WO2018231017A1 - 무선 통신 시스템에서 참조 신호를 물리 자원에 매핑하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 참조 신호를 물리 자원에 매핑하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018231017A1
WO2018231017A1 PCT/KR2018/006802 KR2018006802W WO2018231017A1 WO 2018231017 A1 WO2018231017 A1 WO 2018231017A1 KR 2018006802 W KR2018006802 W KR 2018006802W WO 2018231017 A1 WO2018231017 A1 WO 2018231017A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
physical resource
terminal
length
network
Prior art date
Application number
PCT/KR2018/006802
Other languages
English (en)
French (fr)
Inventor
송화월
이윤정
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to US16/623,356 priority Critical patent/US11239965B2/en
Publication of WO2018231017A1 publication Critical patent/WO2018231017A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to a wireless communication system, and more particularly, to a method for mapping a reference signal (RS) to a physical resource and an apparatus supporting the same.
  • RS reference signal
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service, and the explosive increase in traffic causes shortage of resources and users require faster services. Therefore, a more advanced mobile communication system is required. .
  • An object of the present specification is to provide a method for using a common RS sequence to terminals having various bandwidths (BW) sizes and various BW locations in a wideband system.
  • BW bandwidths
  • the present specification is to provide a method for setting the length of the RS sequence based on the BW of the terminals accessing the network.
  • the present specification provides a method of mapping a reference signal (RS) sequence to a physical resource in a wireless communication system.
  • RS reference signal
  • the method performed by the terminal, receiving from the network length information indicating the length of the RS sequence and offset information indicating the start position of the RS sequence mapped to the physical resource allocated to the terminal; ; Generating the RS sequence based on the received length information; And mapping the generated RS sequence to the physical resource based on the offset information, wherein the generated RS sequence is mapped to the physical resource from a position corresponding to the value indicated by the offset information.
  • the length information may be transmitted through a common resource or a group common resource.
  • the physical resource allocated to the terminal in the present specification is characterized in that the bandwidth (bandwidth, BW) or bandwidth part (bandwidth part, BWP).
  • the generated RS sequence when the length of the generated RS sequence is smaller than the size of the physical resource allocated to the terminal, the generated RS sequence is repeated at least once and mapped to the physical resource.
  • the method may further include receiving from the network a scrambling ID identifying a scrambling applied to each of the RS sequences.
  • the length of the generated RS sequence is larger than the size of the physical resource allocated to the terminal, only a part of the generated RS sequence is mapped to the physical resource.
  • the length of the RS sequence is set based on a bandwidth (BW) of at least one terminal connected to the network.
  • the length of the RS sequence is set based on the largest bandwidth or the smallest bandwidth of the bandwidth of at least one terminal connected to the network.
  • the present specification provides a terminal for mapping a reference signal (RS) sequence to a physical resource in a wireless communication system, the terminal comprising: a radio frequency (RF) module for transmitting and receiving a radio signal; And a processor operatively connected to the RF module, wherein the processor indicates length information indicating a length of the RS sequence and a start position of the RS sequence mapped to a physical resource allocated to the terminal.
  • RF radio frequency
  • the present specification provides a terminal for mapping a reference signal (RS) sequence to a physical resource in a wireless communication system, the terminal comprising: a radio frequency (RF) module for transmitting and receiving a radio signal; And a processor operatively connected to the RF module, wherein the processor indicates length information indicating a length of the RS sequence and a start position of the RS sequence mapped to a physical resource allocated to the terminal.
  • the present specification has an effect of efficiently using resources by providing an RS sequence length and an RS sequence offset to use a common RS for terminals having various BW sizes and BW locations.
  • the present specification has an effect of reducing signaling overhead by transmitting information on a common RS sequence to terminals using common resources or group common resources.
  • FIG. 1 is a view showing an example of the overall system structure of the NR to which the method proposed in this specification can be applied.
  • FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification may be applied.
  • FIG 3 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
  • FIG. 4 shows an example of a self-contained subframe structure to which the method proposed in this specification can be applied.
  • FIG 5 shows examples of a self-contained subframe structure to which the method proposed in this specification can be applied.
  • 6A and 6B are diagrams showing an example of a method of setting an RS sequence length proposed in the present specification.
  • FIG. 7 is a diagram illustrating an example of an RS sequence mapping method proposed in the present specification.
  • FIG. 8 illustrates another example of an RS sequence mapping method proposed in the present specification.
  • FIG. 9 is a diagram illustrating another example of an RS sequence mapping method proposed in the present specification.
  • FIG 10 illustrates an example of cross-correlation performance using the same base sequence with different OCCs.
  • FIG 11 shows an example of cross-correlation performance using different base sequences with different OCCs.
  • FIG. 12 is a flowchart illustrating an operation method of a terminal for mapping an RS sequence proposed in the present specification to a physical resource.
  • FIG. 13 illustrates a block diagram of a wireless communication device to which the methods proposed herein can be applied.
  • FIG. 14 is a block diagram illustrating a communication device according to one embodiment of the present invention.
  • FIG. 15 is a diagram illustrating an example of an RF module of a wireless communication device to which a method proposed in this specification can be applied.
  • FIG. 16 is a diagram illustrating still another example of an RF module of a wireless communication device to which a method proposed in this specification can be applied.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • the term 'base station (BS)' refers to a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and a generation NB (gNB).
  • eNB evolved-NodeB
  • BTS base transceiver system
  • AP access point
  • gNB generation NB
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP, and 3GPP2, which are wireless access systems. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • eLTE eNB An eLTE eNB is an evolution of an eNB that supports connectivity to EPC and NGC.
  • gNB Node that supports NR as well as connection with NGC.
  • New RAN A radio access network that supports NR or E-UTRA or interacts with NGC.
  • Network slice A network slice defined by the operator to provide an optimized solution for specific market scenarios that require specific requirements with end-to-end coverage.
  • Network function is a logical node within a network infrastructure with well-defined external interfaces and well-defined functional behavior.
  • NG-C Control plane interface used for the NG2 reference point between the new RAN and NGC.
  • NG-U User plane interface used for the NG3 reference point between the new RAN and NGC.
  • Non-standalone NR A deployment configuration where a gNB requires an LTE eNB as an anchor for control plane connection to EPC or an eLTE eNB as an anchor for control plane connection to NGC.
  • Non-Standalone E-UTRA Deployment configuration in which the eLTE eNB requires gNB as an anchor for control plane connection to NGC.
  • User plane gateway The endpoint of the NG-U interface.
  • FIG. 1 is a view showing an example of the overall system structure of the NR to which the method proposed in this specification can be applied.
  • the NG-RAN consists of gNBs that provide control plane (RRC) protocol termination for the NG-RA user plane (new AS sublayer / PDCP / RLC / MAC / PHY) and UE (User Equipment).
  • RRC control plane
  • the gNBs are interconnected via an Xn interface.
  • the gNB is also connected to the NGC via an NG interface.
  • the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and to a User Plane Function (UPF) through an N3 interface.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • the numerology may be defined by subcarrier spacing and cyclic prefix overhead.
  • the plurality of subcarrier intervals may be represented by an integer N (or, Can be derived by scaling. Further, even if it is assumed that very low subcarrier spacing is not used at very high carrier frequencies, the used numerology may be selected independently of the frequency band.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM numerologies supported in the NR system may be defined as shown in Table 1.
  • the size of the various fields in the time domain Is expressed as a multiple of the time unit. From here, ego, to be.
  • Downlink and uplink transmissions It consists of a radio frame having a section of (radio frame).
  • each radio frame is It consists of 10 subframes having a section of.
  • FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification may be applied.
  • the transmission of an uplink frame number i from a user equipment (UE) is greater than the start of the corresponding downlink frame at the corresponding UE. You must start before.
  • slots within a subframe Numbered in increasing order of within a radio frame They are numbered in increasing order of.
  • One slot is Consists of consecutive OFDM symbols of, Is determined according to the numerology and slot configuration used. Slot in subframe Start of OFDM symbol in the same subframe Is aligned with the beginning of time.
  • Not all terminals can transmit and receive at the same time, which means that not all OFDM symbols of a downlink slot or an uplink slot can be used.
  • Table 2 shows numerology Shows the number of OFDM symbols per slot for a normal CP in Table 3, This indicates the number of OFDM symbols per slot for the extended CP in.
  • an antenna port In relation to physical resources in the NR system, an antenna port, a resource grid, a resource element, a resource block, a carrier part, etc. Can be considered.
  • the antenna port is defined so that the channel on which the symbol on the antenna port is carried can be inferred from the channel on which another symbol on the same antenna port is carried. If the large-scale property of a channel carrying a symbol on one antenna port can be deduced from the channel carrying the symbol on another antenna port, then the two antenna ports are quasi co-located or QC / QCL. quasi co-location relationship.
  • the wide range characteristics include one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
  • FIG 3 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
  • the resource grid is in the frequency domain
  • one subframe includes 14 x 2 u OFDM symbols, but is not limited thereto.
  • the transmitted signal is One or more resource grids composed of subcarriers, and Is described by the OFDM symbols of. From here, to be. remind Denotes the maximum transmission bandwidth, which may vary between uplink and downlink as well as numerologies.
  • the numerology And one resource grid for each antenna port p.
  • FIG. 4 shows examples of an antenna port and a neuralology-specific resource grid to which the method proposed in this specification can be applied.
  • each element of the resource grid for antenna port p is referred to as a resource element and is an index pair Uniquely identified by From here, Is the index on the frequency domain, Refers to the position of a symbol within a subframe. Index pair when referring to a resource element in a slot This is used. From here, to be.
  • Numerology Resource elements for antenna and antenna port p Is a complex value Corresponds to If there is no risk of confusion, or if no specific antenna port or numerology is specified, the indices p and Can be dropped, so the complex value is or This can be
  • the physical resource block (physical resource block) is in the frequency domain It is defined as consecutive subcarriers. On the frequency domain, the physical resource blocks can be zero Numbered until. At this time, a physical resource block number on the frequency domain And resource elements The relationship between is given by Equation 1.
  • the terminal may be configured to receive or transmit using only a subset of the resource grid.
  • the set of resource blocks set to be received or transmitted by the UE is from 0 on the frequency domain. Numbered until.
  • the TDD (Time Division Duplexing) structure considered in the NR system is a structure that processes both uplink (UL) and downlink (DL) in one subframe. This is to minimize latency of data transmission in the TDD system, and the structure is referred to as a self-contained subframe structure.
  • one subframe includes 14 orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • region 402 denotes a downlink control region
  • region 404 denotes an uplink control region.
  • regions other than the region 402 and the region 404 may be used for transmission of downlink data or uplink data.
  • uplink control information and downlink control information are transmitted in one self-contained subframe.
  • uplink data or downlink data is transmitted in one self-contained subframe.
  • downlink transmission and uplink transmission may proceed sequentially, and transmission of downlink data and reception of uplink ACK / NACK may be performed. .
  • a base station eNodeB, eNB, gNB
  • terminal user equipment
  • UE user equipment
  • a time gap is required for the process or the process of switching from the reception mode to the transmission mode.
  • some OFDM symbol (s) may be set to a guard period (GP).
  • 5 shows examples of a self-contained subframe structure to which the method proposed in this specification can be applied. 3 is merely for convenience of description and does not limit the scope of the invention.
  • the self-contained subframe in the NR system includes a downlink control region, a downlink data region, a guard period GP, and an uplink.
  • the UL control region and / or the UL data region may be configured in various combinations as one unit.
  • the terminals are common RS (common signal (RS)). Examines how to determine (or select) an RS sequence length and a scrambling sequence in a network so that a network can be used, and how each UE maps a determined RS sequence. Let's look at it.
  • RS common signal
  • the NR system supports terminals supporting various BWs.
  • the network supports flexible signaling of the BW size (terminal supportable BW) and the BW location of the terminals in order to optimize the transmission and reception environment of all the terminals.
  • the common RS may be one of the common information.
  • the present specification proposes an RS sequence length setting method, a scrambling sequence setting method, and an RS mapping mechanism for efficient RS use in the aforementioned environment.
  • the present specification specifies a method for UE-specific use of the common information (eg, common RS).
  • the common information eg, common RS
  • the network may determine the state of the currently connected terminals and may flexibly set the RS sequence length.
  • the various RS sequence lengths are predefined so that the network informs the terminals of the defined number of the corresponding RS sequence length, or the network directly provides information on the corresponding RS sequence length. Can be announced.
  • Option 1 sets an RS sequence length based on the largest BW value among terminals connected to the network or among the BW values supported by terminals sharing an RS sequence. Way.
  • Option 2 may set an RS sequence length on a narrow BW basis or on a subband basis among terminals connected to the network.
  • wideband terminals may be configured to repeatedly use the same RS sequence, or may use a method of concatenating RSs configured in a subband.
  • Option 3 is a method of setting various RS sequence lengths in one NR system.
  • Equation 2 when generating the aforementioned RS sequence based on the PN sequence, the method of Equation 2 below may be used.
  • Is not a predetermined value and may be a value that can be flexibly changed by detecting the connection state of terminals in a network or a value that the network can signal regardless of system bandwidth.
  • Option 1 and Option 2 had the same value in the NR system ( Because I use The UE may be delivered to UEs using common resources (eg, PBCH (Physical Broadcast Channel), RMSI (Remaining Minimum System Information), UE-group signaling). However, this information may be signaled UE-specifically.
  • PBCH Physical Broadcast Channel
  • RMSI Remaining Minimum System Information
  • Option 3 can generate RS sequences in various lengths in each frequency range
  • RS sequence length information can be used for UE-specific or group common resources (Msg4, RRC (Radio Resource Control), USS (UE specific). Search Space)) is delivered to the terminals.
  • Msg4 Radio Resource Control
  • USS UE specific. Search Space
  • the RS sequence length information may be transmitted to UEs through UE-group signaling.
  • Each terminal is a corresponding resource Information can be detected to generate the same reference sequence.
  • each terminal maps the RS sequence to its BW after a certain offset, not the beginning of the reference sequence, according to the frequency range of the configured BW and the location of the BW.
  • the network may set an RS sequence length based on a terminal supporting the largest BW, Alternatively, when the system BW is divided into a plurality of subbands, the RS sequence length may be set based on the subbands.
  • 6A and 6B are diagrams showing an example of a method of setting an RS sequence length proposed in the present specification.
  • an RS sequence may be generated based on UE 1 BW (largest BW reference, 610) or NR subband.
  • the network may inform the terminals of the length information of the generated sequence by using a common resource.
  • the network may have various RS sequence lengths. Can be set.
  • each UE when the network does not transmit separate RS sequence length information to narrow band UEs, each UE generates and uses an RS sequence suitable for its BW, and common signaling transmitted by the network. Information can be reduced.
  • a method of generating an RS sequence may be variously defined as follows.
  • the network When using MU-MIMO (Multi User-Multiple Input Multiple Output) for a wideband UE and a narrow band UE in an NR system, when using Frequency Division Multiplexing (FDM), the network generates an RS sequence according to the bandwidth of each UE. Can be.
  • MU-MIMO Multi User-Multiple Input Multiple Output
  • FDM Frequency Division Multiplexing
  • the network may set the RS sequence based on the wideband UE so that the narrowband UE may use a portion of the RS sequence as in the Salping option 1 (option 1).
  • CDM Code Division Multiplexing
  • the operation of the terminal may be defined as follows.
  • the UE may generate the RS sequence according to the system bandwidth.
  • the terminal If the terminal does not know the system bandwidth, if the length and / or RS index offset for the RS sequence generation is not configured, the terminal is the area that the bandwidth part (BWP) or data allocated to them or CORESET (control resource) set) RS sequence can be locally generated according to a PRB (Physical Resource Block) list.
  • BWP bandwidth part
  • CORESET control resource
  • the terminal generates an RS sequence as a default according to a system bandwidth or a local bandwidth part (or data / control region), and when a length and / or an RS index offset for the RS sequence are given, follow the corresponding parameter.
  • the RS index offset may refer to information indicating from which point of the generated RS sequence the terminal maps the RS sequence.
  • the RS index offset may be interpreted as an offset with a center or edge (eg, lowest PRB, highest PRB) of a BW configured for a specific terminal.
  • the RS index offset may mean a difference between a start point of an RS sequence and a start point where a UE actually maps an RS sequence to a physical resource.
  • the UE When the network configures the RS index offset to the UE in RB (Resource Block) units, the UE calculates a value to be actually applied according to the number of RS subcarriers present in one RB, or the network directly corresponds to a subcarrier unit. Configure to the terminal, the terminal can apply the configured value directly.
  • RB Resource Block
  • the reason why the RS index offset is required is that when the common RS sequence is applied to various terminals, each terminal needs to be indicated which part of the RS sequence to use.
  • the indication may be expressed as an RS index offset.
  • RS sequence length / RS index offsets are configured as follows, and (2) RS sequence length / RS index offsets are determined for each bandwidth part (BWP). It can be classified as given.
  • the process of mapping the corresponding RS sequence can follow two cases.
  • the RS sequence is mapped from the center of the carrier or the lowest PRB. In this case, RS index offset information may not be necessary.
  • PRB indexing is performed based on the center of the accessed SS (Synchronization Signal) block (SSB), and the RS sequence is mapped by applying the length and RS index offset of the RS sequence.
  • SSB Synchronization Signal
  • the RS index offset may be defined as a difference between the SS block and the center.
  • an RS index offset may exist for each SS block.
  • PRB indexing is performed based on the lowest PRB or center for each bandwidth part, and the RS sequence is mapped from "offset + 1" to the lowest PRB using an RS sequence length and an RS index offset, or " offset "can be mapped to center.
  • the RS sequence length is the same, and offset information may be given for each bandwidth part.
  • offset information may also be given.
  • the RS sequence may be set based on a narrow band UE to allow the wideband UE to repeatedly use the corresponding sequence. A detailed method of repeatedly using the RS sequence will be described later.
  • the RS sequence related to the downlink may be generated by the network and transmitted to the terminal, and the RS sequence related to the uplink may be interpreted to be generated by the terminal and transmitted to the network.
  • Method 1 is a method of mapping RSs for different terminals using a base sequence length and a starting index.
  • the starting index may be interpreted to mean the same as the RS index offset.
  • the UEs with various BWs may receive RS sequence length information and RS index offset information for RS mapping from the network.
  • the network may indicate the starting point of the terminal (RS sequence mapping) to the corresponding terminal with RS index offset information.
  • the network may transmit information (or indication) about the base RS sequence length and the portion to be puncturized among the corresponding RS sequence to the terminals.
  • the length of the RS sequence generated by the network is 2 * N.
  • the UE may map from the K + 1 of the RS sequence to the first RE of the RS mapped to the first PRB in the configured bandwidth.
  • this may be a method of indicating the starting point of the base sequence and the partial sequence to be used in the base sequence.
  • FIG. 7 is a diagram illustrating an example of an RS sequence mapping method proposed in the present specification.
  • FIG. 7 shows an example of Method 1 described above.
  • the system BW supported by the network is A MHz, and the A value is determined by the network.
  • the hatched portion 710 represents a total of N PRBs, one unit 720 of the hatched portion represents one PRB (grid), and there are two RSs per PRB.
  • the RS index offset value is 8 (4PRB * 2RSs), and when the RS index offset is set based on the edge of UE 2 BW, the RS index offset value May be 20 (10 PRB * 2RSs).
  • a criterion for determining the RS index offset may be various methods (e.g., the edge reference of the BW set to the UE, the center reference of the BW set to the UE, and the center reference of the SS block).
  • the RS index offset may be determined as a default or may be determined by the network and transmitted to the terminal.
  • the RS index offset information may be transmitted to a terminal through a resource set in a UE-specific search space (USS) or a group.
  • USS UE-specific search space
  • the network may reduce signaling overhead by transmitting an RS index offset value to a corresponding group as a common resource. .
  • RS sequence length information and RS index offset information may set a set based on each SS block to the terminals.
  • the shared RS BW includes the corresponding SS block
  • the offset between the center of the SS block and the center of the RS BW or the offset between the SS PR and the lowest PRB (lowest PRB) of the RS BW is connected. Common to the terminal can be informed.
  • FIG. 8 illustrates another example of an RS sequence mapping method proposed in the present specification.
  • the system BW supported by the network is A MHz, and the A value is determined by the network.
  • the hatched portion 810 represents a total of N PRBs, one unit of the hatched portion represents one PRB (grid), and there are two RSs per PRB.
  • SS blocks 820 there are a plurality (p) of SS blocks 820 in the system BW (or network), and the BWs of UEs connected from each SS block vary.
  • P is a natural number greater than one.
  • UE 1 and UE 2 access the network from SS block 0 (SSB # 0), and UE 3 access the network from SS block n (SSB #n).
  • the UE 1 and the UE 2 may use the shared RS by receiving the corresponding information and calculating an RS index offset for mapping the RS to each BW.
  • UE 3 may calculate an RS index offset for mapping an RS sequence to its BW using the corresponding RS index offset information.
  • Method 2 is a method of mapping an RS sequence for different terminals using parameters related to (RS) base sequence length and repetition / spreading.
  • the method 2 may be applied when the base sequence length is smaller than the bandwidth part (BWP) of the terminal.
  • the terminal may repeat the base sequence to perform the mapping.
  • scrambling or spreading may be applied to the base sequence.
  • the network may configure the corresponding parameters (scrambling or spreading related parameters) together with the base sequence length / offset.
  • FIG. 9 shows an example of such a method.
  • FIG. 9 is a diagram illustrating another example of an RS sequence mapping method proposed in the present specification.
  • the network may inform the corresponding UE of the start RS index offset of the first RS sequence used by the corresponding UE.
  • the UE maps to its bandwidth using the first RS sequence, and if the RS sequence to be mapped is insufficient, recognizes that the same base sequence is repeatedly mapped, and sequentially maps the remaining bandwidth from the beginning of the second RS sequence. Perform.
  • the repeated RS base sequence may use a different scrambling ID (or spreading factor) from the first RS sequence.
  • the scrambling ID (or spreading factor) may be previously configured by the network to the corresponding UE or may be notified to the corresponding UE through RRC signaling.
  • the system BW supported by the network is A MHz, and the A value is determined by the network.
  • hatched portions represent N PRBs in total, one hatched portion represents one PRB (grid), and there are two RSs per PRB.
  • the RS index offset value of the UE for the first RS sequence represents 8
  • the RS index offset value of the UE for the second RS sequence represents 0.
  • a different scrambling ID 910 is applied to each RS sequence.
  • a UE having a BW of 120 MHz may reuse an RS sequence combining an RS of UE 1 (eg, Rel. 15) and an RS of UE 2 (eg, Rel. 15).
  • the RS sequence defined in Rel.15 is not a problem in applying to Rel.15 UEs. However, when UEs supporting Rel.16 or later releases support larger BW, there are some problems as follows. May occur.
  • different RS resources may overlap and interference may occur.
  • the RS sequence mapping method described above is an RS sequence generation and RS sequence mapping method that efficiently uses resources and minimizes signaling overhead to release UEs without affecting existing Release UEs. Can be used.
  • a plurality of (RS) base sequences are concatenated. Concatenation can be considered.
  • parameters related to length and generation of each (RS) base sequence may be set differently.
  • This method has an advantage of reducing signaling overhead when BWs of terminals having various bandwidths do not overlap.
  • the network may not generate separate RS sequence length information to the UEs by generating an RS sequence suitable for each UE bandwidth.
  • the UE may generate and use an RS sequence corresponding to the bandwidth received by the UE.
  • the length of the RS base sequence (the maximum number of RBs) and the start position of the RS sequence to be used by the UE, that is, the offset (RS index offset) from the (RS) base sequence.
  • the offset (RS index offset) from the (RS) base sequence.
  • Option 1 is a method of determining one RS index offset value for each UE.
  • one RS index offset may be determined for each UE.
  • Option 2 is a method of determining one RS index offset value for each numerology and each UE.
  • the RS index offset value may be determined according to a predetermined rule.
  • the RS sequence length and the RS index offset are determined based on the case where the subcarrier spacing is 30 kHz, when the 15 kHz subcarrier spacing is used in the same BW, the RS sequence may be spread or repetitively mapped. , RS index offset may be used in the form of the same index or the existing index * 2, respectively.
  • Option 3 is a method of determining one RS index offset value for each bandwidth part.
  • Option 4 is a method of determining one RS index offset value for each RS sequence.
  • Option 5 is a method of determining one RS index offset value for each RS type.
  • the RS type may include various RS types including PN sequence based RS and CAZAC sequence based RS.
  • FIG. 10 illustrates an example of cross-correlation performance using the same base sequence having different OCCs
  • FIG. 11 illustrates an example of cross-correlation performance using different base sequences having different OCCs.
  • FIGS. 10 and 11 generate an RS sequence based on a wideband UE in a MU-MIMO environment, and obtain a cross-correlation value based on a narrow band UE when a narrow band UE uses a portion of an generated RS sequence.
  • the narrow band UE uses a part in a long sequence according to its BW location, and takes a cross-correlation with the RS sequence of the same location in the wideband.
  • FIG. 10 shows correlation for RS of the same position by adding an OCC to the same base sequence, and the value is 0.
  • the cross-correlation mean value in FIG. 11 is 0.049943.
  • Table 4 is a table showing an example of parameters related to performance measurement of cross-correlation.
  • FIG. 12 is a flowchart illustrating an operation method of a terminal for mapping an RS sequence proposed in the present specification to a physical resource.
  • the terminal receives length information indicating a length of an RS sequence and offset information indicating a start position of the RS sequence mapped to a physical resource allocated to the terminal from a network (eg, a base station) (S1210).
  • a network eg, a base station
  • the length information may be transmitted through a common resource, a group common resource, or a UE-specific resource.
  • the physical resource allocated to the terminal may be a bandwidth (BW) or a bandwidth part (BWP) and may be configured in RB units.
  • BW bandwidth
  • BWP bandwidth part
  • the length of the RS sequence may be set based on a bandwidth (BW) of at least one terminal connected to the network. More specifically, the length of the RS sequence is greater than the bandwidth of at least one terminal connected to the network. It may be set based on the bandwidth or the smallest bandwidth.
  • BW bandwidth
  • the terminal generates the RS sequence based on the received length information (S1220).
  • the RS sequence generation may use the method of Salping Equation 2 above.
  • the terminal maps the generated RS sequence to the physical resource based on the offset information (S1230).
  • the generated RS sequence may be mapped to the physical resource from a position corresponding to the value indicated by the offset information.
  • mapping the RS sequence to a physical resource may use the aforementioned methods.
  • the generated RS sequence may be repeated at least once and mapped to the physical resource.
  • the terminal may have a scrambling ID identifying a scrambling applied to each of the RS sequences. Can be received from the network.
  • the length of the generated RS sequence is larger than the size of a physical resource allocated to the terminal, only a part of the generated RS sequence may be mapped to the physical resource.
  • FIG. 13 illustrates a block diagram of a wireless communication device to which the methods proposed herein can be applied.
  • a wireless communication system includes a base station 1310 and a plurality of terminals 1320 located in an area of a base station 1310.
  • the base station and the terminal may each be represented by a wireless device.
  • the base station 1310 includes a processor 1311, a memory 1312, and an RF module 1313.
  • the processor 1311 implements the functions, processes, and / or methods proposed in FIGS. 1 to 12. Layers of the air interface protocol may be implemented by a processor.
  • the memory 1312 is connected to the processor and stores various information for driving the processor.
  • the RF module 1313 is connected with a processor to transmit and / or receive a radio signal.
  • the terminal 1320 includes a processor 1321, a memory 1322, and an RF module 1323.
  • the processor 1321 implements the functions, processes, and / or methods proposed in FIGS. 1 to 12. Layers of the air interface protocol may be implemented by a processor.
  • the memory 1322 is connected to the processor and stores various information for driving the processor.
  • the RF module 1923 is connected to a processor to transmit and / or receive a radio signal.
  • the memories 1312 and 1322 may be inside or outside the processors 1311 and 1321, and may be connected to the processors 1311 and 1321 by various well-known means.
  • the base station 1310 and / or the terminal 1320 may have a single antenna or multiple antennas.
  • FIG. 14 is a block diagram illustrating a communication device according to one embodiment of the present invention.
  • FIG. 14 is a diagram illustrating the terminal of FIG. 13 in more detail.
  • a terminal may include a processor (or a digital signal processor (DSP) 1410, an RF module (or an RF unit) 1435, and a power management module 1405). ), Antenna 1440, battery 1455, display 1415, keypad 1420, memory 1430, SIM card Subscriber Identification Module card) 1425 (this configuration is optional), a speaker 1445, and a microphone 1450.
  • the terminal may also include a single antenna or multiple antennas. Can be.
  • the processor 1410 implements the functions, processes, and / or methods proposed in FIGS. 1 to 12.
  • the layer of the air interface protocol may be implemented by a processor.
  • the memory 1430 is connected to the processor and stores information related to the operation of the processor.
  • the memory 1430 may be internal or external to the processor and may be connected to the processor by various well-known means.
  • a user enters command information, such as a telephone number, for example by pressing (or touching) a button on keypad 1420 or by voice activation using microphone 1450.
  • the processor receives this command information and processes it to perform the appropriate function, such as dialing a phone number.
  • Operational data may be extracted from the SIM card 1425 or the memory 1430.
  • the processor may display command information or driving information on the display 1415 for user perception and convenience.
  • the RF module 1435 is coupled to the processor to transmit and / or receive RF signals.
  • the processor conveys command information to the RF module, for example, to transmit a radio signal constituting voice communication data to initiate communication.
  • the RF module consists of a receiver and a transmitter for receiving and transmitting radio signals.
  • the antenna 1440 functions to transmit and receive wireless signals. Upon receiving a wireless signal, the RF module can transmit the signal and convert the signal to baseband for processing by the processor. The processed signal may be converted into audible or readable information output through the speaker 1445.
  • FIG. 15 is a diagram illustrating an example of an RF module of a wireless communication device to which a method proposed in this specification can be applied.
  • FIG. 15 illustrates an example of an RF module that may be implemented in a frequency division duplex (FDD) system.
  • FDD frequency division duplex
  • the processor described in FIGS. 13 and 14 processes the data to be transmitted and provides an analog output signal to the transmitter 1510.
  • the analog output signal is filtered by a low pass filter (LPF) 1511 to remove images caused by digital-to-analog conversion (ADC), and an upconverter ( Up-converted from baseband to RF by a Mixer 1512, amplified by a Variable Gain Amplifier (VGA) 1513, the amplified signal is filtered by a filter 1514, and a power amplifier Further amplified by Amplifier, PA (1515), routed through duplexer (s) 1550 / antenna switch (s) 1560, and transmitted via antenna 1570.
  • LPF low pass filter
  • ADC analog-to-analog conversion
  • VGA Variable Gain Amplifier
  • antenna 1570 receives signals from the outside and provides the received signals, which are routed through antenna switch (s) 1560 / duplexers 1550 and receiver 1520. Is provided.
  • the received signals are amplified by a Low Noise Amplifier (LNA) 1523, filtered by a bandpass filter 1524, and from RF by a down converter (Mixer 1525). Downconvert to baseband.
  • LNA Low Noise Amplifier
  • the down-converted signal is filtered by a low pass filter (LPF) 1526 and amplified by VGA 1527 to obtain an analog input signal, which is provided to the processor described in FIGS. 12 and 13.
  • LPF low pass filter
  • a local oscillator (LO) generator 1540 provides transmit and receive LO signals to the generate and up converter 1512 and down converter 1525, respectively.
  • LO local oscillator
  • Phase locked loop (PLL) 1530 also receives control information from the processor to generate transmit and receive LO signals at appropriate frequencies and provides control signals to LO generator 1540.
  • circuits shown in FIG. 15 may be arranged differently from the configuration shown in FIG. 15.
  • FIG. 16 is a diagram illustrating still another example of an RF module of a wireless communication device to which a method proposed in this specification can be applied.
  • FIG. 16 illustrates an example of an RF module that may be implemented in a time division duplex (TDD) system.
  • TDD time division duplex
  • the transmitter 1610 and receiver 1620 of the RF module in the TDD system are identical to the structure of the transmitter and receiver of the RF module in the FDD system.
  • the RF module of the TDD system will be described only for the structure that differs from the RF module of the FDD system, and the description of the same structure will be described with reference to FIG.
  • the signal amplified by the transmitter's power amplifier (PA) 1615 is routed through a band select switch (1650), a band pass filter (BPF) 1660, and antenna switch (s) 1670. And is transmitted through the antenna 1680.
  • PA power amplifier
  • BPF band pass filter
  • s antenna switch
  • the antenna 1680 receives signals from the outside and provides the received signals, which signals antenna switch (s) 1670, band pass filter 1660 and band select switch 1650. Routed through, and provided to a receiver 1620.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • mapping reference signals in the wireless communication system of the present invention has been described with reference to examples applied to 3GPP LTE / LTE-A system and 5G system (New RAT system), but can be applied to various wireless communication systems. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서는 무선 통신 시스템에서 참조 신호(Reference Signal, RS) 시퀀스(sequence)를 물리 자원(physical resource)에 매핑하는 방법을 제공한다. 구체적으로, 단말에 의해 수행되는 방법은, 상기 RS 시퀀스의 길이를 나타내는 길이(length) 정보 및 상기 단말에게 할당된 물리 자원에 매핑되는 상기 RS 시퀀스의 시작 위치를 나타내는 오프셋 정보를 네트워크로부터 수신하는 단계; 상기 수신된 길이 정보에 기초하여 상기 RS 시퀀스를 생성(generation)하는 단계; 및 상기 생성된 RS 시퀀스를 상기 오프셋 정보에 기초하여 상기 물리 자원에 매핑하는 단계를 포함한다.

Description

무선 통신 시스템에서 참조 신호를 물리 자원에 매핑하는 방법 및 이를 위한 장치
본 명세서는 무선 통신 시스템에 관한 것으로서, 보다 상세하게 참조 신호(Reference Signal, RS)를 물리 자원(Physical Resource)에 매핑하는 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 광대역 시스템(wideband system)에서 다양한 대역폭(bandwidth, BW) 크기 및 다양한 BW 위치를 가진 단말들에게 공통(common)의 RS 시퀀스(sequence)를 사용할 수 있는 방법을 제공함에 목적이 있다.
또한, 본 명세서는 네트워크에 접속하는 단말들의 BW에 기초하여 RS 시퀀스의 길이를 설정하는 방법을 제공함에 목적이 있다.
또한, 본 명세서는 시스템 BW와 단말에게 할당된 물리 자원의 비교를 통해 RS 시퀀스를 해당 물리 자원에 매핑하는 구체적인 방법을 제공함에 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 무선 통신 시스템에서 참조 신호(Reference Signal, RS) 시퀀스(sequence)를 물리 자원(physical resource)에 매핑하는 방법을 제공한다.
구체적으로, 단말에 의해 수행되는 방법은, 상기 RS 시퀀스의 길이를 나타내는 길이(length) 정보 및 상기 단말에게 할당된 물리 자원에 매핑되는 상기 RS 시퀀스의 시작 위치를 나타내는 오프셋 정보를 네트워크로부터 수신하는 단계; 상기 수신된 길이 정보에 기초하여 상기 RS 시퀀스를 생성(generation)하는 단계; 및 상기 생성된 RS 시퀀스를 상기 오프셋 정보에 기초하여 상기 물리 자원에 매핑하는 단계를 포함하되, 상기 생성된 RS 시퀀스는 상기 오프셋 정보에 의해 지시되는 값에 대응하는 위치부터 상기 물리 자원에 매핑되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 길이 정보는 공통(common) 자원 또는 그룹 공통(group common) 자원을 통해 전송되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 단말에게 할당된 물리 자원은 대역폭(bandwidth, BW) 또는 대역폭 파트(bandwidth part, BWP)인 것을 특징으로 한다.
또한, 본 명세서에서 상기 생성된 RS 시퀀스의 길이가 상기 단말에게 할당된 물리 자원의 크기보다 작은 경우, 상기 생성된 RS 시퀀스는 적어도 한 번 반복되어 상기 물리 자원에 매핑되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 생성된 RS 시퀀스가 적어도 한 번 반복되는 경우, RS 시퀀스들 간에는 서로 다른 스크램블링(scrambling)이 적용되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 방법은 상기 RS 시퀀스들 각각에 적용되는 스크램블링을 식별하는 스크램블링 식별자(scrambling ID)를 상기 네트워크로부터 수신하는 단계를 더 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 생성된 RS 시퀀스의 길이가 상기 단말에게 할당된 물리 자원의 크기보다 큰 경우, 상기 생성된 RS 시퀀스의 일부만이 상기 물리 자원에 매핑되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 RS 시퀀스의 길이는 상기 네트워크에 접속한 적어도 하나의 단말의 대역폭(bandwidth, BW)에 기초하여 설정되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 RS 시퀀스의 길이는 상기 네트워크에 접속한 적어도 하나의 단말의 대역폭 중 가장 큰 대역폭 또는 가장 작은 대역폭을 기준으로 설정되는 것을 특징으로 한다.
또한, 본 명세서는 무선 통신 시스템에서 참조 신호(Reference Signal, RS) 시퀀스(sequence)를 물리 자원(physical resource)에 매핑하기 위한 단말에 있어서, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, 상기 RS 시퀀스의 길이를 나타내는 길이(length) 정보 및 상기 단말에게 할당된 물리 자원에 매핑되는 상기 RS 시퀀스의 시작 위치를 나타내는 오프셋 정보를 네트워크로부터 수신하며; 상기 수신된 길이 정보에 기초하여 상기 RS 시퀀스를 생성(generation)하며; 및 상기 생성된 RS 시퀀스를 상기 오프셋 정보에 기초하여 상기 물리 자원에 매핑하도록 제어하되, 상기 생성된 RS 시퀀스는 상기 오프셋 정보에 의해 지시되는 값에 대응하는 위치부터 상기 물리 자원에 매핑되는 것을 특징으로 한다.
본 명세서는 다양한 BW 크기 및 BW 위치를 가지는 단말들에게 공통의 RS를 사용할 수 있도록 RS 시퀀스 길이 및 RS 시퀀스 오프셋을 제공함으로써 자원을 효율적으로 사용할 수 있는 효과가 있다.
또한, 본 명세서는 공통의 RS 시퀀스에 대한 정보를 common한 자원 또는 group common한 자원을 이용하여 단말들로 전송함으로써 시그널링 오버헤드를 줄일 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained 서브프레임 구조의 일례를 나타낸다.
도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained 서브프레임 구조의 예들을 나타낸다.
도 6a 및 도 6b는 본 명세서에서 제안하는 RS 시퀀스 길이를 설정하는 방법의 일례를 나타낸 도이다.
도 7은 본 명세서에서 제안하는 RS 시퀀스 매핑 방법의 일례를 나타낸 도이다.
도 8은 본 명세서에서 제안하는 RS 시퀀스 매핑 방법의 또 다른 일례를 나타낸 도이다.
도 9는 본 명세서에서 제안하는 RS sequence 매핑 방법의 또 다른 일례를 나타낸 도이다.
도 10은 서로 다른 OCC를 가지는 동일한 기본 시퀀스를 사용한 상호-상관 성능을 나타낸 일례이다.
도 11은 서로 다른 OCC를 가지는 서로 다른 기본 시퀀스를 사용한 상호-상관 성능을 나타낸 일례이다.
도 12는 본 명세서에서 제안하는 RS 시퀀스를 물리 자원에 매핑하는 단말의 동작 방법을 나타낸 순서도이다.
도 13은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
도 14는 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
도 15는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 일례를 나타낸 도이다.
도 16은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 또 다른 일례를 나타낸 도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 통상의 기술자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(generation NB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A/NR(New Radio)를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
용어 정의
eLTE eNB: eLTE eNB는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화(evolution)이다.
gNB: NGC와의 연결뿐만 아니라 NR을 지원하는 노드.
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.
네트워크 슬라이스(network slice): 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.
네트워크 기능(network function): 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동작을 가진 네트워크 인프라 내에서의 논리적 노드.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트(reference point)에 사용되는 제어 평면 인터페이스.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트(reference point)에 사용되는 사용자 평면 인터페이스.
비 독립형(Non-standalone) NR: gNB가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성.
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB를 요구하는 배치 구성.
사용자 평면 게이트웨이: NG-U 인터페이스의 종단점.
시스템 일반
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.
상기 gNB는 Xn 인터페이스를 통해 상호 연결된다.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF (Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF (User Plane Function)로 연결된다.
NR(New Rat) 뉴머롤로지(Numerology) 및 프레임(frame) 구조
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는,
Figure PCTKR2018006802-appb-I000001
)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.
Figure PCTKR2018006802-appb-T000001
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
Figure PCTKR2018006802-appb-I000002
의 시간 단위의 배수로 표현된다. 여기에서,
Figure PCTKR2018006802-appb-I000003
이고,
Figure PCTKR2018006802-appb-I000004
이다. 하향링크(downlink) 및 상향링크(uplink) 전송은
Figure PCTKR2018006802-appb-I000005
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
Figure PCTKR2018006802-appb-I000006
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 2에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
Figure PCTKR2018006802-appb-I000007
이전에 시작해야 한다.
뉴머롤로지
Figure PCTKR2018006802-appb-I000008
에 대하여, 슬롯(slot)들은 서브프레임 내에서
Figure PCTKR2018006802-appb-I000009
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
Figure PCTKR2018006802-appb-I000010
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
Figure PCTKR2018006802-appb-I000011
의 연속하는 OFDM 심볼들로 구성되고,
Figure PCTKR2018006802-appb-I000012
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
Figure PCTKR2018006802-appb-I000013
의 시작은 동일 서브프레임에서 OFDM 심볼
Figure PCTKR2018006802-appb-I000014
의 시작과 시간적으로 정렬된다.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 2는 뉴머롤로지
Figure PCTKR2018006802-appb-I000015
에서의 일반(normal) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타내고, 표 3은 뉴머롤로지
Figure PCTKR2018006802-appb-I000016
에서의 확장(extended) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타낸다.
Figure PCTKR2018006802-appb-T000002
Figure PCTKR2018006802-appb-T000003
NR 물리 자원(NR Physical Resource)
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 추론될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3을 참고하면, 자원 그리드가 주파수 영역 상으로
Figure PCTKR2018006802-appb-I000017
서브캐리어들로 구성되고, 하나의 서브프레임이 14 x 2u OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
NR 시스템에서, 전송되는 신호(transmitted signal)는
Figure PCTKR2018006802-appb-I000018
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
Figure PCTKR2018006802-appb-I000019
의 OFDM 심볼들에 의해 설명된다. 여기에서,
Figure PCTKR2018006802-appb-I000020
이다. 상기
Figure PCTKR2018006802-appb-I000021
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
이 경우, 도 4와 같이, 뉴머롤로지
Figure PCTKR2018006802-appb-I000022
및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
뉴머롤로지
Figure PCTKR2018006802-appb-I000023
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
Figure PCTKR2018006802-appb-I000024
에 의해 고유적으로 식별된다. 여기에서,
Figure PCTKR2018006802-appb-I000025
는 주파수 영역 상의 인덱스이고,
Figure PCTKR2018006802-appb-I000026
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
Figure PCTKR2018006802-appb-I000027
이 이용된다. 여기에서,
Figure PCTKR2018006802-appb-I000028
이다.
뉴머롤로지
Figure PCTKR2018006802-appb-I000029
및 안테나 포트 p에 대한 자원 요소
Figure PCTKR2018006802-appb-I000030
는 복소 값(complex value)
Figure PCTKR2018006802-appb-I000031
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
Figure PCTKR2018006802-appb-I000032
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
Figure PCTKR2018006802-appb-I000033
또는
Figure PCTKR2018006802-appb-I000034
이 될 수 있다.
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의
Figure PCTKR2018006802-appb-I000035
연속적인 서브캐리어들로 정의된다. 주파수 영역 상에서, 물리 자원 블록들은 0부터
Figure PCTKR2018006802-appb-I000036
까지 번호가 매겨진다. 이 때, 주파수 영역 상의 물리 자원 블록 번호(physical resource block number)
Figure PCTKR2018006802-appb-I000037
와 자원 요소들
Figure PCTKR2018006802-appb-I000038
간의 관계는 수학식 1과 같이 주어진다.
Figure PCTKR2018006802-appb-M000001
또한, 캐리어 파트(carrier part)와 관련하여, 단말은 자원 그리드의 서브셋(subset)만을 이용하여 수신 또는 전송하도록 설정될 수 있다. 이 때, 단말이 수신 또는 전송하도록 설정된 자원 블록의 집합(set)은 주파수 영역 상에서 0부터
Figure PCTKR2018006802-appb-I000039
까지 번호가 매겨진다.
Self-contained 서브프레임 구조
NR 시스템에서 고려되는 TDD(Time Division Duplexing) 구조는 상향링크(Uplink, UL)와 하향링크(Downlink, DL)를 하나의 서브프레임(subframe)에서 모두 처리하는 구조이다. 이는, TDD 시스템에서 데이터 전송의 지연(latency)을 최소화하기 위한 것이며, 상기 구조는 self-contained 서브프레임(self-contained subframe) 구조로 지칭된다.
도 4 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained 서브프레임 구조의 일례를 나타낸다. 도 2는 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 4를 참고하면, legacy LTE의 경우와 같이, 하나의 서브프레임이 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼(symbol)들로 구성되는 경우가 가정된다.
도 4에서, 영역 402는 하향링크 제어 영역(downlink control region)을 의미하고, 영역 404는 상향링크 제어 영역(uplink control region)을 의미한다. 또한, 영역 402 및 영역 404 이외의 영역(즉, 별도의 표시가 없는 영역)은 하향링크 데이터(downlink data) 또는 상향링크 데이터(uplink data)의 전송을 위해 이용될 수 있다.
즉, 상향링크 제어 정보(uplink control information) 및 하향링크 제어 정보(downlink control information)는 하나의 self-contained 서브프레임에서 전송된다. 반면, 데이터(data)의 경우, 상향링크 데이터 또는 하향링크 데이터가 하나의 self-contained 서브프레임에서 전송된다.
도 4에 나타난 구조를 이용하는 경우, 하나의 self-contained 서브프레임 내에서, 하향링크 전송과 상향링크 전송이 순차적으로 진행되며, 하향링크 데이터의 전송 및 상향링크 ACK/NACK의 수신이 수행될 수 있다.
결과적으로, 데이터 전송의 에러가 발생하는 경우, 데이터의 재전송까지 소요되는 시간이 감소할 수 있다. 이를 통해, 데이터 전달과 관련된 지연이 최소화될 수 있다.
도 4와 같은 self-contained 서브프레임 구조에서, 기지국(eNodeB, eNB, gNB) 및/또는 단말(terminal, UE(User Equipment))이 전송 모드(transmission mode)에서 수신 모드(reception mode)로 전환하는 과정 또는 수신 모드에서 전송 모드로 전환하는 과정을 위한 시간 갭(time gap)이 요구된다. 상기 시간 갭과 관련하여, 상기 self-contained 서브프레임에서 하향링크 전송 이후에 상향링크 전송이 수행되는 경우, 일부 OFDM 심볼(들)이 보호 구간(Guard Period, GP)으로 설정될 수 있다.
또한, NR 시스템에서는 도 4에 나타난 구조 이외에도 여러 유형의 self contained subframe 구조들이 고려될 수 있다.
도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained 서브프레임 구조의 예들을 나타낸다. 도 3은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 5의 (a) 내지 (d)와 같이, NR 시스템에서의 self-contained 서브프레임은 하향링크 제어 영역(DL control region), 하향링크 데이터 영역(DL data region), 보호 구간(GP), 상향링크 제어 영역(UL control region), 및/또는 상향링크 데이터 영역(UL data region)을 한 단위(unit)로 하여 다양한 조합으로 구성될 수 있다.
이하에서, 본 명세서에서 제안하는 광대역 시스템(wideband system)에서 다양한 대역폭(BandWidth,BW) 크기와 다양한 BW 위치(location)을 가진 단말들이 존재할 때, 해당 단말들이 공통의 RS(common RS(Reference Signal))을 사용할 수 있도록 네트워크(network)에서 RS 시퀀스 길이(sequence length)와 스크램블링 시퀀스(scrambling sequence)를 결정(또는 선택)하는 방법과, 각 단말이 결정된 RS sequence를 매핑(mapping)하는 방법에 대해 살펴보기로 한다.
NR(New Radio) 시스템은 다양한 BW를 지원하는 단말들을 지원한다.
그리고, 네트워크(network)의 관점에서, 모든 단말들을 스케쥴링(scheduling)하는데 유연성(flexibility)를 유지하는 것은 NR의 목표 중의 하나이다.
즉, 네트워크(network)는 모든 단말들의 송수신 환경을 최적화하기 위하여 단말들의 BW 크기(단말 지원 가능 BW)와 BW 위치를 유연하게 시그널링(signaling)하는 것을 지원한다.
따라서, 이를 위해 많은 signaling이 UE-specific한 방식으로 수행될 수 있지만, 모든 단말들에게 common한 정보는 단말들이 공유하는 것이 효율적일 수 있다.
여기서, 상기 common RS는 상기 common한 정보 중의 하나일 수 있다.
따라서, 본 명세서는 앞서 언급한 환경에서 효율적인 RS 사용을 위해 RS 시퀀스 길이(sequence length) 설정 방법, 스크램블링 시퀀스(scrambling sequence) 설정 방식과 RS 매핑 메커니즘(mapping mechanism)에 대하여 제안한다.
즉, 본 명세서는 상기 common한 정보(예: common RS)를 단말이 UE-specific하게 사용하는 방법을 구체화한다.
첫 번째로, RS 시퀀스 길이(sequence length)를 설정(setting, configuration)하는 방법과 스크램블링(scrambling)하는 방법에 대해 살펴본다.
NR 시스템 내의 단말들을 위해 RS를 생성(generate)할 때, 네트워크는 현재 접속한 단말들의 상태(state)를 파악하고, RS sequence length를 flexible하게 설정할 수 있다.
여기서, 다양한 RS sequence length는 미리 정의(predefine)되어 네트워크(network)가 단말들로 해당 RS sequence length의 정의된 번호(defined number)를 알리거나, 또는 network가 해당 RS sequence length에 대한 정보를 직접 단말들로 알릴 수 있다.
네트워크가 RS sequence를 flexible하게 결정(또는 선택)하는 경우, 아래 옵션 1(option 1) 내지 옵션 3(option 3)과 같이 세 가지 기준을 적용할 수 있다.
먼저, 옵션 1(Option 1)은 네트워크에 접속된 단말들 중에서 제일 큰 BW를 기준으로, 또는 RS sequence를 공유(share)하는 단말이 지원하는 BW 값 중 가장 큰 BW 값으로 RS sequence length를 설정하는 방법이다.
다음으로, 옵션 2(Option 2)는 네트워크에 접속된 단말 중에서 좁은(narrow) BW 기준으로, 또는 서브밴드(subband) 기준으로 RS sequence length를 설정할 수 있다.
이때, 광대역(wideband) 단말들은 동일한 RS sequence를 반복하여 사용하도록 설정하거나, 또는 subband에 설정된 RS들을 연접(concatenation) 하는 방법을 이용할 수 있다.
다음으로, 옵션 3(Option 3)은 하나의 NR system에서 다양한 RS sequence length를 설정하는 방법이다.
예를 들면, 앞서 서술한 RS sequence를 PN sequence 기반으로 생성(generate)할 경우, 아래 수학식 2의 방법을 사용할 수 있다.
Figure PCTKR2018006802-appb-M000002
여기서,
Figure PCTKR2018006802-appb-I000040
은 정해진 값이 아니며, network에서 단말들의 접속 상태를 파악하여 flexible하게 변경할 수 있는 값이거나, 또는 network이 system bandwidth와 상관없이 signaling할 수 있는 값일 수 있다.
앞서 살핀, 옵션 1(Option 1)과 옵션 2(option 2)는 NR system에서 동일한 값(
Figure PCTKR2018006802-appb-I000041
)을 사용하기 때문에, 상기
Figure PCTKR2018006802-appb-I000042
는 common한 자원(e.g. PBCH(Physical Broadcast Channel), RMSI(Remaining Minimum System Information), UE-group signaling)를 이용하여 단말들로 전달될 수 있다. 다만, 해당 정보가 UE-specific하게 signaling될 수도 있다.
옵션 3(Option 3)은 각 frequency range에서 다양한 length로 RS sequence를 생성할 수 있기 때문에, RS sequence length 정보는 UE-specific 또는 group common한 자원(Msg4, RRC(Radio Resource Control), USS(UE specific Search Space))를 이용하여 단말들로 전달된다.
또한, 상기 RS sequence length 정보는 다수의 단말들에게 UE-group signaling으로 전송될 수 있다.
각 단말은 해당 자원(resource)에서
Figure PCTKR2018006802-appb-I000043
정보를 검출(detect)하여 동일한 reference sequence를 generation할 수 있다.
하지만, 각 단말은 configure받은 BW의 frequency range와 BW의 location에 따라 reference sequence의 처음이 아닌 일정 오프셋(offset) 이후부터, 자신의 BW에 RS sequence를 mapping한다.
각 단말에서의 RS mapping 방법 특히, RS 인덱스 오프셋(index offset)에 기초하여 RS sequence를 매핑하는 방법에 대해서는 후술하기로 한다.
네트워크에 접속된 단말들 중 넓은 BW를 지원하는 단말들이 다수이고, 좁은 대역폭(narrow BW)을 지원하는 단말들이 소수인 경우, network은 제일 큰 BW를 지원하는 단말 기준으로 RS sequence length를 설정하거나, 또는 시스템 BW가 다수 개의 subband들로 나누어진 경우, subband 기준으로 RS sequence length를 설정할 수도 있다.
도 6a 및 도 6b는 본 명세서에서 제안하는 RS 시퀀스 길이를 설정하는 방법의 일례를 나타낸 도이다.
도 6a를 참조하면, UE 1 BW를 기준(가장 큰 BW 기준, 610) 또는 NR subband 기준으로 RS sequence를 generation할 수 있다.
이 경우, 네트워크는 generation된 sequence의 length 정보를 common한 resource를 이용하여 단말들로 알릴 수 있다.
또는, 도 6b와 같이, 네트워크에 접속된 단말들의 BW가 다양한 narrow band를 가지고, 동일 size의 narrow band를 가진 단말들(620)이 같은 location에 할당(assign)된 경우, network는 다양한 RS sequence length를 설정할 수 있다.
즉, 도 6b를 참조하면, 네트워크가 narrow band UE들에게 별도의 RS sequence length 정보를 전송하지 않으면, 각 UE는 자신의 BW에 맞는 RS sequence를 generation하여 사용하게 되어, 네트워크에 의해 전송되는 common signaling 정보는 줄어들 수 있다.
하지만, 네트워크는 광대역(wideband) UE에게 BW의 각 부분에 대한 RS sequence length을 알려야 하기 때문에 UE-specific signaling이 많아질 수 있게 된다.
앞서 살핀 방법 이외에도, RS 시퀀스(sequence)를 generation하는 방법은 다음과 같이 다양하게 정의될 수 있다.
NR 시스템에서 wideband UE와 narrow band UE에 대하여 MU-MIMO(Multi User-Multiple Input Multiple Output)을 진행할 때, FDM(Frequency Division Multiplexing)을 이용하는 경우, 네트워크는 RS sequence를 각 UE의 bandwidth에 맞게 generation할 수 있다.
또는, CDM(Code Division Multiplexing)을 이용할 경우, 네트워크는 RS sequence를 wideband UE 기준으로 설정하여 narrowband UE는 앞서 살핀 옵션 1(option 1)과 같이 RS sequence의 일부를 사용하게 할 수 있다.
이 때, 단말의 동작은 다음과 같이 정의될 수 있다.
- 단말이 시스템 대역폭(system bandwidth)를 알고 있는 경우, RS sequence generation에 대한 length 및/또는 RS index offset이 설정(configuration)되지 않은 경우, 단말은 system bandwidth에 따라서 RS sequence를 generation할 수 있다.
- 단말이 system bandwidth를 알지 못하는 경우, RS sequence generation에 대한 length 및/또는 RS index offset이 configuration 되지 않은 경우, 단말은 자신이 할당 받은 bandwidth part(BWP) 혹은 data가 매핑되는 영역 혹은 CORESET(control resource set) PRB(Physical Resource Block) 리스트에 따라서 RS sequence를 local하게 generation할 수 있다.
즉, 단말은 system bandwidth 또는 local bandwidth part (또는 data/control region)에 따라 RS sequence를 디폴트(default)로 generation하며, RS sequence에 대한 length 및/또는 RS index offset이 주어지면 해당 parameter를 따른다.
여기서, RS index offset은 generation된 RS sequence의 어떤 지점부터 단말이 RS sequence를 매핑하는지를 알려주는 정보를 의미할 수 있다.
상기 RS index offset은 특정 단말에게 설정된(configured) BW의 중심(center) 또는 가장자리(edge)(예: lowest PRB, highest PRB)와의 offset으로 해석될 수도 있다.
상기 RS index offset은 RS sequence의 시작점과 UE가 실제로 RS sequence를 물리 자원에 매핑하는 시작점과의 차이를 의미할 수도 있다.
네트워크가 상기 RS index offset을 단말에게 RB(Resource Block) 단위로 configure해줄 경우, 해당 단말은 하나의 RB에 존재하는 RS subcarrier 개수에 따라 실제 적용할 값을 계산하거나, 또는 네트워크가 직접 subcarrier 단위로 해당 단말에게 configure하여 해당 단말이 configured 값을 직접 적용할 수 있다.
그리고, 상기 RS index offset이 필요한 이유는 common한 RS sequence가 다양한 단말들에게 적용될 경우, 각 단말은 자신이 사용할 부분이 RS sequence의 어떤 부분인지를 indication 받을 필요가 있기 때문이다.
상기 indication을 RS index offset으로 표현할 수 있다.
앞서 언급한 RS parameter의 경우, 아래와 같이 (1) RS sequence length/RS index offset의 단일 세트(single set)을 구성 받은 경우와, (2) bandwidth part(BWP) 별로 RS sequence length/RS index offset이 주어진 경우로 구분할 수 있다.
먼저, RS sequence length/RS index offset의 single set을 구성 받은 경우, RS sequence가 bandwidth part를 cover 또는 포함한다고 가정한다.
RS sequence의 length 만큼 구성한 후, 해당 RS sequence가 매핑되는 과정은 다음 2가지 경우를 따를 수 있다.
- 단말이 system bandwidth를 아는 경우(또는 center를 아는 경우):
캐리어(carrier)의 중심(center) 또는 가장 낮은 PRB (lowest PRB)부터 RS sequence를 mapping한다. 이 경우, RS index offset 정보는 필요하지 않을 수 있다.
- 단말이 system bandwidth를 알지 못하는 경우(또는 center를 알지 못하는 경우):
액세스(access)한 SS(Synchronization Signal) block(SSB)의 center를 기준으로 PRB indexing을 하며, RS sequence의 length 및 RS index offset을 적용하여 RS sequence를 매핑한다.
이 경우, 상기 RS index offset은 SS block과 center의 차이로 정의될 수 있다.
하나의 NR carrier에 다수 개의 SS block들이 존재하는 경우, 각 SS block 별로 RS index offset이 존재할 수 있다.
다음으로, bandwidth part별로 RS sequence length 및 RS index offset이 주어진 경우, 해당 RS sequence가 매핑되는 과정은 다음 2가지 경우를 따를 수 있다.
- 각 bandwidth part별로 가장 낮은 PRB(lowest PRB) 또는 center를 기준으로 PRB indexing을 수행하고, RS sequence를 RS sequence length 및 RS index offset을 이용하여 "offset+1"부터 lowest PRB에 매핑하거나, 또는 "offset"을 center에 매핑할 수 있다.
- 다수 개의 bandwidth part들이 overlap되었을 경우 RS sequence length를 동일하게, offset 정보는 bandwidth part별로 주어질 수 있다.
또는, 다수 개의 bandwidth part들의 center 또는 lowest PRB가 일치되는 경우 offset 정보도 동일하게 주어질 수 있다.
또는, RS sequence를 narrow band UE 기준으로 설정하여 wideband UE는 해당 sequence를 반복하여 사용하도록 할 수 있다. RS sequence를 반복 사용하는 구체적인 방법에 대해서는 후술하기로 한다.
다음으로, 서로 다른 단말들을 위해 RS sequence를 매핑(mapping)하는 방법(예: 방법 1 및 방법 2)에 대해 살펴본다.
본 명세서에서 downlink와 관련된 RS sequence는 네트워크에 의해 generation 되어 단말에게 전송될 수 있으며, uplink와 관련된 RS sequence는 단말에 의해 generation 되어 네트워크로 전송되는 것으로 해석될 수 있다.
(방법 1)
방법 1은 기본 시퀀스 길이(base sequence length)와 시작 인덱스(starting index)를 이용하여 서로 다른 단말들을 위해 RS를 매핑하는 방법이다.
상기 시작 인덱스는 RS index offset와 동일한 의미로 해석될 수 있다.
다양한 BW를 가진 단말들이 초기 접속(initial access)를 통해 네트워크(network)에 접속한 후, 상기 network로부터 RS 매핑을 위한 RS sequence length 정보와 RS 인덱스 오프셋(index offset)정보를 받을 수 있다.
하나의 단말은 network이 generation한 RS sequence의 처음부터 또는 중간 어떤 지점부터 mapping할 수 있으므로, 네트워크는 RS index offset 정보로 단말의 (RS sequence 매핑) 시작점을 해당 단말로 indication 해줄 수 있다.
또는, 네트워크는 단말들로 base RS sequence length 와 해당 RS sequence 중에서 puncturing 되어야 하는 부분에 대한 정보(또는 indication)을 전송할 수 있다.
일례로, 네트워크에 의해 generation된 RS sequence의 length는 2*N이라고 가정한다.
이 경우, 상기 puncturing에 대해서 처음부터 K개가 가능하다고 하면, 단말은 configuration 받은 bandwidth 내의 first PRB에 매핑되는 RS의 첫 번째 RE에 RS sequence의 K+1부터 매핑할 수 있다.
즉, 이는 base sequence와 base sequence에서 가져다 사용해야 하는 partial sequence의 시작점을 알려주는 방식일 수 있다.
도 7은 본 명세서에서 제안하는 RS 시퀀스 매핑 방법의 일례를 나타낸 도이다.
구체적으로, 도 7은 앞서 설명한 방법 1에 대한 일례를 나타낸다.
도 7에서, 네트워크에서 지원하는 시스템 BW는 A MHz이고, 상기 A 값은 네트워크에 의해 결정된다. 그리고, 도 7에서 빗금 친 부분(710)은 총 N개의 PRB를 나타내며, 빗금 친 부분 하나의 단위(720)는 1 PRB (grid)를 나타내고, 1 PRB 당 2개의 RS가 존재한다.
도 7을 참조하면, 단말은 자신에게 configure된 BW에서 network로부터 RS sequence length 정보(예: Length = 2N)와 RS index offset을 수신한다.
상기 RS index offset이 UE 1 BW의 edge 기준으로 설정될 때, 상기 RS index offset 값은 8이며(4PRB*2RSs), UE 2 BW의 edge 기준으로 RS index offset이 설정될 때, 상기 RS index offset 값은 20(10PRB*2RSs)일 수 있다.
앞서 언급한 것처럼, RS index offset을 정하는 기준은 다양한 방법(e.g. UE에게 설정된 BW의 edge 기준, UE에게 설정된 BW의 center 기준, SS block의 center 기준)이 있을 수 있다.
이 때, 상기 RS index offset을 어떤 기준으로 설정할지는 default로 정해지거나, 또는 network에서 결정하여 단말로 전송할 수 있다.
상기 RS index offset 정보는 USS(UE-specific Search Space) 또는 group 단위로 설정된 resource를 통해 단말로 전송될 수 있다.
다수 개의 단말들은 다양한 BW를 configure받을 수 있지만, configured BW의 물리적 시작 지점(physical start point)가 동일할 경우, network는 해당 group에게 RS index offset 값을 group common resource로 전송함으로써 signaling overhead를 줄일 수 있다.
다수 개의 SS block들을 가진 network에 다양한 BW를 가진 단말들이 각각 다른 SS block으로부터 network에 접속할 때, RS sequence length 정보와 RS index offset 정보는 각 SS block 기준으로 하는 set를 단말들에게 설정할 수 있다.
즉, 공유된(shared) RS의 BW가 해당 SS block을 포함하고 있을 때, SS block의 center와 RS BW의 center와의 offset 또는, SS Block과 RS BW의 가장 낮은 PRB(lowest PRB)와의 offset을 접속된 단말들에게 common하게 알릴 수 있다.
도 8은 본 명세서에서 제안하는 RS 시퀀스 매핑 방법의 또 다른 일례를 나타낸 도이다.
도 8에서, 네트워크에서 지원하는 시스템 BW는 A MHz이고, 상기 A 값은 네트워크에 의해 결정된다. 그리고, 도 8에서 빗금 친 부분(810)은 총 N개의 PRB를 나타내며, 빗금 친 부분 하나의 단위는 1 PRB (grid)를 나타내고, 1 PRB 당 2개의 RS가 존재한다.
도 8을 참조하면, 단말은 자신에게 configure된 BW에서 network로부터 RS sequence length 정보(예: Length = 2N )와 RS index offset을 수신한다.
도 8을 참조하면, 시스템 BW(또는 네트워크)에 다수 개(p)의 SS block(820)이 존재하고, 각 SS block으로부터 접속하는 UE들의 BW가 다양한 것을 볼 수 있다.
상기 p는 1보다 큰 자연수이다.
UE 1과 UE 2는 SS block 0번(SSB #0)으로부터 network에 접속하고, UE 3은 SS block n번(SSB #n)으로부터 network에 접속한다.
이 경우, 네트워크는 SS block #0에서 {RS length=2N, RS index offset=18(9PRB*2RS)}인 정보를 common한 resource를 이용하여 단말들에게 알릴 수 있다.
그리고, UE 1과 UE 2는 해당 정보를 수신하여 각자의 BW에 RS를 mapping하는 RS index offset을 계산하여 shared RS를 사용할 수 있다.
그리고, 상기 네트워크는 SS block #n에서 {RS length=2N, RS index offset=Mn}인 정보를 단말들에게 알릴 수 있다.
여기서, UE 3은 해당 RS index offset 정보를 이용하여 자신의 BW에 RS sequence를 mapping하기 위한 RS index offset을 계산할 수 있다.
(방법 2)
방법 2는 (RS) base sequence length와 반복/확산(repetition/spreading)과 관련된 파라미터들을 이용하여 서로 다른 단말들을 위해 RS sequence를 매핑하는 방법이다.
여기서, 방법 2는 base sequence length가 단말의 bandwidth part(BWP)보다 작은 경우에 적용될 수 있다.
즉, 상기 base sequence length가 bandwidth part(BWP)보다 작은 경우, 단말은 base sequence를 반복하여 매핑을 수행할 수 있다.
상기 base sequence를 반복하여 매핑하는 경우, 해당 base sequence에 scrambling을 적용하거나 또는 spreading을 적용할 수 있다.
따라서, 네트워크는 단말로 해당 parameter(scrambling 또는 spreading 관련 파라미터)를 base sequence length/offset가 함께 configuration할 수 있다.
이는, narrowband UE에 따라 wideband UE에 base sequence를 적용하는 방법에 고려할 수 있으며, 도 9는 이러한 방법의 일례를 나타낸다.
도 9는 본 명세서에서 제안하는 RS sequence 매핑 방법의 또 다른 일례를 나타낸 도이다.
하나의 UE에 configure된 bandwidth가 RS base sequence의 bandwidth보다 큰 경우, 네트워크는 해당 UE가 사용하는 첫 번째 RS sequence의 시작(start) RS index offset을 해당 UE로 알릴 수 있다.
UE는 상기 첫 번째 RS sequence를 이용하여 자신의 bandwidth에 mapping하고, 매핑할 RS sequence가 부족할 경우 동일 base sequence를 반복하여 매핑하는 것으로 인지하고, 남은 bandwidth에 두 번째 RS sequence의 처음부터 순차적으로 mapping을 수행한다.
여기서, 반복되는 RS base sequence는 첫 번째 RS sequence와 서로 다른 scrambling ID(또는 spreading factor)를 사용할 수 있다.
상기 scrambling ID(또는 spreading factor)는 사전에 네트워크가 해당 UE로 configuration할 수 있거나, 또는 RRC signaling을 통하여 해당 UE로 알릴 수 있다.
도 9에서, 네트워크에서 지원하는 시스템 BW는 A MHz이고, 상기 A 값은 네트워크에 의해 결정된다. 그리고, 도 9에서 빗금 친 부분은 총 N개의 PRB를 나타내며, 빗금 친 부분 하나의 단위는 1 PRB (grid)를 나타내고, 1 PRB 당 2개의 RS가 존재한다.
도 9에서, 첫 번째 RS sequence에 대한 UE의 RS index offset 값은 8을 나타내고, 두 번째 RS sequence에 대한 UE의 RS index offset 값은 0을 나타낸다.
그리고, 각 RS sequence에는 서로 다른 scrambling ID(910)가 적용된다.
참고로, 120MHz의 BW를 가지는 UE(예: Rel.16)는 UE 1(예: Rel.15)의 RS와 UE 2(예: Rel.15)의 RS를 결합한 RS sequence를 재사용할 수 있다.
Rel.15에서 정의되어 있는 RS sequence는 Rel.15의 UE들에 적용하는데 문제는 없지만, Rel.16 또는 그 이후의 Release를 지원하는 UE들이 더 큰 BW를 지원하는 경우, 다음과 같이 몇 가지 문제가 발생할 수 있다.
즉, Rel.16 UE의 BW가 Rel.15 UE의 maximum BW보다 크다고 가정할 경우, 다음과 같이 몇 가지 문제가 발생할 수 있다.
1) Rel.15 UE 기준으로 RS sequence generation 시 Rel.16 UE의 일부 영역에 RS mapping이 진행되지 않는 상황이 발생할 수 있다.
2) Rel.16 UE 기준으로 RS sequence generation 시 Rel.15 UE는 해당 정보를 정확하게 decoding하지 못할 가능성이 존재한다. 즉, signaling의 bit 수 차이가 존재할 경우, 해당 UE는 서로 다른 값으로 decoding하는 상황이 발생할 수 있다.
3) 만약 네트워크가 Rel.15 UE와 Rel.16 UE 각각을 기준으로 RS sequence를 따로 generation할 경우, resource에 대한 사용 효율이 낮아질 수 있다.
이 경우, 서로 다른 RS resource가 overlap되어 서로 간섭(interference)가 발생할 가능도 존재한다.
상기와 같은 이유로, resource를 효율적으로 사용하고, 기존 Release UE들에게 영향을 주지 않으면서, 이후 Release UE들에게 signaling overhead가 최소화된 RS sequence generation 및 RS sequence mapping 방법으로서, 앞서 설명한 RS sequence 매핑 방법이 사용될 수 있다.
좀 더 특징적으로, 네트워크에 의해 생성된 (RS) base sequence length가 단말의 bandwidth part(BWP)보다 적은 경우에 서로 다른 단말들을 위해 RS sequence를 매핑하는 방법으로서, 여러 개의 (RS) base sequence를 연접(concatenation)하는 방법을 고려할 수 있다.
이 경우, 각 (RS) base sequence의 length 및 generation 관련 parameter가 다르게 설정될 수 있다.
이 방법은 다양한 bandwidth를 가진 단말들의 BW가 중첩(overlap)되지 않는 경우, signaling overhead를 줄일 수 있는 장점이 있다.
다시 말하면, network는 각 UE의 bandwidth에 맞는 RS sequence를 generation하여 UE들에게 별도의 RS sequence length 정보를 전달하지 않을 수 있다.
UE는 해당 정보가 없을 경우 자신이 configure 받은 bandwidth에 일치하는 RS sequence를 generation하여 사용할 수 있다.
RS base sequence의 length(DL 최대 RB 개수) 및 UE가 사용할 RS sequence의 시작 위치(start position) 즉, (RS) base sequence로부터의 offset(RS index offset)을 결정하는 방법은 아래와 같이 다양한 옵션들이 존재할 수 있다.
- 옵션 1(Option 1)은 각 UE 별로 하나의 RS index offset 값을 정하는 방법이다.
네트워크(network)에 접속한 UE들의 BW가 다양하고, BW들이 서로 overlap되는 경우, 각 UE 별로 하나의 RS index offset을 정해줄 수 있다.
- 옵션 2(Option 2)는 각 numerology 별 / 각 UE 별로 하나의 RS index offset 값을 정하는 방법이다.
Numerology가 다른 경우, 일정한 규칙(rule)에 따라 RS index offset 값을 정할 수 있다.
예를 들면, subcarrier spacing이 30kHz인 경우를 기반으로 RS sequence length와 RS index offset이 정해질 경우, 동일 BW에서 15kHz subcarrier spacing을 사용하는 경우, RS sequence를 spreading하거나, 또는 반복(repetition)하여 mapping하되, RS index offset은 각각 동일 index 또는 기존 index*2인 형태로 사용할 수 있다.
- 옵션 3(Option 3)은 각 bandwidth part 별 하나의 RS index offset 값을 정하는 방법이다.
- 옵션 4(Option 4)는 각 RS sequence 별 하나의 RS index offset 값을 정하는 방법이다.
- 옵션 5(Option 5)는 각 RS type별 하나의 RS index offset 값을 정하는 방법이다.
상기 RS type은 PN sequence 기반 RS와 CAZAC sequence 기반 RS를 포함한 다양한 RS type을 포함할 수 있다.
이하에서는, 서로 다른 OCC(Orthogonal Cover Code)를 가지는 동일 또는 서로 다른 base sequence를 사용한 상호-상관(cross-correlation) 성능에 대해 도 10 및 도 11을 참고하여 살펴본다.
도 10은 서로 다른 OCC를 가지는 동일한 기본 시퀀스를 사용한 상호-상관 성능을 나타낸 일례이며, 도 11은 서로 다른 OCC를 가지는 서로 다른 기본 시퀀스를 사용한 상호-상관 성능을 나타낸 일례이다.
즉, 도 10 및 도 11은 MU-MIMO 환경에서 wideband UE 기준으로 RS sequence를 generation하고, narrow band UE가 generation된 RS sequence의 부분을 사용할 때 narrow band UE 기준으로의 cross-correlation 값을 구한 것이다.
시뮬레이션(simulation)을 진행하는데 사용된 parameter들은 표 4에 나타나며, wideband UE와 narrow band UE는 모두 wideband 기준으로 250 RB에 해당하는 RS sequence를 generation하여 각각의 OCC(Orthogonal Cover Code)를 생성된 RS sequence에 추가한다.
그리고, narrow band UE는 자신의 BW 위치(location)에 따라 long sequence에서 부분을 사용하게 되고, 이를 wideband에서 동일 위치의 RS sequence와 cross-correlation을 취한다.
도 10 및 도 11의 시뮬레이션(simulation)은 이상적인 채널 환경하에 진행되었으며, 도 10은 동일한 base sequence에 OCC을 추가하여 동일 위치의 RS에 대한 correlation을 나타내며, 그 값은 0임을 확인할 수 있다.
반면, 각 UE가 각각 서로 다른 sequence를 이용할 경우, 도 10과 동일한 환경에서도 cross-correlation 성능이 많이 열화되는 것을 확인할 수 있다.
즉, 도 11에서 상호-상관 평균 값(cross-correlation mean value)은 0.049943이다.
표 4는 상호-상관(cross-correlation)의 성능 측정과 관련된 파라미터들의 일례를 나타낸 표이다.
Figure PCTKR2018006802-appb-T000004
도 12는 본 명세서에서 제안하는 RS 시퀀스를 물리 자원에 매핑하는 단말의 동작 방법을 나타낸 순서도이다.
도 12의 내용은 앞서 살핀 RS 시퀀스 매핑 방법에 대한 내용을 단말의 동작 관점에서 서술한 것으로, 앞서 언급한 내용들은 이하 서술하는 내용에 모두 적용 가능하며, 구체적인 설명은 앞서 언급한 내용을 참조할 수 있다.
먼저, 단말은 RS 시퀀스의 길이를 나타내는 길이(length) 정보 및 상기 단말에게 할당되는 물리 자원에 매핑되는 상기 RS 시퀀스의 시작 위치를 나타내는 오프셋 정보를 네트워크(예: 기지국)로부터 수신한다(S1210).
여기서, 상기 길이 정보는 공통(common) 자원 또는 그룹 공통(group common) 자원 또는 UE-specific한 자원을 통해 전송될 수 있다.
그리고, 상기 단말에게 할당되는 물리 자원은 대역폭(bandwidth, BW) 또는 대역폭 파트(bandwidth part, BWP)일 수 있으며, RB 단위로 구성될 수 있다.
그리고, 상기 RS 시퀀스의 길이는 상기 네트워크에 접속한 적어도 하나의 단말의 대역폭(bandwidth, BW)에 기초하여 설정될 수 있으며, 보다 구체적으로, 상기 네트워크에 접속한 적어도 하나의 단말의 대역폭 중 가장 큰 대역폭 또는 가장 작은 대역폭을 기준으로 설정될 수 있다.
이후, 상기 단말은 상기 수신된 길이 정보에 기초하여 상기 RS 시퀀스를 생성(generation)한다(S1220).
상기 RS 시퀀스 생성은 앞서 살핀 수학식 2의 방법을 이용할 수 있다.
이후, 상기 단말은 상기 생성된 RS 시퀀스를 상기 오프셋 정보에 기초하여 상기 물리 자원에 매핑한다(S1230).
여기서, 상기 생성된 RS 시퀀스는 상기 오프셋 정보에 의해 지시되는 값에 대응하는 위치부터 상기 물리 자원에 매핑될 수 있다.
그리고, 상기 RS 시퀀스를 물리 자원에 매핑하는 구체적인 방법은 앞서 언급한 방법들을 이용할 수 있다.
예를 들어, 상기 생성된 RS 시퀀스의 길이가 상기 단말에게 할당되는 물리 자원의 크기보다 작은 경우, 상기 생성된 RS 시퀀스는 적어도 한 번 반복되어 상기 물리 자원에 매핑될 수 있다.
이때, 상기 생성된 RS 시퀀스가 적어도 한 번 반복되는 경우, RS 시퀀스들 간에는 서로 다른 스크램블링(scrambling)이 적용될 수 있으며, 단말은 상기 RS 시퀀스들 각각에 적용되는 스크램블링을 식별하는 스크램블링 식별자(scrambling ID)를 상기 네트워크로부터 수신할 수 있다.
또 다른 일례로, 상기 생성된 RS 시퀀스의 길이가 상기 단말에게 할당되는 물리 자원의 크기보다 큰 경우, 상기 생성된 RS 시퀀스의 일부만이 상기 물리 자원에 매핑될 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 13은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
도 13을 참조하면, 무선 통신 시스템은 기지국(1310)과 기지국(1310) 영역 내에 위치한 다수의 단말(1320)을 포함한다.
상기 기지국과 단말은 각각 무선 장치로 표현될 수도 있다.
기지국(1310)은 프로세서(processor, 1311), 메모리(memory, 1312) 및 RF 모듈(radio frequency module, 1313)을 포함한다. 프로세서(1311)는 앞서 도 1 내지 도 12에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다. 메모리(1312)는 프로세서와 연결되어, 프로세서를 구동하기 위한 다양한 정보를 저장한다. RF 모듈(1313)는 프로세서와 연결되어, 무선 신호를 송신 및/또는 수신한다.
단말(1320)은 프로세서(1321), 메모리(1322) 및 RF 모듈(1323)을 포함한다.
프로세서(1321)는 앞서 도 1 내지 도 12에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다. 메모리(1322)는 프로세서와 연결되어, 프로세서를 구동하기 위한 다양한 정보를 저장한다. RF 모듈(1923)는 프로세서와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1312, 1322)는 프로세서(1311, 1321) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1311, 1321)와 연결될 수 있다.
또한, 기지국(1310) 및/또는 단말(1320)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 14는 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 14에서는 앞서 도 13의 단말을 보다 상세히 예시하는 도면이다.
도 14를 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(1410), RF 모듈(RF module)(또는 RF 유닛)(1435), 파워 관리 모듈(power management module)(1405), 안테나(antenna)(1440), 배터리(battery)(1455), 디스플레이(display)(1415), 키패드(keypad)(1420), 메모리(memory)(1430), 심카드(SIM(Subscriber Identification Module) card)(1425)(이 구성은 선택적임), 스피커(speaker)(1445) 및 마이크로폰(microphone)(1450)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(1410)는 앞서 도 1 내지 도 12에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서에 의해 구현될 수 있다.
메모리(1430)는 프로세서와 연결되고, 프로세서의 동작과 관련된 정보를 저장한다. 메모리(1430)는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
사용자는 예를 들어, 키패드(1420)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(1450)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(1425) 또는 메모리(1430)로부터 추출할 수 있다. 또한, 프로세서는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(1415) 상에 디스플레이할 수 있다.
RF 모듈(1435)는 프로세서에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈에 전달한다. RF 모듈은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(1440)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈은 프로세서에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(1445)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
도 15는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 일례를 나타낸 도이다.
구체적으로, 도 15는 FDD(Frequency Division Duplex) 시스템에서 구현될 수 있는 RF 모듈의 일례를 나타낸다.
먼저, 전송 경로에서, 도 13 및 도 14에서 기술된 프로세서는 전송될 데이터를 프로세싱하여 아날로그 출력 신호를 송신기(1510)에 제공한다.
송신기(1510) 내에서, 아날로그 출력 신호는 디지털-대-아날로그 변환(ADC)에 의해 야기되는 이미지들을 제거하기 위해 저역 통과 필터(Low Pass Filter,LPF)(1511)에 의해 필터링되고, 상향 변환기(Mixer, 1512)에 의해 기저대역으로부터 RF로 상향 변환되고, 가변이득 증폭기(Variable Gain Amplifier,VGA)(1513)에 의해 증폭되며, 증폭된 신호는 필터(1514)에 의해 필터링되고, 전력 증폭기(Power Amplifier,PA)(1515)에 의해 추가로 증폭되며, 듀플렉서(들)(1550)/안테나 스위치(들)(1560)을 통해 라우팅되고, 안테나(1570)을 통해 전송된다.
또한, 수신 경로에서, 안테나(1570)은 외부로부터 신호들을 수신하여 수신된 신호들을 제공하며, 이 신호들은 안테나 스위치(들)(1560)/듀플렉서들 (1550)을 통해 라우팅되고, 수신기(1520)으로 제공된다.
수신기(1520)내에서, 수신된 신호들은 저잡음 증폭기(Low Noise Amplifier, LNA)(1523)에 의해 증폭되며, 대역통과 필터(1524)에 의해 필터링되고, 하향 변환기(Mixer,1525)에 의해 RF로부터 기저대역으로 하향 변환된다.
상기 하향 변환된 신호는 저역 통과 필터(LPF,1526)에 의해 필터링되며, VGA(1527)에 의해 증폭되어 아날로그 입력 신호를 획득하고, 이는 도 12 및 도 13에서 기술된 프로세서에 제공된다.
또한, 로컬 오실레이터 (local oscillator, LO) 발생기(1540)는 전송 및 수신 LO 신호들을 발생 및 상향 변환기(1512) 및 하향 변환기(1525)에 각각 제공한다.
또한, 위상 고정 루프(Phase Locked Loop,PLL)(1530)은 적절한 주파수들에서 전송 및 수신 LO 신호들을 생성하기 위해 프로세서로부터 제어 정보를 수신하고, 제어 신호들을 LO 발생기(1540)에 제공한다.
또한, 도 15에 도시된 회로들은 도 15에 도시된 구성과 다르게 배열될 수도 있다.
도 16은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 또 다른 일례를 나타낸 도이다.
구체적으로, 도 16은 TDD(Time Division Duplex) 시스템에서 구현될 수 있는 RF 모듈의 일례를 나타낸다.
TDD 시스템에서의 RF 모듈의 송신기(1610) 및 수신기(1620)은 FDD 시스템에서의 RF 모듈의 송신기 및 수신기의 구조와 동일하다.
이하, TDD 시스템의 RF 모듈은 FDD 시스템의 RF 모듈과 차이가 나는 구조에 대해서만 살펴보기로 하고, 동일한 구조에 대해서는 도 15의 설명을 참조하기로 한다.
송신기의 전력 증폭기(Power Amplifier,PA)(1615)에 의해 증폭된 신호는 밴드 선택 스위치(Band Select Switch,1650), 밴드 통과 필터(BPF,1660) 및 안테나 스위치(들)(1670)을 통해 라우팅되고, 안테나(1680)을 통해 전송된다.
또한, 수신 경로에서, 안테나(1680)은 외부로부터 신호들을 수신하여 수신된 신호들을 제공하며, 이 신호들은 안테나 스위치(들)(1670), 밴드 통과 필터(1660) 및 밴드 선택 스위치(1650)을 통해 라우팅되고, 수신기(1620)으로 제공된다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 참조 신호를 매핑하는 방안은 3GPP LTE/LTE-A 시스템, 5G 시스템(New RAT 시스템)에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (10)

  1. 무선 통신 시스템에서 참조 신호(Reference Signal, RS) 시퀀스(sequence)를 물리 자원(physical resource)에 매핑하는 방법에 있어서, 단말에 의해 수행되는 방법은,
    상기 RS 시퀀스의 길이를 나타내는 길이(length) 정보 및 상기 단말에게 할당된 물리 자원에 매핑되는 상기 RS 시퀀스의 시작 위치를 나타내는 오프셋 정보를 네트워크로부터 수신하는 단계;
    상기 수신된 길이 정보에 기초하여 상기 RS 시퀀스를 생성(generation)하는 단계; 및
    상기 생성된 RS 시퀀스를 상기 오프셋 정보에 기초하여 상기 물리 자원에 매핑하는 단계를 포함하되,
    상기 생성된 RS 시퀀스는 상기 오프셋 정보에 의해 지시되는 값에 대응하는 위치부터 상기 물리 자원에 매핑되는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    상기 길이 정보는 공통(common) 자원 또는 그룹 공통(group common) 자원을 통해 전송되는 것을 특징으로 하는 방법.
  3. 제 1항에 있어서,
    상기 단말에게 할당된 물리 자원은 대역폭(bandwidth, BW) 또는 대역폭 파트(bandwidth part, BWP)인 것을 특징으로 하는 방법.
  4. 제 1항에 있어서,
    상기 생성된 RS 시퀀스의 길이가 상기 단말에게 할당된 물리 자원의 크기보다 작은 경우, 상기 생성된 RS 시퀀스는 적어도 한 번 반복되어 상기 물리 자원에 매핑되는 것을 특징으로 하는 방법.
  5. 제 4항에 있어서,
    상기 생성된 RS 시퀀스가 적어도 한 번 반복되는 경우, RS 시퀀스들 간에는 서로 다른 스크램블링(scrambling)이 적용되는 것을 특징으로 하는 방법.
  6. 제 5항에 있어서,
    상기 RS 시퀀스들 각각에 적용되는 스크램블링을 식별하는 스크램블링 식별자(scrambling ID)를 상기 네트워크로부터 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  7. 제 1항에 있어서,
    상기 생성된 RS 시퀀스의 길이가 상기 단말에게 할당된 물리 자원의 크기보다 큰 경우, 상기 생성된 RS 시퀀스의 일부만이 상기 물리 자원에 매핑되는 것을 특징으로 하는 방법.
  8. 제 1항에 있어서,
    상기 RS 시퀀스의 길이는 상기 네트워크에 접속한 적어도 하나의 단말의 대역폭(bandwidth, BW)에 기초하여 설정되는 것을 특징으로 하는 방법.
  9. 제 8항에 있어서
    상기 RS 시퀀스의 길이는 상기 네트워크에 접속한 적어도 하나의 단말의 대역폭 중 가장 큰 대역폭 또는 가장 작은 대역폭을 기준으로 설정되는 것을 특징으로 하는 방법.
  10. 무선 통신 시스템에서 참조 신호(Reference Signal, RS) 시퀀스(sequence)를 물리 자원(physical resource)에 매핑하기 위한 단말에 있어서,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및
    상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는,
    상기 RS 시퀀스의 길이를 나타내는 길이(length) 정보 및 상기 단말에게 할당된 물리 자원에 매핑되는 상기 RS 시퀀스의 시작 위치를 나타내는 오프셋 정보를 네트워크로부터 수신하며;
    상기 수신된 길이 정보에 기초하여 상기 RS 시퀀스를 생성(generation)하며; 및
    상기 생성된 RS 시퀀스를 상기 오프셋 정보에 기초하여 상기 물리 자원에 매핑하도록 설정되며,
    상기 생성된 RS 시퀀스는 상기 오프셋 정보에 의해 지시되는 값에 대응하는 위치부터 상기 물리 자원에 매핑되는 것을 특징으로 하는 단말.
PCT/KR2018/006802 2017-06-15 2018-06-15 무선 통신 시스템에서 참조 신호를 물리 자원에 매핑하는 방법 및 이를 위한 장치 WO2018231017A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/623,356 US11239965B2 (en) 2017-06-15 2018-06-15 Method for mapping reference signal to physical resource in wireless communication system and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762519885P 2017-06-15 2017-06-15
US62/519,885 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018231017A1 true WO2018231017A1 (ko) 2018-12-20

Family

ID=64659344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006802 WO2018231017A1 (ko) 2017-06-15 2018-06-15 무선 통신 시스템에서 참조 신호를 물리 자원에 매핑하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US11239965B2 (ko)
WO (1) WO2018231017A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150379B (zh) * 2017-06-16 2021-07-09 华为技术有限公司 一种通信方法、网络设备及终端设备
CN109451854B (zh) * 2017-08-11 2021-02-19 北京小米移动软件有限公司 一种跨载波调度方法及装置
US11310012B2 (en) * 2017-10-02 2022-04-19 Lg Electronics Inc. Method and apparatus for generating reference signal sequence in wireless communication system
US11050598B2 (en) * 2017-11-28 2021-06-29 Qualcomm Incorporated Carrier information signaling in a 5G network
US10972354B1 (en) * 2019-09-16 2021-04-06 Sprint Spectrum L.P. Wireless communication between a wide bandwidth network node and a narrow bandwidth wireless device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090080569A1 (en) * 2007-09-07 2009-03-26 Seung Hee Han Method of generating reference signal in wireless communication system
US20090238064A1 (en) * 2008-03-17 2009-09-24 Jung Hoon Lee Method of transmitting reference signal and transmitter using the same
US20100284265A1 (en) * 2007-12-27 2010-11-11 Panasonic Corporation Sequence number establishing method, wireless communication terminal apparatus and wireless communication base station apparatus
US20140293943A1 (en) * 2011-10-14 2014-10-02 Pantech Co., Ltd. Method and apparatus for transmitting a reference signal in wireless communication system
WO2016163738A1 (ko) * 2015-04-06 2016-10-13 엘지전자 주식회사 무선 통신 시스템에서 공유 자원 기반의 신호 송수신 방법 및 이를 위한 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096389A (zh) * 2011-11-07 2013-05-08 华为技术有限公司 上行参考信号的发送方法、用户设备和基站
US11088749B2 (en) * 2016-02-25 2021-08-10 Apple Inc. Device and method of using BRRS configuration
JP2020065095A (ja) * 2017-02-20 2020-04-23 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
CN108966181B (zh) * 2017-05-26 2021-07-23 株式会社Kt 为新无线电配置关于分量载波的频率资源的方法及其装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090080569A1 (en) * 2007-09-07 2009-03-26 Seung Hee Han Method of generating reference signal in wireless communication system
US20100284265A1 (en) * 2007-12-27 2010-11-11 Panasonic Corporation Sequence number establishing method, wireless communication terminal apparatus and wireless communication base station apparatus
US20090238064A1 (en) * 2008-03-17 2009-09-24 Jung Hoon Lee Method of transmitting reference signal and transmitter using the same
US20140293943A1 (en) * 2011-10-14 2014-10-02 Pantech Co., Ltd. Method and apparatus for transmitting a reference signal in wireless communication system
WO2016163738A1 (ko) * 2015-04-06 2016-10-13 엘지전자 주식회사 무선 통신 시스템에서 공유 자원 기반의 신호 송수신 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
US20200177334A1 (en) 2020-06-04
US11239965B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2019088787A1 (ko) 무선 통신 시스템에서 다수의 슬롯 기반 긴 pucch를 송수신하기 위한 방법 및 이를 위한 장치
WO2019093823A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2019088676A1 (ko) 무선 통신 시스템에서 대역폭 부분에 할당되는 자원 영역을 결정하는 방법 및 이를 위한 장치
WO2018084618A1 (ko) 무선 통신 시스템에서 초기 접속을 수행하는 방법 및 이를 위한 장치
WO2017213420A1 (ko) 무선 통신 시스템에서 순환 전치에 대한 정보를 획득하는 방법 및 이를 위한 장치
WO2018062891A1 (ko) 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 위한 장치
WO2018231017A1 (ko) 무선 통신 시스템에서 참조 신호를 물리 자원에 매핑하는 방법 및 이를 위한 장치
WO2018009043A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2018182256A1 (ko) 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2018182248A1 (ko) 무선 통신 시스템에서 단말의 위상 트래킹 참조 신호 수신 방법 및 이를 지원하는 장치
WO2018026253A1 (ko) 무선 통신 시스템에서 스케줄링 요청을 전송하는 방법 및 이를 위한 장치
WO2018174649A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2019022456A2 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2019066560A1 (ko) 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이를 위한 장치
WO2011122852A2 (ko) 무선통신 시스템에서 제어채널을 모니터링하기 위한 방법 및 장치
WO2019050370A1 (ko) 무선 통신 시스템에서 캐리어 병합을 이용하여 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2018182150A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2019031856A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2019004756A1 (ko) 무선 통신 시스템에서 채널 상태 정보 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2016072771A1 (ko) D2d 통신을 위한 동기화 신호 구성 방법 및 장치
WO2019022473A1 (ko) 무선 통신 시스템에서 bwp 동작을 수행하는 방법 및 이를 위한 장치
WO2017213483A1 (ko) 무선 통신 시스템에서 상향링크 제어 채널을 전송하는 방법 및 이를 위한 장치
WO2019017755A9 (ko) 무선 통신 시스템에서 참조 신호들 간 멀티플렉싱을 수행하기 위한 방법 및 이를 위한 장치
WO2018131857A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2019168354A1 (ko) 무선 통신 시스템에서 단말이 srs를 전송하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818573

Country of ref document: EP

Kind code of ref document: A1