WO2018230902A1 - 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치 - Google Patents

하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018230902A1
WO2018230902A1 PCT/KR2018/006589 KR2018006589W WO2018230902A1 WO 2018230902 A1 WO2018230902 A1 WO 2018230902A1 KR 2018006589 W KR2018006589 W KR 2018006589W WO 2018230902 A1 WO2018230902 A1 WO 2018230902A1
Authority
WO
WIPO (PCT)
Prior art keywords
aggregation level
cces
candidate
cce
candidate pdcchs
Prior art date
Application number
PCT/KR2018/006589
Other languages
English (en)
French (fr)
Inventor
곽규환
이승민
서인권
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201880038981.5A priority Critical patent/CN110741594B/zh
Priority to EP18817229.0A priority patent/EP3641195B1/en
Priority to US16/621,687 priority patent/US11096163B2/en
Publication of WO2018230902A1 publication Critical patent/WO2018230902A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0681Space-time coding characterised by the signaling adapting space time parameters, i.e. modifying the space time matrix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a method for receiving a downlink control channel and an apparatus therefor, and more particularly, to configure a search space for receiving a downlink control channel and to downlink based on the search space.
  • next generation 5G system which is an improved wireless broadband communication than the existing LTE system, is required.
  • eMBB Enhanced Mobile BroadBand
  • URLLC Ultra-reliability and low-latency communication
  • mMTC Massive Machine-Type Communications
  • eMBB is a next generation mobile communication scenario having characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate, and URLLC is a next generation mobile communication scenario having characteristics such as Ultra Reliable, Ultra Low Latency, Ultra High Availability, etc.
  • mMTC is a next generation mobile communication scenario with low cost, low energy, short packet, and mass connectivity. (e.g., IoT).
  • the present invention provides a method and apparatus for receiving a downlink control channel.
  • candidate physical downlink control channels configured with a number of control channel elements (CCEs) corresponding to an aggregation level are provided.
  • Monitoring and receiving a PDCCH wherein the CCEs for candidate PDCCHs of a higher aggregation level include all of the CCEs for candidate PDCCHs of a lower aggregation level and are included in each of the candidate PDCCHs of the higher aggregation level.
  • CCEs for candidate PDCCHs of a lower aggregation level may be determined using a matrix based on the size of the higher aggregation level and the number of candidate PDCCHs of the higher aggregation level.
  • the size of the row of the matrix may correspond to the size of the higher aggregation level
  • the size of the column of the matrix may correspond to the number of candidate PDCCHs of the higher aggregation level.
  • the CCEs are arranged in each element constituting the matrix, but the CCEs arranged in the same column may be included in candidate PDCCHs of the same higher aggregation level.
  • the method may further include determining a remaining CCE except for CCEs for candidate PDCCHs of the lower aggregation level.
  • the determined index of the remaining CCE may be re-indexed based on the index of CCEs for candidate PDCCHs of the lower aggregation level.
  • the candidate PDCCH of the determined higher aggregation level by the difference of the index of the starting CCE in the CCE bundling size
  • the CCEs corresponding to the indexes shifting the indices of the CCEs for may be re-determined as CCEs for the candidate PDCCH of the higher aggregation level.
  • the interval between candidate PDCCHs of the higher aggregation level may be determined based on a value obtained by dividing the number of CCEs included in the resource set for the PDCCH transmission by the number of candidate PDCCHs of the higher aggregation level.
  • a terminal for receiving a downlink control channel comprising: a transceiver for transmitting and receiving a signal with a base station; And a processor for monitoring the candidate physical downlink control channels (PDCCHs) configured with the number of control channel elements (CCEs) corresponding to the aggregation level, and controlling the transceiver to receive the PDCCH, wherein the processor is configured for candidate PDCCHs of a higher aggregation level.
  • PDCCHs physical downlink control channels
  • CCEs control channel elements
  • CCEs include all CCEs for candidate PDCCHs of a lower aggregation level, and CCEs for candidate PDCCHs of the lower aggregation level included in each of the candidate PDCCHs of the higher aggregation level include the size of the higher aggregation level and the higher order. It may be determined using a matrix based on the number of candidate PDCCHs of the aggregation level.
  • the size of the row of the matrix may correspond to the size of the higher aggregation level
  • the size of the column of the matrix may correspond to the number of candidate PDCCHs of the higher aggregation level.
  • the CCEs are arranged in each element constituting the matrix, but the CCEs arranged in the same column may be included in candidate PDCCHs of the same higher aggregation level.
  • the method may further include determining a remaining CCE except for CCEs for candidate PDCCHs of the lower aggregation level.
  • the determined index of the remaining CCE may be re-indexed based on the index of CCEs for candidate PDCCHs of the lower aggregation level.
  • the candidate of the determined higher aggregation level by the difference of the index of the starting CCE in the CCE bundling size may be re-determined as the CCEs for the candidate PDCCH of the higher aggregation level.
  • the interval between candidate PDCCHs of the higher aggregation level may be determined based on a value obtained by dividing the number of CCEs included in the resource set for the PDCCH transmission by the number of candidate PDCCHs of the higher aggregation level.
  • the channel estimation result of the candidate downlink control channel of the lower aggregation level can be used for channel estimation of the candidate downlink control channel of the higher aggregation level, thereby increasing the efficiency of downlink control channel decoding.
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • FIG. 2 is a diagram for explaining a physical channel used in the 3GPP system and a general signal transmission method using the same.
  • 3 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • FIG. 4 is a diagram illustrating a structure of a downlink radio frame used in an LTE system.
  • FIG. 5 is a diagram illustrating a resource unit used to configure a downlink control channel in an LTE system.
  • FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • FIG. 7 shows examples of a connection scheme of a TXRU and an antenna element.
  • 9 to 11 illustrate an embodiment of configuring a search space having a nested structure.
  • FIG. 12 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the specification of the base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • relay and the like.
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transmission channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources.
  • the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • PDCP Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transmission channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers.
  • the radio bearer refers to a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • the downlink transmission channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • the logical channel mapped to the transmission channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and an MTCH (multicast). Traffic Channel).
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 2 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE performs an initial cell search operation such as synchronizing with the base station (S201).
  • the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have.
  • the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell.
  • the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S202).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S203 to S206).
  • RACH random access procedure
  • the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S204 and S206).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the above-described procedure, the UE performs a PDCCH / PDSCH reception (S207) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S208) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • 3 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • a radio frame has a length of 10 ms (327200 ⁇ T s ) and consists of 10 equally sized subframes. Each subframe is 1ms long and consists of two slots. Each slot has a length of 0.5ms (15360 ⁇ T s ).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. In the LTE system, one resource block includes 12 subcarriers ⁇ 7 (6) OFDM symbols.
  • Transmission Time Interval which is a unit time at which data is transmitted, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 4 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
  • a subframe consists of 14 OFDM symbols.
  • the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
  • R1 to R4 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
  • the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
  • Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
  • the PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity).
  • One REG is composed of four resource elements (REs).
  • the RE represents a minimum physical resource defined by one subcarrier and one OFDM symbol.
  • the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
  • the PHICH consists of one REG and is scrambled cell-specifically.
  • ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • a plurality of PHICHs mapped to the same resource constitutes a PHICH group.
  • the number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
  • the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
  • the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
  • n is indicated by the PCFICH as an integer of 1 or more.
  • the PDCCH consists of one or more CCEs.
  • the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted on the PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
  • Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A”, a radio resource (eg, frequency location) of "B” and a DCI format of "C", that is, a transmission format.
  • RTI Radio Network Temporary Identity
  • the terminal in the cell monitors, that is, blindly decodes, the PDCCH in the search region by using the RNTI information of the cell, and if there is at least one terminal having an "A" RNTI, the terminals receive and receive the PDCCH.
  • the PDSCH indicated by "B” and "C” is received through the information of one PDCCH.
  • FIG. 5 shows a resource unit used to configure a downlink control channel in an LTE system.
  • FIG. 6A illustrates a case where the number of transmit antennas of a base station is one or two
  • FIG. 6B illustrates a case where the number of transmit antennas of a base station is four. Only the RS (Reference Signal) pattern is different according to the number of transmitting antennas, and the method of setting a resource unit associated with the control channel is the same.
  • RS Reference Signal
  • the basic resource unit of the downlink control channel is a resource element group (REG).
  • the REG consists of four neighboring resource elements (REs) with the exception of the RS.
  • REG is shown in bold in the figures.
  • PCFICH and PHICH include 4 REGs and 3 REGs, respectively.
  • the PDCCH is composed of CCE (Control Channel Elements) units, and one CCE includes nine REGs.
  • the terminal To check whether a PDCCH consisting of CCEs is transmitted It is set to check the CCEs arranged in consecutive or specific rules. UE should consider to receive PDCCH The value can be plural.
  • the CCE sets that the UE needs to check for PDCCH reception are called a search space. For example, the LTE system defines a search area as shown in Table 1.
  • CCE Aggregation Level represents the number of CCEs constituting the PDCCH
  • CCE Aggregation Level represents a search area for
  • Silver aggregation level The number of PDCCH candidates to be monitored in the search region of.
  • the search area may be divided into a UE-specific search space that allows access to only a specific terminal and a common search space that allows access to all terminals in a cell.
  • the UE monitors a common search region with CCE aggregation levels of 4 and 8, and monitors a UE-specific search region with CCE aggregation levels of 1, 2, 4, and 8.
  • the common search area and the terminal specific search area may overlap.
  • PDCCH search region hashing the position of the first (with the smallest index) CCE in the PDCCH search region given to any UE for each CCE aggregation level value is changed every subframe according to the UE. This is called PDCCH search region hashing.
  • the CCE may be distributed in a system band. More specifically, a plurality of logically continuous CCEs may be input to an interleaver, and the interleaver performs a function of mixing the input CCEs in REG units. Therefore, frequency / time resources constituting one CCE are physically dispersed in the entire frequency / time domain in the control region of the subframe. As a result, the control channel is configured in units of CCE, but interleaving is performed in units of REGs, thereby maximizing frequency diversity and interference randomization gain.
  • FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • an uplink subframe may be divided into a region to which a Physical Uplink Control CHannel (PUCCH) carrying control information is allocated and a region to which a Physical Uplink Shared CHannel (PUSCH) carrying user data is allocated.
  • the middle part of the subframe is allocated to the PUSCH, and both parts of the data area are allocated to the PUCCH in the frequency domain.
  • the control information transmitted on the PUCCH includes ACK / NACK used for HARQ, Channel Quality Indicator (CQI) indicating a downlink channel state, RI (Rank Indicator) for MIMO, and scheduling request (SR), which is an uplink resource allocation request. There is this.
  • the PUCCH for one UE uses one resource block occupying a different frequency in each slot in a subframe. That is, two resource blocks allocated to the PUCCH are frequency hoped at the slot boundary.
  • channel state information (CSI) reporting will be described.
  • CSI channel state information
  • each of the base station and the terminal may perform beamforming based on channel state information in order to obtain a multiplexing gain (multiplexing gain) of the MIMO antenna.
  • the base station instructs the terminal to feed back the channel state information (CSI) for the downlink signal by assigning a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH) to the terminal.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • CSI is largely classified into three types of information such as rank indicator (RI), precoding matrix index (PMI), and channel quality indication (CQI).
  • RI represents rank information of a channel, and means the number of streams that a UE can receive through the same frequency-time resource.
  • PMI precoding matrix index
  • CQI channel quality indication
  • PMI is a value reflecting spatial characteristics of a channel and represents a precoding matrix index of a base station preferred by a terminal based on a metric such as SINR.
  • CQI is a value representing the strength of the channel, which means the reception SINR that can be obtained when the base station uses PMI.
  • the base station may configure a plurality of CSI processes to the UE, and receive and report the CSI for each CSI process.
  • the CSI process is composed of a CSI-RS resource for signal quality specification from a base station and an interference measurement (CSI-IM) resource for interference measurement, that is, an IMR (interference measurement resource).
  • CSI-IM interference measurement resource
  • the wavelength is shortened, allowing the installation of multiple antenna elements in the same area.
  • the wavelength is 1 cm, and a total of 64 (8x8) antenna elements in a 2D (dimension) array form at 0.5 lambda intervals can be installed in a panel of 4 by 4 cm. Therefore, recent trends in the mmW field have attempted to increase the coverage or increase the throughput by increasing the beamforming gain using a plurality of antenna elements.
  • TXRU Transceiver Unit
  • independent beamforming is possible for each frequency resource.
  • TXRU Transceiver Unit
  • the analog beamforming method has a disadvantage in that only one beam direction can be made in the entire band and thus frequency selective beamforming cannot be performed.
  • a hybrid BF having B TXRUs, which is smaller than Q antenna elements, may be considered as an intermediate form between digital BF and analog BF.
  • the beam directions that can be simultaneously transmitted are limited to B or less.
  • FIG. 7 shows examples of a connection scheme of a TXRU and an antenna element.
  • FIG. 7 shows how a TXRU is connected to a sub-array. In this case the antenna element is connected to only one TXRU. 6 (b) shows how the TXRU is connected to all antenna elements. In this case the antenna element is connected to all TXRUs.
  • W denotes a phase vector multiplied by an analog phase shifter. That is, the direction of analog beamforming is determined by W.
  • the mapping between the CSI-RS antenna port and the TXRUs may be 1-to-1 or 1-to-multi.
  • Massive MTC Machine Type Communications
  • NewRAT New Radio Access
  • the fifth generation NewRAT considers a self-contained subframe structure as shown in FIGS. 8 (a) and 8 (b).
  • 8 (a) and 8 (b) show an example of a self-contained subframe structure.
  • the hatched area represents a downlink control area and the black part represents an uplink control area.
  • An area without an indication may be used for downlink data transmission or may be used for uplink data transmission.
  • the feature of such a structure is that downlink transmission and uplink transmission are sequentially performed in one subframe, thereby transmitting downlink data and receiving uplink ACK / NACK in the subframe. As a result, when a data transmission error occurs, the time taken to retransmit data is reduced, thereby minimizing the latency of the final data transfer.
  • a time gap is required for a base station and a UE to switch from a transmission mode to a reception mode or a process of switching from a reception mode to a transmission mode.
  • OFDM symbols OFDM symbols; OS
  • GP guard period
  • subframe type configurable / configurable in a system operating based on NewRAT at least the following four subframe types may be considered.
  • FIG. 8B shows the subframe types of (1) and (3) among the four subframe types described above.
  • one or more symbols may be allocated for the downlink control channel, and control information may be transmitted using the downlink control channel.
  • a resource element group (REG) that is a minimum unit for transmitting control information may be configured, and a CCE may be configured by grouping such REGs based on a predetermined number.
  • REG can be configured in 1 RB (Resource Block), CCE in 6 REGs.
  • one or more CCEs may be used to transmit a downlink control channel to the terminal.
  • a hashing function Hashing function
  • the size of the downlink control channel resources or the size of the resource block set (Resource Block Set) resources by setting the candidate CCE for transmitting the control information, each UE A search space can be configured.
  • the size of the above-described resource block set resource may be the size of a control resource set (CORESET) for transmitting a downlink control channel.
  • CORESET control resource set
  • each candidate level may have different candidate physical downlink control channels (PDCCHs) according to the aggregation level of the CCE, and the candidate PDCCH for each aggregation level calculated using a hashing function. Decoding will be performed.
  • PDCCHs physical downlink control channels
  • the channel estimation result is performed when decoding the candidate PDCCH of the lower aggregation level.
  • the candidate PDCCH of the higher aggregation level it can be used again, and according to the aggregation level, the CCE channel estimation for the lower aggregation level can be used as it is at the higher aggregation level, without having to repeat the channel estimation in the CCE. Can be.
  • the efficiency of channel estimation may be increased by using CCE channel estimation for the higher aggregation level again at the lower aggregation level.
  • a hashing function may be determined such that a CCE corresponding to the candidate PDCCH of the lower aggregation level is partially configured among the CCEs corresponding to the candidate PDCCH of the highest aggregation level.
  • the CCE corresponding to the candidate PDCCH of the lowest aggregation level (Lowest AL) may be used as it is in the candidate PDCCH configuration of the higher aggregation level.
  • a search space may be configured as shown in FIG. 9.
  • Equation 1 shows an example of a hashing function constituting a randomized search space for each UE.
  • Equation 1 Can be represented as , , , , It may mean.
  • L represents the size of the aggregation level
  • Equation 1 is merely an example for expressing the above-described search space, and the present invention is not limited thereto. If Carrier Aggregation is considered, m in Equation 1 Can be replaced with here May be a carrier indicator field value. However, in the present invention, for convenience of explanation Assume
  • CCEs of the candidate PDCCH of the lower aggregation level may be sequentially bundled to correspond to the candidate PDCCH of the higher aggregation level. For example, among CCE # 0, # 1, # 2, # 3, # 4, and # 5, which are candidate PDCCHs of aggregation level 1, CCE # 0 and # 1 may be bundled to correspond to candidate PDCCH # 0 of aggregation level 2 , CCE # 2 and # 3 may be bundled to correspond to candidate PDCCH # 1 of aggregation level 2, and CCE # 4 and # 5 may be bundled to correspond to candidate PDCCH # 2 of aggregation level 2.
  • three candidate PDCCHs are configured, and if the number of candidate PDCCHs of aggregation level 2 is six, additionally CCE # 6, # 7, # 8, # 9, # 10, and # 11 are sequentially bundled and aggregated, respectively. It can correspond to candidate PDCCH # 3, # 4, # 5 of level 2.
  • processing time for the UE to detect each of the candidate PDCCHs may be different. That is, in the above example, the UE decodes candidate PDCCHs # 0, # 1, # 2, # 3, # 4, and # 5 based on aggregation level 1, and then decodes candidate PDCCHs based on aggregation level 2. Assume that you do. Then, since candidate PDCCH # 0 of aggregation level 2 can use the detection result values of candidate PDCCH # 0 and # 1 of aggregation level 1 as it is, processing time becomes comparatively short. However, since candidate PDCCH # 4 of aggregation level 2 should attempt detection without having any information, the processing time for candidate PDCCH # 4 may be longer than the processing time of candidate PDCCH # 0.
  • a method of distributing a plurality of CCEs corresponding to each candidate PDCCH of a lower aggregation level (Lower AL) to each candidate PDCCH of a higher aggregation level (Higher AL) can be considered.
  • Equation 2 is to indicate the CCE for each aggregation level constituting the search space according to the above-described embodiment.
  • m ' is 0, 1, ⁇ , , Where Denotes the number of candidate PDCCHs corresponding to the size L of the aggregation level.
  • the CCE constituting the candidate PDCCH for each aggregation level may be determined.
  • the candidate PDCCHs for each aggregation level may satisfy a nested structure in which a CCE constituting a candidate PDCCH of a lower aggregation level is included in a CCE constituting a candidate PDCCH of a higher aggregation level.
  • CCE # 0, # 1, # 2, # 3, # 4, and # 5 corresponding to six candidate PDCCHs of aggregation level 1 are referred to as aggregation level.
  • CCE # 6, # 7, # 8, # 9, # 10, and # 11 are additionally assigned to six candidate PDCCHs of aggregation level 2, respectively. Match them one by one.
  • CCE # 0, # 6 corresponds to candidate PDCCH # 0 of aggregation level 2
  • CCE # 1, # 7 corresponds to candidate PDCCH # 1 of aggregation level 2
  • CCE # 2 # 8 is aggregation level
  • CCE # 5 and # 11 may correspond to candidate PDCCH # 5 of aggregation level 2.
  • the CCEs included in the candidate PDCCHs of the lower aggregation level are higher Corresponding to the CCE included in the candidate PDCCH of the aggregation level.
  • the number of columns corresponds to the number of candidate PDCCHs of the higher aggregation level
  • the number of rows corresponds to the size of the higher aggregation level, so that the CCEs belonging to the same column are configured. It is possible to configure a candidate PDCCH for a specific aggregation level.
  • CCE # 0, # 1, # 2, # 3, # 4, and # 5 may correspond to each candidate PDCCH, and aggregation may be performed.
  • a matrix as shown in FIG. 10 may be configured to correspond to the candidate PDCCHs of aggregation level 2 by grouping CCEs belonging to the same column. That is, referring to FIG. 10, candidate PDCCH # 0 of aggregation level 2 includes CCE # 0 and # 4, candidate PDCCH # 1 consists of CCE # 1 and # 5, and candidate PDCCH # 2 corresponds to CCE #. 2 and # 6, and candidate PDCCH # 3 may be configured as # 3 and # 7.
  • a CCE index may be listed in a row-first manner or a CCE index may be listed in a column-first manner within a matrix. In this case, when the number of rows is the number of higher aggregation levels and the number of columns is the number of candidate PDCCHs at higher aggregation levels, as shown in FIG.
  • the CCEs constituting one candidate PDCCH can be configured to be distributed, and after listing the CCE indexes in the column-first manner, the higher aggregation level in the column direction If the candidate PDCCH is configured, as in the embodiment based on Equation 1, adjacent CCEs may configure one candidate PDCCH of a higher aggregation level.
  • the CCEs constituting the candidate PDCCH for each aggregation level are determined based on the lowest aggregation level, but the CCEs constituting the candidate PDCCH of the lower aggregation level are determined.
  • m is Is the number of candidate PDCCHs corresponding to the higher aggregation level (Higher AL) and the lower aggregation level (Lower AL), respectively. Denotes the magnitude of the higher aggregation level (Higher AL) and the lower aggregation level (Lower AL), respectively.
  • the index value which may be a value of “m”, means an index of remaining CCEs for the candidate PDCCH of the higher aggregation level that is reindexed except for the CCEs constituting the candidate PDCCH of the lower aggregation level.
  • CCEs # 0, # 1, # 2, # 3, # 4, and # 5 constituting candidate PDCCHs corresponding to aggregation level 1 may be found.
  • a total of eight CCEs constituting the candidate PDCCH corresponding to aggregation level 2 two CCEs are additionally required for CCEs constituting aggregation level 1.
  • the remaining CCEs are indexed from 0 again.
  • additional CCE # 0 and # 1 for aggregation level 2 can be selected.
  • the additionally selected CCE # 0, # 1 is a re-indexed index.
  • candidate PDCCHs of a higher aggregation level may be configured by applying a method of configuring CCEs belonging to the same column as one candidate PDCCH.
  • the CCE index may be listed in a row-first manner or the CCE index may be listed in a column-first manner.
  • a bundling structure of an interleaver may be considered.
  • the inter-CCE bundling size is T in the interleaver
  • the starting point of the search space found through the hashing function for each UE is T including CCE # 0. It may not correspond to a multiple of. If the starting point does not correspond to a multiple of T, since the starting positions of the candidate PDCCH and the CCE bundling unit are different, it may be difficult to efficiently perform the bundling, and thus the starting point of the search space of the UE It is possible to shift the indices of all CCEs found by the hashing function by the distance to the nearest 'multiplier of T including zero'.
  • the hashing You can shift the index of every CCE found by the function by 1.
  • the above-described embodiments have exemplified a method of sequentially selecting a CCE corresponding to the aggregation level among a plurality of CCEs constituting a resource block set (RB set) or a control channel from the beginning.
  • a method of distributing and selecting a CCE corresponding to a corresponding aggregation level may be applied. For example, by constructing a hashing function as shown in [Equation 4], the CCE corresponding to the aggregation level is distributed and selected, and nested between the search region of the upper aggregation level and the search region of the lower aggregation level.
  • Nested can be configured to have a structure.
  • each candidate PDCCH of each aggregation level is determined in a distributed form, but a candidate PDCCH of a lower aggregation level may be included in candidate PDCCHs of a higher aggregation level.
  • CCEs included in each candidate PDCCH may be continuous.
  • the communication device 1200 includes a processor 1210, a memory 1220, an RF module 1230, a display module 1240, and a user interface module 1250.
  • the communication device 1200 is shown for convenience of description and some modules may be omitted. In addition, the communication device 1200 may further include necessary modules. In addition, some modules in the communication device 1200 may be classified into more granular modules.
  • the processor 1210 is configured to perform an operation according to the embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 2910 may refer to the contents described with reference to FIGS. 1 to 11.
  • the memory 1220 is connected to the processor 1210 and stores an operating system, an application, program code, data, and the like.
  • the RF module 1230 is connected to the processor 1210 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 1230 performs analog conversion, amplification, filtering and frequency up-conversion, or a reverse process thereof. Meanwhile, in the present invention, the RF module 1230 may be referred to as a transceiver.
  • the display module 1240 is connected to the processor 1210 and displays various information.
  • the display module 1240 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
  • the user interface module 1250 is connected to the processor 1210 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은, 무선 통신 시스템에서, 단말이 하향링크 제어 채널을 수신하는 방법을 개시한다. 특히, 상기 방법은, 집성 레벨에 대응하는 개수의 CCE(Control Channel Element)로 구성된 후보 PDCCH(Physical Downlink Control Channel)들을 모니터링하여, PDCCH를 수신하는 것을 특징으로 하고, 상위 집성 레벨의 후보 PDCCH들을 위한 CCE들은, 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들을 모두 포함하며, 상기 상위 집성 레벨의 후보 PDCCH들 각각에 포함되는 상기 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들은, 상기 상위 집성 레벨의 크기 및 상기 상위 집성 레벨의 후보 PDCCH들의 개수를 기반으로 한 행렬을 이용하여 결정될 수 있다.

Description

하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
본 발명은, 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치에 관한 것으로, 더욱 상세하게는, 하향링크 제어 채널을 수신하기 위한 검색 공간 (Search Space)를 구성하여, 상기 검색 공간을 기반으로 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치에 관한 것이다.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, 기존 LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. NewRAT이라고 명칭되는, 이러한 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC) 등으로 통신 시나리오가 구분된다.
여기서, eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, URLLC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g., V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다. (e.g., IoT).
본 발명은 하향링크 제어 채널을 수신하는 방법 및 이에 대한 장치를 제공하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따른, 무선 통신 시스템에서, 단말이 하향링크 제어 채널을 수신하는 방법에 있어서, 집성 레벨에 대응하는 개수의 CCE(Control Channel Element)로 구성된 후보 PDCCH(Physical Downlink Control Channel)들을 모니터링하여, PDCCH를 수신하는 것을 특징으로 하고, 상위 집성 레벨의 후보 PDCCH들을 위한 CCE들은, 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들을 모두 포함하며, 상기 상위 집성 레벨의 후보 PDCCH들 각각에 포함되는 상기 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들은, 상기 상위 집성 레벨의 크기 및 상기 상위 집성 레벨의 후보 PDCCH들의 개수를 기반으로 한 행렬을 이용하여 결정될 수 있다.
이 때, 상기 행렬의 행의 크기는, 상기 상위 집성 레벨의 크기에 대응하고, 상기 행렬의 열의 크기는, 상기 상위 집성 레벨의 후보 PDCCH들의 수에 대응할 수 있다.
또한, CCE들의 인덱스를 기준으로, 상기 행렬을 구성하는 각각의 요소에, 상기 CCE들을 배치하되, 동일한 열에 배치된 CCE들은 동일한 상위 집성 레벨의 후보 PDCCH에 포함될 수 있다.
또한, 상기 PDCCH 전송을 위한 자원 집합에 포함된 CCE들을 인덱싱하되, 상기 하위 집성 레벨의 후보 PDCCH를 위한 CCE들을 제외한 CCE들을 인덱싱하고, 상기 인덱싱된 CCE들의 인덱스를 기반으로, 상기 상위 집성 레벨의 후보 PDCCH들을 위한 CCE들 중, 상기 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들을 제외한 나머지 CCE를 결정하는 것을 더 포함할 수 있다.
또한, 상기 결정된 나머지 CCE의 인덱스는, 상기 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들의 인덱스를 기준으로 재인덱싱 될 수 있다.
또한, 상기 상위 집합 레벨의 후보 PDCCH들을 위한 시작 CCE의 인덱스가 CCE 인터리빙을 위한 CCE 번들링 크기와 대응하지 않는 경우, 상기 CCE 번들링 크기에서 상기 시작 CCE의 인덱스의 차이만큼 상기 결정된 상위 집성 레벨의 후보 PDCCH를 위한 CCE들의 인덱스들을 이동(shift)한 인덱스들에 대응하는 CCE들을, 상기 상위 집성 레벨의 후보 PDCCH를 위한 CCE들로 재결정할 수 있다.
또한, 상기 상위 집성 레벨의 후보 PDCCH들 간의 간격은, 상기 PDCCH 전송을 위한 자원 집합에 포함된 CCE들의 개수를 상기 상위 집성 레벨의 후보 PDCCH들의 수로 나눈 값에 기반하여 결정될 수 있다.
본 발명에 따른, 무선 통신 시스템에서, 하향링크 제어 채널을 수신하는 단말에 있어서, 기지국과 신호를 송수신하는 트랜시버; 및 집성 레벨에 대응하는 개수의 CCE(Control Channel Element)로 구성된 후보 PDCCH(Physical Downlink Control Channel)들을 모니터링하여, PDCCH를 수신하도록 상기 트랜시버를 제어하는 프로세서를 포함하되, 상위 집성 레벨의 후보 PDCCH들을 위한 CCE들은, 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들을 모두 포함하며, 상기 상위 집성 레벨의 후보 PDCCH들 각각에 포함되는 상기 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들은, 상기 상위 집성 레벨의 크기 및 상기 상위 집성 레벨의 후보 PDCCH들의 개수를 기반으로 한 행렬을 이용하여 결정될 수 있다.
이 때, 상기 행렬의 행의 크기는, 상기 상위 집성 레벨의 크기에 대응하고, 상기 행렬의 열의 크기는, 상기 상위 집성 레벨의 후보 PDCCH들의 수에 대응할 수 있다.
또한, CCE들의 인덱스를 기준으로, 상기 행렬을 구성하는 각각의 요소에, 상기 CCE들을 배치하되, 동일한 열에 배치된 CCE들은 동일한 상위 집성 레벨의 후보 PDCCH에 포함될 수 있다.
또한, 상기 PDCCH 전송을 위한 자원 집합에 포함된 CCE들을 인덱싱하되, 상기 하위 집성 레벨의 후보 PDCCH를 위한 CCE들을 제외한 CCE들을 인덱싱하고, 상기 인덱싱된 CCE들의 인덱스를 기반으로, 상기 상위 집성 레벨의 후보 PDCCH들을 위한 CCE들 중, 상기 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들을 제외한 나머지 CCE를 결정하는 것을 더 포함할 수 있다.
또한, 상기 결정된 나머지 CCE의 인덱스는, 상기 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들의 인덱스를 기준으로 재인덱싱될 수 있다.
또한, 상기 상위 집합 레벨의 후보 PDCCH들을 위한 시작 CCE의 인덱스가 CCE 인터리빙을 위한 CCE 번들링 크기와 대응하지 않는 경우, 상기 CCE 번들링 크기에서 상기 시작 CCE의 인덱스의 차이만큼, 상기 결정된 상위 집성 레벨의 후보 PDCCH를 위한 CCE들의 인덱스들을 이동(shift)한 인덱스들에 대응하는 CCE들을, 상기 상위 집성 레벨의 후보 PDCCH를 위한 CCE들로 재결정할 수 있다.
또한, 상기 상위 집성 레벨의 후보 PDCCH들 간의 간격은, 상기 PDCCH 전송을 위한 자원 집합에 포함된 CCE들의 개수를 상기 상위 집성 레벨의 후보 PDCCH들의 수로 나눈 값에 기반하여 결정될 수 있다.
본 발명에 따르면, 하위 집성 레벨의 후보 하향링크 제어 채널 의 채널 추정 결과를 상위 집성 레벨의 후보 하향링크 제어 채널의 채널 추정에 사용할 수 있어, 하향링크 제어 채널 디코딩의 효율성을 증가시킬 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면.
도 3은 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면.
도 4는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면.
도 5는 LTE 시스템에서 하향링크 제어 채널을 구성하는데 사용되는 자원 단위를 나타내는 도면이다.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면.
도 7은 TXRU와 안테나 엘리먼트의 연결 방식의 일례들을 나타낸다.
도 8은 Self-contained 서브프레임 구조의 일 예이다.
도 9 내지 도 11은 네스티드 (Nested) 구조의 검색 공간 (Search Space)를 구성하는 실시 예를 나타낸다.
도 12는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S201). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S208)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
도 3은 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 3을 참조하면, 무선 프레임(radio frame)은 10ms(327200ХTs)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(슬롯)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360ХTs)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHzХ2048)=3.2552Х10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파Х7(6)개의 OFDM 심볼을 포함한다. 데이터가 송신되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 4는 하향링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 4를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파Х하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향링크 송신에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 송신되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 송신 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 송신된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 송신 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 송신되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야 하는 지에 대한 정보 등은 PDCCH에 포함되어 송신된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 DCI 포맷 즉, 송신 형식 정보(예, 송신 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 송신되는 데이터에 관한 정보가 특정 서브프레임을 통해 송신된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 검색 영역에서 PDCCH를 모니터링, 즉 블라인드 디코딩하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 5는 LTE 시스템에서 하향링크 제어 채널을 구성하는데 사용되는 자원 단위를 나타낸다. 특히, 도 6의 (a)는 기지국의 송신 안테나의 개수가 1 또는 2개인 경우를 나타내고, 도 6의 (b)는 기지국의 송신 안테나의 개수가 4개인 경우를 나타낸다. 송신 안테나의 개수에 따라 RS(Reference Signal) 패턴만 상이할 뿐 제어 채널과 관련된 자원 단위의 설정 방법은 동일하다.
도 5를 참조하면, 하향링크 제어 채널의 기본 자원 단위는 REG(Resource Element Group)이다. REG는 RS를 제외한 상태에서 4개의 이웃한 자원 요소(RE)로 구성된다. REG는 도면에 굵은 선으로 도시되었다. PCFICH 및 PHICH는 각각 4개의 REG 및 3개의 REG를 포함한다. PDCCH는 CCE(Control Channel Elements) 단위로 구성되며 하나의 CCE는 9개의 REG를 포함한다.
단말은 자신에게
Figure PCTKR2018006589-appb-I000001
개의 CCE로 이루어진 PDCCH가 전송되는지를 확인하기 위하여
Figure PCTKR2018006589-appb-I000002
개의 연속되거나 특정 규칙으로 배치된 CCE를 확인하도록 설정된다. 단말이 PDCCH 수신을 위해 고려해야 하는
Figure PCTKR2018006589-appb-I000003
값은 복수가 될 수 있다. 단말이 PDCCH 수신을 위해 확인해야 하는 CCE 집합들을 검색 영역(search space)이라고 한다. 일 예로, LTE 시스템은 검색 영역을 표 1과 같이 정의하고 있다.
[표 1]
Figure PCTKR2018006589-appb-I000004
여기에서, CCE 집성 레벨
Figure PCTKR2018006589-appb-I000005
은 PDCCH를 구성하는 CCE 개수를 나타내고,
Figure PCTKR2018006589-appb-I000006
은 CCE 집성 레벨
Figure PCTKR2018006589-appb-I000007
의 검색 영역을 나타내며,
Figure PCTKR2018006589-appb-I000008
은 집성 레벨
Figure PCTKR2018006589-appb-I000009
의 검색 영역에서 모니터링해야 하는 PDCCH 후보의 개수이다.
검색 영역은 특정 단말에 대해서만 접근이 허용되는 단말 특정 검색 영역(UE-specific search space)과 셀 내의 모든 단말에 대해 접근이 허용되는 공통 검색 영역(common search space)로 구분될 수 있다. 단말은 CCE 집성 레벨이 4 및 8인 공통 검색 영역을 모니터하고, CCE 집성 레벨이 1, 2, 4 및 8인 단말-특정 검색 영역을 모니터한다. 공통 검색 영역 및 단말 특정 검색 영역은 오버랩될 수 있다.
또한, 각 CCE 집성 레벨 값에 대하여 임의의 단말에게 부여되는 PDCCH 검색 영역에서 첫 번째(가장 작은 인덱스를 가진) CCE의 위치는 단말에 따라서 매 서브프레임마다 변화하게 된다. 이를 PDCCH 검색 영역 해쉬(hashing)라고 한다.
상기 CCE는 시스템 대역에 분산될 수 있다. 보다 구체적으로, 논리적으로 연속된 복수의 CCE가 인터리버(interleaver)로 입력될 수 있으며, 상기 인터리버는 입력된 복수의 CCE를 REG 단위로 뒤섞는 기능을 수행한다. 따라서, 하나의 CCE를 이루는 주파수/시간 자원은 물리적으로 서브프레임의 제어 영역 내에서 전체 주파수/시간 영역에 흩어져서 분포한다. 결국, 제어 채널은 CCE 단위로 구성되지만 인터리빙은 REG 단위로 수행됨으로써 주파수 다이버시티(diversity)와 간섭 랜덤화(interference randomization) 이득을 최대화할 수 있다.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 6을 참조하면, 상향링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 송신되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히 도 6은 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
이하, 채널 상태 정보(channel state information, CSI) 보고에 관하여 설명한다. 현재 LTE 표준에서는 채널 상태 정보 없이 운용되는 개루프(open-loop) MIMO와 채널 상태 정보에 기반하여 운용되는 폐루프(closed-loop) MIMO 두 가지 송신 방식이 존재한다. 특히, 폐루프 MIMO 에서는 MIMO 안테나의 다중화 이득(다중화 gain)을 얻기 위해 기지국 및 단말 각각은 채널 상태 정보를 바탕으로 빔포밍을 수행할 수 있다. 기지국은 채널 상태 정보를 단말로부터 얻기 위해, 단말에게 PUCCH(Physical Uplink Control CHannel) 또는 PUSCH(Physical Uplink Shared CHannel)를 할당하여 하향링크 신호에 대한채널 상태 정보(CSI)를 피드백 하도록 명령한다.
CSI는 RI(Rank Indicator), PMI(Precoding Matrix 인덱스), CQI(Channel Quality Indication) 세가지 정보로 크게 분류된다. 우선, RI는 상술한 바와 같이 채널의 랭크 정보를 나타내며, 단말이 동일 주파수-시간 자원을 통해 수신할 수 있는 스트림의 개수를 의미한다. 또한, RI는 채널의 롱텀 페이딩(long term fading)에 의해 결정되므로 PMI, CQI 값 보다 통상 더 긴 주기로 기지국으로 피드백 된다.
두 번째로, PMI는 채널의 공간 특성을 반영한 값으로 SINR 등의 메트릭(metric)을 기준으로 단말이 선호하는 기지국의 프리코딩 행렬 인덱스를 나타낸다. 마지막으로, CQI는 채널의 세기를 나타내는 값으로 통상 기지국이 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.
3GPP LTE-A 시스템에서 기지국은 다수의 CSI 프로세스를 UE에게 설정하고, 각 CSI 프로세스에 대한 CSI를 보고 받을 수 있다. 여기서 CSI 프로세스는 기지국으로부터의 신호 품질 특정을 위한 CSI-RS 자원과 간섭 측정을 위한 CSI-IM (interference measurement) 자원, 즉 IMR (interference measurement resource)로 구성된다.
Millimeter Wave (mmW)에서는 파장이 짧아져서 동일 면적에 다수개의 안테나 엘리먼트의 설치가 가능하다. 구체적으로, 30GHz 대역에서 파장은 1cm로써 4 by 4 cm의 패널(panel)에 0.5 lambda(파장) 간격으로 2D (dimension) 배열 형태인 총 64(8x8)의 안테나 엘리먼트 설치가 가능하다. 그러므로 mmW 분야에서의 최근 동향에서는 다수개의 안테나 엘리먼트를 사용하여 BF (beamforming) 이득을 높여 커버리지를 증가시키거나, 쓰루풋 (throughput)의 증대를 시도하고 있다.
이 경우에 안테나 엘리먼트 별로 송신 파워 및 위상 조절이 가능하도록 TXRU (Transceiver Unit)을 구비한다면, 주파수 자원 별로 독립적인 빔포밍이 가능하다. 그러나 100여개의 안테나 엘리먼트 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 안테나 엘리먼트를 매핑하고 아날로그 위상 천이기 (analog phase shifter)로 빔의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍을 해줄 수 없는 단점을 갖는다.
디지털 BF와 아날로그 BF의 중간 형태로 Q개의 안테나 엘리먼트보다 적은 개수인 B개의 TXRU를 갖는 hybrid BF를 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 엘리먼트의 연결 방식에 따라서 차이는 있지만, 동시에 송신할 수 있는 빔 방향은 B개 이하로 제한되게 된다.
도 7은 TXRU와 안테나 엘리먼트의 연결 방식의 일례들을 나타낸다.
도 7의 (a)은 TXRU가 서브-어레이(sub-array)에 연결된 방식을 나타낸다. 이 경우에 안테나 엘리먼트는 하나의 TXRU에만 연결된다. 이와 달리 도 6의 (b)는 TXRU가 모든 안테나 엘리먼트에 연결된 방식을 나타낸다. 이 경우에 안테나 엘리먼트는 모든 TXRU에 연결된다. 도 6에서 W는 아날로그 위상 천이기에 의해 곱해지는 위상 벡터를 나타낸다. 즉, W에 의해 아날로그 빔포밍의 방향이 결정된다. 여기서 CSI-RS 안테나 포트와 TXRU들과의 매핑은 1-to-1 또는 1-to-多 일 수 있다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT (radio access technology)에 비해 향상된 무선 광대역 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 메시브 (massive) MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도 (reliability) 및 레이턴시 (latency)에 민감한 서비스/UE를 고려한 통신 시스템 디자인이 논의되고 있다. 이러한 점을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 NewRAT 이라고 지칭한다.
TDD 시스템에서 데이터 송신 레이턴시를 최소화하기 위하여 5세대 NewRAT에서는 도 8(a), (b)와 같은 self-contained 서브프레임 구조를 고려하고 있다. 도 8(a), (b)는 Self-contained 서브프레임 구조의 일 예이다.
도 8(a)에서 빗금 영역은 하향링크 제어 영역을 나타내고, 검정색 부분은 상향링크 제어 영역을 나타낸다. 표시가 없는 영역은 하향링크 데이터 송신을 위해 사용될 수도 있고, 상향링크 데이터 송신을 위해 사용될 수도 있다. 이러한 구조의 특징은 한 개의 서브프레임 내에서 하향링크 송신과 상향링크 송신이 순차적으로 진행되어, 서브프레임 내에서 하향링크 데이터를 보내고, 상향링크 ACK/NACK도 받을 수 있다. 결과적으로 데이터 송신 에러 발생시에 데이터 재송신까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 레이턴시를 최소화할 수 있다.
이러한 self-contained 서브프레임 구조에서 기지국과 UE가 송신 모드에서 수신모드로 전환 과정 또는 수신모드에서 송신모드로 전환 과정을 위한 시간 간극 (time gap)이 필요하다. 이를 위하여 self-contained 서브프레임 구조에서 하향링크에서 상향링크로 전환되는 시점의 일부 OFDM 심볼 (OFDM 심볼; OS)이 GP (guard period)로 설정되게 된다.
NewRAT을 기반으로 동작하는 시스템에서 구성/설정 가능한 상기 self-contained 서브프레임 타입의 일례로, 적어도 다음과 같은 4가지 서브프레임 타입을 고려할 수 있다.
(1) 하향링크 제어 구간 + 하향링크 데이터 구간 + GP + 상향링크 제어 구간
(2) 하향링크 제어 구간 + 하향링크 데이터 구간
(3) 하향링크 제어 구간 + GP + 상향링크 데이터 구간 + 상향링크 제어 구간
(4) 하향링크 제어 구간 + GP + 상향링크 데이터 구간
도 8(b)는 상술한 4가지 서브프레임 타입 중, (1), (3)의 서브프레임 타입을 도시하고 있다.
이러한 구조에서는 하향링크 제어 채널을 위해 1 개 이상의 심볼을 할당할 수 있으며, 하향링크 제어 채널을 활용하여 제어 정보를 전송할 수 있다. 이 때, 제어 정보를 전송하기 위한 최소 단위인 REG(Resource Element Group) 를 구성할 수 있고, 이러한 REG들을 일정 수를 기준으로 그룹핑하여 CCE (Control Channel Element)를 구성할 수 있다. 예를 들면, REG는 1 RB (Resource Block), CCE는 6 REGs 단위로 구성할 수 있다.
한편, 집성 레벨 (Aggregation Level; AL)에 따라, 하나 이상의 CCE를 사용하여, 하향링크 제어 채널을 단말에게 전송할 수 있다. 구체적으로, 해싱 함수(Hashing function)를 활용하여, 하향링크 제어 채널 자원의 크기 또는 자원 블록 집합(Resource Block Set) 자원의 크기에 따라, 제어 정보가 전송되는 후보 CCE를 설정함으로써, 각각의 UE를 위한 검색 공간(search space)을 구성할 수 있다.
이 때, 상술한 자원 블록 집합 자원의 크기는, 하향링크 제어 채널을 전송하기 위한 제어 자원 집합(Control Resource Set; CORESET)의 크기일 수 있다.
이제, 본격적으로, NewRAT(NR)에서 고려할 수 있는 검색 공간(search space) 구성 방법을 설명하도록 한다.
각 UE 별로 검색 영역(search space)를 구성할 때, CCE의 집성 레벨에 따라 서로 다른 후보 PDCCH(Physical Downlink Control Channel) 개수를 가질 수 있고, 해싱 함수를 이용하여 산출된, 각 집성 레벨 별 후보 PDCCH에 대한 디코딩을 수행하게 된다.
이 때, 하위 집성 레벨의 후보 PDCCH에 속하는 CCE와 상위 집성 레벨의 후보 PDCCH에 속하는 CCE를 서로 중복되게 구성하면, 하위 집성 레벨의 후보 PDCCH를 디코딩 할 때, 수행된 채널 추정(channel estimation) 결과를 상위 집성 레벨의 후보 PDCCH를 디코딩할 때, 다시 사용할 수 있어, 집성 레벨에 따라, CCE에 채널 추정을 반복할 필요없이, 하위 집성 레벨에 대한 CCE 채널 추정을 상위 집성 레벨에서도 그대로 사용하여 효율성을 높일 수 있다. 유사하게, UE의 구현 방식에 따라 상위 집성 레벨에 대한 디코딩을 먼저 수행하는 경우, 상위 집성 레벨에 대한 CCE 채널 추정을 하위 집성 레벨에서 다시 사용하여 채널 추정의 효율성을 높일 수도 있다.
이를 위해 최상위 집성 레벨의 후보 PDCCH에 대응되는 CCE들 중, 일부로 하위 집성 레벨의 후보 PDCCH 에 대응하는 CCE를 구성할 수 있도록, 해싱 함수를 정할 수 있다. 아니면, 최하위 집성 레벨(Lowest AL)의 후보 PDCCH에 해당하는 CCE를 상위 집성 레벨의 후보 PDCCH 구성에 그대로 활용할 수 있다.
예를 들어, 집성 레벨이 1, 2, 4, 8로 구성되고 각각의 후보 PDCCH의 수가 6, 6, 2, 2로 설정된 경우 도 9와 같이 검색 공간(search space)을 구성할 수 있다.
한편, 도 9에서는 UE의 검색 공간(search space) 시작점이 CCE 인덱스 0인 경우로 가정하였으나, 검색 공간의 시작점은 UE ID 등에 의해 UE 별로 무작위화(randomize)될 수 있다. 아래의 [수학식 1]은 UE 별로 무작위화된 검색 공간을 구성하는 해싱 함수의 일례를 나타낸다. [수학식 1]에서
Figure PCTKR2018006589-appb-I000010
로 나타낼 수 있고,
Figure PCTKR2018006589-appb-I000011
,
Figure PCTKR2018006589-appb-I000012
,
Figure PCTKR2018006589-appb-I000013
,
Figure PCTKR2018006589-appb-I000014
,
Figure PCTKR2018006589-appb-I000015
를 의미할 수 있다. 또한, L은 집성 레벨의 크기를 나타내고, m은 해당 집성 레벨의 후보 PDCCH 인덱스를 나타낸다. 예를 들어, 해당 집성 레벨의 후보 PDCCH 개수가 6인 경우, m = 0, 1, 2, 3, 4, 5이 될 수 있다.
또한,
Figure PCTKR2018006589-appb-I000016
는 자원 블록 집합(RB set) 혹은 PDCCH 자원 크기에 대응되는 CCE의 개수를 나타내고, i는 해당 집성 레벨에서 후보 PDCCH를 구성하는 CCE 인덱스를 나타낸다. 예를 들면, 집성 레벨이 4인 경우, i=0, 1, 2, 3을 의미할 수 있다. 여기서, [수학식 1]은 상술한 검색 공간을 표현하기 위한 일 예시에 불과하며 본 발명이 이에 한정되지 않음은 물론이다. 만약, CA(Carrier Aggregation) 를 고려하는 경우, 고려한 [수학식 1]에서 m 은
Figure PCTKR2018006589-appb-I000017
로 대체될 수 있다. 여기서
Figure PCTKR2018006589-appb-I000018
는 반송파 지시자 필드 값(carrier indicator field value)이 될 수 있다. 다만, 본 발명에서는 설명의 편의 상
Figure PCTKR2018006589-appb-I000019
으로 가정한다.
[수학식 1]
Figure PCTKR2018006589-appb-I000020
[수학식 1]을 기반으로 설명한 실시 예에서는, 하위 집성 레벨의 후보 PDCCH의 CCE들을 순차적으로 묶어 상위 집성 레벨의 후보 PDCCH 에 대응시킬 수 있다. 예를 들어, 집성 레벨 1의 후보 PDCCH인, CCE #0, #1, #2, #3, #4, #5 중에서 CCE #0, #1을 묶어 집성 레벨 2의 후보 PDCCH #0에 대응시키고, CCE #2, #3을 묶어 집성 레벨 2의 후보 PDCCH #1에 대응시키며, CCE #4, #5를 묶어 집성 레벨 2의 후보 PDCCH #2에 대응시킬 수 있다. 한편, 이러한 경우, 후보 PDCCH 가 3개 구성되는데, 집성 레벨 2의 후보 PDCCH의 수가 6개라면, 추가적으로 CCE #6, #7, #8, #9, #10, #11을 순차적으로 묶어 각각 집성 레벨 2의 후보 PDCCH #3, #4, #5에 대응시킬 수 있다.
한편, [수학식 1]에 기반하여, 검색 공간(Search Space)를 구성하는 경우, UE가 후보 PDCCH 들 각각을 검출(detecting)하기 위한 프로세싱 시간이 상이해질 수 있다. 즉, 상술한 예에서, UE가 집성 레벨 1을 기준으로, 후보 PDCCH #0, #1, #2, #3, #4, #5 를 디코딩한 후, 집성 레벨 2를 기준으로 후보 PDCCH들을 디코딩하는 것을 가정한다. 그러면, 집성 레벨 2의 후보 PDCCH #0은, 집성 레벨 1의 후보 PDCCH #0, #1의 검출 결과 값을 그대로 사용할 수 있으므로, 프로세싱 시간이 상대적으로 짧아진다. 하지만, 집성 레벨 2의 후보 PDCCH #4는, 아무런 정보를 가지지 않은 상태에서 검출 시도를 해야 하기 때문에, 후보 PDCCH #4를 위한 프로세싱 시간은 후보 PDCCH #0의 프로세싱 시간보다 길어질 수 밖에 없다.
따라서, 후보 PDCCH 별로 프로세싱 시간의 차이를 최소화 하기 위하여, 하위 집성 레벨(Lower AL)의 각 후보 PDCCH에 대응하는 다수 개의 CCE들을 상위 집성 레벨(Higher AL)의 각 후보 PDCCH에 분산시키는 방법을 생각할 수 있다.
아래의 [수학식 2]는 상술한 실시 예에 따라, 검색 공간(search space)을 구성하는 각 집성 레벨 별 CCE는 나타내기 위한 것이다. 본 수식에서 m'은 0, 1, 쪋,
Figure PCTKR2018006589-appb-I000021
이고, 여기서
Figure PCTKR2018006589-appb-I000022
은 집성 레벨의 크기 L에 대응되는 후보 PDCCH의 개수를 의미한다.
[수학식 2]
Figure PCTKR2018006589-appb-I000023
상기 [수학식 2] 에 의해 각 집성 레벨 별로 후보 PDCCH를 구성하는 CCE를 결정할 수 있다. 이 때, 상기 집성 레벨 별 후보 PDCCH들은 하위 집성 레벨의 후보 PDCCH를 구성하는 CCE가 상위 집성 레벨의 후보 PDCCH를 구성하는 CCE에 포함되는 네스티드(nested) 구조를 만족시킬 수 있다.
예를 들어, [수학식 2]를 기반으로 한 실시 예에서, 집성 레벨 1의 6 개의 후보 PDCCH들에 대응되는 CCE #0, #1, #2, #3, #4, #5를 집성 레벨 2의 6개의 후보 PDCCH들에 각각 한 개씩 대응시키고 집성 레벨 2를 만족시키기 위해 추가적으로 CCE #6, #7, #8, #9, #10, #11을 집성 레벨 2의 6개 후보 PDCCH에 각각 한 개씩 대응시킨다. 다시 말해, CCE #0, #6을 집성 레벨 2의 후보 PDCCH #0에 대응시키고, CCE #1, #7을 집성 레벨 2의 후보 PDCCH #1에 대응시키며, CCE #2, #8을 집성 레벨 2의 후보 PDCCH #2에 대응시키고, CCE #3, #9를 집성 레벨 2의 후보 PDCCH #3에 대응시키며, CCE #4, #10을 집성 레벨 2의 후보 PDCCH # 4에 대응시키고, CCE #5, #11을 집성 레벨 2의 후보 PDCCH #5에 대응시킬 수 있다.
다만, 하위 집성 레벨(Lower AL)의 후보 PDCCH 개수와 상위 집성 레벨(Higher AL)의 후보 PDCCH 개수가 상이한 경우에는, 상기 [수학식 2]를 기반으로 한 방법이 그대로 적용되기 어려울 수 있다. 그러므로, 하위 집성 레벨의 후보 PDCCH에 포함되는 CCE들을 상위 집성 레벨의 후보 PDCCH에 포함되는 CCE에 대응시키기 위한 보다 보편적인 방법을 살펴보도록 한다.
하위 집성 레벨의 후보 PDCCH에 대응되는 CCE들 모두를 포함할 수 있는, 상위 집성 레벨의 후보 PDCCH 개수에 대응되는 다수개의 CCE 에 대한 행렬을 구성하여, 하위 집성 레벨의 후보 PDCCH에 포함되는 CCE들을 상위 집성 레벨의 후보 PDCCH에 포함되는 CCE에 대응시키도록 할 수 있다. 구체적으로, 열(column)의 개수는 상위 집성 레벨의 후보 PDCCH 개수에 대응하고, 행(row)의 개수는 상위 집성 레벨의 크기에 대응하도록 행렬을 구성하여, 동일한 열(column)에 속한 CCE들이 특정 집성 레벨에 대한 후보 PDCCH를 구성하도록 할 수 있다.
도 10을 통해 구체적인 예를 살펴보면, 집성 레벨 1의 후보 PDCCH 개수가 6 개인 경우, CCE #0, #1, #2, #3, #4, #5를 각 후보 PDCCH 에 대응시킬 수 있고, 집성 레벨 2의 후보 PDCCH 개수가 4 개인 경우, 도 10과 같은 행렬을 구성하여, 같은 열(column)에 속하는 CCE들을 그룹핑하여 집성 레벨 2의 후보 PDCCH에 각각 대응시킬 수 있다. 즉, 도 10을 참고 할 때, 집성 레벨 2의 후보 PDCCH #0은 CCE #0, #4로 구성되고, 후보 PDCCH #1은 CCE #1, #5로 구성되며, 후보 PDCCH #2는 CCE #2, #6으로 구성되고, 후보 PDCCH #3은 #3, #7로 구성될 수 있다.
상술한 실시 예는, 하위 집성 레벨의 후보 PDCCH 개수와 상위 집성 레벨의 후보 PDCCH 개수가 동일할 때에도 적용할 수 있다. 또한, 행렬 내에서 Row-first 방식으로 CCE 인덱스를 나열할 수도 있고 Column-first 방식으로 CCE 인덱스를 나열할 수도 있다. 이 때, 행의 개수를 상위 집성 레벨의 크기의 개수로 하고, 열의 개수를 상위 집성 레벨에서의 후보 PDCCH 개수로 할 때, 도 10과 같이, Row-first 방식으로 CCE 인덱스를 나열한 후, 열(column)방향으로 상위 집성 레벨의 후보 PDCCH를 구성하면, 하나의 후보 PDCCH를 구성하는 CCE들이 분산되도록 구성할 수 있고, Column-first 방식으로 CCE 인덱스를 나열한 후, 열(column)방향으로 상위 집성 레벨의 후보 PDCCH를 구성하면, [수학식 1]을 기반으로 한 실시 예와 같이, 인접한 CCE들이 상위 집성 레벨의 하나의 후보 PDCCH를 구성하도록 할 수 있다.
후보 PDCCH를 구성하기 위한 또 다른 실시 예로는, 각 집성 레벨 별 후보 PDCCH를 구성하는 CCE를 최하위 집성 레벨(Lowest AL) 기준으로 결정하되, 하위 집성 레벨(Lower AL)의 후보 PDCCH를 구성하는 CCE들을 제외한 검색 공간(search space)을 재 인덱싱(re-indexing)하여 상위 집성 레벨(Higher AL)의 후보 PDCCH를 구성하는 나머지 CCE들을 결정하는 방법이 있을 수 있다. 이러한 실시 예를 아래의 [수학식 3]에 나타난 해싱 함수(hashing function)를 기반으로 설명하도록 한다.
[수학식 3]
Figure PCTKR2018006589-appb-I000024
본 수식에서 m"은 아래와 같고, 여기서
Figure PCTKR2018006589-appb-I000025
는 각각 상위 집성 레벨(Higher AL)과 하위 집성 레벨(Lower AL)에 대응되는 후보 PDCCH의 개수이며,
Figure PCTKR2018006589-appb-I000026
는 각각 상위 집성 레벨(Higher AL)과 하위 집성 레벨(Lower AL)의 크기를 나타낸다.
Figure PCTKR2018006589-appb-I000027
여기서, m"의 값이 될 수 있는 인덱스 값은, 하위 집성 레벨의 후보 PDCCH를 구성하는 CCE들을 제외하고, 재 인덱싱한 상위 집성 레벨의 후보 PDCCH를 위한 나머지 CCE들의 인덱스를 의미한다.
예를 들어, 집성 레벨 1, 2에 대한 후보 PDCCH의 수를 각각 6, 4라고 가정하면, 상기 [수학식 3]을 이용하여, 자원 블록 집합(RB set) 혹은 제어 채널을 구성하는 다수개의 CCE 중, 집성 레벨 1에 해당하는 후보 PDCCH를 구성하는 CCE #0, #1, #2, #3, #4, #5를 찾을 수 있다. 이 때, 집성 레벨 2에 해당하는 후보 PDCCH를 구성하는 CCE는 총 8 개로, 집성 레벨 1을 구성하는 CCE들에, 추가적으로 2 개의 CCE가 더 필요하다.
이를 위해, 도 11에서 볼 수 있는 것과 같이, 자원 블록 집합(RB set) 혹은 제어 채널을 구성하는 다수개의 CCE들 에서 집성 레벨 1에 대응하는 CCE들을 제외하고 나머지 CCE들을 다시 0번부터 인덱싱한 후, [수학식 3]을 적용하면, 집성 레벨 2를 위한 추가적인 CCE #0, #1을 선택할 수 있다. 이 때, 추가로 선택된 CCE #0, #1은 재인덱싱된 인덱스이다. 그리고, 재인덱싱된 CCE #0, #1의 원래 CCE 인덱스인 CCE #6, #7을 집성 레벨 1에서 선택한 CCE #0, #1, #2, #3, #4, #5와 함께 집성 레벨 2의 후보 PDCCH를 구성하는 데에 사용할 수 있다.
그 후, 도 10과 관련하여 설명한 것과 같이, 열(column)의 개수는 상위 집성 레벨의 후보 PDCCH 개수에 대응하고 행(row)의 개수는 상위 집성 레벨(Higher AL)의 크기에 대응하는 행렬을 구성하여, 같은 열(column)에 속한 CCE들을 하나의 후보 PDCCH로 구성하는 방법을 적용하여, 상위 집성 레벨의 후보 PDCCH들을 구성할 수 있다. 이 때, 상술한 바와 같이, 행렬 내에서, Row-first 방식으로 CCE 인덱스를 나열할 수도 있고 Column-first 방식으로 CCE 인덱스를 나열할 수도 있다.
한편, 상술한 실시 예들을 기반으로 검색 공간(search space)을 구성할 때 인터리버(interleaver)의 번들링(bundling) 구조를 고려할 수 있다. 예를 들어, 인터리버(interleaver)에서 inter-CCE 번들링 크기(bundling size)가 T일 때, 각 UE 별로 해싱 함수(hashing function)를 통해 찾은 검색 공간(search space)의 시작점이 CCE #0을 포함한 T의 배수에 대응되지 않을 수 있다. 시작점이 T의 배수에 대응하지 않게 되면, 후보 PDCCH와 CCE 번들링 단위의 시작 위치가 상이하여 번들링을 효율적으로 수행하기 어려워지는 문제점이 생길 수 있기 때문에, 해당 UE의 검색 공간(search space)의 시작점과 가장 가까운 '0을 포함한 T의 배수'와의 거리만큼 해싱 함수(hashing function)로 찾은 모든 CCE의 인덱스를 이동(shift)시킬 수 있다.
예를 들어, 인터리버(interleaver)의 inter-CCE 번들링 크기(bundling size)가 2일 때, UE가 해싱 함수(hashing function)로 찾은 검색 공간(search space)의 시작점이 CCE #1인 경우, 상기 해싱 함수로 찾은 모든 CCE의 인덱스를 1만큼 이동(shift)시킬 수 있다.
또한, 상술한 실시 예들은, 자원 블록 집합(RB set) 혹은 제어 채널을 구성하는 다수개의 CCE들 중, 해당 집성 레벨에 대응되는 CCE를 처음부터 연속해서 선택하는 방식을 예시로 들었지만, 이 외에 자원 블록 집합(RB set) 혹은 제어 채널을 구성하는 다수개의 CCE들 중, 해당 집성 레벨에 대응되는 CCE를 분산시켜서 선택하는 방식을 적용할 수도 있다. 예를 들어, [수학식 4]와 같이 해싱 함수(hashing function)를 구성함으로써, 집성 레벨에 대응되는 CCE를 분산시켜서 선택하되, 상위 집성 레벨의 검색 영역과 하위 집성 레벨의 검색 영역 간에 네스티드(Nested) 구조를 가질 수 있도록 구성할 수 있다. 다시 말해, 아래의 [수학식 4]에 따르면, 각 집성 레벨의 후보 PDCCH 각각은 분산된 형태로 정해지나, 하위 집성 레벨의 후보 PDCCH는 상위 집성 레벨의 후보 PDCCH들에 포함될 수 있다. 하지만, 이러한 경우에도, 각 후보 PDCCH에 포함된 CCE들은 연속될 수 있다.
[수학식 4]
Figure PCTKR2018006589-appb-I000028
도 12를 참조하면, 통신 장치(1200)는 프로세서(1210), 메모리(1220), RF 모듈(1230), 디스플레이 모듈(1240) 및 사용자 인터페이스 모듈(1250)을 포함한다.
통신 장치(1200)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(1200)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(1200)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(1210)는 도면을 참조하여 예시한 본 발명의 실시예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(2910)의 자세한 동작은 도 1 내지 도 11에 기재된 내용을 참조할 수 있다.
메모리(1220)는 프로세서(1210)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(1230)은 프로세서(1210)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(1230)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 한편, 본 발명에서 RF 모듈(1230)은, 트랜시버로 명칭될 수도 있다. 디스플레이 모듈(1240)은 프로세서(1210)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(1240)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(1250)은 프로세서(1210)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치는, 세대 NewRAT 시스템에 적용되는 예를 중심으로 설명하였으나, 5세대 NewRAT 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (14)

  1. 무선 통신 시스템에서, 단말이 하향링크 제어 채널을 수신하는 방법에 있어서,
    집성 레벨에 대응하는 개수의 CCE(Control Channel Element)로 구성된 후보 PDCCH(Physical Downlink Control Channel)들을 모니터링하여, PDCCH를 수신하는 것을 특징으로 하고,
    상위 집성 레벨의 후보 PDCCH들을 위한 CCE들은, 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들을 모두 포함하며,
    상기 상위 집성 레벨의 후보 PDCCH들 각각에 포함되는 상기 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들은,
    상기 상위 집성 레벨의 크기 및 상기 상위 집성 레벨의 후보 PDCCH들의 개수를 기반으로 한 행렬을 이용하여 결정되는,
    하향링크 제어 채널 수신 방법.
  2. 제 1 항에 있어서,
    상기 행렬의 행의 크기는, 상기 상위 집성 레벨의 크기에 대응하고,
    상기 행렬의 열의 크기는, 상기 상위 집성 레벨의 후보 PDCCH들의 수에 대응하는,
    하향링크 제어 채널 수신 방법.
  3. 제 2 항에 있어서,
    CCE들의 인덱스를 기준으로, 상기 행렬을 구성하는 각각의 요소에, 상기 CCE들을 배치하되,
    동일한 열에 배치된 CCE들은 동일한 상위 집성 레벨의 후보 PDCCH에 포함되는,
    하향링크 제어 채널 수신 방법.
  4. 제 1 항에 있어서,
    상기 PDCCH 전송을 위한 자원 집합에 포함된 CCE들을 인덱싱하되,
    상기 하위 집성 레벨의 후보 PDCCH를 위한 CCE들을 제외한 CCE들을 인덱싱하고,
    상기 인덱싱된 CCE들의 인덱스를 기반으로, 상기 상위 집성 레벨의 후보 PDCCH들을 위한 CCE들 중, 상기 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들을 제외한 나머지 CCE를 결정하는 것을 더 포함하는,
    하향링크 제어 채널 수신 방법.
  5. 제 4 항에 있어서,
    상기 결정된 나머지 CCE의 인덱스는, 상기 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들의 인덱스를 기준으로 재인덱싱 되는,
    하향링크 제어 채널 수신 방법.
  6. 제 1 항에 있어서,
    상기 상위 집합 레벨의 후보 PDCCH들을 위한 시작 CCE의 인덱스가 CCE 인터리빙을 위한 CCE 번들링 크기와 대응하지 않는 경우,
    상기 CCE 번들링 크기에서 상기 시작 CCE의 인덱스의 차이만큼 상기 결정된 상위 집성 레벨의 후보 PDCCH를 위한 CCE들의 인덱스들을 이동(shift)한 인덱스들에 대응하는 CCE들을, 상기 상위 집성 레벨의 후보 PDCCH를 위한 CCE들로 재결정하는,
    하향링크 제어 채널 수신 방법.
  7. 제 1 항에 있어서,
    상기 상위 집성 레벨의 후보 PDCCH들 간의 간격은,
    상기 PDCCH 전송을 위한 자원 집합에 포함된 CCE들의 개수를 상기 상위 집성 레벨의 후보 PDCCH들의 수로 나눈 값에 기반하여 결정되는,
    하향링크 제어 채널 수신 방법.
  8. 무선 통신 시스템에서, 하향링크 제어 채널을 수신하는 단말에 있어서,
    기지국과 신호를 송수신하는 트랜시버; 및
    집성 레벨에 대응하는 개수의 CCE(Control Channel Element)로 구성된 후보 PDCCH(Physical Downlink Control Channel)들을 모니터링하여, PDCCH를 수신하도록 상기 트랜시버를 제어하는 프로세서를 포함하되,
    상위 집성 레벨의 후보 PDCCH들을 위한 CCE들은, 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들을 모두 포함하며,
    상기 상위 집성 레벨의 후보 PDCCH들 각각에 포함되는 상기 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들은,
    상기 상위 집성 레벨의 크기 및 상기 상위 집성 레벨의 후보 PDCCH들의 개수를 기반으로 한 행렬을 이용하여 결정되는,
    단말.
  9. 제 8 항에 있어서,
    상기 행렬의 행의 크기는, 상기 상위 집성 레벨의 크기에 대응하고,
    상기 행렬의 열의 크기는, 상기 상위 집성 레벨의 후보 PDCCH들의 수에 대응하는,
    단말.
  10. 제 9 항에 있어서,
    CCE들의 인덱스를 기준으로, 상기 행렬을 구성하는 각각의 요소에, 상기 CCE들을 배치하되,
    동일한 열에 배치된 CCE들은 동일한 상위 집성 레벨의 후보 PDCCH에 포함되는,
    단말.
  11. 제 8 항에 있어서,
    상기 PDCCH 전송을 위한 자원 집합에 포함된 CCE들을 인덱싱하되,
    상기 하위 집성 레벨의 후보 PDCCH를 위한 CCE들을 제외한 CCE들을 인덱싱하고,
    상기 인덱싱된 CCE들의 인덱스를 기반으로, 상기 상위 집성 레벨의 후보 PDCCH들을 위한 CCE들 중, 상기 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들을 제외한 나머지 CCE를 결정하는 것을 더 포함하는,
    단말.
  12. 제 11 항에 있어서,
    상기 결정된 나머지 CCE의 인덱스는, 상기 하위 집성 레벨의 후보 PDCCH들을 위한 CCE들의 인덱스를 기준으로 재인덱싱되는,
    단말.
  13. 제 8 항에 있어서,
    상기 상위 집합 레벨의 후보 PDCCH들을 위한 시작 CCE의 인덱스가 CCE 인터리빙을 위한 CCE 번들링 크기와 대응하지 않는 경우,
    상기 CCE 번들링 크기에서 상기 시작 CCE의 인덱스의 차이만큼, 상기 결정된 상위 집성 레벨의 후보 PDCCH를 위한 CCE들의 인덱스들을 이동(shift)한 인덱스들에 대응하는 CCE들을, 상기 상위 집성 레벨의 후보 PDCCH를 위한 CCE들로 재결정하는,
    단말.
  14. 제 8 항에 있어서,
    상기 상위 집성 레벨의 후보 PDCCH들 간의 간격은,
    상기 PDCCH 전송을 위한 자원 집합에 포함된 CCE들의 개수를 상기 상위 집성 레벨의 후보 PDCCH들의 수로 나눈 값에 기반하여 결정되는,
    단말.
PCT/KR2018/006589 2017-06-13 2018-06-11 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치 WO2018230902A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880038981.5A CN110741594B (zh) 2017-06-13 2018-06-11 接收下行链路控制信道的方法和用于该方法的设备
EP18817229.0A EP3641195B1 (en) 2017-06-13 2018-06-11 Method for receiving downlink control channel and device therefor
US16/621,687 US11096163B2 (en) 2017-06-13 2018-06-11 Method for receiving downlink control channel and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762519102P 2017-06-13 2017-06-13
US62/519,102 2017-06-13

Publications (1)

Publication Number Publication Date
WO2018230902A1 true WO2018230902A1 (ko) 2018-12-20

Family

ID=64660471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006589 WO2018230902A1 (ko) 2017-06-13 2018-06-11 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US11096163B2 (ko)
EP (1) EP3641195B1 (ko)
CN (1) CN110741594B (ko)
WO (1) WO2018230902A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021173061A1 (en) * 2020-02-27 2021-09-02 Telefonaktiebolaget Lm Ericsson (Publ) Enabling new physical downlink control channel aggregation levels for reduced capability user equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022057524A1 (zh) * 2020-09-21 2022-03-24 华为技术有限公司 资源确定方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170086220A1 (en) * 2010-04-07 2017-03-23 Lg Electronics Inc. Pdcch monitoring method and apparatus in a carrier junction system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041993A1 (en) * 2008-10-08 2010-04-15 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for selecting control channel elements for physical downlink control channel
CN102612153B (zh) * 2011-01-21 2015-01-07 上海贝尔股份有限公司 在通信系统中进行cce资源分配的方法及设备
EP2706692B1 (en) * 2011-05-06 2018-07-04 LG Electronics Inc. Method and apparatus for adjusting transmission timing in wireless access system supporting carrier aggregation
KR101876230B1 (ko) * 2011-06-16 2018-07-10 주식회사 팬택 다중 요소 반송파 시스템에서 제어채널의 수신장치 및 방법
AU2012337546B2 (en) * 2011-11-16 2017-01-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting control information in wireless communication systems
CN103188805A (zh) * 2011-12-31 2013-07-03 华为技术有限公司 导频资源分配方法和设备
KR102114606B1 (ko) * 2012-04-02 2020-05-25 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널의 검색 영역을 위하여 자원 블록을 구성하는 방법 및 이를 위한 장치
KR102047698B1 (ko) * 2012-04-13 2019-12-04 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 위한 검색 영역을 설정하는 방법 및 이를 위한 장치
KR102040622B1 (ko) * 2012-04-15 2019-11-05 엘지전자 주식회사 상향링크 자원 결정 방법 및 이를 이용한 상향링크 제어 신호 전송 방법, 그리고 이들을 위한 장치
KR101562699B1 (ko) * 2012-09-13 2015-10-22 주식회사 케이티 하향링크 제어채널의 수신 방법 및 그 단말, 하향링크 제어채널의 설정 방법, 그 송수신포인트
WO2014043890A1 (zh) * 2012-09-21 2014-03-27 富士通株式会社 控制信息的传输方法、用户设备以及基站
EP3713144B1 (en) * 2012-09-27 2021-11-03 Huawei Technologies Co., Ltd. Method and apparatus for allocating control channel candidates
CN103931254B (zh) * 2012-11-02 2018-05-18 华为技术有限公司 控制信道的检测方法及设备
CN105247937A (zh) * 2013-08-30 2016-01-13 华为技术有限公司 下行信道聚合级别的确定方法、设备和系统
WO2015050339A1 (ko) * 2013-10-04 2015-04-09 주식회사 케이티 하향링크 제어 채널을 송수신하는 방법 및 그 장치
KR101919636B1 (ko) * 2013-10-04 2018-11-20 주식회사 케이티 하향링크 제어 채널을 송수신하는 방법 및 그 장치
US10432441B2 (en) * 2017-02-06 2019-10-01 Samsung Electronics Co., Ltd. Transmission structures and formats for DL control channels
CN110169174B (zh) * 2017-03-02 2020-09-22 Oppo广东移动通信有限公司 用于无线通信系统的网络节点、用户装置和方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170086220A1 (en) * 2010-04-07 2017-03-23 Lg Electronics Inc. Pdcch monitoring method and apparatus in a carrier junction system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Search Space Design", R1-1706944, 3GPP TSG RAN WG1 MEETING #89, 8 May 2017 (2017-05-08), Hangzhou, China, XP051263406 *
QUALCOMM INCORPORATED: "PDCCH Nested Search Space Design", R1-1708609, 3GPP T SG RAN WG1 MEETING #89, 7 May 2017 (2017-05-07), Hangzhou, China, XP051263245 *
SALIHU, BALA ALHAJI ET AL.: "New Remapping Strategy for PDCCH Scheduling for LTE-advanced Systems", JOURNAL OF COMMUNICATIONS, vol. 9, no. 7, July 2014 (2014-07-01), pages 563 - 571, XP055246102, Retrieved from the Internet <URL:DOI: 10.12720/jcm.9.7.563-571> *
SAMSUNG: "On Hierarchical Search Space Structure", R1-1707990, 3GPP TSG RAN WG1 MEETING #89, 6 May 2017 (2017-05-06), Hangzhou, China, XP051262167 *
See also references of EP3641195A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021173061A1 (en) * 2020-02-27 2021-09-02 Telefonaktiebolaget Lm Ericsson (Publ) Enabling new physical downlink control channel aggregation levels for reduced capability user equipment

Also Published As

Publication number Publication date
EP3641195A1 (en) 2020-04-22
US11096163B2 (en) 2021-08-17
US20200196283A1 (en) 2020-06-18
EP3641195B1 (en) 2022-08-10
CN110741594B (zh) 2022-05-17
CN110741594A (zh) 2020-01-31
EP3641195A4 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
WO2018174671A1 (ko) 다중 반송파 통신 시스템에서 단말 간 직접 통신을 위한 반송파 선택 방법 및 이를 위한 장치
WO2018199684A1 (ko) 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
WO2011008059A2 (ko) 다중 안테나 무선 통신 시스템에서 하향링크 신호를 수신하는 방법 및 이를 위한 장치
WO2017171390A1 (ko) 차세대 무선 통신 시스템에서 사이드링크를 통한 신호 송수신 방법 및 이를 위한 장치
WO2013055173A2 (ko) 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
WO2017179784A1 (ko) 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2018135867A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 빔 제어 방법 및 이를 위한 장치
WO2012128490A2 (ko) 무선 통신 시스템에서 동적 서브프레임 설정 시 재전송 방법 및 이를 위한 장치
WO2010117225A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보 수신 방법 및 이를 위한 장치
WO2018093103A1 (ko) 가용 자원에 대한 정보를 전송하는 방법 및 이를 위한 장치
WO2011010904A2 (ko) CoMP 참조신호 송수신 방법
WO2018012887A1 (ko) 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치
WO2018221882A1 (ko) 무선 통신 시스템에서, 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2011002173A2 (ko) 다중 안테나 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 장치
WO2018143777A1 (ko) 무선 통신 시스템에서 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
WO2018088795A1 (ko) 동기화 신호 전송 방법 및 이를 위한 장치
WO2018186671A1 (ko) 차세대 통신 시스템에서 방송 데이터를 위한 dm-rs 송신 방법 및 이를 위한 장치
WO2017069559A1 (ko) 무선 통신 시스템에서 브로드캐스트 신호/멀티캐스트 신호에 대한 ack/nack 응답을 송신하는 방법 및 이를 위한 장치
WO2016171457A1 (ko) 무선 통신 시스템에서 ack/nack 응답을 다중화하는 방법 및 이를 위한 장치
WO2013137582A1 (ko) 무선 통신 시스템에서 하향링크 채널의 시작 심볼을 설정하는 방법 및 이를 위한 장치
WO2016006886A1 (ko) 무선 통신 시스템에서 비 면허 대역에서의 참조 신호 송신 방법 및 이를 위한 장치
WO2012115427A2 (ko) 다중 셀 협력 무선 통신 시스템에서 제어 채널 송수신 방법 및 이를 위한 장치
WO2018084499A1 (ko) 무선 통신 시스템에서, 하향링크 제어 영역 구성 방법 및 이를 위한 장치
WO2017175938A1 (ko) 무선 통신 시스템에서 셀 순환 하향링크 송신 방법 및 이를 위한 장치
WO2017074083A1 (ko) 무선 통신 시스템에서 단말의 채널상태정보 보고 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018817229

Country of ref document: EP

Effective date: 20200113