WO2018230377A1 - Substrate processing method - Google Patents
Substrate processing method Download PDFInfo
- Publication number
- WO2018230377A1 WO2018230377A1 PCT/JP2018/021316 JP2018021316W WO2018230377A1 WO 2018230377 A1 WO2018230377 A1 WO 2018230377A1 JP 2018021316 W JP2018021316 W JP 2018021316W WO 2018230377 A1 WO2018230377 A1 WO 2018230377A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wafer
- oxide film
- substrate
- unit
- processing
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 63
- 238000003672 processing method Methods 0.000 title claims description 13
- 239000002184 metal Substances 0.000 claims abstract description 65
- 229910052751 metal Inorganic materials 0.000 claims abstract description 65
- 230000001590 oxidative effect Effects 0.000 claims abstract description 9
- 238000012545 processing Methods 0.000 claims description 73
- 238000010438 heat treatment Methods 0.000 claims description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 18
- 239000001301 oxygen Substances 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 238000010894 electron beam technology Methods 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 238000005530 etching Methods 0.000 abstract description 43
- 239000007788 liquid Substances 0.000 abstract description 12
- 235000012431 wafers Nutrition 0.000 description 81
- 238000012546 transfer Methods 0.000 description 21
- 239000000126 substance Substances 0.000 description 20
- 239000012530 fluid Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
Definitions
- the present disclosure relates to a substrate processing method.
- the substituting property of the etching solution existing in the concave pattern becomes non-uniform in the concave pattern. That is, in the upper part in the concave pattern, the reactive species contributing to the etching contained in the etching solution are always replaced with new reactive species, and therefore the concentration of the reactive species is relatively high. On the other hand, in the lower part in the concave pattern, the etching solution tends to stay, so that the reactive species are not easily replaced, and the concentration of the reactive species is relatively low.
- the concentration of the etching solution is different between the upper part and the lower part of the concave pattern, so that the concentration gradient of the reactive species is generated between the upper part and the lower part of the concave pattern, and the etching amount is different.
- the present disclosure has been made in consideration of such points, and provides a substrate processing method capable of making the etching amount uniform between the upper part and the lower part in the concave pattern of the substrate.
- a step of preparing a substrate having a concave pattern having a side wall on which a metal part is formed, and a part of the metal part formed on the side wall of the concave pattern of the substrate from the surface side A first step of forming an oxide film by oxidizing, and a second step of selectively removing the oxide film by supplying an etching solution to the substrate.
- the metal The present invention relates to a substrate processing method in which a part of the metal part is oxidized while the part is exposed to the atmosphere.
- the etching amount can be made uniform between the upper part and the lower part in the concave pattern of the substrate.
- FIG. 1 is a plan view illustrating a schematic configuration of a substrate processing system (substrate processing apparatus) according to an embodiment.
- FIG. 2 is a side sectional view showing a schematic configuration of the processing unit shown in FIG.
- FIG. 3 is a diagram illustrating a schematic configuration of a processing fluid supply unit of the processing unit.
- FIG. 4 is a diagram illustrating a schematic configuration of the heat treatment unit.
- FIGS. 5A to 5D are schematic cross-sectional views showing the wafer being processed.
- FIG. 6 is a flowchart showing a substrate processing method according to an embodiment.
- 7A and 7B are schematic cross-sectional views showing modifications of the wafer.
- FIG. 1 is a diagram showing a schematic configuration of a substrate processing system according to the present embodiment.
- the X axis, the Y axis, and the Z axis that are orthogonal to each other are defined, and the positive direction of the Z axis is the vertically upward direction.
- the substrate processing system 1 includes a carry-in / out station 2 and a processing station 3.
- the carry-in / out station 2 and the processing station 3 are provided adjacent to each other.
- the loading / unloading station 2 includes a carrier placement unit 11 and a conveyance unit 12. A plurality of carriers C that accommodate a plurality of wafers W in a horizontal state are placed on the carrier placement unit 11.
- the transfer unit 12 is provided adjacent to the carrier placement unit 11 and includes a substrate transfer device 13 and a delivery unit 14 inside.
- the substrate transfer device 13 includes a substrate holding mechanism that holds the wafer W. Further, the substrate transfer device 13 can move in the horizontal direction and the vertical direction and turn around the vertical axis, and transfers the wafer W between the carrier C and the delivery unit 14 using the substrate holding mechanism. Do.
- the processing station 3 is provided adjacent to the transfer unit 12.
- the processing station 3 includes a transport unit 15 and a plurality of processing units 16.
- the plurality of processing units 16 are provided side by side on the transport unit 15.
- the transfer unit 15 includes a substrate transfer device 17 inside.
- the substrate transfer device 17 includes a substrate holding mechanism that holds the wafer W. Further, the substrate transfer device 17 can move in the horizontal direction and the vertical direction and can turn around the vertical axis, and transfers the wafer W between the delivery unit 14 and the processing unit 16 using the substrate holding mechanism. I do.
- the processing unit 16 performs predetermined substrate processing on the wafer W transferred by the substrate transfer device 17.
- the substrate processing system 1 includes a control device 4.
- the control device 4 is a computer, for example, and includes a control unit 18 and a storage unit 19.
- the storage unit 19 stores a program for controlling various processes executed in the substrate processing system 1.
- the control unit 18 controls the operation of the substrate processing system 1 by reading and executing the program stored in the storage unit 19.
- Such a program may be recorded in a computer-readable storage medium and installed in the storage unit 19 of the control device 4 from the storage medium.
- Examples of the computer-readable storage medium include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
- the substrate transfer device 13 of the loading / unloading station 2 takes out the wafer W from the carrier C placed on the carrier placement unit 11 and receives the taken-out wafer W. Place on the transfer section 14.
- the wafer W placed on the delivery unit 14 is taken out from the delivery unit 14 by the substrate transfer device 17 of the processing station 3 and carried into the processing unit 16.
- the wafer W loaded into the processing unit 16 is processed by the processing unit 16, then unloaded from the processing unit 16 by the substrate transfer device 17, and placed on the delivery unit 14. Then, the processed wafer W placed on the delivery unit 14 is returned to the carrier C of the carrier platform 11 by the substrate transfer device 13.
- a heating unit 16 ⁇ / b> A for heating the wafer W is provided in the processing station 3 adjacent to the plurality of processing units 16.
- two heating units 16A are shown for convenience, but the number of heating units 16A can be any number.
- FIG. 2 is a diagram showing a schematic configuration of the processing unit 16.
- the processing unit 16 includes a chamber 20, a substrate holding mechanism 30, a processing fluid supply unit 40, and a recovery cup 50.
- the chamber 20 accommodates the substrate holding mechanism 30, the processing fluid supply unit 40, and the recovery cup 50.
- An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20.
- the FFU 21 forms a down flow in the chamber 20.
- the substrate holding mechanism 30 includes a holding part 31, a support part 32, and a driving part 33.
- the holding unit 31 holds the wafer W horizontally.
- pillar part 32 is a member extended in a perpendicular direction, a base end part is rotatably supported by the drive part 33, and supports the holding
- the drive unit 33 rotates the column unit 32 around the vertical axis.
- the substrate holding mechanism 30 rotates the support unit 32 by rotating the support unit 32 using the drive unit 33, thereby rotating the wafer W held by the support unit 31. .
- the processing fluid supply unit 40 supplies a processing fluid to the wafer W.
- the processing fluid supply unit 40 is connected to a processing fluid supply source 70.
- the recovery cup 50 is disposed so as to surround the holding unit 31, and collects the processing liquid scattered from the wafer W by the rotation of the holding unit 31.
- a drain port 51 is formed at the bottom of the recovery cup 50, and the processing liquid collected by the recovery cup 50 is discharged from the drain port 51 to the outside of the processing unit 16. Further, an exhaust port 52 for discharging the gas supplied from the FFU 21 to the outside of the processing unit 16 is formed at the bottom of the recovery cup 50.
- the processing fluid supply unit 40 includes an arm 45 and a chemical nozzle 41 and a rinse nozzle 42 provided on the arm 45 (see FIG. 3).
- the chemical nozzle 41 is a nozzle that discharges a chemical (etching liquid) for etching such as DHF (dilute hydrofluoric acid).
- the rinse nozzle 42 is a nozzle that discharges a rinse liquid such as DIW (pure water).
- FIG. 4 is a diagram showing a schematic configuration of the heating unit 16A.
- the heating unit 16 ⁇ / b> A is provided in the processing container 53, the table 54 disposed in the processing container 53, on which the wafer W to be processed is placed, and placed on the table 54.
- a heating part (heater) 55 such as a heating wire for heating the wafer W.
- An oxygen concentration adjusting unit 56 and a humidity adjusting unit 57 are connected to the processing container 53.
- the oxygen concentration adjusting unit 56 supplies, for example, oxygen and nitrogen into the processing container 53.
- the oxygen concentration in the processing vessel 53 can be adjusted by appropriately adjusting the amount of oxygen and the amount of nitrogen supplied from the oxygen concentration adjusting unit 56 into the processing vessel 53.
- the humidity adjusting unit 57 supplies, for example, steam and dry air into the processing container 53.
- the humidity in the processing container 53 can be adjusted by appropriately adjusting the amount of steam and the amount of dry air supplied from the humidity adjusting unit 57 into the processing container 53.
- the heating unit 16A may be a unit that heats the wafer W by a heating unit such as an LED lamp instead of the heating unit (heater) 55 such as a heating wire.
- a wafer W having a concave pattern 25 is prepared (step S1 in FIG. 6). As shown in FIG. 5A, the wafer W has a concave pattern 25 formed in an uneven shape.
- the concave pattern 25 has a bottom surface 26, a side wall 27 extending perpendicularly from the bottom surface 26, and an upper surface 28 formed on the side wall 27.
- the wafer W includes a main body portion 24 made of a material such as SiO or SiN, and a metal film (metal portion) 23 formed on the main body portion 24.
- the metal film 23 is formed on the bottom surface 26, the side wall 27, and the top surface 28 of the concave pattern 25 with a substantially uniform thickness.
- the thickness t 1 of the metal film 23 is, for example, 1 nm to 10 nm.
- a material containing at least one of Ti, Cu, and Co is used as the metal film 23 . In the present embodiment, the case where the material of the metal film 23 is TiN will be described as an example.
- the wafer W is carried into the heating unit 16 ⁇ / b> A (see FIG. 4) by the substrate transfer device 17 and placed on the table 54 provided in the processing container 53. Subsequently, the wafer W is heated from the lower surface side thereof by the heating unit 55 (first step, step S2 in FIG. 6). At this time, the wafer W is in an air atmosphere in the processing container 53 and is heated in a state where the metal film 23 is exposed to the air.
- the metal film 23 While the wafer W is heated, the metal film 23 is exposed to the atmosphere, so that the metal film 23 is oxidized by reacting with oxygen in the atmosphere. Thereby, a part of the thickness direction of the metal film 23 is oxidized from the surface side (side exposed to the atmosphere) to form an oxide film 29 (FIG. 5B).
- an oxide film 29 made of TiO 2 is formed on a part of the metal film 23 (see FIG. 5B).
- the metal film 23 is heated substantially uniformly on the bottom surface 26 side and the top surface 28 side of the concave pattern 25. For this reason, the temperature of the metal film 23 during heating is substantially uniform between the bottom surface 26, the sidewall 27, and the top surface 28, and as a result, the oxidation of the metal film 23 is also approximately mutually performed between the bottom surface 26, the sidewall 27, and the top surface 28. It is thought that it progresses uniformly. Therefore, the thickness t 2 of the oxide film 29 is substantially uniform between the bottom surface 26, the side wall 27, and the upper surface 28, and the thickness t 2 of the oxide film 29 is equal to the upper portion (on the upper surface 28 side) and the lower portion (bottom surface) 26 side) is substantially uniform. Specifically, the thickness t 2 of the oxide film 29 is, for example, 0.5 nm ⁇ 5 nm.
- the atmosphere in the processing container 53 is controlled by the oxygen concentration adjusting unit 56 so that the oxygen concentration in the processing container 53 is adjusted to a predetermined value.
- the oxygen concentration adjusting unit 56 increases and decreases the oxygen concentration in the processing container 53 by supplying oxygen and nitrogen into the processing container 53, respectively.
- the oxygen concentration in the processing container 53 is, for example, 10% to 30%, preferably 18% to 25%.
- the atmosphere in the processing container 53 is controlled by the humidity adjusting unit 57 so that the humidity in the processing container 53 becomes a predetermined value.
- the humidity adjusting unit 57 raises and lowers the humidity in the processing container 53 by supplying steam and dry air into the processing container 53, respectively.
- the temperature at which the wafer W is heated by the heating unit 55 is, for example, 250 ° C. to 350 ° C., and preferably 280 ° C. to 320 ° C. Further, the time for heating the wafer W is, for example, 1 minute to 10 minutes, and preferably 2 minutes to 4 minutes.
- the degree of progress of the oxidation of the metal film 23 can be adjusted, thereby controlling the thickness t 2 (etching amount described later) of the oxide film 29. be able to.
- the formation conditions of the oxide film 29 include the oxygen concentration in the atmosphere when the wafer W is heated, the humidity in the atmosphere, the heating time (processing time) of the wafer W, and the heating time (processing time) of the wafer W. Of these, one or more may be mentioned.
- the formation conditions of the thickness t 2 and the oxide film 29 of the oxide film 29 and are associated in advance, for example, the storage unit 19 of the control device 4 may be stored (see FIG. 1).
- the control device 4 automatically obtains the formation condition of the oxide film 29 corresponding to the thickness t 2. .
- the control device 4 may control the heating unit 16 ⁇ / b> A so as to form the oxide film 29 based on the obtained formation condition of the oxide film 29.
- the wafer W on which the oxide film 29 is formed is unloaded from the heating unit 16A by the substrate transfer device 17.
- the wafer W unloaded from the heating unit 16A is loaded into the processing unit 16 (see FIG. 2) by the substrate transfer device 17 and held by the substrate holding mechanism 30 (step S3 in FIG. 6).
- the wafer W starts to rotate by operating the driving unit 33.
- the wafer W continues to rotate until the drying process described later is completed.
- the oxide film 29 formed on the wafer W is selectively removed. That is, the oxide film 29 made of TiO 2 is entirely removed by an etching chemical such as DHF, while the metal film 23 made of TiN that hardly reacts with the chemical remains without being removed (FIG. 5 ( d)).
- the thickness t 2 of the oxide film 29 is substantially uniform between the bottom surface 26, the side wall 27, and the top surface 28, and is also substantially uniform between the upper portion and the lower portion of the side wall 27. Therefore, the etching amount (that is, the thickness t 2 of the oxide film 29) that is the thickness of the original metal film 23 removed by etching can be made substantially uniform between the upper part and the lower part of the side wall 27.
- step S6 the drying process is executed (step S6 in FIG. 6). That is, the discharge of the rinse liquid from the rinse nozzle 42 is stopped, the number of rotations of the wafer W is increased, and the wafer W is shaken and dried.
- the rotation of the wafer W is stopped. As a result, a series of processing for the wafer W is completed. Thereafter, the wafer W is unloaded from the processing unit 16 by the substrate transfer device 17.
- a part of the metal film 23 formed on the side wall 27 of the concave pattern 25 of the wafer W is oxidized from the surface side in a state where the metal film 23 is exposed to the atmosphere. Then, an oxide film 29 is formed (first step). Thereafter, the oxide film 29 is selectively removed by supplying an etching chemical to the wafer W (second step). As described above, the step (first step) of oxidizing the metal film 23 formed on the concave pattern 25 is provided before the step of supplying the etching chemical (second step). Thereby, the oxide film 29 can be formed with a substantially uniform thickness with respect to the metal film 23 between the upper part and the lower part of the side wall 27.
- the etching amount can be made uniform between the upper part and the lower part in the concave pattern 25 of the wafer W.
- the oxide film 29 when the oxide film 29 is formed, a part of the metal film 23 is oxidized by heating the wafer W.
- the metal film 23 can be heated substantially uniformly at the upper and lower portions in the concave pattern 25 of the wafer W, so that it is substantially uniform between the upper and lower portions of the side wall 27 of the metal film 23.
- An oxide film 29 can be formed to a thickness.
- the thickness of the oxide film 29 and the formation conditions of the oxide film 29 are associated in advance.
- the oxide film 29 is formed based on the formation conditions of the oxide film 29.
- the metal film 23 can be etched by a desired etching amount by appropriately adjusting the formation conditions of the oxide film 29.
- the replaceability of the etching solution can be improved between the upper part and the lower part of the concave pattern 25, and the etching amount can be made uniform between the upper part and the lower part of the concave pattern 25.
- the oxide film 29 is selectively formed by supplying a chemical solution for etching to the wafer W in the first step of forming the oxide film 29 by oxidizing a part of the metal film 23 of the wafer W.
- the case where the second step to be removed is performed once is described as an example.
- the present invention is not limited to this, and the first step and the second step may be repeated a plurality of times.
- a step of forming the oxide film 29 on a part of the metal film 23 first step, step S2 in FIG. 6
- a step of selectively removing the oxide film 29 formed on the wafer W first step.
- Two steps, step S4 in FIG. 6, the step of rinsing the wafer W step S5 in FIG.
- step S6 in FIG. 6 the step of drying the wafer W (step S6 in FIG. 6) are repeated a plurality of times in this order. It may be. Thereby, for example, even when the etching amount is large, that is, when the metal film 23 is deeply etched, the etching amount can be made uniform between the upper part and the lower part in the concave pattern 25 of the wafer W.
- the case where the oxide film 29 was formed in the metal film 23 by heating the wafer W within the heating unit 16A was demonstrated as an example (1st process).
- the present invention is not limited to this, and part of the metal film 23 may be oxidized by irradiating the wafer W with an electron beam such as ultraviolet rays.
- an electron beam such as ultraviolet rays.
- ozone may be generated from oxygen in the atmosphere by irradiating the wafer W with ultraviolet rays from an LED lamp, and the oxide film 29 may be formed by oxidizing a part of the metal film 23 with the ozone.
- the oxide film 29 can be formed with a substantially uniform thickness between the upper part and the lower part of the side wall 27. it can. Thereby, the etching can be performed uniformly on the upper and lower portions of the metal film 23, and the etching amount can be made uniform. Also in this case, by controlling various formation conditions of the oxide film 29, the progress of the oxidation of the metal film 23 can be adjusted, and the etching amount for etching the metal film 23 can be controlled.
- Such an oxide film 29 is formed by forming one or more of oxygen concentration in the atmosphere, humidity in the atmosphere, electron beam irradiation amount on the wafer W, and electron beam irradiation time (processing time) on the wafer W. Conditions can be mentioned.
- the present invention is not limited to this, and the metal portion to be etched may be formed only on a part of the side wall 27.
- the insulating layers 34 and the metal layers (metal portions) 35 may be alternately formed along the height direction of the concave pattern 25 of the wafer W.
- a part of the metal layer 35 formed on the side wall 27 of the concave pattern 25 is oxidized to form the oxide film 29, and then the oxide film 29 can be selectively removed.
- etching can be performed substantially uniformly between the upper portion and the lower portion of the side wall 27. Specifically, the etching amount can be made uniform between the plurality of metal layers 35 arranged at the upper part and the lower part.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Weting (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Firstly, a substrate W having a recess pattern (25) that has a lateral wall (27) on which a metal part (23) is formed is prepared. Secondly, an oxide film (29) is formed by oxidizing a part of the metal part (23), which is formed on the lateral wall (27) of the recess pattern (25) in the substrate W, from the surface side. Subsequently, the oxide film (29) is selectively removed by supplying an etching liquid to the substrate W. In the step for forming the oxide film (29), a part of the metal part (23) is oxidized in a state where the metal part (23) is exposed to the atmosphere.
Description
本開示は、基板処理方法に関する。
The present disclosure relates to a substrate processing method.
従来から、半導体デバイスを製造する際の処理のーつとして、半導体ウエハ(以下ウエハという)等の基板の表面に形成された金属膜をエッチング液によりエッチングするウェットエッチング処理技術が知られている(特許文献1参照)
2. Description of the Related Art Conventionally, a wet etching technique for etching a metal film formed on the surface of a substrate such as a semiconductor wafer (hereinafter referred to as a wafer) with an etchant is known as one of the processes when manufacturing a semiconductor device ( (See Patent Document 1)
しかしながら、表面に金属膜が形成された凹型パターンを有するウエハにおいて、凹型パターンの側壁をエッチング液で所望量だけエッチングしようとした場合、凹型パターンの上部と下部とでエッチングのスピードが異なり、上部と下部とで均一にエッチングすることができないという問題が生じている。
However, in a wafer having a concave pattern with a metal film formed on the surface, when an etching solution is used to etch the sidewall of the concave pattern by a desired amount, the etching speed differs between the upper part and the lower part of the concave pattern, There is a problem that etching cannot be performed uniformly at the bottom.
これは、凹型パターン内に存在するエッチング液の置換性が凹型パターン内で不均一となるためであると考えられる。すなわち、凹型パターン内の上部においては、エッチング液に含まれるエッチングに寄与する反応種が常時新しい反応種と入れ替わるため、反応種の濃度が相対的に高くなる。これに対して、凹型パターン内の下部においては、エッチング液が滞留しやすいため、反応種が入れ替わりにくく、反応種の濃度が相対的に低くなる。このように凹型パターンの上部と下部とでエッチング液の濃度が異なることにより、凹型パターンの上部と下部とで反応種の濃度勾配が生じ、エッチング量に差が生じていると考えられる。
This is considered to be because the substituting property of the etching solution existing in the concave pattern becomes non-uniform in the concave pattern. That is, in the upper part in the concave pattern, the reactive species contributing to the etching contained in the etching solution are always replaced with new reactive species, and therefore the concentration of the reactive species is relatively high. On the other hand, in the lower part in the concave pattern, the etching solution tends to stay, so that the reactive species are not easily replaced, and the concentration of the reactive species is relatively low. Thus, it is considered that the concentration of the etching solution is different between the upper part and the lower part of the concave pattern, so that the concentration gradient of the reactive species is generated between the upper part and the lower part of the concave pattern, and the etching amount is different.
本開示は、このような点を考慮してなされたものであり、基板の凹型パターン内の上部と下部とでエッチング量を均一化することが可能な、基板処理方法を提供する。
The present disclosure has been made in consideration of such points, and provides a substrate processing method capable of making the etching amount uniform between the upper part and the lower part in the concave pattern of the substrate.
本開示の一態様は、金属部が形成された側壁を有する凹型パターンを有する基板を準備する工程と、前記基板のうち前記凹型パターンの前記側壁に形成された金属部の一部を表面側から酸化させることにより、酸化膜を形成する第1工程と、前記基板にエッチング液を供給することにより、前記酸化膜を選択的に除去する第2工程とを含み、前記第1工程において、前記金属部が大気に露出した状態で前記金属部の一部が酸化される、基板処理方法に関する。
According to one aspect of the present disclosure, a step of preparing a substrate having a concave pattern having a side wall on which a metal part is formed, and a part of the metal part formed on the side wall of the concave pattern of the substrate from the surface side A first step of forming an oxide film by oxidizing, and a second step of selectively removing the oxide film by supplying an etching solution to the substrate. In the first step, the metal The present invention relates to a substrate processing method in which a part of the metal part is oxidized while the part is exposed to the atmosphere.
本開示によれば、基板の凹型パターン内の上部と下部でエッチング量を均一化することができる。
According to the present disclosure, the etching amount can be made uniform between the upper part and the lower part in the concave pattern of the substrate.
以下、図面を参照して一実施形態について説明する。なお、本件明細書に添付する図面に示されている構成には、図示と理解のしやすさの便宜上、サイズ及び縮尺等が実物のそれらから変更されている部分が含まれうる。
Hereinafter, an embodiment will be described with reference to the drawings. In addition, the structure shown in drawing attached to this specification may contain the part from which size and the scale etc. were changed from those of the real thing for convenience of illustration and an understanding.
図1は、本実施形態に係る基板処理システムの概略構成を示す図である。以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。
FIG. 1 is a diagram showing a schematic configuration of a substrate processing system according to the present embodiment. In the following, in order to clarify the positional relationship, the X axis, the Y axis, and the Z axis that are orthogonal to each other are defined, and the positive direction of the Z axis is the vertically upward direction.
図1に示すように、基板処理システム1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2と処理ステーション3とは隣接して設けられる。
As shown in FIG. 1, the substrate processing system 1 includes a carry-in / out station 2 and a processing station 3. The carry-in / out station 2 and the processing station 3 are provided adjacent to each other.
搬入出ステーション2は、キャリア載置部11と、搬送部12とを備える。キャリア載置部11には、複数枚のウエハWを水平状態で収容する複数のキャリアCが載置される。
The loading / unloading station 2 includes a carrier placement unit 11 and a conveyance unit 12. A plurality of carriers C that accommodate a plurality of wafers W in a horizontal state are placed on the carrier placement unit 11.
搬送部12は、キャリア載置部11に隣接して設けられ、内部に基板搬送装置13と、受渡部14とを備える。基板搬送装置13は、ウエハWを保持する基板保持機構を備える。また、基板搬送装置13は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、基板保持機構を用いてキャリアCと受渡部14との間でウエハWの搬送を行う。
The transfer unit 12 is provided adjacent to the carrier placement unit 11 and includes a substrate transfer device 13 and a delivery unit 14 inside. The substrate transfer device 13 includes a substrate holding mechanism that holds the wafer W. Further, the substrate transfer device 13 can move in the horizontal direction and the vertical direction and turn around the vertical axis, and transfers the wafer W between the carrier C and the delivery unit 14 using the substrate holding mechanism. Do.
処理ステーション3は、搬送部12に隣接して設けられる。処理ステーション3は、搬送部15と、複数の処理ユニット16とを備える。複数の処理ユニット16は、搬送部15の両側に並べて設けられる。
The processing station 3 is provided adjacent to the transfer unit 12. The processing station 3 includes a transport unit 15 and a plurality of processing units 16. The plurality of processing units 16 are provided side by side on the transport unit 15.
搬送部15は、内部に基板搬送装置17を備える。基板搬送装置17は、ウエハWを保持する基板保持機構を備える。また、基板搬送装置17は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、基板保持機構を用いて受渡部14と処理ユニット16との間でウエハWの搬送を行う。
The transfer unit 15 includes a substrate transfer device 17 inside. The substrate transfer device 17 includes a substrate holding mechanism that holds the wafer W. Further, the substrate transfer device 17 can move in the horizontal direction and the vertical direction and can turn around the vertical axis, and transfers the wafer W between the delivery unit 14 and the processing unit 16 using the substrate holding mechanism. I do.
処理ユニット16は、基板搬送装置17によって搬送されるウエハWに対して所定の基板処理を行う。
The processing unit 16 performs predetermined substrate processing on the wafer W transferred by the substrate transfer device 17.
また、基板処理システム1は、制御装置4を備える。制御装置4は、たとえばコンピュータであり、制御部18と記憶部19とを備える。記憶部19には、基板処理システム1において実行される各種の処理を制御するプログラムが格納される。制御部18は、記憶部19に記憶されたプログラムを読み出して実行することによって基板処理システム1の動作を制御する。
Further, the substrate processing system 1 includes a control device 4. The control device 4 is a computer, for example, and includes a control unit 18 and a storage unit 19. The storage unit 19 stores a program for controlling various processes executed in the substrate processing system 1. The control unit 18 controls the operation of the substrate processing system 1 by reading and executing the program stored in the storage unit 19.
なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置4の記憶部19にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。
Note that such a program may be recorded in a computer-readable storage medium and installed in the storage unit 19 of the control device 4 from the storage medium. Examples of the computer-readable storage medium include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
上記のように構成された基板処理システム1では、まず、搬入出ステーション2の基板搬送装置13が、キャリア載置部11に載置されたキャリアCからウエハWを取り出し、取り出したウエハWを受渡部14に載置する。受渡部14に載置されたウエハWは、処理ステーション3の基板搬送装置17によって受渡部14から取り出されて、処理ユニット16へ搬入される。
In the substrate processing system 1 configured as described above, first, the substrate transfer device 13 of the loading / unloading station 2 takes out the wafer W from the carrier C placed on the carrier placement unit 11 and receives the taken-out wafer W. Place on the transfer section 14. The wafer W placed on the delivery unit 14 is taken out from the delivery unit 14 by the substrate transfer device 17 of the processing station 3 and carried into the processing unit 16.
処理ユニット16へ搬入されたウエハWは、処理ユニット16によって処理された後、基板搬送装置17によって処理ユニット16から搬出されて、受渡部14に載置される。
そして、受渡部14に載置された処理済のウエハWは、基板搬送装置13によってキャリア載置部11のキャリアCへ戻される。 The wafer W loaded into theprocessing unit 16 is processed by the processing unit 16, then unloaded from the processing unit 16 by the substrate transfer device 17, and placed on the delivery unit 14.
Then, the processed wafer W placed on thedelivery unit 14 is returned to the carrier C of the carrier platform 11 by the substrate transfer device 13.
そして、受渡部14に載置された処理済のウエハWは、基板搬送装置13によってキャリア載置部11のキャリアCへ戻される。 The wafer W loaded into the
Then, the processed wafer W placed on the
ところで本実施形態において、処理ステーション3内に、複数の処理ユニット16に隣接してウエハWを加熱処理する加熱ユニット16Aが設けられている。なお、図1において、便宜上、加熱ユニット16Aを2つ示しているが、加熱ユニット16Aの数は任意の数とすることができる。
By the way, in the present embodiment, a heating unit 16 </ b> A for heating the wafer W is provided in the processing station 3 adjacent to the plurality of processing units 16. In FIG. 1, two heating units 16A are shown for convenience, but the number of heating units 16A can be any number.
[処理ユニット]
次に、処理ユニット16の概略構成について図2を参照して説明する。図2は、処理ユニット16の概略構成を示す図である。 [Processing unit]
Next, a schematic configuration of theprocessing unit 16 will be described with reference to FIG. FIG. 2 is a diagram showing a schematic configuration of the processing unit 16.
次に、処理ユニット16の概略構成について図2を参照して説明する。図2は、処理ユニット16の概略構成を示す図である。 [Processing unit]
Next, a schematic configuration of the
図2に示すように、処理ユニット16は、チャンバ20と、基板保持機構30と、処理流体供給部40と、回収カップ50とを備える。
As shown in FIG. 2, the processing unit 16 includes a chamber 20, a substrate holding mechanism 30, a processing fluid supply unit 40, and a recovery cup 50.
チャンバ20は、基板保持機構30と処理流体供給部40と回収カップ50とを収容する。チャンバ20の天井部には、FFU(Fan Filter Unit)21が設けられる。FFU21は、チャンバ20内にダウンフローを形成する。
The chamber 20 accommodates the substrate holding mechanism 30, the processing fluid supply unit 40, and the recovery cup 50. An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20. The FFU 21 forms a down flow in the chamber 20.
基板保持機構30は、保持部31と、支柱部32と、駆動部33とを備える。保持部31は、ウエハWを水平に保持する。支柱部32は、鉛直方向に延在する部材であり、基端部が駆動部33によって回転可能に支持され、先端部において保持部31を水平に支持する。駆動部33は、支柱部32を鉛直軸まわりに回転させる。かかる基板保持機構30は、駆動部33を用いて支柱部32を回転させることによって支柱部32に支持された保持部31を回転させ、これにより、保持部31に保持されたウエハWを回転させる。
The substrate holding mechanism 30 includes a holding part 31, a support part 32, and a driving part 33. The holding unit 31 holds the wafer W horizontally. The support | pillar part 32 is a member extended in a perpendicular direction, a base end part is rotatably supported by the drive part 33, and supports the holding | maintenance part 31 horizontally in a front-end | tip part. The drive unit 33 rotates the column unit 32 around the vertical axis. The substrate holding mechanism 30 rotates the support unit 32 by rotating the support unit 32 using the drive unit 33, thereby rotating the wafer W held by the support unit 31. .
処理流体供給部40は、ウエハWに対して処理流体を供給する。処理流体供給部40は、処理流体供給源70に接続される。
The processing fluid supply unit 40 supplies a processing fluid to the wafer W. The processing fluid supply unit 40 is connected to a processing fluid supply source 70.
回収カップ50は、保持部31を取り囲むように配置され、保持部31の回転によってウエハWから飛散する処理液を捕集する。回収カップ50の底部には、排液口51が形成されており、回収カップ50によって捕集された処理液は、かかる排液口51から処理ユニット16の外部へ排出される。また、回収カップ50の底部には、FFU21から供給される気体を処理ユニット16の外部へ排出する排気口52が形成される。
The recovery cup 50 is disposed so as to surround the holding unit 31, and collects the processing liquid scattered from the wafer W by the rotation of the holding unit 31. A drain port 51 is formed at the bottom of the recovery cup 50, and the processing liquid collected by the recovery cup 50 is discharged from the drain port 51 to the outside of the processing unit 16. Further, an exhaust port 52 for discharging the gas supplied from the FFU 21 to the outside of the processing unit 16 is formed at the bottom of the recovery cup 50.
本実施形態において、処理流体供給部40は、アーム45と、アーム45にそれぞれ設けられた、薬液ノズル41およびリンスノズル42を含んでいる(図3参照)。
In this embodiment, the processing fluid supply unit 40 includes an arm 45 and a chemical nozzle 41 and a rinse nozzle 42 provided on the arm 45 (see FIG. 3).
このうち薬液ノズル41は、例えばDHF(希フッ酸)等のエッチング用の薬液(エッチング液)を吐出するノズルである。また、リンスノズル42は、例えばDIW(純水)等のリンス液を吐出するノズルである。
Of these, the chemical nozzle 41 is a nozzle that discharges a chemical (etching liquid) for etching such as DHF (dilute hydrofluoric acid). The rinse nozzle 42 is a nozzle that discharges a rinse liquid such as DIW (pure water).
[加熱ユニット]
次に、加熱ユニット16Aの概略構成について、図4を参照して説明する。図4は、加熱ユニット16Aの概略構成を示す図である。 [Heating unit]
Next, a schematic configuration of theheating unit 16A will be described with reference to FIG. FIG. 4 is a diagram showing a schematic configuration of the heating unit 16A.
次に、加熱ユニット16Aの概略構成について、図4を参照して説明する。図4は、加熱ユニット16Aの概略構成を示す図である。 [Heating unit]
Next, a schematic configuration of the
図4に示すように、加熱ユニット16Aは、処理容器53と、処理容器53内に配置され、処理対象のウエハWが載置されるテーブル54と、テーブル54に設けられ、テーブル54に載置されたウエハWを加熱する電熱線等の加熱部(ヒーター)55とを備えている。
As shown in FIG. 4, the heating unit 16 </ b> A is provided in the processing container 53, the table 54 disposed in the processing container 53, on which the wafer W to be processed is placed, and placed on the table 54. And a heating part (heater) 55 such as a heating wire for heating the wafer W.
処理容器53には、酸素濃度調整部56と湿度調整部57とが接続されている。このうち酸素濃度調整部56は、処理容器53内に例えば酸素及び窒素を供給するものである。
この酸素濃度調整部56から処理容器53内に供給される酸素の量及び窒素の量を適宜調節することにより、処理容器53内の酸素濃度を調整することができる。 An oxygenconcentration adjusting unit 56 and a humidity adjusting unit 57 are connected to the processing container 53. Among these, the oxygen concentration adjusting unit 56 supplies, for example, oxygen and nitrogen into the processing container 53.
The oxygen concentration in the processing vessel 53 can be adjusted by appropriately adjusting the amount of oxygen and the amount of nitrogen supplied from the oxygenconcentration adjusting unit 56 into the processing vessel 53.
この酸素濃度調整部56から処理容器53内に供給される酸素の量及び窒素の量を適宜調節することにより、処理容器53内の酸素濃度を調整することができる。 An oxygen
The oxygen concentration in the processing vessel 53 can be adjusted by appropriately adjusting the amount of oxygen and the amount of nitrogen supplied from the oxygen
また、湿度調整部57は、処理容器53内に例えば蒸気及びドライエアを供給するものである。この湿度調整部57から処理容器53内に供給される蒸気の量及びドライエアの量を適宜調節することにより、処理容器53内の湿度を調整することができる。
Further, the humidity adjusting unit 57 supplies, for example, steam and dry air into the processing container 53. The humidity in the processing container 53 can be adjusted by appropriately adjusting the amount of steam and the amount of dry air supplied from the humidity adjusting unit 57 into the processing container 53.
なお、加熱ユニット16Aは、電熱線等の加熱部(ヒーター)55に代えて、LEDランプ等の加熱部によりウエハWを加熱するものであっても良い。
The heating unit 16A may be a unit that heats the wafer W by a heating unit such as an LED lamp instead of the heating unit (heater) 55 such as a heating wire.
[基板処理方法]
次に、本実施形態による基板処理方法について、図5および図6を参照して説明する。 [Substrate processing method]
Next, the substrate processing method according to the present embodiment will be described with reference to FIGS.
次に、本実施形態による基板処理方法について、図5および図6を参照して説明する。 [Substrate processing method]
Next, the substrate processing method according to the present embodiment will be described with reference to FIGS.
[基板準備]
はじめに、凹型パターン25を有するウエハWを準備する(図6のステップS1)。このウエハWは、図5(a)に示すように凹凸状に形成された凹型パターン25を有している。この凹型パターン25は、底面26と、底面26から垂直に延びる側壁27と、側壁27上に形成された上面28とを有している。また、ウエハWは、SiO、SiN等の材料からなる本体部24と、本体部24上に形成された金属膜(金属部)23とを有している。 [Board preparation]
First, a wafer W having aconcave pattern 25 is prepared (step S1 in FIG. 6). As shown in FIG. 5A, the wafer W has a concave pattern 25 formed in an uneven shape. The concave pattern 25 has a bottom surface 26, a side wall 27 extending perpendicularly from the bottom surface 26, and an upper surface 28 formed on the side wall 27. Further, the wafer W includes a main body portion 24 made of a material such as SiO or SiN, and a metal film (metal portion) 23 formed on the main body portion 24.
はじめに、凹型パターン25を有するウエハWを準備する(図6のステップS1)。このウエハWは、図5(a)に示すように凹凸状に形成された凹型パターン25を有している。この凹型パターン25は、底面26と、底面26から垂直に延びる側壁27と、側壁27上に形成された上面28とを有している。また、ウエハWは、SiO、SiN等の材料からなる本体部24と、本体部24上に形成された金属膜(金属部)23とを有している。 [Board preparation]
First, a wafer W having a
金属膜23は、凹型パターン25の底面26と側壁27と上面28とにそれぞれ略均一な厚みで形成されている。この場合、金属膜23の厚みt1は、例えば1nm~10nmである。また、金属膜23としては、Ti、Cu及びCoのうち少なくとも1つを含む材料が用いられる。なお、本実施形態においては、金属膜23の材料がTiNである場合を例にとって説明する。
The metal film 23 is formed on the bottom surface 26, the side wall 27, and the top surface 28 of the concave pattern 25 with a substantially uniform thickness. In this case, the thickness t 1 of the metal film 23 is, for example, 1 nm to 10 nm. Further, as the metal film 23, a material containing at least one of Ti, Cu, and Co is used. In the present embodiment, the case where the material of the metal film 23 is TiN will be described as an example.
[金属膜の酸化]
次に、ウエハWが基板搬送装置17により加熱ユニット16A(図4参照)内に搬入され、処理容器53内に設けられたテーブル54に載置される。続いて、ウエハWは、加熱部55によって、その下面側から加熱される(第1工程、図6のステップS2)。このときウエハWは、処理容器53内の大気雰囲気中にあり、金属膜23が大気に露出した状態で加熱される。 [Oxidation of metal film]
Next, the wafer W is carried into theheating unit 16 </ b> A (see FIG. 4) by the substrate transfer device 17 and placed on the table 54 provided in the processing container 53. Subsequently, the wafer W is heated from the lower surface side thereof by the heating unit 55 (first step, step S2 in FIG. 6). At this time, the wafer W is in an air atmosphere in the processing container 53 and is heated in a state where the metal film 23 is exposed to the air.
次に、ウエハWが基板搬送装置17により加熱ユニット16A(図4参照)内に搬入され、処理容器53内に設けられたテーブル54に載置される。続いて、ウエハWは、加熱部55によって、その下面側から加熱される(第1工程、図6のステップS2)。このときウエハWは、処理容器53内の大気雰囲気中にあり、金属膜23が大気に露出した状態で加熱される。 [Oxidation of metal film]
Next, the wafer W is carried into the
ウエハWを加熱している間、金属膜23が大気に露出していることにより、金属膜23は大気中の酸素と反応して酸化する。これにより金属膜23は、その厚み方向の一部が表面側(大気に露出している側)から酸化され、酸化膜29を形成する(図5(b))。例えば、金属膜23がTiNである場合、金属膜23の一部にTiO2からなる酸化膜29が形成される(図5(b)参照)。
While the wafer W is heated, the metal film 23 is exposed to the atmosphere, so that the metal film 23 is oxidized by reacting with oxygen in the atmosphere. Thereby, a part of the thickness direction of the metal film 23 is oxidized from the surface side (side exposed to the atmosphere) to form an oxide film 29 (FIG. 5B). For example, when the metal film 23 is TiN, an oxide film 29 made of TiO 2 is formed on a part of the metal film 23 (see FIG. 5B).
このようにウエハWを加熱する場合、金属膜23は、凹型パターン25の底面26側と上面28側とで略均一に加熱される。このため、加熱中の金属膜23の温度は、底面26と側壁27と上面28とで互いに略均一となり、この結果、金属膜23の酸化も、底面26と側壁27と上面28とで互いに略均一に進行していくと考えられる。したがって、酸化膜29の厚みt2は、底面26と側壁27と上面28とで互いに略均一となり、また、酸化膜29の厚みt2は、側壁27の上部(上面28側)と下部(底面26側)との間でも略均一となる。具体的には、酸化膜29の厚みt2は、例えば0.5nm~5nmである。
When the wafer W is heated in this way, the metal film 23 is heated substantially uniformly on the bottom surface 26 side and the top surface 28 side of the concave pattern 25. For this reason, the temperature of the metal film 23 during heating is substantially uniform between the bottom surface 26, the sidewall 27, and the top surface 28, and as a result, the oxidation of the metal film 23 is also approximately mutually performed between the bottom surface 26, the sidewall 27, and the top surface 28. It is thought that it progresses uniformly. Therefore, the thickness t 2 of the oxide film 29 is substantially uniform between the bottom surface 26, the side wall 27, and the upper surface 28, and the thickness t 2 of the oxide film 29 is equal to the upper portion (on the upper surface 28 side) and the lower portion (bottom surface) 26 side) is substantially uniform. Specifically, the thickness t 2 of the oxide film 29 is, for example, 0.5 nm ~ 5 nm.
このようにしてウエハWを加熱している間、処理容器53内の大気は、酸素濃度調整部56によって制御され、処理容器53内の酸素濃度が所定値となるように調整されている。具体的には、酸素濃度調整部56は、処理容器53内に酸素及び窒素を供給することにより、処理容器53内の酸素濃度をそれぞれ上昇及び下降させる。処理容器53内の酸素濃度は、例えば10%~30%であり、好ましくは18%~25%である。
While the wafer W is heated in this manner, the atmosphere in the processing container 53 is controlled by the oxygen concentration adjusting unit 56 so that the oxygen concentration in the processing container 53 is adjusted to a predetermined value. Specifically, the oxygen concentration adjusting unit 56 increases and decreases the oxygen concentration in the processing container 53 by supplying oxygen and nitrogen into the processing container 53, respectively. The oxygen concentration in the processing container 53 is, for example, 10% to 30%, preferably 18% to 25%.
また、処理容器53内の大気は、湿度調整部57によって制御され、処理容器53内の湿度が所定値となるように調整されている。具体的には、湿度調整部57は、処理容器53内に蒸気及びドライエアを供給することにより、処理容器53内の湿度をそれぞれ上昇及び下降させる。
Further, the atmosphere in the processing container 53 is controlled by the humidity adjusting unit 57 so that the humidity in the processing container 53 becomes a predetermined value. Specifically, the humidity adjusting unit 57 raises and lowers the humidity in the processing container 53 by supplying steam and dry air into the processing container 53, respectively.
加熱部55によってウエハWを加熱する温度は、例えば250℃~350℃であり、好ましくは280℃~320℃である。さらに、ウエハWを加熱する時間は、例えば1分~10分であり、好ましくは2分~4分である。
The temperature at which the wafer W is heated by the heating unit 55 is, for example, 250 ° C. to 350 ° C., and preferably 280 ° C. to 320 ° C. Further, the time for heating the wafer W is, for example, 1 minute to 10 minutes, and preferably 2 minutes to 4 minutes.
このように、酸化膜29の形成条件を制御することにより、金属膜23の酸化の進む程度を調整することができ、これにより、酸化膜29の厚みt2(後述するエッチング量)を制御することができる。このような酸化膜29の形成条件としては、ウエハWを加熱する際の大気中の酸素濃度、大気中の湿度、ウエハWの加熱時間(処理時間)及びウエハWの加熱時間(処理時間)のうち、1つ又は複数を挙げることができる。
Thus, by controlling the formation conditions of the oxide film 29, the degree of progress of the oxidation of the metal film 23 can be adjusted, thereby controlling the thickness t 2 (etching amount described later) of the oxide film 29. be able to. The formation conditions of the oxide film 29 include the oxygen concentration in the atmosphere when the wafer W is heated, the humidity in the atmosphere, the heating time (processing time) of the wafer W, and the heating time (processing time) of the wafer W. Of these, one or more may be mentioned.
この酸化膜29の厚みt2と酸化膜29の形成条件とは、予め関連付けられており、例えば制御装置4の記憶部19(図1参照)に記憶されていても良い。この場合、必要となる酸化膜29の厚みt2(エッチング量)を制御装置4に入力することにより、制御装置4は、この厚みt2に対応する酸化膜29の形成条件を自動的に求める。そして制御装置4は、求められた酸化膜29の形成条件に基づいて、酸化膜29を形成するように加熱ユニット16Aを制御しても良い。
The formation conditions of the thickness t 2 and the oxide film 29 of the oxide film 29 and are associated in advance, for example, the storage unit 19 of the control device 4 may be stored (see FIG. 1). In this case, by inputting the necessary thickness t 2 (etching amount) of the oxide film 29 to the control device 4, the control device 4 automatically obtains the formation condition of the oxide film 29 corresponding to the thickness t 2. . Then, the control device 4 may control the heating unit 16 </ b> A so as to form the oxide film 29 based on the obtained formation condition of the oxide film 29.
その後、酸化膜29が形成されたウエハWが基板搬送装置17により加熱ユニット16Aから搬出される。
Thereafter, the wafer W on which the oxide film 29 is formed is unloaded from the heating unit 16A by the substrate transfer device 17.
[基板搬入]
次に、加熱ユニット16Aから搬出されたウエハWは、基板搬送装置17により処理ユニット16(図2参照)内に搬入され、基板保持機構30により保持される(図6のステップS3)。次に、駆動部33を動作させることによりウエハWが回転を開始する。ウエハWは、後述の乾燥処理が終了するまで、ずっと回転し続ける。 [Substrate loading]
Next, the wafer W unloaded from theheating unit 16A is loaded into the processing unit 16 (see FIG. 2) by the substrate transfer device 17 and held by the substrate holding mechanism 30 (step S3 in FIG. 6). Next, the wafer W starts to rotate by operating the driving unit 33. The wafer W continues to rotate until the drying process described later is completed.
次に、加熱ユニット16Aから搬出されたウエハWは、基板搬送装置17により処理ユニット16(図2参照)内に搬入され、基板保持機構30により保持される(図6のステップS3)。次に、駆動部33を動作させることによりウエハWが回転を開始する。ウエハWは、後述の乾燥処理が終了するまで、ずっと回転し続ける。 [Substrate loading]
Next, the wafer W unloaded from the
[エッチング処理]
次に、アーム45が駆動することによりウエハWの中心部の真上に薬液ノズル41が位置し、薬液ノズル41からウエハWの表面の中心部にDHF等のエッチング用の薬液が所定時間にわたって供給される(第2工程、図6のステップS4)。供給された薬液は遠心力により広がり、ウエハWの外方に向けて流れる。このとき、ウエハWの表面の全域は薬液の液膜により覆われる。具体的には、ウエハWに形成された酸化膜29が薬液Lによって覆われる(図5(c)参照)。 [Etching process]
Next, when thearm 45 is driven, the chemical nozzle 41 is positioned directly above the center of the wafer W, and an etching chemical such as DHF is supplied from the chemical nozzle 41 to the center of the surface of the wafer W over a predetermined time. (Second step, step S4 in FIG. 6). The supplied chemical solution spreads by centrifugal force and flows toward the outside of the wafer W. At this time, the entire surface of the wafer W is covered with a chemical liquid film. Specifically, the oxide film 29 formed on the wafer W is covered with the chemical solution L (see FIG. 5C).
次に、アーム45が駆動することによりウエハWの中心部の真上に薬液ノズル41が位置し、薬液ノズル41からウエハWの表面の中心部にDHF等のエッチング用の薬液が所定時間にわたって供給される(第2工程、図6のステップS4)。供給された薬液は遠心力により広がり、ウエハWの外方に向けて流れる。このとき、ウエハWの表面の全域は薬液の液膜により覆われる。具体的には、ウエハWに形成された酸化膜29が薬液Lによって覆われる(図5(c)参照)。 [Etching process]
Next, when the
このようにウエハWの表面に薬液を供給することにより、ウエハWに形成された酸化膜29が選択的に除去される。すなわち、DHF等のエッチング用の薬液により、TiO2からなる酸化膜29が全体にわたって除去される一方、薬液と反応しにくいTiNからなる金属膜23は、除去されることなく残存する(図5(d)参照)。
In this way, by supplying the chemical solution to the surface of the wafer W, the oxide film 29 formed on the wafer W is selectively removed. That is, the oxide film 29 made of TiO 2 is entirely removed by an etching chemical such as DHF, while the metal film 23 made of TiN that hardly reacts with the chemical remains without being removed (FIG. 5 ( d)).
上述したように、酸化膜29の厚みt2は、底面26と側壁27と上面28とで互いに略均一であり、側壁27の上部と下部との間でも略均一となっている。したがって、当初の金属膜23をエッチングにより除去した分の厚みであるエッチング量(すなわち酸化膜29の厚みt2)を、側壁27の上部と下部との間で略均一とすることができる。
As described above, the thickness t 2 of the oxide film 29 is substantially uniform between the bottom surface 26, the side wall 27, and the top surface 28, and is also substantially uniform between the upper portion and the lower portion of the side wall 27. Therefore, the etching amount (that is, the thickness t 2 of the oxide film 29) that is the thickness of the original metal film 23 removed by etching can be made substantially uniform between the upper part and the lower part of the side wall 27.
[リンス処理]
続いて、薬液の供給を停止するとともに、ウエハWの中心部の真上にリンスノズル42が位置し、リンスノズル42からウエハWの表面の中心部にDIW等のリンス液が所定時間にわたって供給される(図6のステップS5)。供給されたリンス液は遠心力により広がり、ウエハWの外方に向けて流れる。このとき、ウエハWの表面の全域はリンス液の液膜により覆われる。これによりウエハWの表面上に残存する薬液(DHF)および薬液処理時の反応生成物が、リンス液により洗い流されてウエハW表面から除去される。その後、リンス液の供給を停止する。 [Rinse processing]
Subsequently, the supply of the chemical solution is stopped, and the rinsenozzle 42 is positioned right above the center portion of the wafer W, and a rinse solution such as DIW is supplied from the rinse nozzle 42 to the center portion of the surface of the wafer W over a predetermined time. (Step S5 in FIG. 6). The supplied rinse liquid spreads by centrifugal force and flows toward the outside of the wafer W. At this time, the entire surface of the wafer W is covered with the liquid film of the rinse liquid. As a result, the chemical solution (DHF) remaining on the surface of the wafer W and the reaction product during the chemical treatment are washed away by the rinse liquid and removed from the surface of the wafer W. Thereafter, the supply of the rinse liquid is stopped.
続いて、薬液の供給を停止するとともに、ウエハWの中心部の真上にリンスノズル42が位置し、リンスノズル42からウエハWの表面の中心部にDIW等のリンス液が所定時間にわたって供給される(図6のステップS5)。供給されたリンス液は遠心力により広がり、ウエハWの外方に向けて流れる。このとき、ウエハWの表面の全域はリンス液の液膜により覆われる。これによりウエハWの表面上に残存する薬液(DHF)および薬液処理時の反応生成物が、リンス液により洗い流されてウエハW表面から除去される。その後、リンス液の供給を停止する。 [Rinse processing]
Subsequently, the supply of the chemical solution is stopped, and the rinse
[乾燥処理]
リンス処理が終了したら、乾燥処理を実行する(図6のステップS6)。すなわち、リンスノズル42からのリンス液の吐出を停止するとともに、ウエハWの回転数を増加させ、ウエハWの振り切り乾燥処理を行う。 [Drying process]
When the rinsing process is completed, the drying process is executed (step S6 in FIG. 6). That is, the discharge of the rinse liquid from the rinsenozzle 42 is stopped, the number of rotations of the wafer W is increased, and the wafer W is shaken and dried.
リンス処理が終了したら、乾燥処理を実行する(図6のステップS6)。すなわち、リンスノズル42からのリンス液の吐出を停止するとともに、ウエハWの回転数を増加させ、ウエハWの振り切り乾燥処理を行う。 [Drying process]
When the rinsing process is completed, the drying process is executed (step S6 in FIG. 6). That is, the discharge of the rinse liquid from the rinse
この乾燥処理が終了したら、ウエハWの回転を停止する。これによりウエハWに対する一連の処理が終了したことになる。その後、ウエハWが基板搬送装置17により処理ユニット16から搬出される。
When the drying process is completed, the rotation of the wafer W is stopped. As a result, a series of processing for the wafer W is completed. Thereafter, the wafer W is unloaded from the processing unit 16 by the substrate transfer device 17.
以上に説明したように、本実施形態によれば、金属膜23が大気に露出した状態で、ウエハWの凹型パターン25の側壁27に形成された金属膜23の一部を表面側から酸化させ、酸化膜29を形成する(第1工程)。その後、ウエハWにエッチング用の薬液を供給することにより、酸化膜29を選択的に除去する(第2工程)。このように、エッチング用の薬液を供給する工程(第2工程)の前に、凹型パターン25に形成された金属膜23を酸化させる工程(第1工程)が設けられている。これにより、側壁27の上部と下部との間で金属膜23に対して略均一の厚みに酸化膜29を形成することができる。したがって、エッチング用の薬液によって酸化膜29を選択的に除去することにより、金属膜23の上部と下部とで均一にエッチングを施すことができる。すなわち、ウエハWの凹型パターン25内の上部と下部でエッチング量を均一化することができる。
As described above, according to the present embodiment, a part of the metal film 23 formed on the side wall 27 of the concave pattern 25 of the wafer W is oxidized from the surface side in a state where the metal film 23 is exposed to the atmosphere. Then, an oxide film 29 is formed (first step). Thereafter, the oxide film 29 is selectively removed by supplying an etching chemical to the wafer W (second step). As described above, the step (first step) of oxidizing the metal film 23 formed on the concave pattern 25 is provided before the step of supplying the etching chemical (second step). Thereby, the oxide film 29 can be formed with a substantially uniform thickness with respect to the metal film 23 between the upper part and the lower part of the side wall 27. Therefore, by selectively removing the oxide film 29 with a chemical solution for etching, the upper and lower portions of the metal film 23 can be etched uniformly. That is, the etching amount can be made uniform between the upper part and the lower part in the concave pattern 25 of the wafer W.
また、本実施形態によれば、酸化膜29を形成する際、ウエハWを加熱することにより金属膜23の一部を酸化させている。ウエハWを加熱する場合、ウエハWの凹型パターン25内の上部と下部で略均一に金属膜23を加熱することができるので、金属膜23の側壁27の上部と下部との間で略均一の厚みに酸化膜29を形成することができる。
Further, according to the present embodiment, when the oxide film 29 is formed, a part of the metal film 23 is oxidized by heating the wafer W. When the wafer W is heated, the metal film 23 can be heated substantially uniformly at the upper and lower portions in the concave pattern 25 of the wafer W, so that it is substantially uniform between the upper and lower portions of the side wall 27 of the metal film 23. An oxide film 29 can be formed to a thickness.
また、本実施形態によれば、酸化膜29の厚みと酸化膜29の形成条件(例えば、大気中の酸素濃度、大気中の湿度、ウエハWの処理温度及びウエハWの処理時間のうち少なくとも1つ)とは、予め関連付けられている。この場合、金属膜23を酸化させる工程(第1工程)において、酸化膜29の形成条件に基づいて酸化膜29を形成する。これにより、酸化膜29の形成条件を適宜調整することにより、所望のエッチング量だけ金属膜23をエッチングすることができる。
Further, according to the present embodiment, at least one of the thickness of the oxide film 29 and the formation conditions of the oxide film 29 (for example, the oxygen concentration in the atmosphere, the humidity in the atmosphere, the processing temperature of the wafer W, and the processing time of the wafer W). Are associated in advance. In this case, in the step of oxidizing the metal film 23 (first step), the oxide film 29 is formed based on the formation conditions of the oxide film 29. Thus, the metal film 23 can be etched by a desired etching amount by appropriately adjusting the formation conditions of the oxide film 29.
なお、酸化膜29を形成することなく(第1工程を経ることなく)、例えばSC2(塩酸/過酸化水素/水の混合液)等の薬液によって金属膜23を直接エッチングする場合、エッチング液に含まれる反応種が、凹型パターン25内の下部に滞留しやすい。このため、凹型パターン25の上部と下部とで反応種が入れ替わりにくく、凹型パターン25の下部では反応種の濃度が低くなる傾向がある。この場合、凹型パターン25の上部と下部とで反応種の濃度勾配が生じ、エッチング量に差が生じるおそれがある。これに対して、金属膜23を一度にエッチングするのではなく、所望のエッチング量となるまで、金属膜23に対するエッチング処理とリンス処理とを複数回繰り返すことも考えられる。この場合、凹型パターン25の上部と下部とでエッチング液の置換性を向上させ、凹型パターン25の上部と下部とでエッチング量を均一化することができる。
In the case where the metal film 23 is directly etched with a chemical solution such as SC2 (hydrochloric acid / hydrogen peroxide / water mixture) without forming the oxide film 29 (without passing through the first step), The contained reactive species tend to stay in the lower part of the concave pattern 25. For this reason, it is difficult for the reactive species to be interchanged between the upper portion and the lower portion of the concave pattern 25, and the concentration of the reactive species tends to be low at the lower portion of the concave pattern 25. In this case, a concentration gradient of the reactive species is generated between the upper part and the lower part of the concave pattern 25, and there is a possibility that a difference in etching amount occurs. On the other hand, instead of etching the metal film 23 at once, it is also conceivable to repeat the etching process and the rinsing process for the metal film 23 a plurality of times until a desired etching amount is obtained. In this case, the replaceability of the etching solution can be improved between the upper part and the lower part of the concave pattern 25, and the etching amount can be made uniform between the upper part and the lower part of the concave pattern 25.
[変形例]
次に、本実施形態の変形例について説明する。 [Modification]
Next, a modification of this embodiment will be described.
次に、本実施形態の変形例について説明する。 [Modification]
Next, a modification of this embodiment will be described.
上記実施形態において、ウエハWの金属膜23の一部を酸化させることにより、酸化膜29を形成する第1工程と、ウエハWにエッチング用の薬液を供給することにより、酸化膜29を選択的に除去する第2工程とを1回ずつ行う場合を例にとって説明した。しかしながら、これに限らず、第1工程と第2工程とを複数回繰り返すようにしても良い。具体的には、金属膜23の一部に酸化膜29を形成する工程(第1工程、図6のステップS2)と、ウエハWに形成された酸化膜29を選択的に除去する工程(第2工程、図6のステップS4)と、ウエハWをリンス処理する工程(図6のステップS5)と、ウエハWを乾燥処理する工程(図6のステップS6)とが、この順番で複数回繰り返されても良い。これにより、例えばエッチング量が大きい場合、すなわち金属膜23を深くエッチングする場合であっても、ウエハWの凹型パターン25内の上部と下部とでエッチング量を均一化することができる。
In the above embodiment, the oxide film 29 is selectively formed by supplying a chemical solution for etching to the wafer W in the first step of forming the oxide film 29 by oxidizing a part of the metal film 23 of the wafer W. The case where the second step to be removed is performed once is described as an example. However, the present invention is not limited to this, and the first step and the second step may be repeated a plurality of times. Specifically, a step of forming the oxide film 29 on a part of the metal film 23 (first step, step S2 in FIG. 6) and a step of selectively removing the oxide film 29 formed on the wafer W (first step). Two steps, step S4 in FIG. 6, the step of rinsing the wafer W (step S5 in FIG. 6), and the step of drying the wafer W (step S6 in FIG. 6) are repeated a plurality of times in this order. It may be. Thereby, for example, even when the etching amount is large, that is, when the metal film 23 is deeply etched, the etching amount can be made uniform between the upper part and the lower part in the concave pattern 25 of the wafer W.
また上記実施形態において、加熱ユニット16A内でウエハWを加熱することにより、金属膜23に酸化膜29を形成する場合を例にとって説明した(第1工程)。しかしながら、これに限らず、ウエハWに対して紫外線等の電子線を照射することにより、金属膜23の一部を酸化させても良い。例えば、LEDランプによりウエハWに紫外線を照射することにより、大気中の酸素からオゾンを生成し、このオゾンによって金属膜23の一部を酸化して酸化膜29を形成しても良い。この場合、紫外線は、金属膜23の側壁27の上部と下部との間で均等に照射されるので、側壁27の上部と下部との間で略均一な厚みに酸化膜29を形成することができる。これにより、金属膜23の上部と下部とで均一にエッチングを施すことができ、エッチング量を均一化することができる。この場合においても、酸化膜29の各種形成条件を制御することにより、金属膜23の酸化の進み具合を調整することができ、金属膜23をエッチングするエッチング量を制御することができる。
このような酸化膜29の形成条件としては、大気中の酸素濃度、大気中の湿度、ウエハWに対する電子線照射量及びウエハWに対する電子線照射時間(処理時間)のうち、1つ又は複数の条件を挙げることができる。 Moreover, in the said embodiment, the case where theoxide film 29 was formed in the metal film 23 by heating the wafer W within the heating unit 16A was demonstrated as an example (1st process). However, the present invention is not limited to this, and part of the metal film 23 may be oxidized by irradiating the wafer W with an electron beam such as ultraviolet rays. For example, ozone may be generated from oxygen in the atmosphere by irradiating the wafer W with ultraviolet rays from an LED lamp, and the oxide film 29 may be formed by oxidizing a part of the metal film 23 with the ozone. In this case, since the ultraviolet rays are evenly irradiated between the upper part and the lower part of the side wall 27 of the metal film 23, the oxide film 29 can be formed with a substantially uniform thickness between the upper part and the lower part of the side wall 27. it can. Thereby, the etching can be performed uniformly on the upper and lower portions of the metal film 23, and the etching amount can be made uniform. Also in this case, by controlling various formation conditions of the oxide film 29, the progress of the oxidation of the metal film 23 can be adjusted, and the etching amount for etching the metal film 23 can be controlled.
Such anoxide film 29 is formed by forming one or more of oxygen concentration in the atmosphere, humidity in the atmosphere, electron beam irradiation amount on the wafer W, and electron beam irradiation time (processing time) on the wafer W. Conditions can be mentioned.
このような酸化膜29の形成条件としては、大気中の酸素濃度、大気中の湿度、ウエハWに対する電子線照射量及びウエハWに対する電子線照射時間(処理時間)のうち、1つ又は複数の条件を挙げることができる。 Moreover, in the said embodiment, the case where the
Such an
また上記実施形態において、金属膜23がウエハWの側壁27の上端から下端までの全体に形成されている場合を例にとって説明した(図5(a)参照)。しかしながら、これに限らず、エッチングを施す金属部は、側壁27の一部のみに形成されていても良い。例えば、図7(a)に示すように、ウエハWの凹型パターン25の高さ方向に沿って、絶縁層34と金属層(金属部)35とが交互に形成されていても良い。この場合においても、凹型パターン25の側壁27に形成された金属層35の一部を酸化させて酸化膜29を形成し、その後、酸化膜29を選択的に除去することができる。これにより、図7(b)に示すように、側壁27の上部と下部との間で略均一にエッチングを施すことができる。具体的には、上部と下部に配置された複数の金属層35間でエッチング量を均一化することができる。
In the above embodiment, the case where the metal film 23 is formed from the upper end to the lower end of the side wall 27 of the wafer W has been described as an example (see FIG. 5A). However, the present invention is not limited to this, and the metal portion to be etched may be formed only on a part of the side wall 27. For example, as illustrated in FIG. 7A, the insulating layers 34 and the metal layers (metal portions) 35 may be alternately formed along the height direction of the concave pattern 25 of the wafer W. Also in this case, a part of the metal layer 35 formed on the side wall 27 of the concave pattern 25 is oxidized to form the oxide film 29, and then the oxide film 29 can be selectively removed. Accordingly, as shown in FIG. 7B, etching can be performed substantially uniformly between the upper portion and the lower portion of the side wall 27. Specifically, the etching amount can be made uniform between the plurality of metal layers 35 arranged at the upper part and the lower part.
本開示は、上述の実施形態及び変形例に限定されるものではなく、当業者が想到しうる種々の変形が加えられた各種態様も含みうるものであり、本開示によって奏される効果も上述の事項に限定されない。したがって、本開示の技術的思想及び趣旨を逸脱しない範囲で、特許請求の範囲及び明細書に記載される各要素に対して種々の追加、変更及び部分的削除が可能である。
The present disclosure is not limited to the above-described embodiments and modifications, and may include various aspects to which various modifications that can be conceived by those skilled in the art are added, and the effects achieved by the present disclosure are also described above. It is not limited to the matter of. Therefore, various additions, modifications, and partial deletions can be made to each element described in the claims and the specification without departing from the technical idea and spirit of the present disclosure.
Claims (7)
- 金属部が形成された側壁を有する凹型パターンを有する基板を準備する工程と、
前記基板のうち前記凹型パターンの前記側壁に形成された金属部の一部を表面側から酸化させることにより、酸化膜を形成する第1工程と、
前記基板にエッチング液を供給することにより、前記酸化膜を選択的に除去する第2工程とを含み、
前記第1工程において、前記金属部が大気に露出した状態で前記金属部の一部が酸化される、基板処理方法。 Preparing a substrate having a concave pattern having a sidewall on which a metal portion is formed;
A first step of forming an oxide film by oxidizing a part of the metal part formed on the side wall of the concave pattern of the substrate from the surface side;
A second step of selectively removing the oxide film by supplying an etchant to the substrate;
In the first step, a part of the metal part is oxidized in a state where the metal part is exposed to the atmosphere. - 前記第1工程は、前記基板を加熱することにより前記金属部の一部を酸化させる工程である、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the first step is a step of oxidizing a part of the metal part by heating the substrate.
- 前記第1工程は、前記基板に電子線を照射することにより前記金属部の一部を酸化させる工程である、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the first step is a step of oxidizing a part of the metal part by irradiating the substrate with an electron beam.
- 前記酸化膜の厚みと前記第1工程における前記酸化膜の形成条件とは、予め関連付けられており、前記第1工程において、前記酸化膜の形成条件に基づいて前記酸化膜を形成する、請求項1乃至3のいずれか一項に記載の基板処理方法。 The thickness of the oxide film and the formation condition of the oxide film in the first step are associated in advance, and the oxide film is formed based on the formation condition of the oxide film in the first step. The substrate processing method according to any one of claims 1 to 3.
- 前記酸化膜の形成条件は、前記大気中の酸素濃度、前記大気中の湿度、前記基板の処理温度及び前記基板の処理時間のうち少なくとも1つを含む、請求項4に記載の基板処理方法。 5. The substrate processing method according to claim 4, wherein the formation condition of the oxide film includes at least one of the oxygen concentration in the atmosphere, the humidity in the atmosphere, the processing temperature of the substrate, and the processing time of the substrate.
- 前記金属部は、Ti、Cu及びCoのうち少なくとも1つを含む、請求項1乃至5のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 5, wherein the metal part includes at least one of Ti, Cu, and Co.
- 前記第1工程及び前記第2工程を複数回繰り返す、請求項1乃至6のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 6, wherein the first step and the second step are repeated a plurality of times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019525322A JPWO2018230377A1 (en) | 2017-06-14 | 2018-06-04 | Substrate processing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-116914 | 2017-06-14 | ||
JP2017116914 | 2017-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018230377A1 true WO2018230377A1 (en) | 2018-12-20 |
Family
ID=64660889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/021316 WO2018230377A1 (en) | 2017-06-14 | 2018-06-04 | Substrate processing method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2018230377A1 (en) |
TW (1) | TW201921478A (en) |
WO (1) | WO2018230377A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020155615A (en) * | 2019-03-20 | 2020-09-24 | 株式会社Screenホールディングス | Substrate processing method and substrate processing apparatus |
JPWO2020255772A1 (en) * | 2019-06-18 | 2020-12-24 | ||
JP2021121002A (en) * | 2020-01-31 | 2021-08-19 | 三菱製紙株式会社 | Thermoplastic polyimide resin and etching method for laminate of polyimide resin |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10335452A (en) * | 1997-05-28 | 1998-12-18 | Mitsubishi Electric Corp | Formation of contact hole |
JP2006278935A (en) * | 2005-03-30 | 2006-10-12 | Renesas Technology Corp | Semiconductor device and its manufacturing method |
JP2007520879A (en) * | 2004-01-14 | 2007-07-26 | 東京エレクトロン株式会社 | Method for trimming gate electrode |
JP2007188973A (en) * | 2006-01-11 | 2007-07-26 | Renesas Technology Corp | Apparatus and method for substrate cleaning |
-
2018
- 2018-06-04 JP JP2019525322A patent/JPWO2018230377A1/en active Pending
- 2018-06-04 WO PCT/JP2018/021316 patent/WO2018230377A1/en active Application Filing
- 2018-06-13 TW TW107120258A patent/TW201921478A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10335452A (en) * | 1997-05-28 | 1998-12-18 | Mitsubishi Electric Corp | Formation of contact hole |
JP2007520879A (en) * | 2004-01-14 | 2007-07-26 | 東京エレクトロン株式会社 | Method for trimming gate electrode |
JP2006278935A (en) * | 2005-03-30 | 2006-10-12 | Renesas Technology Corp | Semiconductor device and its manufacturing method |
JP2007188973A (en) * | 2006-01-11 | 2007-07-26 | Renesas Technology Corp | Apparatus and method for substrate cleaning |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020155615A (en) * | 2019-03-20 | 2020-09-24 | 株式会社Screenホールディングス | Substrate processing method and substrate processing apparatus |
JP7202230B2 (en) | 2019-03-20 | 2023-01-11 | 株式会社Screenホールディングス | Substrate processing method and substrate processing apparatus |
JPWO2020255772A1 (en) * | 2019-06-18 | 2020-12-24 | ||
WO2020255772A1 (en) * | 2019-06-18 | 2020-12-24 | 東京エレクトロン株式会社 | Substrate processing method and substrate processing device |
US20220275502A1 (en) * | 2019-06-18 | 2022-09-01 | Tokyo Electron Limited | Substrate processing method and substrate processing apparatus |
JP7254178B2 (en) | 2019-06-18 | 2023-04-07 | 東京エレクトロン株式会社 | Substrate processing method and substrate processing apparatus |
US11781215B2 (en) | 2019-06-18 | 2023-10-10 | Tokyo Electron Limited | Substrate processing method of forming a plating film in a recess |
JP2021121002A (en) * | 2020-01-31 | 2021-08-19 | 三菱製紙株式会社 | Thermoplastic polyimide resin and etching method for laminate of polyimide resin |
JP7377115B2 (en) | 2020-01-31 | 2023-11-09 | 三菱製紙株式会社 | Etching method for a laminate of thermoplastic polyimide resin and polyimide resin |
Also Published As
Publication number | Publication date |
---|---|
TW201921478A (en) | 2019-06-01 |
JPWO2018230377A1 (en) | 2020-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101288212B1 (en) | Susbtrate treatment method | |
JP5898549B2 (en) | Substrate processing method and substrate processing apparatus | |
JP5992379B2 (en) | Substrate processing method and substrate processing apparatus | |
WO2018230377A1 (en) | Substrate processing method | |
JP2002219424A (en) | Substrate processing unit and substrate processing method | |
CN117855096A (en) | Substrate processing apparatus and substrate processing method | |
JP2020141063A (en) | Substrate processing method and substrate processing system | |
JP7175310B2 (en) | SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD | |
TWI842714B (en) | Substrate processing method and substrate processing device | |
JP7261567B2 (en) | Substrate processing method and substrate processing apparatus | |
JP7241594B2 (en) | Substrate processing method and substrate processing apparatus | |
JP4791905B2 (en) | Substrate cleaning method | |
CN109216180B (en) | Substrate processing method and substrate processing apparatus | |
KR102414577B1 (en) | Substrate processing method and substrate processing apparatus | |
TW201911395A (en) | Substrate processing method and storage medium | |
US20180323060A1 (en) | Substrate processing method, substrate processing apparatus, substrate processing system and recording medium | |
JP6454608B2 (en) | Substrate processing method, substrate processing apparatus, and storage medium | |
WO2020188958A1 (en) | Substrate processing method and substrate processing device | |
WO2018062362A1 (en) | Substrate processing method and substrate processing device | |
JP6710582B2 (en) | Substrate liquid processing apparatus, substrate liquid processing method and storage medium | |
JP6236105B2 (en) | Substrate processing method and substrate processing apparatus | |
JP7143465B2 (en) | SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD | |
JP3884610B2 (en) | Substrate surface treatment method and substrate surface treatment apparatus | |
JP7138493B2 (en) | Substrate liquid processing method, storage medium and substrate liquid processing apparatus | |
JP2022143230A (en) | Substrate processing method and substrate processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18816724 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019525322 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18816724 Country of ref document: EP Kind code of ref document: A1 |