WO2016006886A1 - 무선 통신 시스템에서 비 면허 대역에서의 참조 신호 송신 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 비 면허 대역에서의 참조 신호 송신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2016006886A1
WO2016006886A1 PCT/KR2015/006920 KR2015006920W WO2016006886A1 WO 2016006886 A1 WO2016006886 A1 WO 2016006886A1 KR 2015006920 W KR2015006920 W KR 2015006920W WO 2016006886 A1 WO2016006886 A1 WO 2016006886A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
channel
information
resource
csi
Prior art date
Application number
PCT/KR2015/006920
Other languages
English (en)
French (fr)
Inventor
서한별
안준기
김선욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/323,074 priority Critical patent/US10305654B2/en
Priority to EP15819515.6A priority patent/EP3169006B1/en
Priority to CN201580037018.1A priority patent/CN106471759B/zh
Publication of WO2016006886A1 publication Critical patent/WO2016006886A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting a reference signal in an unlicensed band in a wireless communication system.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is an access gateway (AG) located at an end of a user equipment (UE) and a base station (eNode B), an eNB, and a network (E-UTRAN) and connected to an external network.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • the base station transmits uplink scheduling information to the terminal for uplink (UL) data and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use.
  • DL downlink
  • HARQ Hybrid Automatic Repeat and reQuest
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • the present invention proposes a method and apparatus for transmitting a reference signal in an unlicensed band in a wireless communication system.
  • a method of reporting channel state information in an unlicensed band to a base station by a terminal includes: receiving information on a reference signal resource for interference measurement from the base station through an upper layer; Calculating channel state information using reference signal resources for the interference measurement; And reporting the channel state information to the base station, wherein the reference signal resource for the interference measurement is composed of two or more reference signal patterns, and each of the two or more reference signal patterns is mapped to a different time resource. It is characterized by.
  • the method includes receiving information about a Zero Power (ZP) reference signal resource from the base station through the upper layer; And receiving the downlink data channel under the assumption that a downlink data channel is not received in the ZP reference signal resource, wherein the ZP reference signal resource is composed of two or more reference signal patterns. Each of the above reference signal patterns is mapped to different time resources.
  • ZP Zero Power
  • Each of the reference signal patterns is mapped to different time resources.
  • the method may include providing information on a Zero Power (ZP) reference signal resource to the terminal through the upper layer; And transmitting a downlink data channel to the terminal, wherein the terminal receives the downlink data channel on the assumption that a downlink data channel is not transmitted in the ZP reference signal resource, and the ZP reference signal resource is Comprising two or more reference signal patterns, each of the two or more reference signal patterns is mapped to different time resources.
  • ZP Zero Power
  • each of the two or more reference signal patterns is characterized by two antenna ports.
  • each of the two or more reference signal patterns may indicate a reference signal resource mapped to the same frequency resource in two adjacent time resources.
  • the reference signal resource for the interference measurement in the licensed band other than the unlicensed band is characterized by consisting of one reference signal pattern defined by four antenna ports.
  • FIG. 1 schematically illustrates an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 3 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 3 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • 5 is a diagram illustrating a structure of a downlink radio frame used in the LTE system.
  • FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • MIMO 7 is a block diagram of a general multiple antenna (MIMO) communication system.
  • 8 and 9 illustrate a structure of a downlink reference signal in an LTE system supporting downlink transmission using four antennas.
  • FIG. 11 exemplifies CSI-RS configuration # 0 in the case of a general CP among downlink CSI-RS configuration defined in the current 3GPP standard document.
  • FIG. 12 is a conceptual diagram illustrating carrier aggregation.
  • FIG. 13 is a diagram illustrating a carrier aggregation situation of a licensed band and an unlicensed band.
  • 15 and 16 illustrate a structure of a DM-RS for PDSCH in an existing LTE system.
  • 17 and 18 show an example of moving the DM-RS RE to the embodiment of the present invention to alleviate the problems caused by symbol level interference in the unlicensed band.
  • FIG. 19 shows another example of moving a DM-RS RE according to an embodiment of the present invention.
  • 21 shows an example of fixing a frequency shift value of a CRS according to an embodiment of the present invention.
  • FIG. 22 shows an example of arrangement of DM-RS REs according to an embodiment of the present invention.
  • 25 shows an example of increasing the CRS density in an unlicensed band according to an embodiment of the present invention.
  • 26 and 27 show other examples of increasing CRS density in an unlicensed band according to an embodiment of the present invention.
  • FIG. 28 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the present specification describes an embodiment of the present invention using an LTE system and an LTE-A system, this as an example may be applied to any communication system corresponding to the above definition.
  • the present specification describes an embodiment of the present invention on the basis of the FDD scheme, but this is an exemplary embodiment of the present invention can be easily modified and applied to the H-FDD scheme or the TDD scheme.
  • the specification of the base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • relay and the like.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources.
  • the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer provides unnecessary control for efficiently transmitting IP packets such as IPv4 or IPv6 over a narrow bandwidth air interface. It performs header compression function that reduces information.
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the UE may transmit a specific sequence to the preamble through a physical random access channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the above-described procedure, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S308) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • a radio frame has a length of 10 ms (327200 ⁇ T s ) and is composed of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 x T s ).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • one resource block includes 12 subcarriers x 7 (6) OFDM symbols.
  • Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 5 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
  • a subframe consists of 14 OFDM symbols.
  • the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
  • R1 to R4 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
  • the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
  • Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
  • the PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity).
  • One REG is composed of four resource elements (REs).
  • the RE represents a minimum physical resource defined by one subcarrier x one OFDM symbol.
  • the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
  • the PHICH consists of one REG and is scrambled cell-specifically.
  • ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • a plurality of PHICHs mapped to the same resource constitutes a PHICH group.
  • the number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
  • the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
  • the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
  • n is indicated by the PCFICH as an integer of 1 or more.
  • the PDCCH consists of one or more CCEs.
  • the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
  • Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A”, a radio resource (eg, frequency location) of "B” and a DCI format of "C", that is, a transmission format. It is assumed that information about data transmitted using information (eg, transport block size, modulation scheme, coding information, etc.) is transmitted through a specific subframe.
  • RTI Radio Network Temporary Identity
  • the terminal in the cell monitors, that is, blindly decodes, the PDCCH in the search region by using the RNTI information of the cell, and if there is at least one terminal having an "A" RNTI, the terminals receive and receive the PDCCH.
  • the PDSCH indicated by "B” and "C” is received through the information of one PDCCH.
  • FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • an uplink subframe may be divided into a region to which a Physical Uplink Control CHannel (PUCCH) carrying control information is allocated and a region to which a Physical Uplink Shared CHannel (PUSCH) carrying user data is allocated.
  • the middle part of the subframe is allocated to the PUSCH, and both parts of the data area are allocated to the PUCCH in the frequency domain.
  • the control information transmitted on the PUCCH includes ACK / NACK used for HARQ, Channel Quality Indicator (CQI) indicating downlink channel status, RI (Rank Indicator) for MIMO, and scheduling request (SR), which is an uplink resource allocation request. There is this.
  • the PUCCH for one UE uses one resource block occupying a different frequency in each slot in a subframe. That is, two resource blocks allocated to the PUCCH are frequency hoped at the slot boundary.
  • MIMO Multiple-Input Multiple-Output
  • MIMO is a method of using a plurality of transmission antennas and a plurality of reception antennas, and this method can improve the transmission and reception efficiency of data. That is, by using a plurality of antennas at the transmitting end or the receiving end of the wireless communication system, the capacity can be increased and the performance can be improved.
  • MIMO may be referred to as a 'multi-antenna'.
  • a multi-antenna technique it does not rely on a single antenna path to receive one full message. Instead, in multi-antenna technology, data fragments received from multiple antennas are gathered and merged to complete the data. Using multi-antenna technology, it is possible to improve the data rate within a cell area of a specified size or to increase system coverage while ensuring a specific rate of data rate. This technique can also be widely used in mobile communication terminals, repeaters, and the like. According to the multiple antenna technology, it is possible to overcome the transmission limit in the mobile communication according to the prior art, which used a single antenna.
  • the transmitting end is provided with N T antennas
  • the receiving end is provided with N R antennas.
  • the research trends related to multi-antennas to date include information theory aspects related to calculation of multi-antenna communication capacity in various channel environments and multi-access environments, research on wireless channel measurement and model derivation of multi-antenna systems, and improvement of transmission reliability and transmission rate.
  • Active research is being conducted from various viewpoints, such as the study of space-time signal processing technology.
  • the communication method in the multi-antenna system in a more specific manner, it can be represented as follows mathematically. As shown in FIG. 7, it is assumed that there are N T transmit antennas and N R receive antennas. First, referring to the transmission signal, when there are N T transmit antennas, since the maximum transmittable information is N T , the transmission information may be represented by a vector shown in Equation 2 below.
  • Each transmission information The transmit power may be different.
  • Each transmit power In this case, the transmission information whose transmission power is adjusted may be expressed as follows.
  • Is represented by the diagonal matrix P of the transmission power as shown in Equation 4 below.
  • weight matrix plays a role of properly distributing transmission information to each antenna according to a transmission channel situation.
  • a transmission signal Can be expressed as Equation 5 below using the vector X.
  • W ij means a weight between the i th transmission antenna and the j th information.
  • W is called a weight matrix or a precoding matrix.
  • the physical meaning of the rank of the channel matrix is the maximum number that can send different information in a given channel. Therefore, the rank of the channel matrix is defined as the minimum number of independent rows or columns, so the rank of the matrix is greater than the number of rows or columns. It becomes impossible.
  • the rank ( H ) of the channel matrix H is limited as in Equation 6.
  • each of the different information sent using the multi-antenna technology will be defined as a 'stream' or simply 'stream'.
  • a 'stream' may be referred to as a 'layer'.
  • the number of transport streams can then, of course, be no greater than the rank of the channel, which is the maximum number that can send different information. Therefore, the channel matrix H can be expressed as Equation 7 below.
  • # of streams represents the number of streams.
  • one stream may be transmitted through more than one antenna.
  • mapping one or more streams to multiple antennas There may be several ways of mapping one or more streams to multiple antennas. This method can be described as follows according to the type of multiple antenna technology. When one stream is transmitted through multiple antennas, it can be seen as a spatial diversity scheme, and when multiple streams are transmitted through multiple antennas, it can be regarded as a spatial multiplexing scheme. Of course, a hybrid form of spatial diversity and spatial multiplexing is also possible.
  • CSI channel state information
  • each of the base station and the terminal may perform beamforming based on channel state information in order to obtain a multiplexing gain of the MIMO antenna.
  • the base station transmits a reference signal to the terminal in order to obtain the channel state information from the terminal, and instructs to feed back the channel state information measured based on the physical uplink control channel (PUCCH) or the physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • CSI is largely classified into three types of information, such as a rank indicator (RI), a precoding matrix index (PMI), and a channel quality indication (CQI).
  • RI represents rank information of a channel, and means the number of streams that a UE can receive through the same frequency-time resource.
  • the RI is fed back to the base station at a longer period than the PMI and CQI values.
  • PMI is a value reflecting spatial characteristics of a channel and represents a precoding matrix index of a base station preferred by a terminal based on a metric such as SINR.
  • CQI is a value representing the strength of the channel, which means the reception SINR that can be obtained when the base station uses PMI.
  • a reference signal that is known to both the transmitting side and the receiving side together with data is transmitted from the transmitting side to the receiving side for channel measurement.
  • a reference signal informs the modulation technique as well as the channel measurement to play a demodulation process.
  • the reference signal is a dedicated RS (DRS) for a base station and a specific terminal, that is, a common RS or a cell specific RS (CRS), which is a cell-specific reference signal for all UEs in a cell.
  • DRS dedicated RS
  • CRS cell specific RS
  • the cell-specific reference signal includes a reference signal for measuring the CQI / PMI / RI in the terminal to report to the base station, this is referred to as Channel State Information-RS (CSI-RS).
  • CSI-RS Channel State Information-RS
  • FIG. 8 and 9 are diagrams illustrating the structure of a reference signal in an LTE system supporting downlink transmission using four antennas.
  • FIG. 8 illustrates a case of normal cyclic prefix
  • FIG. 9 illustrates a case of extended cyclic prefix.
  • 0 through 3 described in the grid mean a common reference signal (CRS), which is a cell-specific reference signal transmitted for channel measurement and data demodulation corresponding to each of antenna ports 0 through 3.
  • CRS common reference signal
  • the CRS which is a cell specific reference signal, may be transmitted to the terminal not only in the data information region but also in the control information region.
  • 'D' described in the grid means downlink DM-RS (DM-RS), which is a UE-specific RS, and the DM-RS supports single antenna port transmission through a data region, that is, a PDSCH.
  • DM-RS downlink DM-RS
  • the terminal is signaled through the upper layer whether the DM-RS which is the terminal specific RS is present.
  • 8 and 9 illustrate DM-RSs corresponding to antenna ports 5, and 3GPP standard document 36.211 also defines DM-RSs for antenna ports 7 to 14, that is, a total of eight antenna ports.
  • DM-RS corresponding to antenna ports ⁇ 7, 8, 11, 13 ⁇ are mapped to DM-RS group 1 using a sequence of antenna ports, and antenna port ⁇ 9 to DM-RS group 2. , 10, 12, and 14 ⁇ are similarly mapped using the antenna port sequence.
  • the above-described CSI-RS has been proposed for the purpose of channel measurement for PDSCH separately from the CRS.
  • the CSI-RS has a maximum of 32 types to reduce inter-cell interference (ICI) in a multi-cell environment. It can be defined as different resource configurations of.
  • the CSI-RS (resource) configuration is different depending on the number of antenna ports, and is configured such that CSI-RSs defined by different (resource) configurations are transmitted between neighboring cells as much as possible.
  • CSI-RS supports up to 8 antenna ports, and 3GPP standard documents allocate 8 antenna ports as antenna ports for CSI-RS.
  • FIG. 11 exemplifies CSI-RS configuration # 0 in the case of a general CP among CSI-RS configuration defined in the current 3GPP standard document.
  • the CSI-RS subframe configuration may be defined, which is a period expressed in units of subframes ( ) And subframe offset ( It is composed of
  • ZP CSI-RS resource configuration consists of zeroTxPowerSubframeConfig-r10 and zeroTxPowerResourceConfigList-r10, which is a 16-bit bitmap.
  • zeroTxPowerSubframeConfig-r10 is The value informs the period and subframe offset at which the corresponding ZP CSI-RS is transmitted.
  • zeroTxPowerResourceConfigList-r10 is information indicating ZP CSI-RS configuration, and each element of the bitmap indicates configurations having 4 antenna ports for CSI-RS. That is, according to the current 3GPP standard document, ZP CSI-RS is defined only when there are four antenna ports for CSI-RS.
  • the UE needs to calculate the SINR as a necessary factor when calculating the CQI, and in this case, the received power measurement (S-measure) of the desired signal may be performed using an RS such as an NZP CSI-RS, and the interference power measurement (I The power of the interference signal obtained by removing the desired signal from the received signal for measurement or interference measurement (IM) is measured.
  • S-measure received power measurement
  • RS such as an NZP CSI-RS
  • I interference power measurement
  • the UE may perform the S-measure through RS such as CSI-RS without special subframe restriction, but in the case of I-measure And I-measure separately And Two different CQI calculations should be performed for each.
  • FIG. 12 is a conceptual diagram illustrating carrier aggregation.
  • Carrier aggregation includes a plurality of frequency blocks or (logically) cells in which a terminal is composed of uplink resources (or component carriers) and / or downlink resources (or component carriers) in order for a wireless communication system to use a wider frequency band.
  • a terminal is composed of uplink resources (or component carriers) and / or downlink resources (or component carriers) in order for a wireless communication system to use a wider frequency band.
  • uplink resources or component carriers
  • downlink resources or component carriers
  • the entire system bandwidth has a bandwidth of up to 100 MHz as a logical band.
  • the entire system band includes five component carriers, each component carrier having a bandwidth of up to 20 MHz.
  • a component carrier includes one or more contiguous subcarriers that are physically contiguous.
  • each component carrier has the same bandwidth, but this is only an example and each component carrier may have a different bandwidth.
  • each component carrier is shown as being adjacent to each other in the frequency domain, the figure is shown in a logical concept, each component carrier may be physically adjacent to each other, or may be separated.
  • the center frequency may be used differently for each component carrier or may use one common common carrier for component carriers that are physically adjacent to each other. For example, in FIG. 12, assuming that all component carriers are physically adjacent to each other, center carrier A may be used. In addition, assuming that the component carriers are not physically adjacent to each other, the center carrier A, the center carrier B, and the like may be used separately for each component carrier.
  • the component carrier may correspond to the system band of the legacy system.
  • provision of backward compatibility and system design may be facilitated in a wireless communication environment in which an evolved terminal and a legacy terminal coexist.
  • each component carrier may correspond to a system band of the LTE system.
  • the component carrier may have any one of 1.25, 2.5, 5, 10 or 20 Mhz bandwidth.
  • the frequency band used for communication with each terminal is defined in component carrier units.
  • UE A may use the entire system band 100 MHz and performs communication using all five component carriers.
  • Terminals B 1 to B 5 may use only 20 MHz bandwidth and perform communication using one component carrier.
  • Terminals C 1 and C 2 may use a 40 MHz bandwidth and perform communication using two component carriers, respectively.
  • the two component carriers may or may not be logically / physically adjacent to each other.
  • UE C 1 indicates a case of using two component carriers that are not adjacent to each other, and UE C2 indicates a case of using two adjacent component carriers.
  • one downlink component carrier and one uplink component carrier are used, whereas in the LTE-A system, a plurality of component carriers may be used as shown in FIG. 8.
  • a downlink component carrier or a combination of a corresponding downlink component carrier and a corresponding uplink component carrier may be referred to as a cell, and a correspondence relationship between the downlink component carrier and the uplink component carrier may be indicated through system information. Can be.
  • a method of scheduling a data channel by the control channel may be classified into a conventional linked carrier scheduling method and a cross carrier scheduling method.
  • a control channel transmitted through a specific component carrier schedules only a data channel through the specific component carrier. That is, a downlink grant / uplink grant transmitted to a PDCCH region of a downlink component carrier of a specific component carrier (or a specific cell) may be scheduled only for a PDSCH / PUSCH of a cell to which the corresponding downlink component carrier belongs. That is, a search space, which is an area for attempting to detect a downlink grant / uplink grant, exists in a PDCCH region of a cell where a PDSCH / PUSCH, which is a scheduled target, is located.
  • the cross carrier scheduling data in which a control channel transmitted through a primary CC is transmitted through the primary component carrier or transmitted through another component carrier using a carrier indicator field (CIF).
  • a monitored cell (Monitored Cell or Monitored CC) of cross-carrier scheduling is set, and the downlink grant / uplink grant transmitted in the PDCCH region of the monitored cell is configured to use the PDSCH / PUSCH of the cell configured to be scheduled in the corresponding cell.
  • Schedule That is, the search area for the plurality of component carriers is present in the PDCCH area of the monitored cell.
  • the PCell is configured by transmitting system information among the plurality of cells, initial access attempt, and transmission of uplink control information.
  • the PCell is a downlink primary component carrier and an uplink primary component carrier corresponding thereto. It is composed.
  • FIG. 13 is a diagram illustrating a carrier aggregation situation of a licensed band and an unlicensed band.
  • an eNB may transmit a signal to a UE or a UE may transmit a signal to an eNB in a carrier aggregation situation of an LTE-A band that is a licensed band and an unlicensed band.
  • the UE is configured to perform wireless communication through two component carriers in each of a licensed band and an unlicensed band.
  • the carrier of the licensed band may be a primary CC (PCC or PCell), and the carrier of the unlicensed band may be configured of a secondary CC (SCC or SCell).
  • the proposed schemes can be extended and applied even in a case where a plurality of licensed bands and a plurality of unlicensed bands are used as a carrier aggregation technique, and also when a signal is transmitted and received between the eNB and the UE using only the unlicensed band. It is possible.
  • the structure of the reference signal used for PDSCH transmission is used as it is in the unlicensed band, performance may be degraded. This is because in the unlicensed band, not only the LTE system but also other types of systems such as WiFi and Bluetooth may exist, and the LTE system must transmit and receive signals through channel competition with these various systems. In general, even if distributed channel contention is used, it is impossible to completely prevent resource collisions caused by two transmitters transmitting a signal at the same time, so that at least a certain probability that the transmission signal of one system is strong by the transmission signal of another system. There is a possibility of experiencing interference.
  • the LTE system basically uses a 1 ms subframe as the minimum unit of resource allocation, while a much shorter signal is frequently transmitted in WiFi or Bluetooth. Therefore, a PDSCH transmitted in a subframe of 1 ms in an unlicensed band may experience strong interference only in a specific OFDM symbol, while a low interference may occur frequently in another OFDM symbol.
  • symbol level interference has strong interference only on a specific symbol. If the reference signal is concentrated in the symbol, the channel estimation performance for PDSCH decoding may be severely deteriorated, and even if there is little interference in other symbols, the PDSCH decoding is likely to fail. It demonstrates with reference to drawings.
  • FIG. 15 and 16 illustrate a structure of a DM-RS for PDSCH in an existing LTE system.
  • FIG. 15 illustrates a case where a general CP is applied
  • FIG. 16 illustrates a case where an extended CP is applied.
  • the REs to which the DM-RSs are mapped are concentrated in a specific symbol.
  • the REs to which DM-RSs are mapped are located only in OFDM symbols # 5, # 6, # 12, and # 13.
  • the REs to which DM-RSs are mapped are OFDM symbols #. It is located only at 4, # 5, # 10, and # 11. Therefore, when the above-described symbol level interference is applied to these symbols, the possibility of PDSCH decoding failure due to deterioration of channel estimation performance increases.
  • FIG. 17 and FIG. 18 illustrate an embodiment of the present invention to mitigate a problem caused by symbol level interference in an unlicensed band. The example which moved the DM-RS RE to an Example is shown.
  • FIG. 17 illustrates a case in which the DM-RS is moved in the case of the general CP described with reference to FIG. 15, and corresponds to a case in which the REs of subcarriers # 6 and # 1 move in front of two symbols and four symbols, respectively.
  • FIG. 18 illustrates a case in which an extended CP described with reference to FIG. 16 moves subcarriers # 7 and # 8, # 4 and # 5, and DM-RSs in # 1 and # 2 before one symbol, two symbols, and three symbols, respectively.
  • the positions of the DM-RS REs illustrated in FIGS. 17 and 18 are examples, and the number of DM-RS REs located on the same symbol may be reduced by moving the DM-RS REs in various ways.
  • the rank of the PDSCH is 1 to 2.
  • the PD located in the subcarrier immediately below the RE indicated in the figure may be additionally used as a DM-RS for the PDSCH having a higher rank.
  • the movement of the DM-RS RE described with reference to FIGS. 17 and 18 may collide with another signal, in particular, the CRS.
  • the DM-RS RE may be moved in a subframe in which the CRS is not transmitted, but the DM-RS RE may be maintained in the subframe in which the CRS is transmitted.
  • the DM-RS RE may be located only in a symbol in which the CRS is not transmitted.
  • 19 shows another example of moving a DM-RS RE according to an embodiment of the present invention. Referring to FIG. 19, it can be seen that only OFDM symbols # 2, # 3, # 9, and # 10 are additionally used as DM-RS REs.
  • FIG. 20 shows an example of increasing the density of DM-RSs according to an embodiment of the present invention.
  • the RS pattern as shown in FIG. 20 in the unlicensed band where there is no guarantee of the interference situation, it may be helpful to the demodulation performance despite the increased overhead.
  • the DM-RS RE uses the structure described in FIG. 17, but it can be seen that the v-shift applied to the CRS, that is, the frequency shift value is fixed. Accordingly, the DM-RS RE is the same symbol as the CRS. Even if it is transmitted from, the collision with the CRS can be prevented.
  • the frequency position of the DM-RS can also be shifted with the CRS.
  • the DM-RS may also be operated to move downward by one subcarrier.
  • the conventional DM-RS has a structure in which RS of one antenna port is spread with a specific code in two adjacent symbols.
  • This structure has the advantage of being able to transmit the RS with higher energy by combining the energy in two symbols.
  • symbol level interference occurs in the unlicensed band
  • even if large interference occurs in only one RS symbol there is a problem in dispreading of the corresponding RS code, and even RS in the remaining symbols cannot be utilized. May occur.
  • the RS of each antenna port in the unlicensed band can be omitted.
  • the DM-RS of one antenna port is transmitted only in one symbol of two adjacent symbols.
  • the code for spreading the DM-RS may be a code consisting of one 1 and a plurality of zeros.
  • the eNB determines whether the DM-RS of one antenna port is spread to several symbols through an upper layer signal such as RRC. The UE may be informed.
  • the constraint that the DM-RS should be transmitted on the same subcarrier in two adjacent symbols is unnecessary, and thus a more free DM-RS RE arrangement is possible.
  • FIG. 22 shows an example of arrangement of DM-RS REs according to an embodiment of the present invention.
  • the overhead of the DM-RS is maintained in the same manner as the conventional scheme, and the entire PRB can be covered in one slot while the DM-RS REs are located in subcarriers of different positions as possible. Illustrated in form arrangement.
  • the actual DM-RS RE used by each antenna port may be smaller than the example shown in FIG. 22.
  • the REs located in RS symbols such as the first, third, and fifth may be used.
  • the RE located in the RS symbol of the second, fourth, sixth, etc. may be used.
  • the DM-RS RE may also be frequency shifted according to the frequency shift of the CRS to avoid collision with the CRS.
  • FIG. 23 illustrates CSI-RS configuration of a current LTE system.
  • FIG. 23 illustrates an 8 Tx CSI-RS configuration, where eight REs marked with the same grid define one 8 Tx CSI-RS configuration.
  • one 8 Tx CSI-RS configuration consists of two 4 Tx CSI-RS configurations.
  • Four REs for CSI-RS antenna port indexes # 0 to # 3 configure one 4 Tx CSI-RS setting, and four REs for CSI-RS antenna port indexes # 4 to # 7 are used for another 4 Configure Tx CSI-RS settings.
  • One 4 Tx CSI-RS configuration consists of two 2 Tx CSI-RS configurations, with two REs located on the same subcarrier as the CSI-RS antenna port indexes # 0 and # 1. Configure the settings.
  • a UE supporting CoMP (Coordinated Multi-point) transmission in an LTE system calculates CSI by measuring interference from the CSI-IM.
  • the eNB specifies the location of the CSI-IM to be used for a specific CSI process.
  • one CSI-IM uses REs defined by one 4 Tx CSI-RS configuration.
  • four REs constituting one 4 Tx CSI-RS configuration are located in two consecutive symbols and occupy two subcarriers in one symbol.
  • interference when symbol level interference occurs in an unlicensed band, interference may occur only in symbols including CSI-IM, although most symbols in a specific subframe may not interfere, and the UE may have strong interference in the entire subframe. Considering that interference exists and reporting very low CSI, correct link adaptation operation may be impossible.
  • the eNB may operate to specify two 2 Tx CSI-RS configurations, preferably located in different OFDM symbols, and use four REs covered by those two CSI-RS configurations as one CSI-IM. have.
  • FIG. 24 illustrates CSI-IM in an unlicensed band according to an embodiment of the present invention. Referring to FIG. 24, it can be seen that one CSI-IM is defined for four REs covered by two 2 Tx CSI-RS configurations.
  • the PDSCH should not be mapped to the CSI-IM RE.
  • ZP (zero power) CSI-RS configuration should be set so that PDSCH is not mapped in place of the new CSI-IM RE.
  • the ZP CSI-RS configuration is a 4 Tx CSI-RS configuration unit. Since it can be specified as, it can be extended to further operate in 2 Tx CSI-RS setting unit.
  • a new 4 Tx CSI-RS configuration having the same position as the existing 2 Tx CSI-RS configuration is defined in advance, and based on the new 4 Tx CSI-RS configuration You can also configure CSI-IM.
  • the embodiment of FIG. 24 may be extended to combine three or more 2 Tx CSI-RS configurations to configure one CSI-IM.
  • the new CSI-RS configuration introduced for the CSI-IM and ZP CSI-RS is also applied to the NZP CSI-RS configuration used for channel part measurement in the CSI to enable more stable CSI measurement even in a symbol level interference environment. It can work.
  • the CRS density can also be increased in the unlicensed band.
  • the CRS which has always been stably transmitted in the licensed band, is transmitted discontinuously in the unlicensed band.
  • the UE assumes stable CRS transmission in the licensed band and combines the CRSs present in a plurality of subframes accordingly. It is common to perform channel estimation of performance. Therefore, in order to achieve channel estimation performance similar to that of the licensed band in the unlicensed band in which the CRS must be transmitted discontinuously, it may be helpful to increase the density of the CRS.
  • a method of increasing the density of the CRS for operation in the unlicensed band will be described.
  • the RE location of the CRS is determined by a cell identifier.
  • the RE location may be additionally used to use an RE of a location generated from an identifier other than the identifier of the cell transmitting the CRS.
  • the number of antenna ports in the two CRS positions can be defined to be the same, and the CRS sequence is also derived from the cell identifier X in the same manner so that RS is distinguished through a different sequence even if the same RE as the cell identifier X + a is used. can do.
  • the original cell identifier further utilizes a CRS RE having a frequency shift of 1 in a cell having a frequency shift of zero.
  • this increase in RS RE density may be limited to some symbols.
  • the front symbol which cannot guarantee CRS transmission in the previous subframe, performs stable channel estimation using the increased CRS RE, while using the CRS of the front symbol.
  • RS overhead may be reduced by not increasing the CRS RE.
  • 26 and 27 show other examples of increasing CRS density in an unlicensed band according to an embodiment of the present invention. Specifically, it can be seen that the RS overhead is increased only in the first two symbols as shown in FIG. 26, and it is also possible to increase the RS overhead only in the first symbol as shown in FIG. Of course, RS overhead may be increased in units of slots rather than units of symbols, for example, the entire first slot.
  • Another way to increase the density of the CRS is to use the CRS structure of 4 antenna ports in a situation where the number of CRS antenna ports is set to two.
  • This approach has the advantage of not introducing a new CRS RE location, but has the constraint that in an unlicensed band it is not possible to use a four antenna port CRS configuration in at least a subframe with increased CRS density.
  • the increase in the CRS density may occur only in some subframes, and when the eNB configures the 4-antenna port CRS, the subframe requiring the increase of the CRS density may operate as a 2 antenna port CRS instantaneously while following the proposed method. In other subframes, it may operate again with 4 antenna port CRS.
  • antenna ports (0, 1) and antenna ports (2, 3) are regarded as the same antenna port and channel estimation is performed.
  • antenna ports (0, 2) and (1, 3) transmitted on the same subcarrier may be regarded as the same antenna port, but preferably antenna ports (0, 3) in order to diversify the transmission subcarriers of the same antenna port. ), (1, 2) may be regarded as the same antenna port.
  • the CRS density increasing operation may be limited to only some subframes.
  • the CRS density may be selectively increased only near the starting time point at which the eNB starts a series of transmissions (hereinafter, Tx burst).
  • the CRS may be increased only in some subframes in front of the Tx burst, and specifically, the CRS may be increased only in the first subframe of the Tx burst.
  • the CRS density may be selectively increased only when the length of the subframe is reduced. If the eNB always transmits only full-length subframes in the unlicensed band, if the channel is in use at the subframe boundary, but the channel is idle after that, the eNB cannot occupy the channel and provide channel access opportunities to other devices. You lose. To solve this problem, if the channel is idle even when the subframe boundary passes, the eNB may start transmission, but the start time of the next subframe may operate to keep the previously defined subframe boundary. In this case, the transmission starting in the middle of the subframe is shorter than the normal subframe. This is called a partial subframe.
  • the fragment subframe will be located at the front of the Tx burst and the length of the entire subframe is reduced, thereby reducing the CRS itself belonging to the same subframe, so that only the fragment subframe can operate to selectively increase the CRS density.
  • the eNB may inform the start and end time of the Tx burst and the configuration inside the Tx burst through separate signaling.
  • the eNB may transmit a predefined special signal just before the start of a Tx burst or fragment subframe and the UE detects this to determine which subframe is characterized and what is the CRS density.
  • FIG. 28 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the communication device 2800 includes a processor 2810, a memory 2820, an RF module 2830, a display module 2840, and a user interface module 2850.
  • the communication device 2800 is shown for convenience of description and some modules may be omitted. In addition, the communication device 2800 may further include necessary modules. In addition, some modules in the communication device 2800 may be classified into more granular modules.
  • the processor 2810 is configured to perform an operation according to an embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 2810 may refer to the contents described with reference to FIGS. 1 to 27.
  • the memory 2820 is connected to the processor 2810 and stores an operating system, an application, program code, data, and the like.
  • the RF module 2830 is connected to the processor 2810 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 2830 performs analog conversion, amplification, filtering and frequency up-conversion, or a reverse process thereof.
  • the display module 2840 is connected to the processor 2810 and displays various information.
  • the display module 2840 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
  • the user interface module 2850 is connected to the processor 2810 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the method for transmitting a reference signal in an unlicensed band and an apparatus therefor have been described with reference to an example applied to a 3GPP LTE system.
  • the present invention can be applied to various wireless communication systems in addition to the 3GPP LTE system.

Abstract

본 출원에서는 무선 통신 시스템에서 단말이 기지국으로 비면허 대역에서의 채널 상태 정보를 보고하는 방법이 개시된다. 구체적으로, 상기 방법은, 상기 기지국으로부터 상위 계층을 통하여 간섭 측정을 위한 참조 신호 자원에 관한 정보를 수신하는 단계; 상기 간섭 측정을 위한 참조 신호 자원을 이용하여 채널 상태 정보를 산출하는 단계; 및 상기 채널 상태 정보를 상기 기지국으로 보고하는 단계를 포함하고, 상기 간섭 측정을 위한 참조 신호 자원은 둘 이상의 참조 신호 패턴들로 구성되고, 상기 둘 이상의 참조 신호 패턴들 각각은 상이한 시간 자원에 맵핑되는 것을 특징으로 한다.

Description

무선 통신 시스템에서 비 면허 대역에서의 참조 신호 송신 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 비 면허 대역에서의 참조 신호 송신 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크(Downlink; DL) 데이터에 대해 기지국은 하향링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향링크(Uplink; UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증가, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 비 면허 대역에서의 참조 신호 송신 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명의 일 실시예인 무선 통신 시스템에서 단말이 기지국으로 비면허 대역에서의 채널 상태 정보를 보고하는 방법은, 상기 기지국으로부터 상위 계층을 통하여 간섭 측정을 위한 참조 신호 자원에 관한 정보를 수신하는 단계; 상기 간섭 측정을 위한 참조 신호 자원을 이용하여 채널 상태 정보를 산출하는 단계; 및 상기 채널 상태 정보를 상기 기지국으로 보고하는 단계를 포함하고, 상기 간섭 측정을 위한 참조 신호 자원은 둘 이상의 참조 신호 패턴들로 구성되고, 상기 둘 이상의 참조 신호 패턴들 각각은 상이한 시간 자원에 맵핑되는 것을 특징으로 한다.
추가적으로, 상기 방법은, 상기 기지국으로부터 상기 상위 계층을 통하여 ZP (Zero Power) 참조 신호 자원에 관한 정보를 수신하는 단계; 및 상기 ZP 참조 신호 자원에서는 하향링크 데이터 채널이 수신되지 않는다는 가정하에, 상기 하향링크 데이터 채널을 수신하는 단계를 더 포함하고, 상기 ZP 참조 신호 자원은 둘 이상의 참조 신호 패턴들로 구성되고, 상기 둘 이상의 참조 신호 패턴들 각각은 상이한 시간 자원에 맵핑되는 것을 특징으로 한다.
한편, 본 발명의 다른 실시예인 무선 통신 시스템에서 기지국이 단말로부터 비면허 대역에서의 채널 상태 정보를 수신하는 방법은, 상기 단말로 상위 계층을 통하여 간섭 측정을 위한 참조 신호 자원에 관한 정보를 제공하는 단계; 및 상기 간섭 측정을 위한 참조 신호 자원을 이용하여 산출된 채널 상태 정보를 상기 단말로부터 수신하는 단계를 포함하고, 상기 간섭 측정을 위한 참조 신호 자원은 둘 이상의 참조 신호 패턴들로 구성되고, 상기 둘 이상의 참조 신호 패턴들 각각은 상이한 시간 자원에 맵핑되는 것을 특징으로 한다.
추가적으로, 상기 방법은, 상기 단말로 상기 상위 계층을 통하여 ZP (Zero Power) 참조 신호 자원에 관한 정보를 제공하는 단계; 및 상기 단말로 하향링크 데이터 채널을 송신하는 단계를 포함하고, 상기 단말은 상기 ZP 참조 신호 자원에서는 하향링크 데이터 채널이 송신되지 않는다고 가정하에 상기 하향링크 데이터 채널을 수신하고, 상기 ZP 참조 신호 자원은 둘 이상의 참조 신호 패턴들로 구성되며, 상기 둘 이상의 참조 신호 패턴들 각각은 상이한 시간 자원에 맵핑되는 것을 특징으로 한다.
상기 실시예들에서, 상기 둘 이상의 참조 신호 패턴들 각각은, 2 개의 안테나 포트로 정의되는 것을 특징으로 한다. 구체적으로, 상기 둘 이상의 참조 신호 패턴들 각각은, 인접한 2개의 시간 자원에서 동일한 주파수 자원에 맵핑되는 참조 신호 자원을 지시할 수 있다.
반면에, 비 면허 대역이 아닌 면허 대역에서의 상기 간섭 측정을 위한 참조 신호 자원은, 4 개의 안테나 포트로 정의되는 하나의 참조 신호 패턴으로 구성되는 것을 특징으로 한다.
본 발명의 실시예에 따르면 무선 통신 시스템에서 비 면허 대역을 위한 참조 신호를 효율적으로 송수신할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면.
도 5는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면.
도 7은 일반적인 다중 안테나(MIMO) 통신 시스템의 구성도.
도 8 및 도 9는 4개의 안테나를 이용한 하향링크 전송을 지원하는 LTE 시스템에서의 하향링크 참조 신호의 구조를 도시하는 도면이다.
도 10은 현재 3GPP 표준문서에서 정의하고 있는 하향링크 DM-RS 할당 예를 도시한다.
도 11은 현재 3GPP 표준문서에서 정의된 하향링크 CSI-RS 설정 중 일반 CP인 경우의 CSI-RS 설정 #0을 예시한다.
도 12는 반송파 집성(carrier aggregation)을 설명하는 개념도이다.
도 13은 면허 대역(licensed band)과 비 면허 대역(Unlicensed band)의 반송파 집성 상황을 예시하는 도면이다.
도 14는 비 면허 대역에서 심볼 레벨 간섭이 발생하는 예를 도시한다.
도 15 및 도 16은 기존 LTE 시스템에서의 PDSCH를 위한 DM-RS의 구조를 예시한다.
도 17 및 도 18은 비 면허 대역에서의 심볼 레벨 간섭에 의한 문제점을 완화하기 위하여 본 발명의 실시예에 DM-RS RE를 이동시킨 예를 도시한다.
도 19는 본 발명의 실시예에 따라 DM-RS RE를 이동시킨 다른 예를 도시한다.
도 20은 본 발명의 실시예에 따라 DM-RS의 밀도를 증가시킨 예를 도시한다.
도 21은 본 발명의 실시예에 따라 CRS의 주파수 천이 값을 고정시킨 예를 도시한다.
도 22는 본 발명의 실시예에 따른 DM-RS RE의 배치예를 도시한다.
도 23은 현재 LTE 시스템의 CSI-RS 설정을 예시한다.
도 24는 본 발명의 실시예에 따라 비 면허 대역에서의 CSI-IM을 예시한다.
도 25는 본 발명의 실시예에 따라 비 면허 대역에서 CRS 밀도를 증가시키는 예를 도시한다.
도 26 및 도 27은 본 발명의 실시예에 따라 비 면허 대역에서 CRS 밀도를 증가시키는 다른 예들을 도시한다.
도 28은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서는 FDD 방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD 방식 또는 TDD 방식에도 용이하게 변형되어 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다.제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4를 참조하면, 무선 프레임(radio frame)은 10ms(327200×Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360×Ts)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파×7(6)개의 OFDM 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 5는 하향링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 5를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파×하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야 하는 지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 DCI 포맷 즉, 전송 형식 정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 검색 영역에서 PDCCH를 모니터링, 즉 블라인드 디코딩하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 6을 참조하면, 상향링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 전송되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히 도 6은 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
이하 MIMO 시스템에 대하여 설명한다. MIMO(Multiple-Input Multiple-Output)는 복수개의 송신안테나와 복수개의 수신안테나를 사용하는 방법으로서, 이 방법에 의해 데이터의 송수신 효율을 향상시킬 수 있다. 즉, 무선 통신 시스템의 송신단 혹은 수신단에서 복수개의 안테나를 사용함으로써 용량을 증가시키고 성능을 향상 시킬 수 있다. 이하 본 문헌에서 MIMO를 '다중 안테나'라 지칭할 수 있다.
다중 안테나 기술에서는, 하나의 전체 메시지를 수신하기 위해 단일 안테나 경로에 의존하지 않는다. 그 대신 다중 안테나 기술에서는 여러 안테나에서 수신된 데이터 조각(fragment)을 한데 모아 병합함으로써 데이터를 완성한다. 다중 안테나 기술을 사용하면, 특정된 크기의 셀 영역 내에서 데이터 전송 속도를 향상시키거나, 또는 특정 데이터 전송 속도를 보장하면서 시스템 커버리지(coverage)를 증가시킬 수 있다. 또한, 이 기술은 이동통신 단말과 중계기 등에 폭넓게 사용할 수 있다. 다중 안테나 기술에 의하면, 단일 안테나를 사용하던 종래 기술에 의한 이동 통신에서의 전송량 한계를 극복할 수 있다.
일반적인 다중 안테나(MIMO) 통신 시스템의 구성도가 도 7에 도시되어 있다. 송신단에는 송신 안테나가 NT개 설치되어 있고, 수신단에서는 수신 안테나가 NR개가 설치되어 있다. 이렇게 송신단 및 수신단에서 모두 복수개의 안테나를 사용하는 경우에는, 송신단 또는 수신단 중 어느 하나에만 복수개의 안테나를 사용하는 경우보다 이론적인 채널 전송 용량이 증가한다. 채널 전송 용량의 증가는 안테나의 수에 비례한다. 따라서, 전송 레이트가 향상되고, 주파수 효율이 향상된다 하나의 안테나를 이용하는 경우의 최대 전송 레이트를 Ro라고 한다면, 다중 안테나를 사용할 때의 전송 레이트는, 이론적으로, 아래 수학식 1과 같이 최대 전송 레이트 Ro에 레이트 증가율 Ri를 곱한 만큼 증가할 수 있다. 여기서 Ri는 NT와 NR 중 작은 값이다.
수학식 1
Figure PCTKR2015006920-appb-M000001
예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신 시스템에서는, 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다. 이와 같은 다중 안테나 시스템의 이론적 용량 증가가 90 년대 중반에 증명된 이후, 실질적으로 데이터 전송률을 향상시키기 위한 다양한 기술들이 현재까지 활발히 연구되고 있으며, 이들 중 몇몇 기술들은 이미 3 세대 이동 통신과 차세대 무선랜 등의 다양한 무선 통신의 표준에 반영되고 있다.
현재까지의 다중안테나 관련 연구 동향을 살펴보면 다양한 채널 환경 및 다중접속 환경에서의 다중안테나 통신 용량 계산 등과 관련된 정보 이론 측면 연구, 다중안테나 시스템의 무선 채널 측정 및 모형 도출 연구, 그리고 전송 신뢰도 향상 및 전송률 향상을 위한 시공간 신호 처리 기술 연구 등 다양한 관점에서 활발한 연구가 진행되고 있다.
다중 안테나 시스템에 있어서의 통신 방법을 보다 구체적인 방법으로 설명하기 위해 이를 수학적으로 모델링 하는 경우 다음과 같이 나타낼 수 있다. 도 7에 도시된 바와 같이 NT개의 송신 안테나와 NR개의 수신 안테나가 존재하는 것을 가정한다. 먼저, 송신 신호에 대해 살펴보면, NT개의 송신 안테나가 있는 경우 최대 전송 가능한 정보는 NT개이므로, 전송 정보를 하기의 수학식 2와 같은 벡터로 나타낼 수 있다.
수학식 2
Figure PCTKR2015006920-appb-M000002
각각의 전송 정보
Figure PCTKR2015006920-appb-I000001
는 전송 전력이 다를 수 있다. 각각의 전송 전력을
Figure PCTKR2015006920-appb-I000002
라고 하면, 전송 전력이 조정된 전송 정보는 다음과 같이 표현될 수 있다.
수학식 3
Figure PCTKR2015006920-appb-M000003
또한,
Figure PCTKR2015006920-appb-I000003
는 전송 전력의 대각행렬 P를 이용하여 나타내면 하기의 수학식 4와 같다.
수학식 4
Figure PCTKR2015006920-appb-M000004
한편, 전송전력이 조정된 정보 벡터
Figure PCTKR2015006920-appb-I000004
에 가중치 행렬 W가 적용되어 실제 전송되는 NT 개의 송신신호(transmitted signal)
Figure PCTKR2015006920-appb-I000005
가 구성되는 경우를 고려해 보자. 여기서, 가중치 행렬은 전송 정보를 전송 채널 상황 등에 따라 각 안테나에 적절히 분배해 주는 역할을 수행한다. 이와 같은 전송신호
Figure PCTKR2015006920-appb-I000006
는 벡터 X를 이용하여 하기의 수학식 5와 같이 나타낼 수 있다. 여기서 Wij는 i번째 송신안테나와 j번째 정보 간의 가중치를 의미한다. W는 가중치 행렬(Weight Matrix) 또는 프리코딩 행렬(Precoding Matrix)이라고 불린다.
수학식 5
Figure PCTKR2015006920-appb-M000005
일반적으로, 채널 행렬의 랭크의 물리적인 의미는, 주어진 채널에서 서로 다른 정보를 보낼 수 있는 최대 수라고 할 수 있다. 따라서 채널 행렬의 랭크(rank)는 서로 독립인(independent) 행(row) 또는 열(column)의 개수 중에서 최소 개수로 정의되므로, 행렬의 랭크는 행(row) 또는 열(column)의 개수보다 클 수 없게 된다. 수식적으로 예를 들면, 채널 행렬 H의 랭크(rank(H))는 수학식 6과 같이 제한된다.
수학식 6
Figure PCTKR2015006920-appb-M000006
또한, 다중 안테나 기술을 사용해서 보내는 서로 다른 정보 각각을 '전송 스트림(Stream)' 또는 간단하게 '스트림' 으로 정의하기로 하자. 이와 같은 '스트림' 은 '레이어 (Layer)' 로 지칭될 수 있다. 그러면 전송 스트림의 개수는 당연히 서로 다른 정보를 보낼 수 있는 최대 수인 채널의 랭크 보다는 클 수 없게 된다. 따라서, 채널 행렬이 H는 아래 수학식 7과 같이 나타낼 수 있다.
수학식 7
Figure PCTKR2015006920-appb-M000007
여기서 "# of streams"는 스트림의 수를 나타낸다. 한편, 여기서 한 개의 스트림은 한 개 이상의 안테나를 통해서 전송될 수 있음에 주의해야 한다.
한 개 이상의 스트림을 여러 개의 안테나에 대응시키는 여러 가지 방법이 존재할 수 있다. 이 방법을 다중 안테나 기술의 종류에 따라 다음과 같이 설명할 수 있다. 한 개의 스트림이 여러 안테나를 거쳐 전송되는 경우는 공간 다이버시티 방식으로 볼 수 있고, 여러 스트림이 여러 안테나를 거쳐 전송되는 경우는 공간 멀티플렉싱 방식으로 볼 수 있다. 물론 그 중간인 공간 다이버시티와 공간 멀티플렉싱의 혼합(Hybrid)된 형태도 가능하다.
이하에서는, 채널 상태 정보 (channel state information; CSI) 보고에 관하여 설명한다.
현재 LTE 표준에서는 채널 정보 없이 운용되는 개루프(open-loop) MIMO와 채널 정보에 기반하여 운용되는 폐루프(closed-loop) MIMO 두 가지 송신 방식이 존재한다. 특히, 폐루프 MIMO 에서는 MIMO 안테나의 다중화 이득(multiplexing gain)을 얻기 위해 기지국 및 단말 각각은 채널 상태 정보를 바탕으로 빔포밍을 수행할 수 있다. 기지국은 채널 상태 정보를 단말로부터 얻기 위해, 단말에게 참조 신호를 전송하고, 이에 기반하여 측정한 채널 상태 정보를 PUCCH(Physical Uplink Control CHannel) 또는 PUSCH(Physical Uplink Shared CHannel)를 통하여 피드백 하도록 명령한다.
CSI는 RI(Rank Indicator), PMI(Precoding Matrix Index), CQI(Channel Quality Indication) 세가지 정보로 크게 분류된다. 우선, RI는 상술한 바와 같이 채널의 랭크 정보를 나타내며, 단말이 동일 주파수-시간 자원을 통해 수신할 수 있는 스트림의 개수를 의미한다. 또한, RI는 채널의 롱텀 페이딩(long term fading)에 의해 결정되므로 PMI, CQI 값 보다 통상 더 긴 주기로 기지국으로 피드백 된다.
두 번째로, PMI는 채널의 공간 특성을 반영한 값으로 SINR 등의 메트릭(metric)을 기준으로 단말이 선호하는 기지국의 프리코딩 행렬 인덱스를 나타낸다. 마지막으로, CQI는 채널의 세기를 나타내는 값으로 통상 기지국이 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.
이하에서는, 참조 신호에 관하여 보다 상세히 설명한다.
일반적으로 채널 측정을 위하여 데이터와 함께 송신측과 수신측 모두가 이미 알고 있는 참조 신호가 송신측에서 수신측으로 전송된다. 이러한 참조 신호는 채널 측정뿐만 아니라 변조 기법을 알려주어 복조 과정이 수행되도록 하는 역할을 수행한다. 참조 신호는 기지국과 특정 단말을 위한 전용 참조 신호(dedicated RS; DRS), 즉 단말 특정 참조 신호와 셀 내 모든 단말을 위한 셀 특정 참조 신호인 공통 참조 신호(common RS 또는 Cell specific RS; CRS)로 구분된다. 또한, 셀 특정 참조 신호는 단말에서 CQI/PMI/RI 를 측정하여 기지국으로 보고하기 위한 참조 신호를 포함하며, 이를 CSI-RS(Channel State Information-RS)라고 지칭한다.
도 8 및 도 9는 4개의 안테나를 이용한 하향링크 전송을 지원하는 LTE 시스템에서의 참조 신호의 구조를 도시하는 도면이다. 특히 도 8은 일반(normal) 순환 전치(Cyclic Prefix)인 경우를 도시하며, 도 9는 확장(extended) 순환 전치인 경우를 도시한다.
도 8 및 도 9를 참조하면, 격자에 기재된 0 내지 3은 안테나 포트 0 내지 3 각각에 대응하여 채널 측정과 데이터 복조를 위하여 송신되는 셀 특정 참조 신호인 CRS(Common Reference Signal)를 의미하며, 상기 셀 특정 참조 신호인 CRS는 데이터 정보 영역뿐만 아니라 제어 정보 영역 전반에 걸쳐 단말로 전송될 수 있다.
또한, 격자에 기재된 'D'는 단말 특정 RS인 하향링크 DM-RS(Demodulation-RS)를 의미하고, DM-RS는 데이터 영역 즉, PDSCH를 통하여 단일 안테나 포트 전송을 지원한다. 단말은 상위 계층을 통하여 상기 단말 특정 RS인 DM-RS의 존재 여부를 시그널링 받는다. 도 8 및 도 9는 안테나 포트 5에 대응하는 DM-RS를 예시하며, 3GPP 표준문서 36.211에서는 안테나 포트 7 내지 14, 즉 총 8개의 안테나 포트에 대한 DM-RS 역시 정의하고 있다.
도 10은 현재 3GPP 표준문서에서 정의하고 있는 하향링크 DM-RS 할당 예를 도시한다.
도 10을 참조하면, DM-RS 그룹 1에는 안테나 포트 {7, 8, 11, 13}에 해당하는 DM-RS가 안테나 포트 별 시퀀스를 이용하여 맵핑되며, DM-RS 그룹 2에는 안테나 포트 {9, 10, 12, 14}에 해당하는 DM-RS가 마찬가지로 안테나 포트 별 시퀀스를 이용하여 맵핑된다.
한편, 상술한 CSI-RS 는 CRS와 별도로 PDSCH에 대한 채널 측정을 목적으로 제안되었으며, CRS와 달리 CSI-RS는 다중 셀 환경에서 셀 간 간섭(inter-cell interference; ICI)를 줄이기 위하여 최대 32가지의 서로 다른 자원 설정(configuration)으로 정의될 수 있다.
CSI-RS (자원) 설정은 안테나 포트 개수에 따라 서로 다르며, 인접 셀 간에는 최대한 다른 (자원) 설정으로 정의되는 CSI-RS가 송신되도록 구성된다. CSI-RS는 CRS와 달리 최대 8개의 안테나 포트까지 지원하며, 3GPP 표준문서에서는 안테나 포트 15 내지 22까지 총 8개의 안테나 포트를 CSI-RS를 위한 안테나 포트로 할당한다. 도 11은 현재 3GPP 표준문서에서 정의된 CSI-RS 설정 중 일반 CP인 경우의 CSI-RS 설정 #0을 예시한다. 또한, CSI-RS 서브프레임 설정이 정의될 수 있으며, 이는 서브프레임 단위로 표현되는 주기(
Figure PCTKR2015006920-appb-I000007
)와 서브프레임 오프셋(
Figure PCTKR2015006920-appb-I000008
)으로 구성된다.
현재 ZP(zero-power) CSI-RS에 관한 정보는 RRC 계층 신호를 통하여 CSI-RS-Config-r10 메시지에 포함되어 전송된다. 특히, ZP CSI-RS 자원 설정은 zeroTxPowerSubframeConfig-r10와 16 비트 사이즈의 비트맵인 zeroTxPowerResourceConfigList-r10로 구성된다. 이 중, zeroTxPowerSubframeConfig-r10는
Figure PCTKR2015006920-appb-I000009
값을 통해 해당 ZP CSI-RS가 전송되는 주기 및 서브프레임 오프셋을 알려준다. 또한, zeroTxPowerResourceConfigList-r10은 ZP CSI-RS 설정을 알려주는 정보로서, 상기 비트맵의 각각의 요소는 CSI-RS를 위한 안테나 포트가 4개인 설정들을 지시한다. 즉, 현재 3GPP 표준문서에 따르면 ZP CSI-RS는 CSI-RS를 위한 안테나 포트가 4개인 경우만으로 정의된다.
한편, 간섭 측정을 통한 CQI 계산을 위한 동작은 아래와 같다.
단말은 CQI 계산 시 필요한 인자로서 SINR을 산출할 필요가 있고, 이 경우 Desired 신호의 수신 전력 측정(S-measure)을 NZP CSI-RS 등의 RS를 이용하여 수행할 수 있으며, 간섭 전력 측정(I-measure 혹은 IM(Interference measurement))을 위해 상기 수신한 신호에서 Desired 신호를 제거한 간섭 신호의 전력을 측정한다.
CSI 측정을 위한 서브프레임 세트들
Figure PCTKR2015006920-appb-I000010
Figure PCTKR2015006920-appb-I000011
가 상위 계층 시그널링으로 설정될 수 있으며, 각각의 서브프레임 세트들에 대응하는 서브프레임은 서로 중첩되지 않고 하나의 세트에만 포함된다. 이와 같은 경우, UE는 S-measure의 경우 특별한 서브프레임 제약 없이 CSI-RS 등의 RS를 통해 수행할 수 있으나, I-measure의 경우
Figure PCTKR2015006920-appb-I000012
Figure PCTKR2015006920-appb-I000013
별로 I-measure를 개별적으로 수행하여
Figure PCTKR2015006920-appb-I000014
Figure PCTKR2015006920-appb-I000015
각각에 대한 두 가지 상이한 CQI계산을 수행하여야 한다.
이하에서는 반송파 집성(carrier aggregation) 기법에 관하여 설명한다. 도 12는 반송파 집성(carrier aggregation)을 설명하는 개념도이다.
반송파 집성은 무선 통신 시스템이 보다 넓은 주파수 대역을 사용하기 위하여, 단말이 상향링크 자원(또는 콤포넌트 반송파) 및/또는 하향링크 자원(또는 콤포넌트 반송파)으로 구성된 주파수 블록 또는 (논리적 의미의) 셀을 복수 개 사용하여 하나의 커다란 논리 주파수 대역으로 사용하는 방법을 의미한다. 이하에서는 설명의 편의를 위하여 콤포넌트 반송파라는 용어로 통일하도록 한다.
도 12를 참조하면, 전체 시스템 대역(System Bandwidth; System BW)은 논리 대역으로서 최대 100 MHz의 대역폭을 가진다. 전체 시스템 대역은 다섯 개의 콤포넌트 반송파를 포함하고, 각각의 콤포넌트 반송파는 최대 20 MHz의 대역폭을 가진다. 콤포넌트 반송파는 물리적으로 연속된 하나 이상의 연속된 부반송파를 포함한다. 도 12에서는 각각의 콤포넌트 반송파가 모두 동일한 대역폭을 가지는 것으로 도시하였으나, 이는 예시일 뿐이며 각각의 콤포넌트 반송파는 서로 다른 대역폭을 가질 수 있다. 또한, 각각의 콤포넌트 반송파는 주파수 영역에서 서로 인접하고 있는 것으로 도시되었으나, 상기 도면은 논리적인 개념에서 도시한 것으로서, 각각의 콤포넌트 반송파는 물리적으로 서로 인접할 수도 있고, 떨어져 있을 수도 있다.
중심 반송파(Center frequency)는 각각의 콤포넌트 반송파에 대해 서로 다르게 사용하거나 물리적으로 인접된 콤포넌트 반송파에 대해 공통된 하나의 중심 반송파를 사용할 수도 있다. 일 예로, 도 12에서 모든 콤포넌트 반송파가 물리적으로 인접하고 있다고 가정하면 중심 반송파 A를 사용할 수 있다. 또한, 각각의 콤포넌트 반송파가 물리적으로 인접하고 있지 않은 경우를 가정하면 각각의 콤포넌트 반송파에 대해서 별도로 중심 반송파 A, 중심 반송파 B 등을 사용할 수 있다.
본 명세서에서 콤포넌트 반송파는 레거시 시스템의 시스템 대역에 해당될 수 있다. 콤포넌트 반송파를 레거시 시스템을 기준으로 정의함으로써 진화된 단말과 레거시 단말이 공존하는 무선 통신 환경에서 역지원성(backward compatibility)의 제공 및 시스템 설계가 용이해질 수 있다. 일 예로, LTE-A 시스템이 반송파 집성을 지원하는 경우에 각각의 콤포넌트 반송파는 LTE 시스템의 시스템 대역에 해당될 수 있다. 이 경우, 콤포넌트 반송파는 1.25, 2.5, 5, 10 또는 20 Mhz 대역폭 중에서 어느 하나를 가질 수 있다.
반송파 집성으로 전체 시스템 대역을 확장한 경우에 각 단말과의 통신에 사용되는 주파수 대역은 콤포넌트 반송파 단위로 정의된다. 단말 A는 전체 시스템 대역인 100 MHz를 사용할 수 있고 다섯 개의 콤포넌트 반송파를 모두 사용하여 통신을 수행한다. 단말 B1~B5는 20 MHz 대역폭만을 사용할 수 있고 하나의 콤포넌트 반송파를 사용하여 통신을 수행한다. 단말 C1 및 C2는 40 MHz 대역폭을 사용할 수 있고 각각 두 개의 콤포넌트 반송파를 이용하여 통신을 수행한다. 상기 두 개의 콤포넌트 반송파는 논리/물리적으로 인접하거나 인접하지 않을 수 있다. 단말 C1은 인접하지 않은 두 개의 콤포넌트 반송파를 사용하는 경우를 나타내고, 단말 C2는 인접한 두 개의 콤포넌트 반송파를 사용하는 경우를 나타낸다.
LTE 시스템의 경우 1개의 하향링크 콤포넌트 반송파와 1개의 상향링크 콤포넌트 반송파를 사용하는 반면, LTE-A 시스템의 경우 도 8과 같이 여러 개의 콤포넌트 반송파들이 사용될 수 있다. 하향링크 콤포넌트 반송파 또는 해당 하향링크 콤포넌트 반송파와 이에 대응하는 상향링크 콤포넌트 반송파의 조합을 셀 (Cell)이라고 지칭할 수 있고, 하향링크 콤포넌트 반송파 와 상향링크 콤포넌트 반송파의 대응 관계는 시스템 정보를 통하여 지시될 수 있다.
이때 제어 채널이 데이터 채널을 스케줄링하는 방식은 기존의 링크 반송파 스케줄링 (Linked carrier scheduling) 방식과 크로스 반송파 스케줄링 (Cross carrier scheduling) 방식으로 구분될 수 있다.
보다 구체적으로, 링크 반송파 스케줄링은 단일 콤포넌트 반송파를 사용하는 기존 LTE 시스템과 같이 특정 콤포넌트 반송파를 통하여 전송되는 제어채널은 상기 특정 콤포넌트 반송파를 통하여 데이터 채널만을 스케줄링 한다. 즉, 특정 콤포넌트 반송파 (또는 특정 셀)의 하향링크 콤포넌트 반송파의 PDCCH 영역으로 전송되는 하향링크 그랜트/상향링크 그랜트는 해당 하향링크 콤포넌트 반송파가 속한 셀의 PDSCH/PUSCH에 대하여만 스케줄링이 가능하다. 즉, 하향링크 그랜트/상향링크 그랜트를 검출 시도하는 영역인 검색 영역(Search Space)은 스케줄링 되는 대상인 PDSCH/PUSCH가 위치하는 셀의 PDCCH영역에 존재한다.
한편, 크로스 반송파 스케줄링은 반송파 지시자 필드(Carrier Indicator Field; CIF)를 이용하여 주 콤포넌트 반송파(Primary CC)를 통하여 전송되는 제어채널이 상기 주 콤포넌트 반송파를 통하여 전송되는 혹은 다른 콤포넌트 반송파를 통하여 전송되는 데이터 채널을 스케줄링 한다. 다시 말해, 크로스 반송파 스케줄링의 모니터링되는 셀(Monitored Cell 또는 Monitored CC)이 설정되고, 모니터링되는 셀의 PDCCH영역에서 전송되는 하향링크 그랜트/상향링크 그랜트는 해당 셀에서 스케줄링 받도록 설정된 셀의 PDSCH/PUSCH를 스케줄링한다. 즉, 복수의 콤포넌트 반송파에 대한 검색 영역이 모니터링되는 셀의 PDCCH영역에 존재하게 된다. 상기 복수의 셀들 중 시스템 정보가 전송되거나 초기 접속(Initial Access) 시도, 상향링크 제어 정보의 전송을 의하여 상기 PCell이 설정되는 것이며, PCell은 하향링크 주 콤포넌트 반송파와 이에 대응되는 상향링크 주 콤포넌트 반송파로 구성된다.
이하, 비 면허 대역을 통한 신호 송수신 방법에 관하여 설명한다.
도 13은 면허 대역(licensed band)과 비 면허 대역(Unlicensed band)의 반송파 집성 상황을 예시하는 도면이다.
도 13을 참조하면, 면허 대역인 LTE-A 대역과 비 면허 대역의 반송파 집성 상황 하에서 eNB가 UE에게 신호를 송신하거나 UE가 eNB로 신호를 송신할 수 있다. 이하에서는 설명의 편의를 위해서, UE가 면허 대역과 비 면허 대역 각각에서 두 개의 요소 반송파를 통하여 무선 통신을 수행 하도록 설정된 상황을 가정하였다. 여기서, 면허 대역의 반송파는 주요소 반송파(Primary CC; PCC 혹은 PCell)이고, 비 면허 대역의 반송파는 부요소 반송파(Secondary CC; SCC 혹은 SCell)로 구성될 수 있다. 그러나, 본 발명의 제안 방식들은 다수 개의 면허 대역과 다수 개의 비 면허 대역들이 반송파 집성 기법으로 이용되는 상황에서도 확장 적용이 가능하며, 또한 비 면허 대역만으로 eNB와 UE 사이의 신호 송수신이 이루어지는 경우에도 적용 가능하다.
현재의 LTE 시스템에서 PDSCH 전송 시 사용하는 참조 신호의 구조를 비 면허 대역에서 그대로 사용하게 되면 성능이 떨어질 수 있다. 이는 비 면허 대역에서는 LTE 시스템뿐만 아니라 WiFi나 Bluetooth와 같은 상이한 종류의 시스템이 존재할 수 있으며 LTE 시스템은 이런 다양한 시스템과 채널 경쟁을 통해서 신호를 송수신해야 하기 때문이다. 일반적으로 분산적인 채널 경쟁을 이용한다고 할지라도 두 송신단이 동시에 신호를 송신하여 발생하는 자원 충돌을 완전하게 방지하는 것은 불가능하여, 적어도 일정한 확률로 한 시스템의 송신 신호가 다른 시스템의 송신 신호에 의해 강한 간섭을 겪을 가능성이 발생한다.
특히 LTE 시스템은 기본적으로 1ms 길이의 서브프레임을 자원 할당의 최소 단위로 삼는 반면, WiFi나 Bluetooth에서는 그 보다 훨씬 짧은 길이의 신호가 빈번하게 송신된다. 따라서, 비 면허 대역에서 1ms의 서브프레임을 단위로 송신되는 PDSCH는 특정 OFDM 심볼에서만 강한 간섭을 겪는 반면 다른 OFDM 심볼에서는 낮은 간섭을 겪는 상황이 빈번하게 발생할 수 있다.
도 14는 비 면허 대역에서 심볼 레벨 간섭이 발생하는 예를 도시한다.
도 14를 참조하면, 심볼 레벨 간섭은 특정 심볼에만 강한 간섭을 미치는 것을 알 수 있다. 만일 해당 심볼에 참조 신호가 집중되어 있다면, PDSCH 복호를 위한 채널 추정 성능이 심하게 악화될 수 있으며, 다른 심볼에서 간섭이 적다고 할지라도 PDSCH 복호에 실패할 가능성이 높다. 도면을 참조하여 설명한다.
도 15 및 도 16은 기존 LTE 시스템에서의 PDSCH를 위한 DM-RS의 구조를 예시한다. 특히, 도 15는 일반 CP가 적용된 경우이고, 도 16은 확장 CP가 적용된 경우를 예시한다.
도 15 및 도 16을 참조하면, DM-RS가 맵핑되는 RE들이 특정 심볼에 집중하여 있는 것을 알 수 있다. 예를 들어, 도 15의 경우에는 DM-RS가 맵핑되는 RE들이 OFDM 심볼 #5, #6, #12, #13에만 위치하고 있으며, 도 16의 경우에는 DM-RS가 맵핑되는 RE들이 OFDM 심볼 #4, #5, #10, #11에만 위치하고 있다. 따라서, 이들 심볼에 상술한 심볼 레벨 간섭이 인가되는 경우에는 채널 추정 성능의 열화에 따른 PDSCH 복호 실패의 가능성이 높아지는 것이다.
이 문제는 동일 심볼 상의 서로 다른 부반송파에 위치한 DM-RS RE를 다른 심볼로 위치 이동함으로써 해결될 수 있다 도 17 및 도 18은 비 면허 대역에서의 심볼 레벨 간섭에 의한 문제점을 완화하기 위하여 본 발명의 실시예에 DM-RS RE를 이동시킨 예를 도시한다.
특히, 도 17는 도 15에서 설명한 일반 CP의 경우에 DM-RS를 이동시킨 것으로, 부반송파 #6과 #1의 RE가 각각 두 심볼과 네 심볼 앞으로 이동한 경우에 해당한다. 도 18은 도 16에서 설명한 확장 CP의 경우에 부반송파 #7과 #8, #4와 #5, 그리고 #1과 #2에 있는 DM-RS를 각각 한 심볼, 두 심볼, 세 심볼 앞으로 이동한 경우에 해당한다. 이러한 과정을 통해서 비록 심볼 레벨 간섭이 발생한다고 하더라도 그 영향은 일부 RS RE에만 국한되며 나머지 RS RE를 통하여 적절한 수준의 채널 추정 성능을 보장할 수 있게 된다. 물론 도 17및 도 18에서 도시한 DM-RS RE의 위치는 일 예이며, 다양한 방법으로 DM-RS RE를 이동시켜 동일 심볼 상에 위치하는 DM-RS RE의 개수를 줄일 수 있다.
도 15 내지 도 18에서는 PDSCH의 랭크가 1 내지 2인 경우를 가정하였으며 그 이상의 랭크를 가지는 PDSCH에 대해서는 그림에서 표시된 RE의 바로 아래에 부반송파에 위치한 RE를 추가적으로 DM-RS로 사용할 수 있다.
다만, 도 17 및 도 18에서 설명한 DM-RS RE의 이동은 다른 신호, 특히 CRS와 충돌할 수 있다는 문제점이 있다. 이러한 충돌을 회피하기 위해서 CRS가 전송되지 않는 서브프레임에서는 DM-RS RE를 이동하되, CRS가 전송되는 서브프레임에서는 기존의 DM-RS RE 위치를 유지하도록 동작할 수도 있다.
혹은 CRS가 전송되지 않는 심볼에서만 DM-RS RE가 위치하도록 설계할 수도 있다. 도 19는 본 발명의 실시예에 따라 DM-RS RE를 이동시킨 다른 예를 도시한다. 도 19를 참조하면, OFDM 심볼 #2, #3과 #9, #10만을 추가적으로 DM-RS RE로 사용하는 것을 알 수 있다.
물론, 도 19와 같은 경우, 심볼 별 전송되는 RS의 개수가 상이해지는 문제가 발생할 수도 있다. 이러한 문제를 해결하기 위하여, DM-RS의 밀도를 증가시킬 수 있다.
도 20은 본 발명의 실시예에 따라 DM-RS의 밀도를 증가시킨 예를 도시한다. 특히, 도 20과 같은 RS 패턴의 경우 간섭 상황에 대한 보장이 없는 비 면허 대역에서는, 늘어난 오버헤드에도 불구하고 오히려 복조 성능에 도움이 될 수도 있다.
심볼 이동된 DM-RS RE가 CRS와 동일한 심볼에서 전송되더라도 CRS와 충돌하는 것을 v-shift, 즉 주파수 천이를 이용하여 방지하기 것도 고려할 수 있다. 도 21은 본 발명의 실시예에 따라 CRS의 주파수 천이 값을 고정시킨 예를 도시한다.
도 21을 참조하면, DM-RS RE는 도 17에서 설명한 구조를 이용하되, CRS에 적용되는 v-shift, 즉 주파수 천이 값을 고정시킨 것을 알 수 있으며, 이에 따라 DM-RS가 CRS와 동일한 심볼에서 전송되더라도 CRS와 충돌하는 것을 방지할 수 있다.
혹은 DM-RS의 주파수 위치 역시 CRS와 함께 주파수 천이 시키는 것도 가능하다. 예를 들어, 도 21의 동작에서 CRS RE의 위치가 하나의 부반송파만큼 아래로 이동한다면 DM-RS 역시 한 부반송파씩 아래로 내려오도록 동작하는 것도 가능하다.
한편, 기존의 DM-RS는 한 안테나 포트의 RS가 인접한 두 심볼에서 특정 코드로 확산(spreading)되는 구조를 가진다. 이 구조는 두 심볼에서의 에너지를 결합하여 보다 높은 에너지로 RS를 전송할 수 있다는 장점이 있다. 하지만, 비 면허 대역에서 심볼 레벨 간섭이 발생하게 되면, 하나의 RS 심볼에서만 큰 간섭이 발생한 경우에도 해당 RS 코드에 대한 역확산(dispreading)에 문제가 발생하며, 나머지 심볼에서의 RS조차 활용할 수 없게 되는 현상이 발생할 수 있다. 이를 해결하기 위해서 비 면허 대역에서 각 안테나 포트의 RS는 특정 코드로 확산되는 동작을 생략할 수 있다. 구체적으로, 하나의 안테나 포트의 DM-RS는 인접한 두 심볼 중 한 심볼에서만 전송되는 것이다. 다른 의미로 DM-RS를 확산하는 코드가 하나의 1과 다수의 0으로 구성된 코드가 될 수 있다. 다만, 비 면허 대역에서 본 발명에서 제안한 동작과 종래의 동작 간에 대한 선택권을 eNB에게 부여하기 위해서, eNB는 한 안테나 포트의 DM-RS가 여러 심볼에 확산되는지 여부를 RRC와 같은 상위 계층 신호를 통해 UE에게 알릴 수 있다.
상술한 바와 같이, 비 면허 대역에서 RS를 시간 축으로 확산하지 않는다면 인접한 두 심볼에서 DM-RS가 동일 부반송파에 전송되어야 한다는 제약이 불필요하며, 이에 따라 보다 자유로운 DM-RS RE 배치가 가능하다.
도 22는 본 발명의 실시예에 따른 DM-RS RE의 배치예를 도시한다.
도 22를 참조하면, DM-RS의 오버헤드를 기존의 방식과 동일하게 유지한 것을 알 수 있으며, DM-RS RE들을 가능한 상이한 위치의 부반송파에 위치시키면서도, 한 슬롯에서 PRB 전체를 커버할 수 있는 형태의 배치에 예시한다.
물론 실제 각 안테나 포트가 사용하는 DM-RS RE는 도 22에서 도시한 예보다는 줄어들 수 있는데, 가령 안테나 포트 #7의 경우에는 첫 번째, 세 번째, 다섯 번째 등의 RS 심볼에 위치한 RE를 사용하면서, 안테나 포트 #8의 경우에는 두 번째, 네 번째, 여섯 번째 등의 RS 심볼에 위치한 RE를 사용할 수 있다. 물론, CRS와의 충돌을 피하기 위해서 CRS의 주파수 천이에 따라 DM-RS RE 역시 주파수 천이될 수 있다.
다음으로는 비 면허 대역에서의 CSI-IM (Interference Measurement)을 통한 간섭 측정에 대하여 설명한다. 본 발명을 설명하기에 앞서, CSI-IM에 관하여 설명한다.
도 23은 현재 LTE 시스템의 CSI-RS 설정을 예시한다. 특히, 도 23은 8 Tx CSI-RS 설정을 예시하며, 동일한 격자로 표기된 8개의 RE가 하나의 8 Tx CSI-RS 설정을 정의한다.
도 23을 참조하면 설명하면, 하나의 8 Tx CSI-RS 설정은 두 개의 4 Tx CSI-RS 설정으로 구성된다. CSI-RS 안테나 포트 인덱스 #0 내지 #3을 위한 4 개의 RE가 하나의 4 Tx CSI-RS 설정을 구성하고, CSI-RS 안테나 포트 인덱스 #4 내지 #7을 위한 4 개의 RE가 또 다른 하나의 4 Tx CSI-RS 설정을 구성한다. 하나의 4 Tx CSI-RS 설정은 다시 두 개의 2 Tx CSI-RS 설정으로 구성되는데, CSI-RS 안테나 포트 인덱스 #0 및 #1과 같이 동일 부반송파에 위치한 두 개의 RE가 하나의 2 Tx CSI-RS 설정을 구성한다.
한편, LTE 시스템에서 CoMP (Coordinated multi-point) 전송을 지원하는 UE는 CSI-IM으로부터 간섭을 측정하여 CSI를 계산한다. eNB는 특정 CSI 프로세스에 사용될 CSI-IM의 위치를 지정해주는데, 현재 LTE 시스템에서 하나의 CSI-IM은 하나의 4 Tx CSI-RS 설정으로 정의되는 RE들을 사용한다. 그러나, 도 23에서 예시한 바와 같이, 하나의 4 Tx CSI-RS 설정을 구성하는 네 개의 RE는 연속한 두 심볼에 위치하며 한 심볼에서 두 부반송파를 차지한다.
따라서, 비 면허 대역에서 동작함에 따라 심볼 레벨 간섭이 발생하게 되면 특정 서브프레임의 대부분의 심볼에서는 간섭이 없는데 CSI-IM을 포함하는 심볼에서만 간섭이 발생할 수 있고, 이 때 UE는 전체 서브프레임에서 강한 간섭이 존재한다고 간주하고 매우 낮은 CSI를 보고하여 올바른 링크 적응(link adaption) 동작이 불가능해질 수 있다.
이러한 문제는, 하나의 CSI-IM을 구성하는 RE를 상이한 OFDM 심볼에 배치함으로써 해결될 수 있다. 일 예로, eNB는 바람직하게는 상이한 OFDM 심볼에 위치하는 2 Tx CSI-RS 설정 두 개를 지정하고 그 두 개의 CSI-RS 설정으로 커버되는 4 개의 RE를 하나의 CSI-IM으로 사용하도록 동작할 수 있다.
도 24는 본 발명의 실시예에 따라 비 면허 대역에서의 CSI-IM을 예시한다. 도 24를 참조하여 설명하면, 두 개의 2 Tx CSI-RS 설정으로 커버되는 4 개의 RE를 하나의 CSI-IM이 정의된 것을 알 수 있다.
또한, 서빙 셀의 신호는 간섭 측정에서도 제외되어야 하기 때문에 CSI-IM RE에는 PDSCH가 맵핑되지 않도록 하여야 한다. 이를 위해서 새로운 CSI-IM RE의 자리에 PDSCH가 맵핑되지 않도록 ZP(zero power) CSI-RS 설정이 설정되어야 하는데, 기존의 ZP CSI-RS 설정은 CSI-IM과 같이, 4 Tx CSI-RS 설정 단위로 지정이 가능하므로 이를 보다 확장하여 2 Tx CSI-RS 설정 단위로 지정이 가능하도록 동작할 수 있다.
혹은 도 24에서 도시한 동작을 위해서, 사전에 기존의 2 Tx CSI-RS 설정 두 개의 RE와 동일한 위치를 가지는 새로운 4 Tx CSI-RS 설정을 정의하고, 이 새로운 4 Tx CSI-RS 설정을 바탕으로 CSI-IM을 설정해줄 수도 있다.
물론 상술한 원리에서 비 면허 대역에서 가변하는 간섭 상황을 보다 정확하게 반영하기 위해 CSI-IM의 RE 개수를 증가시키는 것도 가능하다. 일 예로 도 24에서의 실시예를 확장하여 3개 혹은 그 이상의 2 Tx CSI-RS 설정을 결합하여 하나의 CSI-IM으로 구성하는 것도 가능하다.
상기 CSI-IM 및 ZP CSI-RS를 위해서 도입된 새로운 CSI-RS 설정은, CSI에서의 채널 부분 측정을 위해 사용되는 NZP CSI-RS 설정에도 적용되어 심볼 레벨 간섭 환경에서도 보다 안정적인 CSI 측정이 가능하도록 동작할 수 있다.
상술한 원리에 따라서 CRS 밀도 역시 비 면허 대역에서 증가하는 것이 가능하다. 특히, 면허 대역에서 항상 안정적으로 전송되던 CRS가 비 면허 대역에서는 불연속적으로 전송되는데, 일반적으로 UE는 면허 대역에서는 안정적인 CRS 전송을 가정하고 복수의 서브프레임에 존재하는 CRS를 적절하게 결합하여 더 높은 성능의 채널 추정을 수행하는 것이 일반적이다. 따라서, CRS가 불연속적으로 전송될 수 밖에 없는 비 면허 대역에서 면허 대역과 유사한 채널 추정 성능을 내기 위해서, CRS의 밀도 역시 증가하는 것이 도움이 될 수 있다. 이하에서는, 비 면허 대역에서의 동작을 위해서 CRS의 밀도를 증가하는 방법을 설명한다.
먼저 CRS의 RE 위치는 셀 식별자로 정해지는데, 비 면허 대역에서는 CRS를 전송하는 셀의 식별자 이외의 식별자로부터 생성되는 위치의 RE를 추가적으로 사용하도록 동작할 수 있다. 구체적으로, 셀 식별자 X를 사용하는 셀은 셀 식별자 X로부터 결정되는 위치에서 CRS를 전송하되, 추가적으로 셀 식별자 X+a (예를 들어, a=1)로부터 결정되는 위치에서도 CRS를 전송하도록 동작할 수 있다. 특징적으로 두 CRS 위치에 있어서 안테나 포트의 개수는 동일하도록 규정될 수 있으며, CRS 시퀀스 역시 동일하게 셀 식별자 X로부터 유도됨으로써 비록 셀 식별자 X+a와 동일한 RE를 사용해도 상이한 시퀀스를 통해 RS가 구분되도록 할 수 있다.
도 25는 본 발명의 실시예에 따라 비 면허 대역에서 CRS 밀도를 증가시키는 예를 도시한다. 특히, 도 25를 참조하면, 원래의 셀 식별자에 의해서는 주파수 천이가 0인 셀에서, 주파수 천이가 1인 CRS RE도 추가로 활용하는 것을 알 수 있다.
혹은 이러한 RS RE 밀도 증가는 일부 심볼에만 국한되어 적용될 수 있다. 특히, 하나의 서브프레임의 앞쪽 심볼에만 적용한다면, 이전 서브프레임에서의 CRS 전송을 보장할 수 없는 앞쪽 심볼에서는 늘어난 CRS RE를 사용하여 안정적인 채널 추정을 수행하는 반면, 앞쪽 심볼의 CRS를 이용할 수 있는 뒤쪽 심볼에서는 CRS RE를 증가하지 않음으로써 RS 오버헤드를 줄일 수도 있다.
도 26 및 도 27은 본 발명의 실시예에 따라 비 면허 대역에서 CRS 밀도를 증가시키는 다른 예들을 도시한다. 구체적으로, 도 26과 같이 첫 두 심볼에서만 RS 오버헤드를 증가시키는 것을 알 수 있으며, 도 27과 같이 첫 심볼에서만 RS 오버헤드를 증가하는 것도 가능하다. 물론, 심볼 단위기 아닌 슬롯 단위로, 예를 들어, 첫 슬롯 전체에서 RS 오버헤드를 증가시킬 수 있다.
CRS의 밀도를 증가하는 또 다른 방법으로, CRS 안테나 포트 개수는 두 개로 설정해준 상황에서 4 안테나 포트의 CRS 구조를 활용하는 것이다. 이 방식은 새로운 CRS RE 위치를 도입하지 않는다는 장점이 있지만, 비 면허 대역에서는, 적어도 CRS 밀도를 증가시킨 서브프레임에서는 4 안테나 포트 CRS 구성을 사용하지 못한다는 제약이 따른다.
경우에 따라서 CRS 밀도의 증가가 일부 서브프레임에서만 이루어질 수도 있으며, eNB가 4 안테나 포트 CRS를 구성하는 경우에는 CRS 밀도 증가가 필요한 서브프레임에서는 제안하는 방법을 따르면서 순간적으로 2 안테나 포트 CRS로 동작하되 그 이외의 서브프레임에서는 다시 4 안테나 포트 CRS로 동작할 수 있다. 이 방식을 따를 경우 안테나 포트 (0, 1)과 안테나 포트 (2, 3)은 동일 안테나 포트로 간주되어 채널 추정된다. 이 경우, 같은 부반송파에 전송되는 안테나 포트 (0, 2), (1, 3)을 동일 안테나 포트로 간주할 수도 있지만, 가급적이면 동일 안테나 포트의 전송 부반송파를 다양화하기 위해서 안테나 포트 (0, 3), (1, 2)를 동일 안테나 포트로 간주할 수도 있다.
상술한 바와 같이 CRS 밀도 증가 동작은 일부 서브프레임에만 제한적으로 나타날 수 있다. 특히 CRS 밀도의 증가가 필요한 이유가 CRS의 불연속적인 전송이기 때문에, eNB가 일련의 전송 (이하, Tx 버스트(burst))을 시작하는 시작 시점 부근에서만 선택적으로 CRS 밀도가 증가될 수 있다.
일 예로, Tx 버스트의 앞쪽 일부 서브프레임에서만 CRS를 증가할 수 있으며, 구체적으로 Tx 버스트의 첫 번째 서브프레임에서만 CRS를 증가하도록 동작할 수 있다.
다른 일 예로, 서브프레임의 길이가 축소되는 경우에만 선택적으로 CRS 밀도가 증가될 수 있다. 비 면허 대역에서 eNB가 항상 온전한 길이의 서브프레임만을 전송하게 된다면 서브프레임 경계에서는 채널이 사용 중이지만 그 이후에 채널이 휴지 상태로 되는 경우에 eNB가 채널을 점유할 수 없고 다른 장치에게 채널 접속 기회를 잃게 된다. 이를 해결하기 위해서 서브프레임 경계가 지난 시점에서도 채널이 휴지 상태이면 eNB가 전송을 시작할 수 있도록 하되, 다음 서브프레임의 시작 시점은 기존에 정의된 서브프레임 경계를 지키도록 동작할 수 있다. 이 경우 서브프레임 중간에 시작하는 전송은 그 길이가 보통의 서브프레임보다 줄어들게 된다. 이를 조각(partial) 서브프레임이라 명명한다.
일반적으로 조각 서브프레임은 Tx 버스트의 제일 앞에 위치하게 될 것이고 전체적인 서브프레임의 길이가 줄어들어 동일 서브프레임에 속하는 CRS 자체가 줄어들게 되므로, 조각 서브프레임에서만 선택적으로 CRS 밀도를 증가하도록 동작할 수 있다.
상술한 바와 같이 CRS 밀도를 서브프레임에 따라서 변화하게 되면 UE가 이를 파악할 수 있어야지만 데이터 맵핑을 올바로 수행할 수 있다. 이를 위해서 eNB는 별도의 시그널링을 통해 Tx 버스트의 시작과 종료 시점 및 Tx 버스트 내부의 구성을 알려줄 수 있다. 혹은 eNB는 사전에 정의된 특수한 신호를 Tx 버스트나 조각 서브프레임의 시작 직전에 전송하고 UE가 이를 검출함으로써 어떤 서브프레임이 어떤 특징을 지니는지 및 CRS 밀도가 어떻게 되는지를 파악할 수도 있다.
도 28은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 28를 참조하면, 통신 장치(2800)는 프로세서(2810), 메모리(2820), RF 모듈(2830), 디스플레이 모듈(2840) 및 사용자 인터페이스 모듈(2850)을 포함한다.
통신 장치(2800)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(2800)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(2800)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(2810)는 도면을 참조하여 예시한 본 발명의 실시 예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(2810)의 자세한 동작은 도 1 내지 도 27에 기재된 내용을 참조할 수 있다.
메모리(2820)는 프로세서(2810)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(2830)은 프로세서(2810)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(2830)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(2840)은 프로세서(2810)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(2840)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(2850)은 프로세서(2810)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital 신호 processors), DSPDs(digital 신호 processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 무선 통신 시스템에서 비 면허 대역에서의 참조 신호 송신 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (10)

  1. 무선 통신 시스템에서 단말이 기지국으로 비면허 대역에서의 채널 상태 정보를 보고하는 방법에 있어서,
    상기 기지국으로부터 상위 계층을 통하여 간섭 측정을 위한 참조 신호 자원에 관한 정보를 수신하는 단계;
    상기 간섭 측정을 위한 참조 신호 자원을 이용하여 채널 상태 정보를 산출하는 단계; 및
    상기 채널 상태 정보를 상기 기지국으로 보고하는 단계를 포함하고,
    상기 간섭 측정을 위한 참조 신호 자원은 둘 이상의 참조 신호 패턴들로 구성되고,
    상기 둘 이상의 참조 신호 패턴들 각각은 상이한 시간 자원에 맵핑되는 것을 특징으로 하는,
    채널 상태 정보 보고 방법.
  2. 제 1 항에 있어서,
    상기 기지국으로부터 상기 상위 계층을 통하여 ZP (Zero Power) 참조 신호 자원에 관한 정보를 수신하는 단계; 및
    상기 ZP 참조 신호 자원에서는 하향링크 데이터 채널이 수신되지 않는다는 가정하에, 상기 하향링크 데이터 채널을 수신하는 단계를 더 포함하고,
    상기 ZP 참조 신호 자원은 둘 이상의 참조 신호 패턴들로 구성되고,
    상기 둘 이상의 참조 신호 패턴들 각각은 상이한 시간 자원에 맵핑되는 것을 특징으로 하는,
    채널 상태 정보 보고 방법.
  3. 제 1 항에 있어서,
    상기 둘 이상의 참조 신호 패턴들 각각은,
    2 개의 안테나 포트로 정의되는 것을 특징으로 하는,
    채널 상태 정보 보고 방법.
  4. 제 1 항에 있어서,
    상기 둘 이상의 참조 신호 패턴들 각각은,
    인접한 2개의 시간 자원에서 동일한 주파수 자원에 맵핑되는 참조 신호 자원을 지시하는 것을 특징으로 하는,
    채널 상태 정보 보고 방법.
  5. 제 1 항에 있어서,
    면허 대역에서의 상기 간섭 측정을 위한 참조 신호 자원은,
    4 개의 안테나 포트로 정의되는 하나의 참조 신호 패턴으로 구성되는 것을 특징으로 하는,
    채널 상태 정보 보고 방법.
  6. 무선 통신 시스템에서 기지국이 단말로부터 비면허 대역에서의 채널 상태 정보를 수신하는 방법에 있어서,
    상기 단말로 상위 계층을 통하여 간섭 측정을 위한 참조 신호 자원에 관한 정보를 제공하는 단계; 및
    상기 간섭 측정을 위한 참조 신호 자원을 이용하여 산출된 채널 상태 정보를 상기 단말로부터 수신하는 단계를 포함하고,
    상기 간섭 측정을 위한 참조 신호 자원은 둘 이상의 참조 신호 패턴들로 구성되고,
    상기 둘 이상의 참조 신호 패턴들 각각은 상이한 시간 자원에 맵핑되는 것을 특징으로 하는,
    채널 상태 정보 수신 방법.
  7. 제 6 항에 있어서,
    상기 단말로 상기 상위 계층을 통하여 ZP (Zero Power) 참조 신호 자원에 관한 정보를 제공하는 단계; 및
    상기 단말로 하향링크 데이터 채널을 송신하는 단계를 포함하고,
    상기 단말은 상기 ZP 참조 신호 자원에서는 하향링크 데이터 채널이 송신되지 않는다고 가정하에 상기 하향링크 데이터 채널을 수신하고,
    상기 ZP 참조 신호 자원은 둘 이상의 참조 신호 패턴들로 구성되며,
    상기 둘 이상의 참조 신호 패턴들 각각은 상이한 시간 자원에 맵핑되는 것을 특징으로 하는,
    채널 상태 정보 수신 방법.
  8. 제 6 항에 있어서,
    상기 둘 이상의 참조 신호 패턴들 각각은,
    2 개의 안테나 포트로 정의되는 것을 특징으로 하는,
    채널 상태 정보 수신 방법.
  9. 제 6 항에 있어서,
    상기 둘 이상의 참조 신호 패턴들 각각은,
    인접한 2개의 시간 자원에서 동일한 주파수 자원에 맵핑되는 참조 신호 자원을 지시하는 것을 특징으로 하는,
    채널 상태 정보 수신 방법.
  10. 제 6 항에 있어서,
    면허 대역에서의 상기 간섭 측정을 위한 참조 신호 자원은,
    4 개의 안테나 포트로 정의되는 하나의 참조 신호 패턴으로 구성되는 것을 특징으로 하는,
    채널 상태 정보 수신 방법.
PCT/KR2015/006920 2014-07-07 2015-07-06 무선 통신 시스템에서 비 면허 대역에서의 참조 신호 송신 방법 및 이를 위한 장치 WO2016006886A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/323,074 US10305654B2 (en) 2014-07-07 2015-07-06 Reference signal transmission method in unlicensed band in wireless communication system and apparatus therefor
EP15819515.6A EP3169006B1 (en) 2014-07-07 2015-07-06 Reference signal transmission method in unlicensed band in wireless communication system
CN201580037018.1A CN106471759B (zh) 2014-07-07 2015-07-06 在无线通信系统中的未授权带中的参考信号传输方法及其设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462021678P 2014-07-07 2014-07-07
US62/021,678 2014-07-07
US201562161233P 2015-05-13 2015-05-13
US62/161,233 2015-05-13

Publications (1)

Publication Number Publication Date
WO2016006886A1 true WO2016006886A1 (ko) 2016-01-14

Family

ID=55064449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006920 WO2016006886A1 (ko) 2014-07-07 2015-07-06 무선 통신 시스템에서 비 면허 대역에서의 참조 신호 송신 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US10305654B2 (ko)
EP (1) EP3169006B1 (ko)
CN (1) CN106471759B (ko)
WO (1) WO2016006886A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031917A1 (ko) * 2017-08-11 2019-02-14 엘지전자 주식회사 무선 통신 시스템에서, 참조 신호를 송수신하는 방법 및 이를 위한 장치

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078463A1 (ko) 2015-11-04 2017-05-11 주식회사 윌러스표준기술연구소 비인가 대역에서 신호 전송 방법, 장치 및 시스템
WO2017195490A1 (ja) * 2016-05-12 2017-11-16 株式会社Nttドコモ ユーザ装置及び測定方法
US20200136717A1 (en) * 2017-07-07 2020-04-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and Apparatus for Receiving Beamforming
CA3072214A1 (en) * 2017-08-10 2019-02-14 Sharp Kabushiki Kaisha Procedures, base stations and user equipments for uplink transmission without grant
WO2019153369A1 (zh) * 2018-02-12 2019-08-15 华为技术有限公司 一种数据传输方法及设备
US10756863B2 (en) * 2018-05-11 2020-08-25 At&T Intellectual Property I, L.P. Transmitting reference signals in 5G or other next generation communication systems
US11758425B2 (en) * 2020-01-31 2023-09-12 Qualcomm Incorporated Techniques for indicating a user equipment capability for layer 1 signal to interference plus noise ratio measurement
US11638169B2 (en) * 2020-08-13 2023-04-25 Qualcomm Incorporated First radio access technology (RAT) channel state feedback (CSF) to increase accuracy of interference estimates from second RAT neighbor cells with dynamic spectrum sharing (DSS)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013167557A1 (en) * 2012-05-07 2013-11-14 Nokia Siemens Networks Oy Operations on shared bands
US20140016497A1 (en) * 2011-05-13 2014-01-16 Lg Electronics Inc. Csi-rs based channel estimating method in a wireless communication system and device for same
WO2014052175A1 (en) * 2012-09-28 2014-04-03 Alexei Davydov Method of enhanced interference measurements for channel state information (csi) feedback
US20140126402A1 (en) * 2012-11-02 2014-05-08 Samsung Electronics Co., Ltd. Configuration of interference measurement resources for enhanced downlink measurements and mu-mimo
WO2014072814A2 (en) * 2012-11-07 2014-05-15 Alcatel Lucent Method for comp transmission

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693429B2 (en) * 2009-03-31 2014-04-08 Qualcomm Incorporated Methods and apparatus for generation and use of reference signals in a communications system
US9331826B2 (en) 2011-04-13 2016-05-03 Lg Electronics Inc. Method and apparatus for transmitting control information in a wireless communication system
WO2012157994A2 (ko) * 2011-05-18 2012-11-22 엘지전자 주식회사 무선통신 시스템에서의 제어정보의 전송 방법 및 장치
EP2732582B1 (en) * 2011-07-14 2016-12-21 Broadcom Corporation Methods and apparatuses for provision of a flexible time sharing scheme on an unlicensed band of a system
EP2807763B1 (en) * 2012-01-27 2019-05-08 Samsung Electronics Co., Ltd. Method and apparatus for providing data service using broadcasting signal
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
WO2013151323A1 (en) * 2012-04-06 2013-10-10 Samsung Electronics Co., Ltd. Channel state information transmission/reception method and apparatus of downlink coordinated multi-point communication system
JP5743965B2 (ja) * 2012-06-26 2015-07-01 株式会社Nttドコモ ユーザ端末、無線通信システム、無線通信方法及び無線基地局
JP6091816B2 (ja) * 2012-09-11 2017-03-08 株式会社Nttドコモ 無線通信システム、基地局装置、移動端末装置、及び干渉測定方法
JP6121124B2 (ja) * 2012-09-28 2017-04-26 株式会社Nttドコモ 無線通信システム、無線通信方法、ユーザ端末及び無線基地局
US9374757B2 (en) * 2012-12-27 2016-06-21 Samsung Electronics Co., Ltd. Method and apparatus for one cell operation with fast small cell switching in wireless communication system
JP6139569B2 (ja) * 2013-01-09 2017-05-31 シャープ株式会社 ユーザ装置、通信方法、集積回路、および基地局装置
EP3244678B1 (en) * 2016-05-12 2020-04-29 ASUSTek Computer Inc. Facilitating detection of control channels with different transmission time intervals in a wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140016497A1 (en) * 2011-05-13 2014-01-16 Lg Electronics Inc. Csi-rs based channel estimating method in a wireless communication system and device for same
WO2013167557A1 (en) * 2012-05-07 2013-11-14 Nokia Siemens Networks Oy Operations on shared bands
WO2014052175A1 (en) * 2012-09-28 2014-04-03 Alexei Davydov Method of enhanced interference measurements for channel state information (csi) feedback
US20140126402A1 (en) * 2012-11-02 2014-05-08 Samsung Electronics Co., Ltd. Configuration of interference measurement resources for enhanced downlink measurements and mu-mimo
WO2014072814A2 (en) * 2012-11-07 2014-05-15 Alcatel Lucent Method for comp transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3169006A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031917A1 (ko) * 2017-08-11 2019-02-14 엘지전자 주식회사 무선 통신 시스템에서, 참조 신호를 송수신하는 방법 및 이를 위한 장치
US10587323B2 (en) 2017-08-11 2020-03-10 Lg Electronics Inc. Method for transmitting and receiving reference signal and apparatus therefor
US11206069B2 (en) 2017-08-11 2021-12-21 Lg Electronics Inc. Method for transmitting and receiving reference signal and apparatus therefor

Also Published As

Publication number Publication date
US10305654B2 (en) 2019-05-28
EP3169006A1 (en) 2017-05-17
CN106471759B (zh) 2020-10-16
EP3169006B1 (en) 2023-04-19
US20170141897A1 (en) 2017-05-18
CN106471759A (zh) 2017-03-01
EP3169006A4 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
WO2016006979A1 (ko) 무선 통신 시스템에서 비 면허 대역에 대한 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2018016700A1 (ko) 무선 통신 시스템에서 상향링크 다중 안테나 전송 방법 및 이를 위한 장치
WO2016006886A1 (ko) 무선 통신 시스템에서 비 면허 대역에서의 참조 신호 송신 방법 및 이를 위한 장치
WO2017171390A1 (ko) 차세대 무선 통신 시스템에서 사이드링크를 통한 신호 송수신 방법 및 이를 위한 장치
WO2016048074A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2018174671A1 (ko) 다중 반송파 통신 시스템에서 단말 간 직접 통신을 위한 반송파 선택 방법 및 이를 위한 장치
WO2012115366A1 (en) Method of performing measurement at ue in wireless communication system and apparatus thereof
WO2012128490A2 (ko) 무선 통신 시스템에서 동적 서브프레임 설정 시 재전송 방법 및 이를 위한 장치
WO2013055173A2 (ko) 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
WO2016043512A1 (ko) 무선 통신 시스템에서 비 면허 대역에서의 셀 간 간섭 제거 방법 및 이를 위한 장치
WO2018093103A1 (ko) 가용 자원에 대한 정보를 전송하는 방법 및 이를 위한 장치
WO2018135867A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 빔 제어 방법 및 이를 위한 장치
WO2018012887A1 (ko) 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치
WO2018088795A1 (ko) 동기화 신호 전송 방법 및 이를 위한 장치
WO2017026777A1 (ko) 무선 통신 시스템에서 하향링크 채널 수신 또는 상향링크 채널 전송 방법 및 이를 위한 장치
WO2012115427A2 (ko) 다중 셀 협력 무선 통신 시스템에서 제어 채널 송수신 방법 및 이를 위한 장치
WO2013024997A2 (ko) 기지국 협력 무선 통신 시스템에서 상향링크 송신 타이밍을 조절하는 방법 및 이를 위한 장치
WO2018186671A1 (ko) 차세대 통신 시스템에서 방송 데이터를 위한 dm-rs 송신 방법 및 이를 위한 장치
WO2017191964A2 (ko) 무선 통신 시스템에서 단축 tti 지원를 위한 harq 수행 방법 및 이를 위한 장치
WO2018008878A1 (ko) 차세대 무선 통신 시스템에서 이동식 릴레이 노드를 위한 동기 설정 방법 및 이를 위한 장치
WO2019027300A1 (ko) 무선 통신 시스템에서 lte 및 nr에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2019070098A1 (ko) 무선 통신 시스템에서 lte 및 nr에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2017164590A1 (ko) 차세대 통신 시스템에서 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2013141508A1 (ko) 기지국 협력 무선 통신 시스템에서 고속 핸드오버 수행 방법 및 이를 위한 장치
WO2017074083A1 (ko) 무선 통신 시스템에서 단말의 채널상태정보 보고 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819515

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15323074

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015819515

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015819515

Country of ref document: EP