WO2018233404A1 - 一种调光玻璃及其制备方法 - Google Patents

一种调光玻璃及其制备方法 Download PDF

Info

Publication number
WO2018233404A1
WO2018233404A1 PCT/CN2018/086810 CN2018086810W WO2018233404A1 WO 2018233404 A1 WO2018233404 A1 WO 2018233404A1 CN 2018086810 W CN2018086810 W CN 2018086810W WO 2018233404 A1 WO2018233404 A1 WO 2018233404A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
layer
light transmissive
microstructure
transmissive layer
Prior art date
Application number
PCT/CN2018/086810
Other languages
English (en)
French (fr)
Inventor
张笑
谷新
郭康
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/329,430 priority Critical patent/US11099377B2/en
Publication of WO2018233404A1 publication Critical patent/WO2018233404A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/126Reflex reflectors including curved refracting surface
    • G02B5/13Reflex reflectors including curved refracting surface plural curved refracting elements forming part of a unitary body
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/136Reflex reflectors plural reflecting elements forming part of a unitary body
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169

Definitions

  • the invention generally relates to a dimming device and a preparation method thereof, in particular to a dimming glass and a preparation method thereof.
  • Dimming glass is a functional glass product that can be switched between light and opacity.
  • the dimming glass on the market is mainly an electric field-controlled dimming glass.
  • the working principle is that by filling a liquid crystal layer between two layers of glass, when the liquid crystal layer is not energized by an electric field, the liquid crystal molecules are irregularly dispersed, so that The light cannot pass, so that the dimming glass is in an opaque state; when the liquid crystal layer is energized by the electric field, the liquid crystal molecules are regularly arranged under the action of the electric field, so that the light passes, and the dimming glass is in a light transmitting state.
  • the existing electronically controlled dimming glass has a high difficulty in the manufacturing process, and in particular, the larger the size of the dimming glass, the more difficult it is to ensure quality.
  • the electronically controlled dimming glass needs to be energized to exhibit a light-transmissive appearance, and the electricity cost is incurred during use, and there are restrictions on the installation occasion.
  • the embodiment of the present invention provides a novel type of dimming glass, which does not need to be controlled by an electric field, so that the use process does not generate electricity cost, and does not need to be installed in a nearby power source.
  • the dimming glass of the embodiment of the invention includes: an outer light transmissive layer and an inner light transmissive layer; a microstructure layer bonded to or formed on an inner side surface of the outer light transmissive layer and arranged with a reflective microstructure; a sealing member Bonding to the ends of the outer light transmissive layer and the inner light transmissive layer, the sealing member and the microstructure layer and the inner light transmissive layer enclosing a space having a predetermined volume, wherein a predetermined amount of the first substance is disposed in the space, and The volume of the predetermined amount of the first substance in the solid state is the predetermined volume, and the volume in the liquid state is less than the predetermined volume.
  • the embodiment of the invention further provides a method for preparing the above dimming glass, comprising: preparing an outer light transmissive layer and an inner light transmissive layer; preparing a microstructure layer having a reflective microstructure and bonding the microstructure layer to the inner side of the outer light transmissive layer Forming, or forming a microstructured layer having a reflective microstructure on an inner side surface of the outer light transmissive layer; fixing one end of the sealing member to an end of the outer light transmissive layer, forming a cavity by the sealing member and the microstructure layer; The first substance is injected into the cavity and placed below the freezing point of the first substance to solidify the first substance into a solid state; bonding the surface of the inner light transmitting layer to the surface of the first substance and bonding the ends of the inner light transmitting layer To the other end of the sealing member, wherein the volume of the first substance in the liquid state is smaller than the volume in the solid state.
  • the opaque state of the dimming glass of the embodiment of the present invention is achieved by the total reflection of light passing through the microstructure layer into the cavity when the first substance is in a liquid state, and the light transmission state is
  • the first substance fills the space between the microstructure layer and the inner light-transmissive layer in the solid state, the transmittance of light is increased, and the dependence of the dimming glass on the electric field is eliminated, and a new temperature-controlled dimming glass is realized. , manufacturing and use costs are greatly reduced.
  • FIG. 1 is a schematic structural view showing a light transmitting state of a light control glass according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view showing an opaque state of the light control glass shown in FIG. 1;
  • FIG. 3 is a schematic structural view showing an opaque state of a light control glass according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural view showing an opaque state of the light control glass shown in FIG. 3;
  • FIG. 5 is a schematic flow chart of a method for preparing a dimming glass according to an embodiment of the present invention.
  • 6a-6e are schematic views showing respective steps of preparing a light-adjusting glass according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view showing a light transmitting state of a light control glass according to an embodiment of the present invention.
  • the light control glass of the embodiment of the present invention includes an outer light transmissive layer 10, an inner light transmissive layer 20, a microstructure layer 30, a sealing member 40, and a solid first substance 51.
  • the size of the dimming glass shown in FIG. 1 is only schematic, and does not represent the actual size ratio of the dimming glass.
  • the dimming glass generally has a large area and a small thickness.
  • the outer light transmissive layer 10 is for receiving light incident from the outside.
  • the outer light transmissive layer 10 may be made of a light transmissive material such as glass or resin.
  • the microstructure layer 30 is bonded to the inner side surface of the outer light transmissive layer 10, and a large number of reflective microstructures are adjacently arranged on the inner side surface of the microstructure layer 30, see a plurality of hemispherical micros exemplarily shown in FIG. structure.
  • the diameter of each hemispherical microstructure may be, for example, in the range of 10-20 micrometers, and the height may be, for example, in the range of 5-10 micrometers.
  • the microstructure layer 30 may be made of a light transmissive material such as glass or resin.
  • the microstructure layer 30 may be formed by forming a plurality of reflective microstructures adjacent to each other by, for example, embossing and etching the inner surface of the outer light transmissive layer 10.
  • the sealing member 40 may be bonded to the ends of the outer light transmissive layer 10 and the inner light transmissive layer 20 by, for example, a sealant. Although only the example in which the end faces of the outer light-transmitting layer 10 and the inner light-transmitting layer 20 are joined to the side surface of the sealing member 40 is shown in FIG. 1, the present invention is not limited thereto, and the end faces of the sealing member 40 may be bonded to The outer side light transmitting layer 10 and/or the inner light transmitting layer 20 are on the end side surface.
  • the material of the sealing member 40 in the embodiment of the present invention is not limited, and may be made of, for example, a metal, an alloy, a resin, a glass, or the like.
  • the inner side surface of the sealing member 40, the inner side surface of the microstructure layer 30, and the inner side surface of the inner light transmissive layer 20 enclose a sealed space having a predetermined volume.
  • a predetermined amount of the first substance is disposed in the sealed space, and the volume of the predetermined amount of the first substance in the solid state is the volume of the sealed space, that is, the sealed space is completely filled by the solid first substance 51, and thus, Light incident from the outer light transmissive layer 10 can pass through the microstructure layer 30 into the solid first substance 51, and then through the inner light transmissive layer, so that the dimming glass exhibits a light transmitting state.
  • FIG. 2 is a schematic view showing the structure of the light-adjusting glass shown in FIG. 1 in an opaque state.
  • the solid first substance 51 melts into the liquid first substance 52, and the liquid first substance 52 has a smaller volume than the dimming
  • the volume of the interior of the glass seals the space, thereby forming a cavity 60 in the sealed space.
  • the cavity 60 blocks the microstructure layer 30 from the liquid first substance 52. Since the refractive index of the cavity 60 is low, the light transmissive layer 10 is provided from the outside.
  • the dimming glass After the incident light enters the microstructure layer 30, partial reflection or total reflection occurs at the interface of the microstructure layer 30 that is in contact with the cavity 60, that is, the light incident on the outside passes through a small amount or is difficult to pass through the cavity 60 and passes through the liquid state.
  • the opaque state or the semi-transmissive state of the light-adjusting glass of the embodiment of the present invention is achieved by total reflection or partial reflection when light is passed from the outer light-transmitting layer through the microstructure layer into the cavity when the first substance is in a liquid state.
  • the light transmissive state is achieved by filling the space between the microstructure layer and the inner light transmissive layer when the first substance is in a solid state to increase the transmittance of light.
  • the dimming glass of the embodiment of the invention completely escapes the dependence on the electric field, and automatically adjusts the light by changing the temperature of the environment around the dimming glass, thereby realizing a new temperature-controlled dimming glass, and at the same time making the manufacturing cost and installation. Both cost and use costs are significantly reduced.
  • the first substance in the dimming glass of the embodiment of the present invention may be selected from substances having different freezing points.
  • the freezing point of the first substance may range from -10 to 25 degrees.
  • a substance having a freezing point of about -10 degrees may be selected as the first substance, for example, a freezing point may be used.
  • the substance is used as the first substance; when the dimming glass is required to exhibit a light transmitting state below 25 degrees, and the opaque state is exhibited above 25 degrees, a substance having a freezing point of about 25 degrees may be selected as the first substance.
  • the freezing point of the first substance can be selected, for example, in the range of 0 to 20 degrees.
  • water such as a freezing point of 0 degrees may be selected as the first substance; when a dimming glass is required at about 16 Below the degree of light transmission, and when the opaque state is exhibited above about 16 degrees, for example, acetic acid having a freezing point of 16.6 degrees may be used as the first substance.
  • the specific object of the above first substance is merely exemplary, and the present invention is not limited to the above-exemplified first substance, as long as the solid volume is larger than the liquid volume and the substance is in a light-transmissive state when solidified, it can be selected as the first in the present invention.
  • a substance may be selected as a first substance by selecting a material having the temperature as a freezing point by switching the temperature of the boundary point between the light transmitting and the opaque state as needed.
  • the difference between the refractive index of the microstructured layer 30 in the dimming glass and the refractive index of the outer transparent layer 10 may be in the range of 0-0.2.
  • the difference in refractive index between the two 0 when the outer light-transmissive layer 10 is made of glass, the refractive index is, for example, about 1.4-1.6, and when the resin is used to form the microstructured layer 30, the refractive index is, for example, 1.58, and the difference in refractive index between the two is about 1.58. 0.02-0.18.
  • the difference between the refractive index of the solid first substance 51 and the refractive index of the microstructured layer 30 may be in the range of 0-0.35.
  • the microstructured layer 30 can be selected from a glass having a refractive index of 1.4-1.6, and the difference in refractive index between the two is about 0.1-0.3. It is also possible to select a suitable material having a refractive index close to or even the same among the light-transmitting materials as a material for fabricating the microstructure layer 30, depending on the refractive index of the selected first substance.
  • the first substance having the freezing point that meets the requirement is selected, the refractive index of the first substance is determined, and the selected refractive index is similar or even nearly the same.
  • the light transmissive material is made into the microstructure layer 30, and the material having the refractive index close to or the same as the microstructure layer 30 is selected to form the outer light transmissive layer 10 and/or the inner light transmissive layer 20 to improve the transmittance of the dimming glass. .
  • FIG. 3 is a schematic structural view showing an opaque state of a light-adjusting glass according to another embodiment of the present invention
  • FIG. 4 is a structural schematic view showing an opaque state of the light-adjusting glass shown in FIG. 3.
  • the microstructure layer 30 in the embodiment of the present invention may be configured to have the prism shown in FIG. 3-4.
  • the microstructured layer or other prismatic microstructured microstructure layer 30' can also achieve light entering from the outer light transmissive layer 10 through the microstructure layer 30' when the first substance in the dimming glass is in a solid state.
  • the solid first substance 51 passes through the inner transparent layer 20 to achieve a light transmitting state of the dimming glass, and causes the light incident on the outer transparent layer 10 to be in the microstructure layer 30' and empty when the first substance is in a liquid state. Partial reflection or total reflection occurs at the interface where the cavity 60 is connected to realize a semi-transmissive or opaque state of the dimming glass.
  • FIGS. 6a-6e are schematic views showing respective steps of preparing a light-adjusting glass according to an embodiment of the present invention.
  • the method for preparing a dimming glass according to an embodiment of the present invention includes the following steps:
  • the outer light-transmissive layer and the inner light-transmitting layer may be manufactured in a predetermined size using glass or resin, or the preformed glass or resin sheet may be cut into a prescribed size.
  • the microstructure layer 30 is bonded to the inner side surface of the outer light transmissive layer 10 as shown in Fig. 6a.
  • the microstructure layer can be prepared by performing a patterning treatment such as nanoimprinting or exposure development on the surface of the glass or resin sheet to form a plurality of adjacently arranged reflective microstructures, as shown in FIG. 1 or FIG. A plurality of hemispherical or prismatic microstructures arranged on the inner surface of the microstructure layer 30 are shown.
  • the base size of each microstructure may be, for example, in the range of 10-20 microns, and the height may be, for example, in the range of 5-10 microns.
  • a large number of adjacent rows of reflective micro-forms may be formed by performing a patterning process such as nanoimprinting or exposure development on the inner side surface of the outer light transmissive layer. Structure to form a microstructure layer.
  • the sealing member 40 may be bonded to the end of the outer light transmissive layer 10 by, for example, a sealant.
  • a sealant In addition to the manner in which the end surface of the outer light transmissive layer 10 shown in FIG. 6b is bonded to the side surface of the sealing member 40, it is also possible that the end surface of the sealing member 40 is bonded to the end side surface of the outer light transmissive layer 10.
  • a liquid first substance 52 is injected into a cavity formed by the inner side surface of the sealing member 40 and the inner side surface of the microstructure layer 30, and then placed below the freezing point of the first substance, so that the first substance is solidified.
  • the solid first substance 51 as shown in Fig. 6d, has a solid first substance 51 having a larger volume than the liquid first substance 52.
  • the first substance injected into the cavity may be, for example, a substance whose solid volume such as water, oil, and acetic acid is larger than the liquid volume and is transparent when solidified, and the dimming glass can be switched to be transparent and opaque as needed.
  • the temperature at the boundary point of the light state is selected as the first substance having the temperature as the freezing point.
  • the surface of the inner light transmissive layer 20 is bonded to the surface of the solid first substance 51, and the end of the inner light transmissive layer 20 is joined to the end of the sealing member 40 to form a dimming glass.
  • the step of planarizing the surface of the solid first substance 51 may be further included after S104 to increase the degree of bonding between the inner transparent layer 20 and the solid first substance 51, It is ensured that the volume of the solid first substance 51 is as much as the volume of the space enclosed by the sealing member, the microstructure layer and the inner light transmitting layer.
  • the liquid first substance may be filled in a cavity formed by the inner side surface of the sealing member 40 and the inner side surface of the microstructure layer 30 in S104, and then placed below the freezing point of the first substance.
  • the first substance is solidified into a solid first substance.
  • the portion of the solid first substance that is higher than the plane of the end surface of the sealing member can be removed, and then the inner transparent layer is removed.
  • the surface is fixed to the surface of the first substance of the solid state and the end face of the sealing member.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

一种调光玻璃,包括:外侧透光层(10)和内侧透光层(20);微结构层(30),其接合至或形成于外侧透光层(10)的内侧表面并布置有反射微结构;密封部件(40),其接合至外侧透光层(10)和内侧透光层(20)的端部,密封部件(40)与微结构层(30)和内侧透光层(20)围成具有预定体积的空间,该空间中布置有预定量的第一物质(51),该预定量的第一物质(51)在固态时的体积为上述预定体积、在液态时的体积小于上述预定体积。一种调光玻璃的制备方法。调光玻璃无需电场控制调光,降低了制造成本。

Description

一种调光玻璃及其制备方法
相关申请的交叉引用
本申请要求于2017年6月20日递交的中国专利申请第201710469625.6号优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本发明总体涉及一种调光装置及其制备方法,特别涉及一种调光玻璃及其制备方法。
背景技术
调光玻璃是一种功能性玻璃产品,其可以在透光和不透光之间转换。目前市面上的调光玻璃主要是电场控制型调光玻璃,其工作原理为,通过在两层玻璃之间填充液晶层,当不通过电场对液晶层加电时,液晶分子不规则散布,使光线无法通过,致使调光玻璃呈现不透光的状态;当通过电场对液晶层加电时,液晶分子在电场的作用下规则排布,使得光线通过,致使调光玻璃呈现透光的状态。
现有的电控型调光玻璃在制造工艺上具有较高难度,特别是尺寸越大的调光玻璃越难以确保品质。此外,电控型调光玻璃需要通电才能呈现透光外观,使用过程中会产生用电成本,而且对安装场合也存在限制。
发明内容
有鉴于此,本发明实施例提供了一种新型的调光玻璃,其不需要利用电场进行控制,从而其使用过程不会产生用电成本,也不需要安装在附近有电源的场合。
本发明实施例的调光玻璃包括:外侧透光层和内侧透光层;微结构层,其接合至或形成于所述外侧透光层的内侧表面并布置有反射微结构;密封 部件,其接合至外侧透光层和内侧透光层的端部,密封部件与微结构层和内侧透光层围成具有预定体积的空间,其中,所述空间中布置有预定量的第一物质,并且所述预定量的第一物质在固态时的体积为所述预定体积、在液态时的体积小于所述预定体积。
本发明实施例还提供了上述调光玻璃的制备方法,包括:制备外侧透光层和内侧透光层;制备具有反射微结构的微结构层并将微结构层接合至外侧透光层的内侧表面,或者在外侧透光层的内侧表面上形成具有反射微结构的微结构层;将密封部件的一端固定至外侧透光层的端部,由密封部件和微结构层形成空腔;将液态的第一物质注入空腔,并置于第一物质的凝固点以下使得第一物质凝固为固态;将内侧透光层的表面接合到第一物质的表面,并将内侧透光层的端部接合到密封部件的另一端,其中,第一物质在液态时的体积小于在固态时的体积。
本发明实施例的调光玻璃的不透光状态是在第一物质处于液态时通过光在从外侧透光层经过微结构层进入空腔过程中发生全反射实现的,透光状态则是在第一物质在固态时填满微结构层与内侧透光层之间的空间增加了光的透过率实现的,摆脱了调光玻璃对电场的依赖,实现了全新的温控型调光玻璃,制造和使用成本都大幅减低。
附图说明
图1为本发明一个实施例的调光玻璃的透光状态的结构示意图;
图2为图1所示的调光玻璃的不透光状态的结构示意图;
图3为本发明另一个实施例的调光玻璃的不透光状态的结构示意图;
图4为图3所示的调光玻璃的不透光状态的结构示意图;
图5为本发明实施例的调光玻璃的制备方法的示意性流程图;
图6a-6e为本发明实施例的调光玻璃的各制备工序的示意图。
具体实施方式
下面参照附图对本发明实施例进行详细说明。
图1为本发明一个实施例的调光玻璃的透光状态的结构示意图。如图1所示,本发明实施例的调光玻璃包括外侧透光层10、内侧透光层20、微结构层30、密封部件40和固态的第一物质51。需要说明的是,图1中示出的调光玻璃的尺寸仅为示意性的,并不表示调光玻璃的实际尺寸比例,调光玻璃一般具有较大的面积和较小的厚度。
其中,外侧透光层10用于接收从外侧入射的光线。外侧透光层10可以采用例如玻璃或树脂等透光材料制成。
微结构层30接合至外侧透光层10的内侧表面,并且微结构层30的内侧表面上相邻排布有大量的反射微结构,参见图1中示例性地示出的多个半球状微结构。其中,每个半球状微结构的直径例如可以在10-20微米的范围内,高度例如可以在5-10微米的范围内。微结构层30可以采用例如玻璃或树脂等透光材料制成。
以上给出的是外侧透光层10与微结构层30分别制备后接合的例子,但本发明不限于此。在本发明一个实施例中,可以通过对外侧透光层10的内侧表面进行例如压印和刻蚀处理形成相邻排布的多个反射微结构而形成微结构层30。
密封部件40可以通过例如密封剂粘接至外侧透光层10和内侧透光层20的端部。图1中虽然仅示出了外侧透光层10和内侧透光层20的端面接合至密封部件40的侧表面上的例子,但本发明不限于此,也可以是密封部件40的端面接合至外侧透光层10和/或内侧透光层20的端部侧表面上。本发明实施例中密封部件40的材料不受限制,例如可利用金属、合金、树脂、玻璃等材料制成。
如图1所示,密封部件40的内侧表面、微结构层30的内侧表面和内侧透光层20的内侧表面围成密封的具有预定体积的空间。在密封空间中布置有预定量的第一物质,并且该预定量的第一物质在固态时的体积为该密封空间的体积,也就是该密封空间由固态的第一物质51完全填充,因而, 从外侧透光层10入射的光线能够穿过微结构层30进入固态的第一物质51,继而穿过内侧透光层,使得调光玻璃呈现透光状态。
图2为图1所示的调光玻璃的不透光状态的结构示意图。如图2所示,当调光玻璃周围的环境温度达到第一物质的凝固点以上时,固态的第一物质51融化为液态的第一物质52,并且液态的第一物质52的体积小于调光玻璃内部密封空间的体积,从而在该密封空间内形成空腔60。在图2所示的调光玻璃水平放置的情况下,空腔60将微结构层30和液态的第一物质52阻隔开来,由于空腔60的折射率较低,从外侧透光层10入射的光线进入微结构层30后,在微结构层30的与空腔60相接的界面上发生部分反射或全反射,即外侧入射的光线少量穿过或难以穿过空腔60而通过液态的第一物质52和内侧透光层,从内侧透光层20的下方来看,调光玻璃呈现半透光或不透光的状态。
本发明实施例的调光玻璃的不透光状态或半透光状态是在第一物质处于液态时通过光在从外侧透光层经过微结构层进入空腔时发生全反射或部分反射实现的,透光状态则是在第一物质在固态时填满微结构层与内侧透光层之间的空间而增加了光的透过率而实现的。本发明实施例的调光玻璃完全摆脱了对电场的依赖,通过调光玻璃周围环境的温度变化进行结构变化而自动调光,实现了全新的温控型调光玻璃,同时使得制造成本、安装成本和使用成本都大幅减低。
尽管本发明实施例没有明确限定,本领域技术人员容易理解,本公开的技术方案可适用于可水平放置、安装、固定等的结构,例如屋顶、水平玻璃制品或其它封闭结构的水平顶部或其它非封闭结构的水平顶部,或者位于倾斜角度有限(倾斜角度不应使得第一物质在液态下接触微结构层)的倾斜面。
根据实际使用需要,本发明实施例的调光玻璃中的第一物质可以选用不同凝固点的物质。在本发明一个实施例中,第一物质的凝固点可以在-10至25度的范围内。例如,当需要调光玻璃在-10度以下时呈现透光状态, 并且在-10度以上呈现不透光状态时,可选用凝固点约为-10度的物质作为第一物质,例如可使用凝固点较低并且凝固时呈透光状态的油作为第一物质;当需要调光玻璃在0度以下呈现透光状态,并且在0度以上呈现不透光状态时,可选用凝固点约为0度的物质作为第一物质;当需要调光玻璃在25度以下呈现透光状态,并且在25度以上呈现不透光状态时,可选用凝固点约为25度的物质作为第一物质。
在本发明另一个实施例中,第一物质的凝固点例如可以在0至20度的范围内选择。例如,当需要调光玻璃在0度以下呈现透光状态,并且在0度以上呈现不透光状态时,可选用例如凝固点为0度的水作为第一物质;当需要调光玻璃在约16度以下呈现透光状态,并且在约16度以上呈现不透光状态时,可选用例如凝固点为16.6度的乙酸作为第一物质。
以上第一物质的具体选用对象仅为示例性的,本发明不限于上述例举的第一物质,只要固态体积大于液态体积并且凝固时呈透光状态的物质都可以选用为本发明中的第一物质,可根据需要调光玻璃切换透光与不透光状态的分界点温度来选定具有该温度作为凝固点的物质作为第一物质。
在本发明一个实施例中,为提高外部光线的入射率,调光玻璃中微结构层30的折射率与外侧透光层10的折射率之差可以在0-0.2范围内。例如,当相互接合的外侧透光层10与微结构层30选用同种材料制成时,或者微结构层30直接形成在外侧透光层10的内侧表面上时,两者的折射率之差为0;当选用玻璃制成外侧透光层10时其折射率例如约为1.4-1.6,当选用树脂制成微结构层30时其折射率例如为1.58,两者的折射率之差约为0.02-0.18。
在本发明另一个实施例中,为提高外部光线的入射率,固态的第一物质51的折射率与微结构层30的折射率之差可以在0-0.35范围内。例如,当固态的第一物质为冰,其折射率约为1.3,微结构层30可选用折射率为1.4-1.6的玻璃,两者的折射率之差约为0.1-0.3。还可以根据选定的第一物质的折射率,在透光材料中选择折射率相近甚至几乎相同的合适材料作为 微结构层30的制作材料。
在本发明实施例中,可以在根据需要确定调光玻璃的调光温度后,选定具有符合要求的凝固点的第一物质,确定第一物质的折射率,并选定折射率相近甚至几乎相同的透光材料制成微结构层30,再选择折射率与微结构层30相近或相同的材料制成外侧透光层10和/或内侧透光层20,以提高调光玻璃的透光率。
图3为本发明另一个实施例的调光玻璃的不透光状态的结构示意图,图4为图3所示的调光玻璃的不透光状态的结构示意图。
如图3-4所示,本发明实施例中的微结构层30除了可以构造为具有图1-2所示的半球状微结构以外,也可以构造为具有图3-4所示的具有棱镜状微结构或者其他角度的棱镜状微结构的微结构层30’,同样可以实现当调光玻璃内的第一物质处于固态时从外侧透光层10入射的光线穿过微结构层30’进入固态的第一物质51并穿出内侧透光层20,实现调光玻璃的透光状态,并且当第一物质处于液态时使得入射外侧透光层10的光线在微结构层30’的与空腔60相接的界面上发生部分反射或全反射,实现调光玻璃的半透光或不透光状态。
图5为本发明实施例的调光玻璃的制备方法的示意性流程图,图6a-6e为本发明实施例的调光玻璃的各制备工序的示意图。
如图5和图6a-6e所示,本发明实施例的调光玻璃的制备方法包括如下工序:
S101、制备外侧透光层和内侧透光层;
例如可以用玻璃或树脂按照规定的尺寸制造成外侧透光层和内侧透光层,或者将预制的玻璃或树脂板材切割成规定的尺寸。
S102、制备具有反射微结构的微结构层,将微结构层接合至外侧透光层的内侧表面;
可以采用例如玻璃或树脂等透光材料制成微结构层后,将微结构层30接合至外侧透光层10的内侧表面,如图6a所示。可通过对玻璃或树脂板 材表面进行例如纳米压印或曝光显影等图案化处理后再进行刻蚀处理形成大量相邻排布的反射微结构而制备微结构层,参见图1或图3中示例性地示出的微结构层30内侧表面上排布的多个半球状或棱镜状微结构。其中,每个微结构的基部尺寸例如可以在10-20微米的范围内,高度例如可以在5-10微米的范围内。
作为备选,在本发明一个实施例中,可以通过对外侧透光层的内侧表面直接进行例如纳米压印或曝光显影等图案化处理后再进行刻蚀处理形成大量相邻排布的反射微结构而形成微结构层。
S103、将密封部件的一端固定至外侧透光层的端部,由密封部件和微结构层形成空腔;
如图6b所示,密封部件40可以通过例如密封剂粘接至外侧透光层10的端部。除了图6b中示出的外侧透光层10的端面接合至密封部件40的侧表面上的方式,也可以是密封部件40的端面接合至外侧透光层10的端部侧表面上。
S104、将液态的第一物质注入空腔,并置于第一物质的凝固点以下使得第一物质凝固为固态;
如图6c所示,在由密封部件40的内侧表面、微结构层30的内侧表面形成的空腔内注入液态的第一物质52,然后置于第一物质的凝固点以下,使得第一物质凝固为固态的第一物质51,如图6d所示,固态的第一物质51的体积大于液态的第一物质52。
在本发明实施例中,注入空腔的第一物质例如可以为水、油和乙酸等固态体积大于液态体积并且凝固时呈透光状态的物质,可根据需要调光玻璃切换透光与不透光状态的分界点温度来选定具有该温度作为凝固点的物质作为第一物质。
S105、将内侧透光层的表面接合到第一物质的表面,并将内侧透光层的端部接合到密封部件的另一端。
如图6e所示,将内侧透光层20的表面接合到固态的第一物质51的表 面,并将内侧透光层20的端部接合到密封部件40的端部,形成调光玻璃。
在本发明一个实施例中,在S104之后还可以包括对固态的第一物质51的表面进行平坦化处理的步骤,以提高内侧透光层20与固态的第一物质51之间的接合度,确保固态的第一物质51的体积与密封部件、微结构层和内侧透光层围成的空间的体积尽可能相同。
在本发明另一个实施例中,在S104中可以将液态的第一物质注满由密封部件40的内侧表面、微结构层30的内侧表面形成的空腔,然后置于第一物质的凝固点以下使得第一物质凝固为固态的第一物质,此时由于第一物质凝固时体积膨胀,可将固态的第一物质的高出密封部件端面所处平面的部分去除,再将内侧透光层的表面固定至固态的第一物质的表面以及密封部件的端面上。
以上对本发明的一些实施例进行了说明,但本发明不限于上述特定的实施例,本领域技术人员在不脱离本发明构思的情况下,能够对上述实施例进行多种变型和修改,这些变型和修改后的实施例均落入本发明要求保护的范围之内。

Claims (10)

  1. 一种调光玻璃,包括:
    外侧透光层和内侧透光层;
    微结构层,其接合至或形成于所述外侧透光层的内侧表面并布置有反射微结构;
    密封部件,其接合至外侧透光层和内侧透光层的端部,密封部件与微结构层和内侧透光层围成具有预定体积的空间,
    其中,所述空间中布置有预定量的第一物质,并且所述预定量的第一物质在固态时的体积为所述预定体积、在液态时的体积小于所述预定体积。
  2. 如权利要求1所述的调光玻璃,其中,第一物质的凝固点在-10至25度的范围内。
  3. 如权利要求1所述的调光玻璃,其中,第一物质的凝固点在0至20度的范围内。
  4. 如权利要求1所述的调光玻璃,其中,微结构层的折射率与外侧透光层的折射率之差在0-0.2范围内。
  5. 如权利要求1所述的调光玻璃,其中,第一物质在固态时的折射率与微结构层的折射率之差在0-0.35范围内。
  6. 如权利要求1-5中任一项所述的调光玻璃,其中,所述反射微结构包括半球状微结构或棱镜状微结构。
  7. 如权利要求1-5中任一项所述的调光玻璃,其中,所述第一物质选自包括水、油和乙酸在内的组。
  8. 一种调光玻璃的制备方法,包括:
    制备外侧透光层和内侧透光层;
    制备具有反射微结构的微结构层并将微结构层接合至外侧透光层的内侧表面,或者在所述外侧透光层的内侧表面上形成具有反射微结构的微结构层;
    将密封部件的一端固定至外侧透光层的端部,由密封部件和微结构层 形成空腔;
    将液态的第一物质注入空腔,并置于第一物质的凝固点以下使得第一物质凝固为固态;
    将内侧透光层的表面接合到第一物质的表面,并将内侧透光层的端部接合到密封部件的另一端,
    其中,第一物质在液态时的体积小于在固态时的体积。
  9. 如权利要求8所述的制备方法,其中,在将注入空腔的第一物质凝固为固态之后还包括,对固态的第一物质的表面进行平坦化处理。
  10. 如权利要求8或9所述的制备方法,其中,所述第一物质选自包括水、油和乙酸在内的组。
PCT/CN2018/086810 2017-06-20 2018-05-15 一种调光玻璃及其制备方法 WO2018233404A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/329,430 US11099377B2 (en) 2017-06-20 2018-05-15 Light-adjusting glass and method for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710469625.6A CN107065377B (zh) 2017-06-20 2017-06-20 一种调光玻璃及其制备方法
CN201710469625.6 2017-06-20

Publications (1)

Publication Number Publication Date
WO2018233404A1 true WO2018233404A1 (zh) 2018-12-27

Family

ID=59594138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086810 WO2018233404A1 (zh) 2017-06-20 2018-05-15 一种调光玻璃及其制备方法

Country Status (3)

Country Link
US (1) US11099377B2 (zh)
CN (1) CN107065377B (zh)
WO (1) WO2018233404A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065377B (zh) 2017-06-20 2019-12-24 京东方科技集团股份有限公司 一种调光玻璃及其制备方法
CN111025708A (zh) * 2019-12-13 2020-04-17 珠海格力电器股份有限公司 智慧窗户的控制方法及控制系统
CN111999915B (zh) * 2020-07-29 2022-05-20 电子科技大学 一种环保型温控调光玻璃及其制备方法
CN114690306A (zh) * 2022-02-21 2022-07-01 浙江彩丞科技有限公司 一种发光玻璃、入光装置及导光棱镜制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061383A2 (en) * 1999-04-12 2000-10-19 Gianfranco Barban Method for manufacturing transparent members, such as glass and the like, and articles obtained with the method itself
US20110088758A1 (en) * 2009-10-19 2011-04-21 Tadao Yagi Glass paste composition, electrode substrate prepared using same, method of preparing electrode substrate, and dye sensitized solar cell including electrode substrate
CN105711184A (zh) * 2016-03-09 2016-06-29 宿迁市高烁复合材料有限公司 一种抗高温差玻璃纤维增强卷材
CN206070867U (zh) * 2016-08-30 2017-04-05 北京赋腾玻璃有限责任公司 一种low‑e玻璃
CN107065377A (zh) * 2017-06-20 2017-08-18 京东方科技集团股份有限公司 一种调光玻璃及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1239229A (zh) * 1999-06-23 1999-12-22 王仲明 一种可调透光薄膜的制作方法
US6967763B2 (en) * 2003-03-11 2005-11-22 Fuji Photo Film Co., Ltd. Display device
JP2005091533A (ja) * 2003-09-16 2005-04-07 Hitachi Powdered Metals Co Ltd エレクトロクロミック調光ガラス用素子、その製造方法ならびに補助電極パターン形成塗料組成物
CN1807321B (zh) * 2005-12-31 2013-07-03 中科能(青岛)节能工程有限公司 随环境温度自动调光的高效节能涂层玻璃及多层装配玻璃体
US8520286B2 (en) * 2009-12-18 2013-08-27 Sun Chemical Corporation Colored fluids for electrowetting, electrofluidic, and electrophoretic technologies
EP2668529A4 (en) * 2011-01-25 2017-07-26 Opalux Incorporated Photonic crystal device with infiltrating component
CN201952940U (zh) * 2011-03-12 2011-08-31 东北石油大学 一种新型透明绝热太阳能复合墙体
CN202256935U (zh) * 2011-10-11 2012-05-30 京东方科技集团股份有限公司 一种光学调光装置
WO2013127494A1 (en) * 2012-03-02 2013-09-06 Merck Patent Gmbh Electrowetting fluids
CN102914058A (zh) * 2012-11-03 2013-02-06 湖南兴业太阳能科技有限公司 抗空晒平板太阳能集热器
CN103197438B (zh) * 2013-02-18 2016-08-03 赵雪冰 一种透明度可调的玻璃结构
KR102227978B1 (ko) * 2014-05-22 2021-03-15 삼성전자주식회사 전기습윤 소자용 유체 및 이를 이용한 전기습윤 소자
WO2016021190A1 (ja) * 2014-08-07 2016-02-11 パナソニックIpマネジメント株式会社 表示装置
CN106543380A (zh) * 2016-10-20 2017-03-29 重庆禾维科技有限公司 温敏变色材料及其制备方法和单向透视温敏型玻璃

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061383A2 (en) * 1999-04-12 2000-10-19 Gianfranco Barban Method for manufacturing transparent members, such as glass and the like, and articles obtained with the method itself
US20110088758A1 (en) * 2009-10-19 2011-04-21 Tadao Yagi Glass paste composition, electrode substrate prepared using same, method of preparing electrode substrate, and dye sensitized solar cell including electrode substrate
CN105711184A (zh) * 2016-03-09 2016-06-29 宿迁市高烁复合材料有限公司 一种抗高温差玻璃纤维增强卷材
CN206070867U (zh) * 2016-08-30 2017-04-05 北京赋腾玻璃有限责任公司 一种low‑e玻璃
CN107065377A (zh) * 2017-06-20 2017-08-18 京东方科技集团股份有限公司 一种调光玻璃及其制备方法

Also Published As

Publication number Publication date
US20190212542A1 (en) 2019-07-11
CN107065377A (zh) 2017-08-18
US11099377B2 (en) 2021-08-24
CN107065377B (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
WO2018233404A1 (zh) 一种调光玻璃及其制备方法
CN102986039B (zh) 与太阳能电池一起使用的具有嵌入式空腔的层压结构以及相关的制造方法
US7414788B2 (en) Diffusion plate used in direct-type backlight module and method for making the same
JP2011519065A5 (zh)
CN103838068A (zh) 发光装置及其相关投影系统
WO2018076702A1 (zh) 显示面板及其制作方法、显示装置
JP2018527694A (ja) 間接照明装置および間接照明装置の製造方法
US9104072B2 (en) Liquid crystal device
CN102338895B (zh) 一种焦距可调的双焦点非球面微透镜
US10717108B2 (en) Methods and structures for light regulating coatings
US9851474B2 (en) Optical component and method of producing the same
CN212256002U (zh) 一种抬头显示装置及机动车
CN106547042A (zh) 散射膜及具有该散射膜的阵列基板
CN110394986A (zh) 一种3d打印系统
CN105137607A (zh) 3d膜与3d显示装置
KR101987234B1 (ko) 광학 시트
CN109425593B (zh) 一种无色透明传感薄膜及其制造方法
JP3808598B2 (ja) 面光源装置、偏光光源装置及び液晶表示装置
CN101477217B (zh) 回复反射器
CN206710754U (zh) 一种背光源及液晶显示模组
CN201387700Y (zh) 晶格型反光瓷片砖
JP2012013801A (ja) 再帰反射部材
CN116559989A (zh) 防窥结构、防窥膜及其制备方法
Lee et al. Development of passive and active microprism arrays to change the radiation pattern of solid-state lighting
KR102030616B1 (ko) 재귀반사성 광학 시트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18820958

Country of ref document: EP

Kind code of ref document: A1