WO2018233278A1 - 一种转轴三维振动同步测量的装置及方法 - Google Patents

一种转轴三维振动同步测量的装置及方法 Download PDF

Info

Publication number
WO2018233278A1
WO2018233278A1 PCT/CN2018/071767 CN2018071767W WO2018233278A1 WO 2018233278 A1 WO2018233278 A1 WO 2018233278A1 CN 2018071767 W CN2018071767 W CN 2018071767W WO 2018233278 A1 WO2018233278 A1 WO 2018233278A1
Authority
WO
WIPO (PCT)
Prior art keywords
stripe
axis
rotating shaft
sensor
image
Prior art date
Application number
PCT/CN2018/071767
Other languages
English (en)
French (fr)
Inventor
钟舜聪
钟剑锋
张秋坤
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2018233278A1 publication Critical patent/WO2018233278A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means

Definitions

  • the invention relates to the field of machine vision measuring vibration technology, in particular to a device and a method for non-contact synchronous measurement of three-dimensional vibration of a rotating shaft.
  • the axial vibration and radial vibration signals of the rotating shaft are very important for the condition monitoring and defect detection of the rotating shaft, because these vibration signals are closely related to the dynamic characteristics of the rotating machine.
  • misalignment of the rotating shaft is a common fault of the rotating mechanical shaft, and the main factors causing the misalignment of the rotating shaft are mainly caused by assembly errors, thermal deformation or load imbalance. Excessive misalignment of the rotating shaft may cause strong vibration of the rotating shaft, which may cause damage and damage to the rotating machine. Therefore, real-time monitoring of the vibration signal of the rotating shaft is very important for the health status and fault diagnosis of the rotating shaft.
  • the shaft vibration measurement technology can be mainly divided into two types: contact measurement and non-contact measurement.
  • Contact measurement mainly uses vibration sensors to obtain vibration data.
  • the contact sensor cannot directly measure the rotating shaft, and the vibration of the rotating shaft is indirectly obtained by measuring the vibration of the support frame of the rotating shaft or other non-rotating parts. Measuring the vibration of the shaft by indirect measurement methods is often affected by other factors, such as the transfer efficiency between the rotating part and the non-rotating part. Therefore, the direct measurement of the rotating shaft by the non-contact measuring method can obtain the vibration parameters of the rotating shaft more accurately.
  • the more popular non-contact shaft vibration measurement method is mainly the eddy current sensor, but the eddy current sensor has requirements for the material of the shaft, and may not be suitable for some non-metallic materials.
  • Another non-contact measurement method is the laser Doppler meter, but such equipment is generally expensive and uneconomical.
  • one direction of vibration requires a sensor or probe and does not allow a sensor or probe to measure multi-dimensional vibration.
  • the present invention designs an accurate, simple and efficient non-contact rotating shaft three-dimensional vibration synchronous measuring device and method, which only needs to be set on the rotating shaft
  • a stripe sensor can realize vibration measurement in three dimensions of the rotating shaft. Compared with the existing measuring method, it not only reduces the hardware cost, but also improves the measuring efficiency of the shaft vibration measurement.
  • a three-dimensional vibration synchronous measuring device for rotating shaft comprising a stripe sensor mounted on a circumferential surface of a rotating shaft to be tested for sensing three-dimensional spatial displacement information of the rotating shaft; an image collecting module for the stripe sensor on the rotating shaft to be tested Performing image acquisition and recording, and transmitting the acquired stripe sensor image signal to the computer through a data transmission line; a computer for controlling the image acquisition module; and an image processing module, the image processing module is configured to The stripe sensor image signal is processed to calculate three-dimensional vibration information of the rotating shaft.
  • the stripe sensor is a lightweight patch sensor; the front side is a stripe image, the back side is an adhesive layer; and the light patch type sensor ring is attached to the surface of the shaft to be tested.
  • the stripe image has a stripe image with a sinusoidal stripe on the front side of the stripe image; the stripe intensity changes sinusoidally along the length direction of the patch stripe sensor, and the stripe intensity does not change along the width direction, and the width is equal to the circumference of the rotating shaft. .
  • the stripe sensor is a lightweight sleeve type sensor; the inner diameter is consistent with the rotation axis, and the outer surface is a stripe image; the lightweight sleeve type sensor is sleeved at a position to be measured on the shaft to be tested.
  • the stripe image of the outer surface of the lightweight sleeve changes sinusoidally along the axial stripe strength of the sleeve, and the stripe strength does not change along the circumferential direction.
  • the sampling frame rate of the image acquisition module is adjusted according to the highest frequency of the measured vibration, and the imaging range thereof is adjusted according to the actual imaging size of the stripe sensor to reduce the data amount of the collected fringe image.
  • the image acquisition module includes a control circuit and an imaging sensor and an imaging lens connected thereto.
  • the invention also provides a method for synchronous measurement of three-dimensional vibration of a rotating shaft, comprising the following steps: Step S1: installing a sinusoidal stripe sensor on the vibration rotating shaft to be tested, and adjusting the imaging position of the image capturing module to make the stripe imaged on the imaging sensor Intermediate position; Step S2: With the vibration of the shaft to be tested, the sinusoidal stripe sensor attached to the surface thereof is also rotated and vibrated, and the stripe sensor is continuously imaged and recorded by the image acquisition module; Step S3: the stripe to be collected The image is transmitted to the computer, and then the image processing module is used to process the stripe signal to obtain the three-dimensional vibration information of the rotating shaft.
  • the processing flow of the image processing module is: Step S31: selecting the first frame fringe image as a reference frame, and obtaining the accurate density information of the stripe line by line to obtain an envelope of the surface of the rotating shaft; S32: Perform interpolation resampling on the obtained envelope to increase the number of sampling points of the curve; then use a quadratic spline curve to fit and smooth the envelope; then obtain a slope curve of the smoothed envelope, and then pass the linear
  • the interpolation function obtains the coordinate value of the slope curve slope value of zero; then the coordinate point where the slope is zero is the axis position of the rotating shaft; if the rotating shaft has displacement in the direction perpendicular to the imaging optical axis and the axis of the rotating shaft, then the axis of the rotating shaft is obtained Obtaining a displacement signal of the rotation axis in a direction perpendicular to the imaging optical axis and the axis of the rotation axis in a direction perpendicular to the position
  • the mathematical relationship of the displacement of the rotating shaft along the direction of the imaging optical axis is:
  • ⁇ x ( t ) is the displacement of the rotation axis at time t
  • Z is the imaging object distance between the imaging lens and the stripe sensor
  • d ( t ) is the density of the stripe at the axis of the rotation axis at time t
  • d 0 is the axis of the reference frame axis The density of the stripes
  • ⁇ y ( t ) is the displacement of the rotation axis perpendicular to the imaging optical axis and the axis of the rotation axis at time t
  • ⁇ m ( t ) is the relative coordinate difference of the axis coordinate of the rotation axis
  • L is the actual width of the stripe sensor stripe
  • N L The number of pixels covered by the stripe of the reference frame axis axis position
  • ⁇ z ( t ) is the displacement of the rotation axis along the axis of the rotation axis at time t
  • n ( t ) is the coordinate value of the maximum peak point of the cross-correlation sequence of the axial stripe intensity of the rotation axis at time t and the stripe intensity of the reference frame axis
  • n r is Reference frame axis stripe intensity The coordinate value of the maximum peak point of the autocorrelation sequence.
  • the present invention requires only one lightweight stripe sensor to achieve simultaneous measurement of the three-dimensional vibration of the rotating shaft, and it is not necessary to arrange a sensor in each vibration direction of the rotating shaft as in the eddy current sensor.
  • the stripe sensor of the present invention has no material requirement for the measurement object and can be applied to an object of any material.
  • the stripe sensor of the present invention is low in cost, and can be successfully printed by using an ordinary printer and a self-adhesive paper.
  • FIG. 1 is a schematic structural view of an apparatus according to an embodiment of the present invention.
  • Figure 2 is a fringe diagram of the image sensor acquired when the shaft is displaced at different radial directions.
  • FIG. 3 is a graph showing the change of the surface density of the rotating shaft obtained by the different fringe patterns in FIG. 2, that is, the surface envelope of the rotating shaft. 4 is a slope curve of each stripe density curve in FIG.
  • Fig. 5 is a flow chart showing the processing of the axial displacement calculation of the rotary shaft.
  • Fig. 6 is a schematic view showing the measurement of the radial displacement of the rotating shaft in the embodiment of the present invention.
  • 1-computer 2-data transmission line
  • 3-image acquisition module 4-imaging lens
  • 5-bearing seat 6-strip sensor
  • 7-axis 8-plane array image sensor.
  • FIG. 1 is a schematic structural view of an apparatus according to an embodiment of the present invention.
  • the present invention provides a three-dimensional vibration synchronous measuring device for a rotating shaft, comprising a computer 1, an image capturing module 3, and a stripe sensor 6.
  • the stripe sensor 6 is mounted on the circumferential surface of the shaft 7 to be tested for sensing the three-dimensional spatial displacement information of the shaft 7.
  • the image acquisition module 3 performs image acquisition and recording on the stripe sensor 6 on the spindle 7 to be measured, and transmits the acquired stripe sensor image signal to the computer 1 through the data transmission line 2.
  • the computer 1 is used to control the image acquisition module 3, and performs processing analysis on the stripe image signal transmitted to the computer 1 to obtain three-dimensional vibration information of the rotating shaft.
  • the stripe sensor is a lightweight patch sensor; the front side is a stripe image, the back side is an adhesive layer; and the light patch type sensor ring is attached to the surface of the shaft to be tested.
  • the stripe image has a stripe image with a sinusoidal stripe on the front side of the stripe image; the stripe intensity changes sinusoidally along the length direction of the patch stripe sensor, and the stripe intensity does not change along the width direction, and the width is equal to the circumference of the rotating shaft. .
  • the stripe sensor is a lightweight sleeve type sensor; the inner diameter thereof is consistent with the rotation axis, and the outer surface is a stripe image; the lightweight sleeve type sensor is disposed at a position to be measured on the shaft to be tested. .
  • the stripe image of the outer surface of the lightweight sleeve changes sinusoidally along the axial stripe strength of the sleeve, and the stripe strength does not change along the circumferential direction.
  • the sampling frame rate of the image acquisition module is adjusted according to the highest frequency of the measured vibration, and the imaging range thereof is adjusted according to the actual imaging size of the stripe sensor to reduce the data amount of the collected fringe image.
  • the image acquisition module includes a control circuit and an imaging sensor and an imaging lens connected thereto.
  • FIGS. 2-4 the acquired fringe pattern of the rotating shaft at different radial displacements and the processing description thereof are shown in FIGS. 2-4.
  • F1 is a reference frame fringe diagram
  • F2 is a fringe pattern acquired when the rotating shaft has a positive displacement in the direction perpendicular to the imaging optical axis and the axis of the rotating shaft
  • F3 is a negative axis in the direction perpendicular to the imaging optical axis and the axis of the rotating shaft.
  • a fringe pattern acquired at the time of displacement is shown in FIGS. 2-4.
  • F1 is a reference frame fringe diagram
  • F2 is a fringe pattern acquired when the rotating shaft has a positive displacement in the direction perpendicular to the imaging optical axis and the axis of the rotating shaft
  • F3 is a negative axis in the direction perpendicular to the imaging optical axis and the axis of the rotating shaft.
  • the fringe image of the acquired fringe image changes along the axial direction at different positions on the surface of the shaft 7 to be tested.
  • the fringe density at the axial position of the rotating shaft changes the least, and the farther to the opposite side of the axis
  • the center position of the axis of the shaft can obtain the displacement information of the shaft in the direction perpendicular to the imaging optical axis and the axis of the shaft.
  • the surface envelope of the rotating shaft can be extracted based on the stripe density information of each line of the strip along the imaging optical axis direction.
  • the curve of the ribbon fringe density obtained by the different frame fringe patterns after processing that is, the shaft envelope of the rotating shaft is as shown in FIG.
  • the obtained envelope is interpolated and resampled to increase the number of sampling points of the curve; then the quadratic spline curve is used to fit and smooth the envelope; then the slope curve of the smoothed envelope is obtained, and then the linear interpolation function is passed. Find the coordinate value of the slope curve slope value is zero.
  • the coordinate point where the slope is zero is the axis position of the shaft, as shown in FIG.
  • the axis 7 is obtained perpendicular to the imaging optical axis and the axis of rotation by determining the relative change of the axis of the axis in the vertical direction of the imaging sensor 8 with respect to the position of the reference frame axis. Displacement signal in the direction of the axis.
  • the stripe density information of the smoothed envelope at the axis coordinate of the rotating shaft is obtained by the spline interpolation method.
  • the stripe density of the stripe signal at the stripe axis also changes as the displacement of the shaft 7 in the direction of the imaging optical axis changes. From the change of the density information, the shaft 7 can be obtained. Vibration information in the direction of the imaging optical axis.
  • a method for synchronous measurement of three-dimensional vibration of a rotating shaft comprising the following steps: Step S1: installing a sinusoidal stripe sensor on a vibration rotating shaft to be tested, and adjusting an imaging position of the image capturing module to form a stripe image in an intermediate position of the imaging sensor; S2: With the vibration of the shaft to be tested, the sinusoidal stripe sensor attached to the surface thereof is also rotated and vibrated, and the stripe sensor is continuously imaged and recorded by the image acquisition module; step S3: transmitting the acquired stripe image to the computer Then, the image processing module is used to process the stripe signal to obtain the three-dimensional vibration information of the rotating shaft.
  • the processing flow of the image processing module is: Step S31: selecting the first frame fringe image as a reference frame, and obtaining the accurate density information of the stripe line by line to obtain an envelope of the surface of the rotating shaft; S32: Perform interpolation resampling on the obtained envelope to increase the number of sampling points of the curve; then use a quadratic spline curve to fit and smooth the envelope; then obtain a slope curve of the smoothed envelope, and then pass the linear
  • the interpolation function obtains the coordinate value of the slope curve slope value of zero; then the coordinate point where the slope is zero is the axis position of the rotating shaft; if the rotating shaft has displacement in the direction perpendicular to the imaging optical axis and the axis of the rotating shaft, then the axis of the rotating shaft is obtained Obtaining a displacement signal of the rotation axis in a direction perpendicular to the imaging optical axis and the axis of the rotation axis in a direction perpendicular to the position
  • Fig. 5 is a flow chart showing the processing of the axial displacement calculation of the rotary shaft.
  • the stripe intensity signal at the axis of the fringe axis of each frame is extracted and interpolated by the spline curve to improve the sampling resolution of the stripe; the reference frame fringe intensity signal is subjected to autocorrelation operation, and the peak value is passed.
  • the search method finds the coordinate of the maximum peak point of the autocorrelation sequence as the reference point of the axial displacement of the rotating shaft; and then cross-correlate the stripe intensity signal at the axis of the axis of the fringe of each frame with the reference frame fringe intensity signal and obtain the cross-correlation The maximum peak point coordinate value of the sequence.
  • the rotating shaft has a displacement in the axial direction of the rotating shaft, the maximum peak point coordinate value obtained by the cross-correlation operation will have a relative coordinate change with the reference coordinate, and thus the axial displacement information of the rotating shaft can be obtained by calculating the relative change of the coordinate.
  • Fig. 6 is a schematic view showing the measurement of the radial displacement of the rotating shaft in the embodiment of the present invention. As shown in Figure 4, the mathematical relationship of the displacement of the rotating shaft along the direction of the imaging optical axis is:
  • ⁇ x ( t ) is the displacement of the rotation axis at time t
  • Z is the imaging object distance between the imaging lens and the stripe sensor
  • d ( t ) is the density of the stripe at the axis of the rotation axis at time t
  • d 0 is the axis of the reference frame axis The density of the stripes
  • ⁇ y ( t ) is the displacement of the rotation axis perpendicular to the imaging optical axis and the axis of the rotation axis at time t
  • ⁇ m ( t ) is the relative coordinate difference of the axis coordinate of the rotation axis
  • L is the actual width of the stripe sensor stripe
  • N L The number of pixels covered by the stripe of the reference frame axis axis position
  • ⁇ z ( t ) is the displacement of the rotation axis along the axis of the rotation axis at time t
  • n ( t ) is the coordinate value of the maximum peak point of the cross-correlation sequence of the axial stripe intensity of the rotation axis at time t and the stripe intensity of the reference frame axis
  • n r is Reference frame axis stripe intensity The coordinate value of the maximum peak point of the autocorrelation sequence.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种转轴三维振动同步测量的装置及方法,该装置包括条纹传感器(6)、图像采集模块(3)、图像处理软件和计算机(1),该方法包括以下步骤:将条纹传感器(6)安装于待测转轴(7);在转轴(7)正前方安装好图像采集模块(3),使得图像采集模块(3)的成像光轴与转轴(7)垂直并位于同一平面,调整好图像采集模块(3)的成像镜头(4)使得条纹传感器(6)清晰成像于图像采集模块(3)的面阵成像传感器(8)中间位置;当转轴(7)转动时采用图像采集模块(3)对条纹传感器(6)进行实时成像并传输到计算机(1)中进行处理;图像处理软件对采集的条纹图像进行处理获得转轴的三维振动信息。

Description

一种转轴三维振动同步测量的装置及方法 技术领域
本发明涉及机器视觉测量振动技术领域,特别是涉及一种转轴三维振动非接触式同步测量的装置及方法。
背景技术
转轴的轴向振动和径向振动信号对于转轴的状态监测和缺陷检测具有非常重要的意义,因为这些振动信号与旋转机械的动态特性息息相关。例如,转轴不对中是旋转机械转轴的一种常见故障,引起转轴不对中的主要因素主要由装配误差,热变形或载荷不平衡等。过大的转轴不对中误差可能引起转轴的强烈振动,进而对旋转机械造成损伤和危害。因此对转轴的振动信号进行实时的监测对于转轴的健康状态和故障诊断具有非常重要的意义。
目前,转轴振动测量技术主要可分为接触式测量和非接触式测量两大类。接触式测量主要通过接触式传感器来获得振动数据。但是因为转轴在工作过程需要旋转,导致接触式传感器不能直接对转轴进行测量,往往通过对转轴的支撑架或者其他非旋转部件的振动进行测量来间接获得转轴的振动。通过间接测量方法测量转轴的振动往往受到其他因素的影响,比如受到转转部件和非旋转部件之间的传递效率的影响。因此采用非接触测量方法对转轴进行直接测量能够更加准确地获得转轴的振动参数。现在比较流行的非接触式转轴振动测量方法主要是采用电涡流传感器,但是电涡流传感器对转轴的材料有所要求,对于一些非金属材料的转轴可能并不适用。另一种非接触式的测量方法是激光多普勒测量仪,但是这种设备一般比较昂贵,并不经济。
技术问题
对于电涡流传感器和激光多普勒测量仪而言,一个方向的振动就需要一个传感器或者探头,并不能实现一个传感器或者探头对多维振动的测量。
技术解决方案
因此,在对现有转速测量方法进行了解和研究的基础上,本发明设计出一种精确、简单和高效的非接触式转轴三维振动同步测量的装置和方法,该方法只需要在转轴上设置一个条纹传感器就可以实现转轴三个维度的振动测量,相对于现有的测量方法而言,不仅降低了硬件成本,更加提高了转轴振动测量的测量效率。
一种转轴三维振动同步测量装置,其包括一条纹传感器,安装于待测转轴圆周表面,用以感知转轴的三维空间位移信息;一图像采集模块,用以对所述待测转轴上的条纹传感器进行图像采集与记录,并将采集到的条纹传感器图像信号通过数据传输线传输至计算机;一计算机,用以对所述图像采集模块进行控制;以及一图像处理模块,所述图像处理模块用于对所述的条纹传感器图像信号进行处理,计算转轴的三维振动信息。
在本发明一实施例中,所述条纹传感器制为轻质贴片式传感器;其正面为条纹图像,背面为粘性层;轻质贴片式传感器环贴设于待测转轴表面。
进一步的,轻质贴片式传感器正面为条纹图像的条纹为正弦条纹;条纹强度沿贴片式条纹传感器的长度方向成正弦变化,沿宽度方向条纹强度不变,其宽度与转轴的周长相等。
在本发明一实施例中,所述条纹传感器为轻质套筒式传感器;其内径与转轴一致,其外表面为条纹图像;轻质套筒式传感器套设于待测转轴需要测量的位置。
进一步的,轻质套筒外表面条纹图像沿套筒的轴向条纹强度成正弦变化,沿环周方向条纹强度不变。
在本发明一实施例中,所述图像采集模块的采样帧率根据所测振动的最高频率调整,其成像范围根据条纹传感器实际的成像大小进行调整,以减小采集的条纹图像的数据量。
在本发明一实施例中,所述图像采集模块包括控制电路及与其相连接的成像传感器、成像镜头。
本发明还提供一种转轴三维振动同步测量的方法,其包括以下步骤:步骤S1:在待测振动转轴上安装正弦条纹传感器,并调整好图像采集模块的成像位置,使条纹成像于成像传感器的中间位置;步骤S2: 随着待测转轴的振动,贴覆其表面的正弦条纹传感器也随之转动和振动,采用图像采集模块对条纹传感器进行连续成像和记录;步骤S3:将采集到的条纹图像传输到计算机,再采用图像处理模块进行条纹信号的处理,获得转轴的三维振动信息。
在本发明一实施例中,所述图像处理模块的处理流程为:步骤S31:选取第一帧条纹图像为参考帧,逐行求取条纹的精确密度信息,得到转轴表面的包络线;步骤S32:对获得的包络线进行插值重采样,提高曲线的采样点数;再采用二次样条曲线对包络线进行拟合平滑;然后求取平滑后包络线的斜率曲线,再通过线性插值函数求取斜率曲线斜率值为零的坐标值;则该斜率为零的坐标点即为转轴轴线位置;如果转轴在垂直于成像光轴和转轴轴线的方向有位移,那么通过求取转轴轴线在成像传感器垂直方向上相对于参考帧轴线位置的相对改变获得转轴在垂直于成像光轴和转轴轴线方向的位移信号;步骤S33:通过样条曲线插值法求取步骤S32中平滑后的包络线在转轴轴线坐标处的条纹密度信息;如果转轴在成像光轴方向有位移,那么该条纹轴线处的条纹信号的条纹密度也随着转轴在成像光轴方向的位移变化而变化,从该密度信息的变化即可获得转轴在成像光轴方向的振动信息;步骤S34:提取出每帧条纹图转轴轴线处的条纹强度信号并通过样条曲线进行插值处理,以提高条纹的采样分辨率;将参考帧条纹强度信号并作自相关运算,通过峰值寻找方法找到自相关序列最大峰值点的坐标作为转轴轴向位移的参考点;再通过各帧条纹图转轴轴线处的条纹强度信号与参考帧条纹强度信号并作互相关运算并求取各互相关序列的最大峰值点坐标值;如果转轴在转轴的轴线方向有位移,那么通过互相关运算获得的最大峰值点坐标值将与参考坐标有相对坐标变化,因此转轴轴向位移信息可以通过求取该坐标的相对变化计算获得。
在本发明一实施例中,转轴沿成像光轴方向的位移数学关系式为:
Figure 922708dest_path_image001
其中△ xt)为转轴在 t时刻的位移,Z为成像镜头和条纹传感器之间的成像物距, dt)为在 t时刻转轴轴线处条纹的密度, d 0 为参考帧转轴轴线处条纹的密度;
转轴沿垂直于成像光轴和转轴轴线方向的位移数学关系式为:
Figure 284288dest_path_image002
其中△ yt)为转轴在 t时刻沿垂直于成像光轴和转轴轴线方向的位移,△ mt)为转轴轴线坐标的相对坐标差值, L为条纹传感器条纹的实际宽度, N L 为参考帧转轴轴线位置条纹覆盖的像素点数;
转轴沿转轴轴线方向的位移数学关系式为:
Figure 730706dest_path_image003
其中△ zt)为转轴在 t时刻沿转轴轴线方向的位移, nt)为转轴在 t时刻轴线条纹强度与参考帧轴线条纹强度互相关序列的最大峰值点的坐标值, n r 为参考帧轴线条纹强度自相关序列的最大峰值点的坐标值。
有益效果
(1)本发明只需要一个轻质条纹传感器即可实现对转动轴三维振动的同步测量,不需要如电涡流传感器那样在转轴的每个振动方向上都要布置一路传感器。(2)本发明的条纹传感器对测量对象没有材质要求,可适用于任何材料的对象。(3)本发明的条纹传感器成本低廉,采用普通的打印机和不干胶纸即可打印制作成功。
附图说明
图1是本发明实施例的装置结构示意图。
图2是转轴在不同径向位移时图像传感器采集的条纹图。
图3为图2中不同条纹图的获得的转轴表面密度变化曲线,即转轴表面包络线。图4为图3中各条纹密度曲线的斜率曲线。
图5是转轴轴向位移计算的处理流程图。
图6是本发明实施例中转轴径向位移测量原理图。
图中,1-计算机,2-数据传输线,3-图像采集模块,4-成像镜头,5-轴承座,6-条纹传感器,7-转轴,8-面阵图像传感器。
本发明的最佳实施方式
[0007] 下面结合附图及具体实施例对本发明作进一步的详细说明。
图1是本发明实施例的装置结构示意图。如图1所示,本发明提供一种转轴三维振动同步测量装置,包括计算机1、图像采集模块3、条纹传感器6。条纹传感器6安装于待测转轴7圆周表面,用以感知转轴7的三维空间位移信息。图像采集模块3用以对待测转轴7上的条纹传感器6进行图像采集与记录,并将采集到的条纹传感器图像信号通过数据传输线2传输至计算机1。计算机1用以对图像采集模块3进行控制,并对传输到计算机1的条纹图像信号进行处理分析以获得转轴的三维振动信息。
在本发明一实施例中,所述条纹传感器制为轻质贴片式传感器;其正面为条纹图像,背面为粘性层;轻质贴片式传感器环贴设于待测转轴表面。
进一步的,轻质贴片式传感器正面为条纹图像的条纹为正弦条纹;条纹强度沿贴片式条纹传感器的长度方向成正弦变化,沿宽度方向条纹强度不变,其宽度与转轴的周长相等。
在本发明另一实施例中,所述条纹传感器为轻质套筒式传感器;其内径与转轴一致,其外表面为条纹图像;轻质套筒式传感器套设于待测转轴需要测量的位置。
进一步的,轻质套筒外表面条纹图像沿套筒的轴向条纹强度成正弦变化,沿环周方向条纹强度不变。
在本发明一实施例中,所述图像采集模块的采样帧率根据所测振动的最高频率调整,其成像范围根据条纹传感器实际的成像大小进行调整,以减小采集的条纹图像的数据量。
在本发明一实施例中,所述图像采集模块包括控制电路及与其相连接的成像传感器、成像镜头。
本发明实施例转轴在不同径向位移时的采集的条纹图及其处理说明图参见图2-4。图2中F1为参考帧条纹图,F2为转轴在垂直于成像光轴和转轴轴线方向上有正向位移时采集的条纹图,F3为转轴在垂直于成像光轴和转轴轴线方向上有负向位移时采集的条纹图。
如图2-4所示,所采集的条纹图像在待测转轴7表面不同位置沿轴心方向的条纹密度将发生变化,位于转轴轴心位置的条纹密度变化最小,往轴心两侧越远位置的条纹密度变化越大。因此可以根据变密度条纹图像的条纹密度变化规律求取转轴的表面包络线,并通过求得的转轴包络线确定转轴在图像中的待测转轴7轴线位置,通过求取不同帧条纹图像转轴轴线的中心位置即可获得转轴在垂直于成像光轴和转轴轴线方向的位移信息。转轴的表面包络线可以根据沿成像光轴方向每行条纹的条纹密度信息的提取。处理后的不同帧条纹图获得的转轴条纹密度变化曲线,即转轴包络线如图3所示。对获得的包络线进行插值重采样,提高曲线的采样点数;再采用二次样条曲线对包络线进行拟合平滑;然后求取平滑后包络线的斜率曲线,再通过线性插值函数求取斜率曲线斜率值为零的坐标值。该斜率为零的坐标点即为转轴轴线位置,如图4所示。如果转轴7在垂直于成像光轴和转轴轴线的方向有位移,那么通过求取转轴轴线在成像传感器8垂直方向上相对于参考帧轴线位置的相对改变获得转轴7在垂直于成像光轴和转轴轴线方向的位移信号。通过样条曲线插值法求取平滑后的包络线在转轴轴线坐标处的条纹密度信息。如果转轴7沿成像光轴方向有位移,那么该条纹轴线处的条纹信号的条纹密度也随着转轴7在成像光轴方向的位移变化而变化,从该密度信息的变化即可获得转轴7在成像光轴方向的振动信息。
一种转轴三维振动同步测量的方法,其包括以下步骤:步骤S1:在待测振动转轴上安装正弦条纹传感器,并调整好图像采集模块的成像位置,使条纹成像于成像传感器的中间位置;步骤S2: 随着待测转轴的振动,贴覆其表面的正弦条纹传感器也随之转动和振动,采用图像采集模块对条纹传感器进行连续成像和记录;步骤S3:将采集到的条纹图像传输到计算机,再采用图像处理模块进行条纹信号的处理,获得转轴的三维振动信息。
在本发明一实施例中,所述图像处理模块的处理流程为:步骤S31:选取第一帧条纹图像为参考帧,逐行求取条纹的精确密度信息,得到转轴表面的包络线;步骤S32:对获得的包络线进行插值重采样,提高曲线的采样点数;再采用二次样条曲线对包络线进行拟合平滑;然后求取平滑后包络线的斜率曲线,再通过线性插值函数求取斜率曲线斜率值为零的坐标值;则该斜率为零的坐标点即为转轴轴线位置;如果转轴在垂直于成像光轴和转轴轴线的方向有位移,那么通过求取转轴轴线在成像传感器垂直方向上相对于参考帧轴线位置的相对改变获得转轴在垂直于成像光轴和转轴轴线方向的位移信号;步骤S33:通过样条曲线插值法求取步骤S32中平滑后的包络线在转轴轴线坐标处的条纹密度信息;如果转轴在成像光轴方向有位移,那么该条纹轴线处的条纹信号的条纹密度也随着转轴在成像光轴方向的位移变化而变化,从该密度信息的变化即可获得转轴在成像光轴方向的振动信息;步骤S34:提取出每帧条纹图转轴轴线处的条纹强度信号并通过样条曲线进行插值处理,以提高条纹的采样分辨率;将参考帧条纹强度信号并作自相关运算,通过峰值寻找方法找到自相关序列最大峰值点的坐标作为转轴轴向位移的参考点;再通过各帧条纹图转轴轴线处的条纹强度信号与参考帧条纹强度信号并作互相关运算并求取各互相关序列的最大峰值点坐标值;如果转轴在转轴的轴线方向有位移,那么通过互相关运算获得的最大峰值点坐标值将与参考坐标有相对坐标变化,因此转轴轴向位移信息可以通过求取该坐标的相对变化计算获得。
图5是转轴轴向位移计算的处理流程图。如图5所示,提取出每帧条纹图转轴轴线处的条纹强度信号并通过样条曲线进行插值处理,以提高条纹的采样分辨率;将参考帧条纹强度信号并作自相关运算,通过峰值寻找方法找到自相关序列最大峰值点的坐标作为转轴轴向位移的参考点;再通过各帧条纹图转轴轴线处的条纹强度信号与参考帧条纹强度信号并作互相关运算并求取各互相关序列的最大峰值点坐标值。如果转轴在转轴的轴线方向有位移,那么通过互相关运算获得的最大峰值点坐标值将与参考坐标有相对坐标变化,因此转轴轴向位移信息可以通过求取该坐标的相对变化计算获得。
图6是本发明实施例中转轴径向位移测量原理图。如图4所示,转轴沿成像光轴方向的位移数学关系式为:
Figure 334994dest_path_image001
其中△ xt)为转轴在 t时刻的位移,Z为成像镜头和条纹传感器之间的成像物距, dt)为在 t时刻转轴轴线处条纹的密度, d 0 为参考帧转轴轴线处条纹的密度;
转轴沿垂直于成像光轴和转轴轴线方向的位移数学关系式为:
Figure 522130dest_path_image002
其中△ yt)为转轴在 t时刻沿垂直于成像光轴和转轴轴线方向的位移,△ mt)为转轴轴线坐标的相对坐标差值, L为条纹传感器条纹的实际宽度, N L 为参考帧转轴轴线位置条纹覆盖的像素点数;
转轴沿转轴轴线方向的位移数学关系式为:
Figure 895474dest_path_image004
其中△ zt)为转轴在 t时刻沿转轴轴线方向的位移, nt)为转轴在 t时刻轴线条纹强度与参考帧轴线条纹强度互相关序列的最大峰值点的坐标值, n r 为参考帧轴线条纹强度自相关序列的最大峰值点的坐标值。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。 

Claims (10)

  1. 一种转轴三维振动同步测量装置,其特征在于:包括
    一条纹传感器,安装于待测转轴圆周表面,用以感知转轴的三维空间位移信息;
    一图像采集模块,用以对所述待测转轴上的条纹传感器进行图像采集与记录,并将采集到的条纹传感器图像信号传输至计算机;
    一计算机,用以对所述图像采集模块进行控制;
    以及一图像处理模块,所述图像处理模块用以对所述的条纹传感器图像信号进行处理,计算转轴的三维振动信息。
  2. 根据权利要求1所述的转轴三维振动同步测量装置,其特征在于:所述条纹传感器为轻质贴片式传感器;其正面为条纹图像,背面为粘性层;轻质贴片式传感器环贴设于待测转轴表面。
  3. 根据权利要求2所述的转轴三维振动同步测量装置,其特征在于:轻质贴片式传感器正面为正弦条纹图像;条纹强度沿贴片式条纹传感器的长度方向呈正弦变化,沿宽度方向条纹强度不变,其宽度与转轴的周长相等。
  4. 根据权利要求1所述的转轴三维振动同步测量装置,其特征在于:所述条纹传感器为轻质套筒式传感器;其内径与转轴直径一致,其外表面为条纹图像;轻质套筒式传感器套设于待测转轴需要测量的位置。
  5. 根据权利要求4所述的转轴三维振动同步测量装置,其特征在于:轻质套筒外表面条纹图像沿套筒的轴向条纹强度呈正弦变化,沿环周方向条纹强度不变。
  6. 根据权利要求1所述的转轴三维振动同步测量装置,其特征在于:所述图像采集模块包括控制电路及与其相连接的成像传感器、成像镜头。
  7. 根据权利要求1所述的转轴三维振动同步测量的装置,其特征在于:所述图像采集模块的采样帧率根据所测振动的最高频率调整,其成像范围根据条纹传感器实际的成像大小进行调整,以减小采集的条纹图像的数据量。
  8. 一种转轴三维振动同步测量的方法,其特征在于:包括以下步骤:
    步骤S1:在待测振动转轴上安装条纹传感器,并调整好图像采集模块的成像位置,使条纹成像于成像传感器的中间位置;
    步骤S2: 随着待测转轴的振动,贴覆其表面的条纹传感器也随之转动和振动,采用图像采集模块对条纹传感器进行连续成像和记录;
    步骤S3:将采集到的条纹图像传输到计算机,再采用图像处理模块进行条纹信号的处理,获得转轴的三维振动信息。
  9. 根据权利要求8所述的转轴三维振动同步测量的方法,其特征在于:所述图像处理模块的处理流程为:
    步骤S31:选取第一帧条纹图像为参考帧,逐行求取条纹的精确密度信息,得到转轴表面的包络线;
    步骤S32:对获得的包络线进行插值重采样,提高曲线的采样点数;再采用二次样条曲线对包络线进行拟合平滑;然后求取平滑后包络线的斜率曲线,再通过线性插值函数求取斜率曲线斜率值为零的坐标值,则该斜率为零的坐标点即为转轴轴线位置;如果转轴在垂直于成像光轴和转轴轴线的方向有位移,那么通过求取转轴轴线在成像传感器垂直方向上相对于参考帧轴线位置的相对改变获得转轴在垂直于成像光轴和转轴轴线方向的位移信号;
    步骤S33:通过样条曲线插值法求取步骤S32中平滑后的包络线在转轴轴线坐标处的条纹密度信息;如果转轴在成像光轴方向有位移,那么该条纹轴线处的条纹信号的条纹密度也随着转轴在成像光轴方向的位移变化而变化,从该密度信息的变化即可获得转轴在成像光轴方向的振动信息;
    步骤S34:提取出每帧条纹图转轴轴线处的条纹强度信号并通过样条曲线进行插值处理,以提高条纹的采样分辨率;将参考帧条纹强度信号并作自相关运算,通过峰值寻找方法找到自相关序列最大峰值点的坐标作为转轴轴向位移的参考点;再通过各帧条纹图转轴轴线处的条纹强度信号与参考帧条纹强度信号并作互相关运算并求取各互相关序列的最大峰值点坐标值;如果转轴在转轴的轴线方向有位移,那么通过互相关运算获得的最大峰值点坐标值将与参考坐标有相对坐标变化,因此转轴轴向位移信息可以通过求取该坐标的相对变化计算获得。
  10. 根据权利要求9所述的转轴三维振动同步测量的方法,其特征在于:转轴沿成像光轴方向的位移数学关系式为:
    Figure dest_path_image001
    其中△ xt)为转轴在 t时刻的位移,Z为成像镜头和条纹传感器之间的成像物距, dt)为在 t时刻转轴轴线处条纹的密度, d 0 为参考帧转轴轴线处条纹的密度;
    转轴沿垂直于成像光轴和转轴轴线方向的位移数学关系式为:
    Figure 622239dest_path_image002
    其中△ yt)为转轴在 t时刻沿垂直于成像光轴和转轴轴线方向的位移,△ mt)为转轴轴线坐标的相对坐标差值, L为条纹传感器条纹的实际宽度, N L 为参考帧转轴轴线位置条纹覆盖的像素点数;
    转轴沿转轴轴线方向的位移数学关系式为:
    Figure dest_path_image003
    其中△ zt)为转轴在 t时刻沿转轴轴线方向的位移, nt)为转轴在 t时刻轴线条纹强度与参考帧轴线条纹强度互相关序列的最大峰值点的坐标值, n r 为参考帧轴线条纹强度自相关序列的最大峰值点的坐标值。
     
PCT/CN2018/071767 2017-06-20 2018-01-08 一种转轴三维振动同步测量的装置及方法 WO2018233278A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710469504.1 2017-06-20
CN201710469504.1A CN107271025B (zh) 2017-06-20 2017-06-20 一种转轴三维振动同步测量的装置及方法

Publications (1)

Publication Number Publication Date
WO2018233278A1 true WO2018233278A1 (zh) 2018-12-27

Family

ID=60067975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071767 WO2018233278A1 (zh) 2017-06-20 2018-01-08 一种转轴三维振动同步测量的装置及方法

Country Status (2)

Country Link
CN (1) CN107271025B (zh)
WO (1) WO2018233278A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111899297A (zh) * 2020-08-06 2020-11-06 中国铁建重工集团股份有限公司 线结构光条纹中心提取方法
CN114062265A (zh) * 2021-11-11 2022-02-18 易思维(杭州)科技有限公司 一种用于视觉系统的支撑结构稳定性的评估方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271025B (zh) * 2017-06-20 2023-04-11 福州大学 一种转轴三维振动同步测量的装置及方法
CN109313070A (zh) * 2017-12-28 2019-02-05 深圳配天智能技术研究院有限公司 工业视觉检测振动的方法及系统
CN109357621B (zh) * 2018-12-10 2020-08-11 福州大学 基于线阵相机和位感条纹的三维振动位移测量装置与方法
CN109374117A (zh) * 2018-12-21 2019-02-22 福州大学 基于感声条纹薄膜的声音测量装置及方法
CN109341548B (zh) * 2018-12-21 2020-08-11 福州大学 基于变密度条纹的三维振动视觉测量系统和方法
KR102392900B1 (ko) * 2020-06-29 2022-05-02 주식회사 화인 카메라와 거리측정센서를 활용한 기계 장치 진동의 3차원 측정 방법
CN112697259B (zh) * 2020-12-31 2022-04-08 福州大学 基于组合条纹的梁结构模态振型测量装置及方法
CN112763501A (zh) * 2021-01-22 2021-05-07 福州大学 基于视觉测量的转轴故障检测系统及方法
CN113340403B (zh) * 2021-05-31 2022-08-16 福州大学 基于圆周条纹和线阵相机的转轴径向振动测量方法
CN113758695B (zh) * 2021-08-30 2022-07-05 福州大学 采用视觉复合位感条纹实现旋转轴阶次分析的系统及方法
CN114646750B (zh) * 2022-05-13 2022-10-14 中国地质环境监测院(自然资源部地质灾害技术指导中心) 一种土壤环境实时监测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200975890Y (zh) * 2006-11-10 2007-11-14 李楚宇 三维微量位移自动监测装置
CN202770526U (zh) * 2011-12-01 2013-03-06 西安华科光电有限公司 一种机械振动的幅度曲线测量系统
CN104535170A (zh) * 2014-12-17 2015-04-22 大连民族学院 三维低频振动检测装置
CN104614064A (zh) * 2015-02-13 2015-05-13 福州大学 一种基于条纹靶的高速多维度振动测量装置及方法
JP5741313B2 (ja) * 2011-08-12 2015-07-01 株式会社大林組 モード解析方法、モード解析システム、変位計測方法、および変位計測システム
CN205642604U (zh) * 2016-04-12 2016-10-12 中国人民解放军军事交通学院 动力装置旋转轴扭振测量系统
CN107271025A (zh) * 2017-06-20 2017-10-20 福州大学 一种转轴三维振动同步测量的装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2250427A5 (zh) * 1973-07-19 1975-05-30 Electricite De France
EP2375227A1 (en) * 2010-04-09 2011-10-12 Siemens Aktiengesellschaft Measurement of three-dimensional motion characteristics
CN102183213B (zh) * 2011-03-02 2012-09-05 中国科学院光电技术研究所 一种基于相位测量偏折术的非球面镜检测方法
CN103837225A (zh) * 2014-03-24 2014-06-04 福州大学 一种实时获取振动物体表面四维振动信息的测量方法
JP6251142B2 (ja) * 2014-09-05 2017-12-20 公益財団法人鉄道総合技術研究所 測定対象物の非接触検知方法及びその装置
CN205111796U (zh) * 2015-11-30 2016-03-30 深圳市金旺达机电有限公司 一种xy十字工作台
CN105953746B (zh) * 2016-05-16 2018-12-14 西安工业大学 动态物体的三维轮廓实时测量方法
CN106443046B (zh) * 2016-11-23 2023-04-07 福州大学 一种基于变密度正弦条纹的转轴转速测量装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200975890Y (zh) * 2006-11-10 2007-11-14 李楚宇 三维微量位移自动监测装置
JP5741313B2 (ja) * 2011-08-12 2015-07-01 株式会社大林組 モード解析方法、モード解析システム、変位計測方法、および変位計測システム
CN202770526U (zh) * 2011-12-01 2013-03-06 西安华科光电有限公司 一种机械振动的幅度曲线测量系统
CN104535170A (zh) * 2014-12-17 2015-04-22 大连民族学院 三维低频振动检测装置
CN104614064A (zh) * 2015-02-13 2015-05-13 福州大学 一种基于条纹靶的高速多维度振动测量装置及方法
CN205642604U (zh) * 2016-04-12 2016-10-12 中国人民解放军军事交通学院 动力装置旋转轴扭振测量系统
CN107271025A (zh) * 2017-06-20 2017-10-20 福州大学 一种转轴三维振动同步测量的装置及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111899297A (zh) * 2020-08-06 2020-11-06 中国铁建重工集团股份有限公司 线结构光条纹中心提取方法
CN111899297B (zh) * 2020-08-06 2024-01-23 中国铁建重工集团股份有限公司 线结构光条纹中心提取方法
CN114062265A (zh) * 2021-11-11 2022-02-18 易思维(杭州)科技有限公司 一种用于视觉系统的支撑结构稳定性的评估方法
CN114062265B (zh) * 2021-11-11 2023-06-30 易思维(杭州)科技有限公司 一种用于视觉系统的支撑结构稳定性的评估方法

Also Published As

Publication number Publication date
CN107271025A (zh) 2017-10-20
CN107271025B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2018233278A1 (zh) 一种转轴三维振动同步测量的装置及方法
WO2018095213A1 (zh) 一种基于变密度正弦条纹的转轴转速测量装置及方法
Zhong et al. Vision-based system for simultaneous monitoring of shaft rotational speed and axial vibration using non-projection composite fringe pattern
JP5387202B2 (ja) タイヤ解析システムおよびタイヤ解析方法
CN104614064A (zh) 一种基于条纹靶的高速多维度振动测量装置及方法
CN106839968B (zh) 转子空间弯曲轴线测试系统及其测试方法
Zhong et al. Measurement of instantaneous rotational speed using double-sine-varying-density fringe pattern
CN113447670B (zh) 一种单目线阵视觉追踪条纹编码标志的转速测量方法及系统
CN106168464A (zh) 一种基于机器视觉的主轴动态回转精度测试方法
CN108317989B (zh) 一种基于机械角位置采样的精密离心机动态半径测量方法
CN111307487A (zh) 一种基于微小运动放大的旋转机械振动测量方法
Zhong et al. Real-time three-dimensional vibration monitoring of rotating shafts using constant-density sinusoidal fringe pattern as tri-axial sensor
CN109059823A (zh) 一种测量管道尺寸参数的检测系统
CN110553716B (zh) 一种基于计算机视觉的成圈叶片结构振动固有频率的测量方法
WO2018161717A1 (zh) 一种基于双正弦变密度条纹的转速测量装置及方法
US20220026311A1 (en) Tire testing apparatus
CN105806319B (zh) 一种用于玻璃管线三维运动分析的跨轴式图像测量方法
CN116026606B (zh) 一种用于检测车辆传动系统的复合振动的方法以及设备
CN206638694U (zh) 一种基于双正弦变密度条纹的转速测量装置
CN113758695B (zh) 采用视觉复合位感条纹实现旋转轴阶次分析的系统及方法
CN107727023A (zh) 基于三点法的杂交四点法回转误差、圆度误差计算方法
CN114543972B (zh) 一种基于面阵相机的转轴三维振动位移测量装置和方法
CN206974541U (zh) 一种转轴三维振动同步测量的装置
CN113340403B (zh) 基于圆周条纹和线阵相机的转轴径向振动测量方法
CN113465549A (zh) 基于视觉的无标记点轴承保持架接触角测量系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18819593

Country of ref document: EP

Kind code of ref document: A1