of the bi-articular robotic arm with a planetary gear
CN106976077A (zh) 一种杆式并串联结构搬运机械手
CN106695766B (zh) 一种基于抓取并联机构的六自由度并联装置
CN107097217B (zh) 一种动平台具有重构能力的球面并联机构
CN206899230U (zh) 一种球面并联机构
CN104875196A (zh) 具有三维转动特征动平台的空间调姿并联机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18821049

Country of ref document: EP

Kind code of ref document: A1