WO2020188958A1 - Substrate processing method and substrate processing device - Google Patents

Substrate processing method and substrate processing device Download PDF

Info

Publication number
WO2020188958A1
WO2020188958A1 PCT/JP2020/000321 JP2020000321W WO2020188958A1 WO 2020188958 A1 WO2020188958 A1 WO 2020188958A1 JP 2020000321 W JP2020000321 W JP 2020000321W WO 2020188958 A1 WO2020188958 A1 WO 2020188958A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
amorphous silicon
silicon layer
layer
substrate processing
Prior art date
Application number
PCT/JP2020/000321
Other languages
French (fr)
Japanese (ja)
Inventor
鮎美 樋口
勇哉 赤西
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to CN202080022833.1A priority Critical patent/CN113614889A/en
Priority to US17/439,445 priority patent/US11881403B2/en
Priority to KR1020217032957A priority patent/KR20210137178A/en
Publication of WO2020188958A1 publication Critical patent/WO2020188958A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus.
  • Japanese Patent Application Laid-Open No. 2018-19089 discloses a technique for wet-etching the polysilicon film by supplying a chemical solution containing TMAH (tetramethylammonium hydroxide) to the polysilicon film on the substrate. Has been done.
  • TMAH tetramethylammonium hydroxide
  • the inventor of the present application has found that the upper surface of the intermediate pattern exposed from the coating film such as silicon oxide during plasma etching, which is a pre-process for removing the intermediate pattern (that is, the amorphous silicon layer) of amorphous silicon. It was found that oxygen, carbon, etc. were incident on the silicon, and the etching rate was lowered due to the deterioration of the upper surface due to the incident.
  • the present invention is directed to a substrate processing method, and an object of the present invention is to efficiently perform wet etching of an amorphous silicon layer.
  • the substrate treatment method includes a) a step of holding a substrate having an amorphous silicon layer having an altered layer derived from dry etching formed on the surface in a horizontal state, and b) ultraviolet rays on the altered layer.
  • a step of modifying the altered layer to form a modified layer by irradiating with c) a chemical solution is supplied to the amorphous silicon layer having the modified layer on the surface to perform wet etching on the amorphous silicon layer. It is provided with a process to be performed. As a result, wet etching of the amorphous silicon layer can be efficiently performed.
  • the coating film formed on the surface of the amorphous silicon layer is etched by the plasma generated by using the fluorocarbon gas and the oxygen gas.
  • the amorphous silicon layer is an intermediate pattern formed in the process of multi-patterning with respect to the substrate.
  • anisotropic etching is performed on the coating film covering the upper surface and the side surface of the intermediate pattern, so that the upper surface of the intermediate pattern is exposed from the coating film and the side surface of the intermediate pattern is exposed.
  • a side wall of the coating film is formed to cover the coating film.
  • the intermediate pattern is removed and the side wall remains.
  • the wavelength of the ultraviolet rays is 250 nm or less.
  • the integrated irradiation amount of the ultraviolet rays in the step b) is 1000 mJ / cm 2 or more.
  • the irradiation of the ultraviolet rays in the step b) is performed in a low oxygen atmosphere.
  • the ultraviolet irradiation region on the substrate is scanned.
  • the integrated irradiation amount of the ultraviolet rays for the region where the altered layer is thick is larger than the integrated irradiation amount of the ultraviolet rays for the region where the altered layer is thin.
  • the discharge position of the chemical solution on the substrate is scanned.
  • the discharge time of the chemical solution for the region where the modified layer is thick is longer than the discharge time of the chemical solution for the region where the modified layer is thin.
  • the substrate processing method further comprises a step of supplying another chemical solution to the amorphous silicon layer to remove the surface natural oxide film of the amorphous silicon layer between the steps b) and the step c). Be prepared.
  • the present invention is also directed to a substrate processing apparatus.
  • a substrate holding portion that holds a substrate having an amorphous silicon layer having an altered layer derived from dry etching formed on the surface in a horizontal state and the altered layer are irradiated with ultraviolet rays.
  • a chemical solution that supplies a chemical solution to an ultraviolet irradiation section that modifies the altered layer to generate a modified layer and an amorphous silicon layer having the modified layer on the surface to perform wet etching on the amorphous silicon layer. It has a supply unit. As a result, wet etching of the amorphous silicon layer can be efficiently performed.
  • the coating film formed on the surface of the amorphous silicon layer is etched by the plasma generated by using the fluorocarbon gas and the oxygen gas.
  • the amorphous silicon layer is an intermediate pattern formed in the process of multi-patterning with respect to the substrate.
  • anisotropic etching is performed on the coating film covering the upper surface and the side surface of the intermediate pattern, so that the upper surface of the intermediate pattern is exposed from the coating film and the side surface of the intermediate pattern is exposed.
  • a side wall of the coating film is formed to cover the coating film.
  • the intermediate pattern is removed and the side wall remains.
  • the wavelength of the ultraviolet rays is 250 nm or less.
  • the integrated irradiation amount of the ultraviolet rays on the amorphous silicon layer is 1000 mJ / cm 2 or more.
  • the irradiation of the ultraviolet rays on the amorphous silicon layer is performed in a low oxygen atmosphere.
  • the substrate processing apparatus further includes an irradiation control unit that controls the ultraviolet irradiation unit.
  • the ultraviolet irradiation unit includes an ultraviolet lamp that irradiates the substrate with the ultraviolet rays, and an irradiation region scanning mechanism that scans the ultraviolet irradiation region on the substrate.
  • the irradiation control unit controls the integrated irradiation amount of the ultraviolet rays to the region of the amorphous silicon layer where the alteration layer is thick, and the alteration layer is thin. It is made larger than the integrated irradiation amount of the ultraviolet rays for the region.
  • the substrate processing apparatus further includes a supply control unit that controls the chemical solution supply unit.
  • the chemical solution supply unit includes a chemical solution discharge unit that discharges the chemical solution onto the substrate, and a discharge position scanning mechanism that scans the discharge position of the chemical solution on the substrate. By controlling the discharge position scanning mechanism by the supply control unit, the discharge time of the chemical solution to the region where the modified layer is thick and the discharge time of the chemical solution to the region where the modified layer is thin in the amorphous silicon layer Be longer than time.
  • the substrate processing apparatus supplies another chemical solution to the amorphous silicon layer between the irradiation of the amorphous silicon layer with the ultraviolet rays and the supply of the chemical solution to form a natural oxide film on the surface of the amorphous silicon layer. Further provided with another chemical supply unit to be removed.
  • FIG. 1 is a side view showing the configuration of the substrate processing apparatus 1 according to the first embodiment of the present invention.
  • the substrate processing apparatus 1 is a single-wafer processing apparatus that processes semiconductor substrates 9 (hereinafter, simply referred to as “substrates 9”) one by one.
  • the substrate processing apparatus 1 supplies a processing liquid to the substrate 9 to perform processing.
  • FIG. 1 a part of the configuration of the substrate processing apparatus 1 is shown in cross section.
  • the substrate processing device 1 includes a substrate holding unit 31, a substrate rotating mechanism 33, a cup unit 4, a processing liquid supply unit 5, a control unit 6, an ultraviolet irradiation unit 7, and a housing 11.
  • the substrate holding portion 31, the substrate rotating mechanism 33, the cup portion 4, the ultraviolet irradiation portion 7, and the like are housed in the internal space of the housing 11.
  • the housing 11 is drawn in cross section (the same applies to FIG. 10).
  • the canopy portion of the housing 11 is provided with an airflow forming portion 12 that supplies gas to the internal space to form an airflow (so-called downflow) that flows downward.
  • an FFU fan filter unit
  • the control unit 6 is arranged outside the housing 11 and controls the substrate holding unit 31, the substrate rotation mechanism 33, the processing liquid supply unit 5, the ultraviolet irradiation unit 7, and the like.
  • the control unit 6 includes, for example, a normal computer including a processor, a memory, an input / output unit, and a bus.
  • a bus is a signal circuit that connects a processor, memory, and an input / output unit.
  • the memory stores programs and various information.
  • the processor executes various processes (for example, numerical calculation) while using the memory or the like according to a program or the like stored in the memory.
  • the input / output unit includes a keyboard and mouse that receive input from the operator, a display that displays output from the processor, and a transmission unit that transmits output from the processor.
  • the control unit 6 includes a storage unit 61, an irradiation control unit 62, and a supply control unit 63.
  • the storage unit 61 is mainly realized by a memory and stores various information such as processing recipes of the substrate 9.
  • the irradiation control unit 62 is mainly realized by a processor and controls the ultraviolet irradiation unit 7 and the like according to a processing recipe and the like stored in the storage unit 61.
  • the supply control unit 63 is mainly realized by the processor and controls the processing liquid supply unit 5 and the like according to the processing recipe and the like stored in the storage unit 61.
  • the substrate holding portion 31 faces the main surface (that is, the lower surface) on the lower side of the substrate 9 in the horizontal state, and holds the substrate 9 from the lower side.
  • the substrate holding portion 31 is, for example, a mechanical chuck that mechanically supports the substrate 9.
  • the substrate holding portion 31 is rotatably provided about a central axis J1 that faces in the vertical direction.
  • the board holding portion 31 includes a holding portion main body and a plurality of chuck pins.
  • the holding portion main body is a substantially disk-shaped member facing the lower surface of the substrate 9.
  • the plurality of chuck pins are arranged at substantially equal angular intervals in the circumferential direction (hereinafter, also simply referred to as “circumferential direction”) about the central axis J1 at the peripheral edge of the holding portion main body.
  • Each chuck pin projects upward from the upper surface of the holding portion main body and contacts the peripheral region and the side surface of the lower surface of the substrate 9 to support the substrate 9.
  • the substrate holding portion 31 may be a vacuum chuck or the like that attracts and holds the central portion of the lower surface of the substrate 9.
  • the board rotation mechanism 33 is arranged below the board holding portion 31.
  • the substrate rotation mechanism 33 rotates the substrate 9 together with the substrate holding portion 31 about the central axis J1.
  • the substrate rotation mechanism 33 includes, for example, an electric rotary motor in which a rotation shaft is connected to a holding portion main body of the substrate holding portion 31.
  • the substrate rotation mechanism 33 may have another structure such as a hollow motor.
  • the treatment liquid supply unit 5 individually supplies a plurality of types of treatment liquids to the substrate 9.
  • the plurality of types of treatment solutions include, for example, chemical solutions and rinse solutions described later.
  • the processing liquid supply unit 5 includes a nozzle 51, an arm 511, and a nozzle rotation mechanism 512.
  • the nozzle 51 supplies the processing liquid from above the substrate 9 toward the main surface (hereinafter, referred to as “upper surface 91”) on the upper side of the substrate 9.
  • the nozzle 51 is formed of, for example, a resin having high chemical resistance such as Teflon (registered trademark).
  • the arm 511 is a rod-shaped member extending in a substantially horizontal direction and supports the nozzle 51.
  • the nozzle rotation mechanism 512 is arranged outside the cup portion 4 in the radial direction (hereinafter, also simply referred to as “diameter direction”) about the central axis J1.
  • the nozzle rotation mechanism 512 includes, for example, an electric rotary motor having a rotary shaft extending in the vertical direction. The rotating shaft is connected to one end of the arm 511.
  • the nozzle rotation mechanism 512 moves the nozzle 51 in the horizontal direction by rotating the arm 511 around a rotation axis facing in the vertical direction, and moves from the upper side of the substrate 9 to the retracted position on the radial outer side of the cup portion 4. Evacuate.
  • the cup portion 4 is an annular member centered on the central axis J1.
  • the cup portion 4 is arranged around the substrate 9 and the substrate holding portion 31 over the entire circumference, and covers the side and the lower side of the substrate 9 and the substrate holding portion 31.
  • the cup portion 4 is a liquid receiving container that receives a liquid such as a processing liquid that scatters from the rotating substrate 9 toward the surroundings.
  • the inner surface of the cup portion 4 is formed of, for example, a water repellent material.
  • the cup portion 4 is stationary in the circumferential direction regardless of the rotation and stationary of the substrate 9.
  • the bottom of the cup portion 4 is provided with a drainage port (not shown) for discharging the treatment liquid or the like received by the cup portion 4 to the outside of the housing 11.
  • the cup portion 4 can be moved in the vertical direction between a processing position, which is a position around the substrate 9 shown in FIG. 1, and a retracting position below the processing position, by an elevating mechanism (not shown).
  • the cup portion 4 may have a laminated structure in which a plurality of cups are laminated in the radial direction.
  • the plurality of cups can move independently in the vertical direction, and the plurality of cups are switched to receive the treatment liquid according to the type of the treatment liquid scattered from the substrate 9. Used for liquids.
  • FIG. 2 is a block diagram showing a processing liquid supply unit 5 of the substrate processing apparatus 1.
  • FIG. 2 also shows configurations other than the processing liquid supply unit 5.
  • the treatment liquid supply unit 5 includes a chemical liquid supply unit 52 and a rinse liquid supply unit 53.
  • the chemical solution supply unit 52 includes a nozzle 51, an arm 511 (see FIG. 1), a nozzle rotation mechanism 512 (see FIG. 1), a chemical solution supply source 521, and a chemical solution pipe 522.
  • the nozzle 51 is connected to the chemical solution supply source 521 via the chemical solution pipe 522.
  • the nozzle 51 is a chemical liquid discharge unit that discharges the chemical liquid sent from the chemical liquid supply source 521 toward the upper surface 91 of the substrate 9.
  • the chemical solution is an etching solution used for wet etching of the substrate 9.
  • the etching solution is, for example, an alkaline etching solution such as an aqueous solution of ammonium hydroxide (NH 4 OH).
  • the rinse liquid supply unit 53 includes the above-mentioned nozzle 51, an arm 511, a nozzle rotation mechanism 512, a rinse liquid supply source 531 and a rinse liquid pipe 532.
  • the nozzle 51 is connected to the rinse liquid supply source 531 via the rinse liquid pipe 532.
  • the nozzle 51 is a rinse liquid discharge unit that discharges the rinse liquid delivered from the rinse liquid supply source 531 toward the upper surface 91 of the substrate 9.
  • an aqueous treatment liquid such as DIW (De-ionized Water), carbonated water, ozone water or hydrogen water is used.
  • the nozzle 51, the arm 511, and the nozzle rotation mechanism 512 are shared by the chemical liquid supply unit 52 and the rinse liquid supply unit 53.
  • a discharge port for a chemical liquid and a discharge port for a rinse liquid are individually provided at the lower end of the nozzle 51, and different types of treatment liquids are placed on the upper surface of the substrate 9 via different pipes and discharge ports. It is supplied to 91.
  • the nozzle for discharging the chemical solution and the nozzle for discharging the rinse solution may be provided separately.
  • the ultraviolet irradiation unit 7 includes an ultraviolet lamp 71 and a lamp elevating mechanism 72.
  • the ultraviolet lamp 71 is a substantially disk-shaped lamp arranged above the substrate 9.
  • the lamp elevating mechanism 72 is arranged on the outer side in the radial direction of the cup portion 4.
  • the lamp elevating mechanism 72 includes, for example, an electric linear motor or a ball screw and an electric rotary motor.
  • the lamp elevating mechanism 72 is connected to the ultraviolet lamp 71 and moves the ultraviolet lamp 71 in the vertical direction.
  • the ultraviolet lamp 71 can move in the vertical direction between the retracted position shown by the solid line in FIG. 1 and the irradiation position (indicated by the alternate long and short dash line) below the retracted position.
  • the nozzle 51 retracts from above the substrate 9 to the retracted position by the nozzle rotation mechanism 512.
  • the ultraviolet lamp 71 irradiates ultraviolet rays from the irradiation position toward the entire upper surface 91 of the substrate 9.
  • the ultraviolet lamp 71 an excimer lamp, a low-pressure mercury lamp, or the like is used.
  • the wavelength of the ultraviolet rays emitted from the ultraviolet lamp 71 is preferably 250 nm or less, more preferably 172 nm or less.
  • the lower limit of the wavelength of the ultraviolet rays is not particularly limited, but is, for example, 120 nm or more.
  • FIG. 3 is an enlarged cross-sectional view showing a portion of the substrate 9 near the upper surface 91.
  • an insulating film 94 is formed on the upper surface of the silicon substrate main body 93
  • a titanium nitride (TiN) film 95 is formed on the upper surface of the insulating film 94
  • the titanium nitride film 95 is formed.
  • a silicon nitride film 96 is formed on the upper surface of the above.
  • the insulating film 94, the titanium nitride film 95, and the silicon nitride film 96 are each provided with a substantially uniform thickness on the entire upper surface of the silicon substrate main body 93 in FIG.
  • An amorphous silicon layer 97 is formed on the upper surface of the silicon nitride film 96.
  • the amorphous silicon layer 97 is a fine pattern that is an aggregate of a plurality of pattern elements 971.
  • the amorphous silicon layer 97 is an intermediate pattern formed in the process of multi-patterning with respect to the substrate 9. In FIG. 3, four pattern elements 971 are illustrated.
  • the width of the pattern element 971 in FIG. 3 in the left-right direction is, for example, 30 nm to 100 nm.
  • the vertical height of the pattern element 971 is, for example, 20 nm to 100 nm.
  • the upper surface of the silicon nitride film 96 is exposed between the adjacent pattern elements 971.
  • each pattern element 971 of the amorphous silicon layer 97 is covered with a side wall 981.
  • the side wall 981 is a thin film formed of a silicon oxide, a silicon nitride, a silicon oxynitride, or the like.
  • the width of the side wall 981 in FIG. 3 in the left-right direction is smaller than the width of the pattern element 971, for example, 10 nm to 20 nm.
  • the vertical height of the side wall 981 is substantially the same as the height of the pattern element 971, and the upper and lower ends of the side wall 981 are located at substantially the same positions as the upper and lower ends of the pattern element 971 in the vertical direction.
  • the upper surface of the pattern element 971 is not covered with the thin film formed of the above-mentioned silicon oxide, silicon nitride, silicon oxynitride or the like, and is exposed from the two side walls 981 covering both side surfaces of the pattern element 971. There is.
  • FIG. 4 shows a state in which an insulating film 94, a titanium nitride film 95, a silicon nitride film 96, and an amorphous silicon layer 97 (that is, an intermediate pattern) are formed in this order on the silicon substrate main body 93.
  • the coating film 98 covering the uppermost amorphous silicon layer 97 is formed.
  • the coating film 98 is, for example, a silicon oxide film, a silicon nitride film, or a silicon oxynitride film.
  • the coating film 98 covers the upper surface and side surfaces of each pattern element 971 of the amorphous silicon layer 97, and the upper surface of the silicon nitride film 96 exposed from between the pattern elements 971 over the entire surface.
  • the coating film 98 is formed by, for example, CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), or ALD (Atomic Layer Deposition). Will be
  • dry etching is performed on the coating film 98 shown in FIG.
  • the dry etching is, for example, plasma etching by plasma generated by using a fluorocarbon gas (CxFy) and an oxygen gas.
  • the dry etching is anisotropic etching in which etching proceeds substantially only in the vertical direction.
  • each pattern element 971 of the amorphous silicon layer 97 is maintained in a state of being covered with the coating film 98.
  • the substrate 9 shown in FIG. 3 is formed.
  • the side wall 981 covering the side surface of each pattern element 971 is a portion of the above-mentioned coating film 98 (see FIG. 4) left during dry etching.
  • oxygen (O) is applied to the upper surface of each pattern element 971 exposed from the coating film 98 (that is, the surface of the amorphous silicon layer 97 opposite to the silicon substrate body 93) during the dry etching.
  • Carbon (C), fluorine (F), and the like are incident on the surface, and as shown in FIG. 5, an altered layer 972 is formed on the upper surface of each pattern element 971.
  • the altered layer 972 is provided with a parallel diagonal line different from the portion of the pattern element 971 other than the altered layer 972.
  • the substrate 9 having the amorphous silicon layer 97 and the side wall 981 shown in FIG. 3 is carried into the substrate processing apparatus 1 shown in FIG. 1 and held in a horizontal state by the substrate holding portion 31 (step). S11). As shown in FIG. 5, an altered layer 972 derived from dry etching is formed on the surface of the amorphous silicon layer 97.
  • the ultraviolet lamp 71 is arranged at the irradiation position indicated by the alternate long and short dash line in FIG. 1, and the ultraviolet lamp 71 to the entire upper surface 91 of the substrate 9 are arranged.
  • Ultraviolet rays are emitted toward.
  • the altered layer 972 of the amorphous silicon layer 97 is irradiated with ultraviolet rays. Irradiation of ultraviolet rays from the ultraviolet lamp 71 to the altered layer 972 is performed for a predetermined time.
  • the Si—O bond and the Si—C bond in the altered layer 972 are cleaved.
  • the altered layer 972 is modified to form a modified layer (step S12).
  • the wavelength of the ultraviolet rays irradiated to the amorphous silicon layer 97 is preferably 250 nm or less, as described above.
  • the energy of ultraviolet rays having a wavelength of 250 nm or less is 478 kJ / mol or more, which is larger than the binding energy of Si—O bond of 443 kJ / mol and the binding energy of Si—C bond of 337 kJ / mol. Therefore, by irradiating the altered layer 972 with ultraviolet rays having a wavelength of 250 nm or less, the Si—O bond and the Si—C bond of the altered layer 972 can be suitably cut.
  • the cumulative irradiation amount of ultraviolet rays irradiated from the ultraviolet lamp 71 to the altered layer 972 of the amorphous silicon layer 97 is preferably 1000 mJ / cm 2 or more.
  • the upper limit of the integrated irradiation amount is not particularly limited, but is, for example, 3000 mJ / cm 2 .
  • the integrated irradiation amount is obtained by integrating the ultraviolet irradiation time (sec) with the ultraviolet illuminance (mW / cm 2 ) on the upper surface of the amorphous silicon layer 97.
  • Irradiation of the amorphous silicon layer 97 with ultraviolet rays in step S12 is preferably performed in a low oxygen atmosphere. More preferably, the irradiation of the ultraviolet rays is performed in an atmosphere having an oxygen concentration of 1% by volume or less.
  • the low oxygen atmosphere may be realized by various methods. For example, the low oxygen atmosphere is realized by supplying an inert gas such as nitrogen (N 2 ) gas from the airflow forming portion 12 to the internal space of the housing 11 and making the internal space of the housing 11 an inert gas atmosphere. May be done. The supply of the inert gas to the housing 11 may be performed by a gas supply mechanism other than the airflow forming unit 12. Further, the irradiation of the ultraviolet rays may be performed in a low oxygen atmosphere by supplying the inert gas only to the space between the ultraviolet lamp 71 and the substrate 9 from the side of the space or the like.
  • N 2 nitrogen
  • the ultraviolet lamp 71 is moved from the irradiation position to the retracted position by the lamp elevating mechanism 72. Further, the nozzle rotation mechanism 512 moves the nozzle 51 from the retracted position to the upper side of the substrate 9. Then, the rotation of the substrate 9 by the substrate rotation mechanism 33 is started, and the chemical liquid supply unit 52 is controlled by the supply control unit 63, so that the chemical liquid is supplied from the nozzle 51 to the rotating substrate 9. Specifically, the liquid columnar chemical solution is discharged from the nozzle 51 toward the central portion of the upper surface 91 of the substrate 9. The chemical solution supplied onto the substrate 9 spreads radially outward from the central portion of the substrate 9 by centrifugal force and is applied to the entire upper surface 91 of the substrate 9.
  • the chemical solution is an etching solution such as an aqueous ammonium hydroxide solution, and by supplying the chemical solution to the amorphous silicon layer 97 having the modified layer on the surface, wet etching is performed on the amorphous silicon layer 97 (step S13). ..
  • etching solution such as an aqueous ammonium hydroxide solution
  • the nozzle 51 is reciprocated in the substantially radial direction above the substrate 9 by driving the nozzle rotation mechanism 512 by the supply control unit 63 while the amorphous silicon layer 97 is wet-etched. It may be moved. As a result, the uniformity of applying the etching solution to the entire surface of the substrate 9 can be improved.
  • FIG. 7 is a diagram showing the etching rate of the amorphous silicon layer 97 in the above-mentioned wet etching.
  • the etching rate is based on the case where an aqueous solution of ammonium hydroxide at 65 ° C. prepared by mixing ammonium hydroxide and DIW at a ratio of 1:15 is used as the etching solution.
  • Example 1 in the figure shows the etching rate of the amorphous silicon layer 97 on which the above-mentioned modified layer is formed on the surface.
  • the integrated irradiation amount of ultraviolet rays on the altered layer 972 in step S12 was 1000 mJ / cm 2 .
  • Comparative Example 1 shows the etching rate of the amorphous silicon layer 97 (that is, the amorphous silicon layer before ultraviolet irradiation) in which the altered layer 972 is formed on the surface.
  • Comparative Example 2 shows the etching rate of the altered layer 972 and the amorphous silicon layer 97 having no modified layer formed on the surface (that is, the amorphous silicon layer not subjected to plasma etching).
  • the etching rate of Comparative Example 1 is extremely low, about 3% of the etching rate of Comparative Example 2, because wet etching is inhibited by the altered layer 972. Therefore, in the state of Comparative Example 1, wet etching of the amorphous silicon layer 97 is not substantially performed.
  • the etching rate of Example 1 has recovered to about 43% of the etching rate of Comparative Example 2 because the altered layer 972 has been modified by ultraviolet irradiation. Therefore, wet etching of the amorphous silicon layer 97 can be preferably performed.
  • the etching rate of Example 1 is 10 times or more the etching rate of Comparative Example 1.
  • the substrate processing apparatus 1 by continuing the supply of the chemical solution (that is, the etching solution) from the nozzle 51 for a predetermined time, all the pattern elements 971 of the amorphous silicon layer 97 are removed from between the side walls 981 and the substrate 9 is wetted. Etching is completed.
  • the chemical solution that is, the etching solution
  • the rinse liquid supply unit 53 is controlled by the supply control unit 63, so that the rinse liquid is supplied from the nozzle 51 to the upper surface 91 of the rotating substrate 9, and the substrate 9 is rinsed. (Step S14). After that, the supply of the rinse liquid is stopped, and the substrate 9 is dried (step S15). In the drying process, the rotation speed of the substrate 9 is increased, and the processing liquid remaining on the substrate 9 is scattered from the edge of the substrate 9 to the outside in the radial direction by centrifugal force and is removed from the substrate 9.
  • the treatment liquids such as the chemical liquid and the rinsing liquid scattered radially outward from the substrate 9 during the above steps S13 to S15 are received by the cup portion 4 and discharged to the outside of the housing 11.
  • the substrate 9 for which the drying process has been completed is carried out from the substrate processing device 1 and carried into another device for performing a subsequent process.
  • the side wall 981 is used as a mask to perform dry etching of the silicon nitride film 96.
  • the processes of steps S11 to S15 described above are sequentially performed on the plurality of substrates 9.
  • the above-mentioned substrate treatment method includes a step (step S11) of holding the substrate 9 having the amorphous silicon layer 97 in which the alteration layer 972 derived from dry etching is formed on the surface in a horizontal state, and the alteration layer.
  • a step (step S13) of performing wet etching on the silicon layer 97 is provided.
  • the etching rate of the amorphous silicon layer 97 lowered by the altered layer 972 can be increased.
  • wet etching of the amorphous silicon layer 97 can be efficiently performed.
  • the coating film 98 formed on the surface of the amorphous silicon layer 97 is etched by the plasma generated by using the fluorocarbon gas and the oxygen gas.
  • the Si—O bond and the SiC bond in the altered layer 972 can be cleaved by irradiating the amorphous silicon layer 97 with ultraviolet rays, so that the amorphous silicon layer 97 is reduced by the Si—O bond and the SiC bond.
  • the etching rate of the silicon layer 97 can be increased.
  • the amorphous silicon layer 97 is an intermediate pattern formed in the process of multi-patterning with respect to the substrate 9. Further, in the above dry etching, anisotropic etching is performed on the coating film 98 covering the upper surface and the side surface of the intermediate pattern, so that the upper surface of the intermediate pattern is exposed from the coating film 98 and covers the side surface of the intermediate pattern. The side wall 981 of the coating film 98 is formed. Then, in the wet etching, the intermediate pattern is removed and the side wall 981 remains. In the substrate processing method, the etching rate of the amorphous silicon layer 97 can be increased by irradiating the altered layer 972 with ultraviolet rays, so that the multi-patterning on the substrate 9 can be efficiently performed.
  • the wavelength of the ultraviolet rays irradiated to the altered layer 972 in step S12 is preferably 250 nm or less. Since the energy of ultraviolet rays having a wavelength of 250 nm or less is larger than the binding energy of Si—O bond and the binding energy of Si—C bond, the modification of the altered layer 972 by ultraviolet irradiation (that is, the Si—O bond and Si in the altered layer 972). -C-bond cleavage) can be preferably performed.
  • the integrated irradiation amount of ultraviolet rays in step S12 is preferably 1000 mJ / cm 2 or more.
  • the alteration layer 972 can be suitably modified by ultraviolet irradiation.
  • the irradiation of ultraviolet rays in step S12 is preferably performed in a low oxygen atmosphere. As a result, it is possible to prevent or suppress the absorption of ultraviolet rays in the process of irradiating the amorphous silicon layer 97 by oxygen. As a result, the alteration layer 972 can be efficiently modified by ultraviolet irradiation.
  • the above-mentioned substrate processing device 1 includes a substrate holding unit 31, an ultraviolet irradiation unit 7, and a chemical solution supply unit 52.
  • the substrate holding portion 31 holds the substrate 9 having the amorphous silicon layer 97 on which the altered layer 972 derived from dry etching is formed on the surface in a horizontal state.
  • the ultraviolet irradiation unit 7 modifies the altered layer 972 to form a modified layer by irradiating the altered layer 972 with ultraviolet rays.
  • the chemical solution supply unit 52 supplies the chemical solution to the amorphous silicon layer 97 having the modified layer on the surface, and wet-etches the amorphous silicon layer 97.
  • the etching rate of the amorphous silicon layer 97 lowered by the altered layer 972 can be increased in the same manner as described above.
  • wet etching of the amorphous silicon layer 97 can be efficiently performed.
  • step S12 the irradiation of ultraviolet rays on the amorphous silicon layer 97 in step S12 and the supply of a chemical solution (that is, an etching solution) to the amorphous silicon layer 97 in step S13.
  • a chemical solution that is, an etching solution
  • step S121 the pretreatment for the amorphous silicon layer 97 may be performed.
  • step S121 another chemical solution (for example, hydrofluoric acid (HF)) different from the chemical solution of step S13 is supplied to the amorphous silicon layer 97, whereby the surface of the amorphous silicon layer 97 (that is, the altered layer 972) is supplied.
  • HF hydrofluoric acid
  • the treatment liquid supply unit 5 of the substrate processing apparatus 1 is provided with another chemical liquid that supplies the other chemical liquid to the substrate 9 in addition to the chemical liquid supply unit 52 and the rinse liquid supply unit 53.
  • a supply unit 54 is further provided.
  • the other chemical solution supply unit 54 includes a nozzle 51, an arm 511 (see FIG. 1), a nozzle rotation mechanism 512 (see FIG. 1), another chemical solution supply source 541, and another chemical solution pipe 542.
  • the nozzle 51 is connected to another chemical solution supply source 541 via another chemical solution pipe 542.
  • the nozzle 51 is another chemical discharge unit that discharges the other chemicals (for example, dilute hydrofluoric acid at room temperature having a concentration of 0.3%) sent from the other chemical supply source 541 toward the upper surface 91 of the substrate 9. But also.
  • the nozzle for discharging the other chemical solution may be provided separately from the nozzle for discharging the etching solution described above.
  • the above-mentioned substrate processing method is a step of supplying another chemical solution to the amorphous silicon layer 97 between steps S12 and S13 to remove the surface natural oxide film of the amorphous silicon layer 97 ( It is preferable to further include step S121).
  • step S121 By removing the surface natural oxide film before the wet etching of the amorphous silicon layer 97 in this way, it is possible to prevent or suppress a decrease in the etching rate due to the surface natural oxide film. As a result, wet etching of the amorphous silicon layer 97 can be performed more efficiently.
  • FIG. 10 is a side view showing the configuration of the substrate processing device 1a.
  • the substrate 9 shown in FIG. 3 is subjected to substantially the same processing as that of the substrate processing apparatus 1 shown in FIG. 1, and the amorphous silicon layer 97 is wet-etched.
  • the substrate processing device 1a includes an irradiation unit 14, a liquid processing unit 15, a control unit 6, and a housing 11.
  • the irradiation unit 14 and the liquid treatment unit 15 are arranged inside one housing 11.
  • the control unit 6 has the same structure as the control unit 6 shown in FIG. As described above, the control unit 6 includes a storage unit 61, an irradiation control unit 62, and a supply control unit 63.
  • the irradiation unit 14 includes a first substrate holding portion 31a and an ultraviolet irradiation unit 7a.
  • the first substrate holding portion 31a has substantially the same structure as the substrate holding portion 31 shown in FIG. 1, and holds the substrate 9 in the horizontal state from below. In the example shown in FIG. 10, the irradiation unit 14 is not provided with the substrate rotation mechanism 33, and the first substrate holding portion 31a does not rotate.
  • the ultraviolet irradiation unit 7a includes an ultraviolet lamp 71a and an irradiation area scanning mechanism 73.
  • the ultraviolet lamp 71a is a substantially rod-shaped lamp extending substantially linearly in the direction perpendicular to the paper surface in the drawing.
  • the ultraviolet rays emitted from the ultraviolet lamp 71a are applied to the band-shaped or linear irradiation region extending substantially linearly in the direction perpendicular to the paper surface on the substrate 9.
  • the irradiation region is a part of the upper surface 91 of the substrate 9, and crosses the upper surface 91 of the substrate 9 in a direction perpendicular to the paper surface.
  • the ultraviolet lamp 71a an excimer lamp, a low-pressure mercury lamp, or the like is used in the same manner as the above-mentioned ultraviolet lamp 71.
  • the wavelength of the ultraviolet rays emitted from the ultraviolet lamp 71a is preferably 250 nm or less, more preferably 172 nm or less.
  • the lower limit of the wavelength of the ultraviolet rays is not particularly limited, but is, for example, 120 nm or more.
  • the irradiation area scanning mechanism 73 scans the irradiation area on the substrate 9 in the left-right direction in the drawing by moving the ultraviolet lamp 71a above the substrate 9 in the left-right direction in the drawing.
  • the irradiation area scanning mechanism 73 includes, for example, an electric linear motor or a ball screw and an electric rotary motor.
  • the irradiation control unit 62 of the control unit 6 controls the irradiation region scanning mechanism 73 to control the moving speed of the ultraviolet lamp 71a and control the scanning speed of the ultraviolet irradiation region on the substrate 9. To. While the ultraviolet lamp 71a is moving, the output from the ultraviolet lamp 71a is maintained substantially constant.
  • the liquid treatment unit 15 has the same as the substrate processing apparatus 1 shown in FIG. 1, except that the ultraviolet irradiation unit 7 is omitted and the second substrate holding unit 31b having the same structure as the substrate holding unit 31 is provided. It has almost the same structure.
  • the same reference numerals are given to the configurations corresponding to the respective configurations of the substrate processing apparatus 1 in the liquid processing unit 15.
  • the first substrate holding portion 31a and the second substrate holding portion 31b form a substrate holding portion 31 that holds the substrate 9 in a horizontal state.
  • the nozzle rotation mechanism 512 is a discharge position scanning mechanism that scans the discharge position of the chemical liquid on the upper surface 91 of the substrate 9.
  • the supply control unit 63 of the control unit 6 controls the nozzle rotation mechanism 512 to control the moving speed of the nozzle 51 and control the scanning speed of the chemical liquid discharge position on the substrate 9.
  • the processing flow of the substrate 9 in the substrate processing apparatus 1a is substantially the same as in steps S11 to S15 shown in FIG.
  • the substrate 9 having the amorphous silicon layer 97 and the side wall 981 shown in FIG. 3 is carried into the substrate processing apparatus 1a, and is carried by the first substrate holding portion 31a of the irradiation unit 14. It is held in a horizontal state (step S11).
  • the altered layer 972 (see FIG. 5) derived from dry etching is formed on the surface of the amorphous silicon layer 97.
  • the irradiation control unit 62 controls the ultraviolet irradiation unit 7a of the irradiation unit 14, so that the altered layer 972 of the amorphous silicon layer 97 is irradiated with ultraviolet rays.
  • ultraviolet rays are emitted from the ultraviolet lamp 71a and irradiate an irradiation region extending substantially linearly on the upper surface 91 of the substrate 9.
  • the irradiation region scanning mechanism 73 scans the ultraviolet lamp 71a above the substrate 9 from the left side to the right side in the drawing, so that the entire upper surface 91 of the substrate 9 is irradiated with ultraviolet rays.
  • the Si—O bond and the Si—C bond in the altered layer 972 are cleaved to modify the altered layer 972, and the above-mentioned modified layer is generated (step S12).
  • the wavelength of the ultraviolet rays irradiated to the amorphous silicon layer 97 is preferably 250 nm or less as described above.
  • the modification of the altered layer 972 by irradiation with ultraviolet rays (that is, the cleavage of the Si—O bond and the Si—C bond in the altered layer 972) can be preferably performed.
  • the cumulative irradiation amount of ultraviolet rays irradiated from the ultraviolet lamp 71a to the altered layer 972 of the amorphous silicon layer 97 is preferably 1000 mJ / cm 2 or more as described above. Thereby, the alteration layer 972 can be suitably modified by ultraviolet irradiation.
  • Irradiation of the amorphous silicon layer 97 with ultraviolet rays in step S12 is preferably performed in a low oxygen atmosphere. Thereby, similarly to the above, it is possible to prevent or suppress the ultraviolet rays in the process of irradiating the amorphous silicon layer 97 from being absorbed by oxygen. As a result, the alteration layer 972 can be efficiently modified by ultraviolet irradiation.
  • the ultraviolet lamp 71a reciprocates in the left-right direction above the substrate 9, so that the substrate 9 may be scanned for ultraviolet rays a plurality of times.
  • step S12 the substrate 9 is transported from the irradiation unit 14 to the liquid treatment unit 15 by a transport mechanism (not shown) such as a robot hand, and is held in a horizontal state by the second substrate holding portion 31b of the liquid treatment unit 15. Will be done. Subsequently, the rotation of the substrate 9 by the substrate rotation mechanism 33 is started, and the chemical solution supply unit 52 (see FIG. 2) is controlled by the supply control unit 63, so that the chemical solution (from the nozzle 51) with respect to the rotating substrate 9 (see FIG. 2). That is, the etching solution) is supplied.
  • the nozzle 51 is reciprocated in the substantially radial direction above the substrate 9 by the nozzle rotation mechanism 512, and the discharge position of the chemical solution on the upper surface 91 of the substrate 9 is scanned. Then, by supplying the chemical solution to the amorphous silicon layer 97 having the modified layer on the surface, wet etching is performed on the amorphous silicon layer 97 (step S13).
  • the rinse liquid is supplied from the nozzle 51 to the upper surface 91 of the rotating substrate 9, and the substrate 9 is rinsed (step S14). After that, the supply of the rinse liquid is stopped, and the substrate 9 is dried (step S15).
  • the processes of steps S11 to S15 described above are sequentially performed on the plurality of substrates 9.
  • the above-mentioned step S121 may be performed between the steps S12 and S13.
  • the etching rate of the amorphous silicon layer 97 lowered by the altered layer 972 can be increased, similarly to the substrate processing apparatus 1 shown in FIG. Specifically, the etching rate of the amorphous silicon layer 97 can be increased by breaking the Si—O bond and the SiC bond in the altered layer 972. As a result, wet etching of the amorphous silicon layer 97 can be efficiently performed. As a result, the multi-patterning on the substrate 9 can be efficiently performed.
  • the ultraviolet irradiation region on the substrate 9 is scanned in step S12.
  • the scanning speed of the ultraviolet irradiation region with respect to the region of the amorphous silicon layer 97 in which the alteration layer 972 is thick is set to be low in the alteration layer 972. It is made smaller than the scanning speed of the ultraviolet irradiation area with respect to the area.
  • the integrated irradiation amount of ultraviolet rays for the region where the altered layer 972 is thick becomes larger than the integrated irradiation amount of ultraviolet rays for the region where the altered layer 972 is thin.
  • the uniformity of modification of the altered layer 972 in the entire amorphous silicon layer 97 can be improved.
  • the improvement in the uniformity of the modification can be confirmed by the improvement in the uniformity of the etching rate in the entire amorphous silicon layer 97.
  • the output of the ultraviolet lamp 71a is controlled by the irradiation control unit 62, and the illuminance of the ultraviolet rays for the region where the alteration layer 972 is thick may be larger than the illuminance of the ultraviolet rays for the region where the alteration layer 972 is thin.
  • the integrated irradiation amount of ultraviolet rays for the region where the altered layer 972 is thick and the integrated irradiation amount of ultraviolet rays for the region where the altered layer 972 is thin among the amorphous silicon layers 97. Can be larger than.
  • the uniformity of modification of the altered layer 972 in the entire amorphous silicon layer 97 can be improved.
  • the discharge position of the chemical solution on the substrate 9 is scanned in step S13.
  • the nozzle rotation mechanism 512 that is, the discharge position scanning mechanism
  • the supply control unit 63 controls the supply control unit 63, so that the scanning speed of the chemical liquid discharge position with respect to the region where the altered layer 972 is thick in the amorphous silicon layer 97.
  • the alteration layer 972 is made smaller than the scanning speed of the ejection position of the chemical solution with respect to the thin region.
  • the discharge time of the chemical solution to the region where the altered layer 972 is thick becomes longer than the discharge time of the chemical solution to the region where the altered layer 972 is thin.
  • the uniformity of wet etching for example, the uniformity of the progress rate of wet etching
  • the irradiation of the amorphous silicon layer 97 with ultraviolet rays in step S12 does not necessarily have to be performed in a low oxygen atmosphere, and may be performed in an air atmosphere, for example.
  • the integrated irradiation amount of ultraviolet rays to the amorphous silicon layer 97 may be appropriately changed according to the type and thickness of the altered layer 972.
  • the integrated irradiation amount of ultraviolet rays on the amorphous silicon layer 97 may be less than 1000 mJ / cm 2 .
  • the wavelength of the ultraviolet rays irradiated to the amorphous silicon layer 97 may be appropriately changed according to the type and thickness of the altered layer 972.
  • the wavelength of the ultraviolet rays applied to the amorphous silicon layer 97 may be longer than 250 nm.
  • the amorphous silicon layer 97 of the substrate 9 processed in the substrate processing devices 1 and 1a does not necessarily have to be an intermediate pattern formed in the process of multi-patterning with respect to the substrate 9, and the amorphous silicon subjected to processing other than multi-patterning It may be a layer.
  • the altered layer 972 modified in the substrate processing apparatus 1, 1a is not necessarily limited to the one formed during plasma etching with plasma generated using fluorocarbon gas and oxygen gas, and other treatments are performed.
  • the surface of the amorphous silicon layer 97 may be altered by this.
  • the amorphous silicon layer 97 may be irradiated with ultraviolet rays by the ultraviolet irradiation unit 7a shown in FIG. Further, in the substrate processing apparatus 1a, the irradiation of the amorphous silicon layer 97 with ultraviolet rays may be performed by the ultraviolet irradiation unit 7 shown in FIG. Further, in the substrate processing device 1a, the irradiation unit 14 and the liquid processing unit 15 may be housed in different housings.
  • the above-mentioned substrate processing device 1 is used for a liquid crystal display device, a glass substrate used for a flat display device (Flat Panel Display) such as an organic EL (Electro Luminescence) display device, or another display device. It may be used for processing a glass substrate to be processed. Further, the above-mentioned substrate processing device 1 may be used for processing an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, a photomask substrate, a ceramic substrate, a solar cell substrate, and the like.
  • a flat display device such as an organic EL (Electro Luminescence) display device
  • the above-mentioned substrate processing device 1 may be used for processing an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, a photomask substrate, a ceramic substrate, a solar cell substrate, and the like.

Abstract

This substrate processing method comprises: a step (step S11) in which a substrate having an amorphous silicon layer is retained in a horizontal condition, said amorphous silicon layer having a dry etching-derived altered layer formed on a surface thereof; a step (step S12) in which the altered layer is irradiated with ultraviolet rays, thereby modifying the altered layer to create a modified layer; and a step (step S13) in which a chemical solution is supplied to the amorphous silicon layer that has the modified layer on the surface thereof, and wet etching of the amorphous silicon layer is performed. Consequently, wet etching of the amorphous silicon layer can be performed efficiently.

Description

基板処理方法および基板処理装置Substrate processing method and substrate processing equipment
 本発明は、基板処理方法および基板処理装置に関する。 The present invention relates to a substrate processing method and a substrate processing apparatus.
 近年、半導体基板(以下、単に「基板」と呼ぶ。)のパターンの微細化に伴い、マルチパターニングによるパターン形成が行われている。マルチパターニングでは、基板上に形成されたアモルファスシリコン等の中間パターンの上面および側面が、シリコン酸化物(SiOx)等の被覆膜で被覆され、プラズマエッチングによる異方性エッチングにより、中間パターン上面の被覆膜が除去される。そして、ドライエッチングにより中間パターンを除去することにより、中間パターン側面を被覆していた被覆膜(いわゆる、サイドウォール)が、中間パターンよりも微細なパターンとして残置される。その後、当該サイドウォールをマスクとしてドライエッチングが行われることにより、微細なパターンが形成される。 In recent years, with the miniaturization of patterns of semiconductor substrates (hereinafter, simply referred to as "substrates"), pattern formation by multi-patterning has been performed. In multi-patterning, the upper surface and side surfaces of an intermediate pattern such as amorphous silicon formed on a substrate are coated with a coating film such as silicon oxide (SiOx), and the upper surface of the intermediate pattern is subjected to anisotropic etching by plasma etching. The coating film is removed. Then, by removing the intermediate pattern by dry etching, the coating film (so-called sidewall) covering the side surface of the intermediate pattern is left as a finer pattern than the intermediate pattern. After that, dry etching is performed using the sidewall as a mask to form a fine pattern.
 一方、特開2018-19089号公報(文献1)では、基板上のポリシリコン膜にTMAH(水酸化テトラメチルアンモニウム)を含む薬液を供給することにより、当該ポリシリコン膜をウェットエッチングする技術が開示されている。 On the other hand, Japanese Patent Application Laid-Open No. 2018-19089 (Reference 1) discloses a technique for wet-etching the polysilicon film by supplying a chemical solution containing TMAH (tetramethylammonium hydroxide) to the polysilicon film on the substrate. Has been done.
 ところで、上述のマルチパターニングでは、ドライエッチングにより中間パターンを除去する際に、ポリマー状の残渣がサイドウォール間に残り、その後の成膜工程およびエッチング工程等において、パターンの形成不良を生じさせるおそれがある。そこで、基板上に薬液を供給し、アモルファスシリコンの中間パターンをウェットエッチングにより除去することが検討されている。 By the way, in the above-mentioned multi-patterning, when the intermediate pattern is removed by dry etching, a polymer-like residue may remain between the sidewalls, which may cause poor pattern formation in the subsequent film forming step and etching step. is there. Therefore, it has been studied to supply a chemical solution on the substrate and remove the intermediate pattern of amorphous silicon by wet etching.
 しかしながら、ウェットエッチングによりアモルファスシリコンの中間パターンを除去しようとすると、そのエッチングレートは、通常のアモルファスシリコンのウェットエッチングにおけるエッチングレートに比べて非常に低くなることがわかった。 However, when trying to remove the intermediate pattern of amorphous silicon by wet etching, it was found that the etching rate was much lower than the etching rate in normal wet etching of amorphous silicon.
 そこで、本願発明者は、鋭意研究の結果、アモルファスシリコンの中間パターン(すなわち、アモルファスシリコン層)除去の前工程であるプラズマエッチングの際に、シリコン酸化物等の被覆膜から露出した中間パターン上面に酸素や炭素等が入射し、当該入射による上面の変質に起因して上記エッチングレートの低下が生じている、という知見を得た。 Therefore, as a result of diligent research, the inventor of the present application has found that the upper surface of the intermediate pattern exposed from the coating film such as silicon oxide during plasma etching, which is a pre-process for removing the intermediate pattern (that is, the amorphous silicon layer) of amorphous silicon. It was found that oxygen, carbon, etc. were incident on the silicon, and the etching rate was lowered due to the deterioration of the upper surface due to the incident.
 本発明は、基板処理方法に向けられており、アモルファスシリコン層のウェットエッチングを効率良く行うことを目的としている。 The present invention is directed to a substrate processing method, and an object of the present invention is to efficiently perform wet etching of an amorphous silicon layer.
 本発明の好ましい一の形態に係る基板処理方法は、a)ドライエッチング由来の変質層が表面に形成されたアモルファスシリコン層を有する基板を水平状態で保持する工程と、b)前記変質層に紫外線を照射することにより前記変質層を改質して改質層を生成する工程と、c)前記改質層を表面に有する前記アモルファスシリコン層に薬液を供給して前記アモルファスシリコン層に対するウェットエッチングを行う工程とを備える。これにより、アモルファスシリコン層のウェットエッチングを効率良く行うことができる。 The substrate treatment method according to one preferred embodiment of the present invention includes a) a step of holding a substrate having an amorphous silicon layer having an altered layer derived from dry etching formed on the surface in a horizontal state, and b) ultraviolet rays on the altered layer. A step of modifying the altered layer to form a modified layer by irradiating with c) a chemical solution is supplied to the amorphous silicon layer having the modified layer on the surface to perform wet etching on the amorphous silicon layer. It is provided with a process to be performed. As a result, wet etching of the amorphous silicon layer can be efficiently performed.
 好ましくは、前記ドライエッチングでは、フルオロカーボン系ガスおよび酸素ガスを用いて生成されたプラズマにより、前記アモルファスシリコン層の表面に形成された被覆膜のエッチングが行われる。 Preferably, in the dry etching, the coating film formed on the surface of the amorphous silicon layer is etched by the plasma generated by using the fluorocarbon gas and the oxygen gas.
 好ましくは、前記アモルファスシリコン層は、前記基板に対するマルチパターニング途上で形成された中間パターンである。前記ドライエッチングでは、前記中間パターンの上面および側面を覆う前記被覆膜に対する異方性エッチングが行われることにより、前記中間パターンの前記上面が前記被覆膜から露出し、前記中間パターンの前記側面を覆う前記被覆膜の側壁が形成される。前記ウェットエッチングでは、前記中間パターンが除去されて前記側壁が残る。 Preferably, the amorphous silicon layer is an intermediate pattern formed in the process of multi-patterning with respect to the substrate. In the dry etching, anisotropic etching is performed on the coating film covering the upper surface and the side surface of the intermediate pattern, so that the upper surface of the intermediate pattern is exposed from the coating film and the side surface of the intermediate pattern is exposed. A side wall of the coating film is formed to cover the coating film. In the wet etching, the intermediate pattern is removed and the side wall remains.
 好ましくは、前記紫外線の波長は、250nm以下である。 Preferably, the wavelength of the ultraviolet rays is 250 nm or less.
 好ましくは、前記b)工程における前記紫外線の積算照射量は、1000mJ/cm以上である。 Preferably, the integrated irradiation amount of the ultraviolet rays in the step b) is 1000 mJ / cm 2 or more.
 好ましくは、前記b)工程における前記紫外線の照射は低酸素雰囲気にて行われる。 Preferably, the irradiation of the ultraviolet rays in the step b) is performed in a low oxygen atmosphere.
 好ましくは、前記b)工程において、前記基板上における前記紫外線の照射領域が走査される。前記アモルファスシリコン層のうち、前記変質層が厚い領域に対する前記紫外線の積算照射量は、前記変質層が薄い領域に対する前記紫外線の積算照射量よりも大きい。 Preferably, in the step b), the ultraviolet irradiation region on the substrate is scanned. Among the amorphous silicon layers, the integrated irradiation amount of the ultraviolet rays for the region where the altered layer is thick is larger than the integrated irradiation amount of the ultraviolet rays for the region where the altered layer is thin.
 好ましくは、前記c)工程において、前記基板上における前記薬液の吐出位置が走査される。前記アモルファスシリコン層のうち、前記改質層が厚い領域に対する前記薬液の吐出時間は、前記改質層が薄い領域に対する前記薬液の吐出時間よりも長い。 Preferably, in the step c), the discharge position of the chemical solution on the substrate is scanned. Of the amorphous silicon layers, the discharge time of the chemical solution for the region where the modified layer is thick is longer than the discharge time of the chemical solution for the region where the modified layer is thin.
 好ましくは、前記基板処理方法は、前記b)工程と前記c)工程との間に、前記アモルファスシリコン層に他の薬液を供給して前記アモルファスシリコン層の表面自然酸化膜を除去する工程をさらに備える。 Preferably, the substrate processing method further comprises a step of supplying another chemical solution to the amorphous silicon layer to remove the surface natural oxide film of the amorphous silicon layer between the steps b) and the step c). Be prepared.
 本発明は、基板処理装置にも向けられている。本発明の好ましい一の形態に係る基板処理装置は、ドライエッチング由来の変質層が表面に形成されたアモルファスシリコン層を有する基板を水平状態で保持する基板保持部と、前記変質層に紫外線を照射することにより前記変質層を改質して改質層を生成する紫外線照射部と、前記改質層を表面に有する前記アモルファスシリコン層に薬液を供給して前記アモルファスシリコン層に対するウェットエッチングを行う薬液供給部とを備える。これにより、アモルファスシリコン層のウェットエッチングを効率良く行うことができる。 The present invention is also directed to a substrate processing apparatus. In the substrate processing apparatus according to a preferred embodiment of the present invention, a substrate holding portion that holds a substrate having an amorphous silicon layer having an altered layer derived from dry etching formed on the surface in a horizontal state and the altered layer are irradiated with ultraviolet rays. A chemical solution that supplies a chemical solution to an ultraviolet irradiation section that modifies the altered layer to generate a modified layer and an amorphous silicon layer having the modified layer on the surface to perform wet etching on the amorphous silicon layer. It has a supply unit. As a result, wet etching of the amorphous silicon layer can be efficiently performed.
 好ましくは、前記ドライエッチングでは、フルオロカーボン系ガスおよび酸素ガスを用いて生成されたプラズマにより、前記アモルファスシリコン層の表面に形成された被覆膜のエッチングが行われる。 Preferably, in the dry etching, the coating film formed on the surface of the amorphous silicon layer is etched by the plasma generated by using the fluorocarbon gas and the oxygen gas.
 好ましくは、前記アモルファスシリコン層は、前記基板に対するマルチパターニング途上で形成された中間パターンである。前記ドライエッチングでは、前記中間パターンの上面および側面を覆う前記被覆膜に対する異方性エッチングが行われることにより、前記中間パターンの前記上面が前記被覆膜から露出し、前記中間パターンの前記側面を覆う前記被覆膜の側壁が形成される。前記ウェットエッチングでは、前記中間パターンが除去されて前記側壁が残る。 Preferably, the amorphous silicon layer is an intermediate pattern formed in the process of multi-patterning with respect to the substrate. In the dry etching, anisotropic etching is performed on the coating film covering the upper surface and the side surface of the intermediate pattern, so that the upper surface of the intermediate pattern is exposed from the coating film and the side surface of the intermediate pattern is exposed. A side wall of the coating film is formed to cover the coating film. In the wet etching, the intermediate pattern is removed and the side wall remains.
 好ましくは、前記紫外線の波長は、250nm以下である。 Preferably, the wavelength of the ultraviolet rays is 250 nm or less.
 好ましくは、前記アモルファスシリコン層に対する前記紫外線の積算照射量は、1000mJ/cm以上である。 Preferably, the integrated irradiation amount of the ultraviolet rays on the amorphous silicon layer is 1000 mJ / cm 2 or more.
 好ましくは、前記アモルファスシリコン層に対する前記紫外線の照射は低酸素雰囲気にて行われる。 Preferably, the irradiation of the ultraviolet rays on the amorphous silicon layer is performed in a low oxygen atmosphere.
 好ましくは、前記基板処理装置は、前記紫外線照射部を制御する照射制御部をさらに備える。前記紫外線照射部は、前記基板に前記紫外線を照射する紫外線ランプと、前記基板上における前記紫外線の照射領域を走査する照射領域走査機構とを備える。前記照射制御部が前記紫外線ランプおよび前記照射領域走査機構の少なくとも一方を制御することにより、前記アモルファスシリコン層のうち、前記変質層が厚い領域に対する前記紫外線の積算照射量が、前記変質層が薄い領域に対する前記紫外線の積算照射量よりも大きくされる。 Preferably, the substrate processing apparatus further includes an irradiation control unit that controls the ultraviolet irradiation unit. The ultraviolet irradiation unit includes an ultraviolet lamp that irradiates the substrate with the ultraviolet rays, and an irradiation region scanning mechanism that scans the ultraviolet irradiation region on the substrate. By controlling at least one of the ultraviolet lamp and the irradiation region scanning mechanism, the irradiation control unit controls the integrated irradiation amount of the ultraviolet rays to the region of the amorphous silicon layer where the alteration layer is thick, and the alteration layer is thin. It is made larger than the integrated irradiation amount of the ultraviolet rays for the region.
 好ましくは、前記基板処理装置は、前記薬液供給部を制御する供給制御部をさらに備える。前記薬液供給部は、前記基板に前記薬液を吐出する薬液吐出部と、前記基板上における前記薬液の吐出位置を走査する吐出位置走査機構とを備える。前記供給制御部が前記吐出位置走査機構を制御することにより、前記アモルファスシリコン層のうち、前記改質層が厚い領域に対する前記薬液の吐出時間が、前記改質層が薄い領域に対する前記薬液の吐出時間よりも長くされる。 Preferably, the substrate processing apparatus further includes a supply control unit that controls the chemical solution supply unit. The chemical solution supply unit includes a chemical solution discharge unit that discharges the chemical solution onto the substrate, and a discharge position scanning mechanism that scans the discharge position of the chemical solution on the substrate. By controlling the discharge position scanning mechanism by the supply control unit, the discharge time of the chemical solution to the region where the modified layer is thick and the discharge time of the chemical solution to the region where the modified layer is thin in the amorphous silicon layer Be longer than time.
 好ましくは、前記基板処理装置は、前記アモルファスシリコン層に対する前記紫外線の照射と前記薬液の供給との間において、前記アモルファスシリコン層に他の薬液を供給して前記アモルファスシリコン層の表面自然酸化膜を除去する他の薬液供給部をさらに備える。 Preferably, the substrate processing apparatus supplies another chemical solution to the amorphous silicon layer between the irradiation of the amorphous silicon layer with the ultraviolet rays and the supply of the chemical solution to form a natural oxide film on the surface of the amorphous silicon layer. Further provided with another chemical supply unit to be removed.
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。 The above-mentioned purpose and other purposes, features, embodiments and advantages will be clarified by the detailed description of the invention described below with reference to the accompanying drawings.
第1の実施の形態に係る基板処理装置の側面図である。It is a side view of the substrate processing apparatus which concerns on 1st Embodiment. 処理液供給部を示すブロック図である。It is a block diagram which shows the processing liquid supply part. 基板の上面近傍の部位を示す断面図である。It is sectional drawing which shows the part near the upper surface of a substrate. 基板の上面近傍の部位を示す断面図である。It is sectional drawing which shows the part near the upper surface of a substrate. 基板の上面近傍の部位を示す断面図である。It is sectional drawing which shows the part near the upper surface of a substrate. 基板の処理の流れの一例を示す図である。It is a figure which shows an example of the processing flow of a substrate. アモルファスシリコン層のエッチングレートを示す図である。It is a figure which shows the etching rate of an amorphous silicon layer. 基板の処理の流れの一部を示す図である。It is a figure which shows a part of the processing flow of a substrate. 処理液供給部を示すブロック図である。It is a block diagram which shows the processing liquid supply part. 第2の実施の形態に係る基板処理装置の側面図である。It is a side view of the substrate processing apparatus which concerns on 2nd Embodiment.
 図1は、本発明の第1の実施の形態に係る基板処理装置1の構成を示す側面図である。基板処理装置1は、半導体基板9(以下、単に「基板9」という。)を1枚ずつ処理する枚葉式の装置である。基板処理装置1は、基板9に処理液を供給して処理を行う。図1では、基板処理装置1の構成の一部を断面にて示す。 FIG. 1 is a side view showing the configuration of the substrate processing apparatus 1 according to the first embodiment of the present invention. The substrate processing apparatus 1 is a single-wafer processing apparatus that processes semiconductor substrates 9 (hereinafter, simply referred to as “substrates 9”) one by one. The substrate processing apparatus 1 supplies a processing liquid to the substrate 9 to perform processing. In FIG. 1, a part of the configuration of the substrate processing apparatus 1 is shown in cross section.
 基板処理装置1は、基板保持部31と、基板回転機構33と、カップ部4と、処理液供給部5と、制御部6と、紫外線照射部7と、ハウジング11と、を備える。基板保持部31、基板回転機構33、カップ部4および紫外線照射部7等は、ハウジング11の内部空間に収容される。図1では、ハウジング11を断面にて描いている(図10においても同様)。ハウジング11の天蓋部には、当該内部空間にガスを供給して下方に流れる気流(いわゆる、ダウンフロー)を形成する気流形成部12が設けられる。気流形成部12としては、例えば、FFU(ファン・フィルタ・ユニット)が利用される。 The substrate processing device 1 includes a substrate holding unit 31, a substrate rotating mechanism 33, a cup unit 4, a processing liquid supply unit 5, a control unit 6, an ultraviolet irradiation unit 7, and a housing 11. The substrate holding portion 31, the substrate rotating mechanism 33, the cup portion 4, the ultraviolet irradiation portion 7, and the like are housed in the internal space of the housing 11. In FIG. 1, the housing 11 is drawn in cross section (the same applies to FIG. 10). The canopy portion of the housing 11 is provided with an airflow forming portion 12 that supplies gas to the internal space to form an airflow (so-called downflow) that flows downward. As the airflow forming unit 12, for example, an FFU (fan filter unit) is used.
 制御部6は、ハウジング11の外部に配置され、基板保持部31、基板回転機構33、処理液供給部5および紫外線照射部7等を制御する。制御部6は、例えば、プロセッサと、メモリと、入出力部と、バスとを備える通常のコンピュータを含む。バスは、プロセッサ、メモリおよび入出力部を接続する信号回路である。メモリは、プログラムおよび各種情報を記憶する。プロセッサは、メモリに記憶されるプログラム等に従って、メモリ等を利用しつつ様々な処理(例えば、数値計算)を実行する。入出力部は、操作者からの入力を受け付けるキーボードおよびマウス、プロセッサからの出力等を表示するディスプレイ、並びに、プロセッサからの出力等を送信する送信部を備える。 The control unit 6 is arranged outside the housing 11 and controls the substrate holding unit 31, the substrate rotation mechanism 33, the processing liquid supply unit 5, the ultraviolet irradiation unit 7, and the like. The control unit 6 includes, for example, a normal computer including a processor, a memory, an input / output unit, and a bus. A bus is a signal circuit that connects a processor, memory, and an input / output unit. The memory stores programs and various information. The processor executes various processes (for example, numerical calculation) while using the memory or the like according to a program or the like stored in the memory. The input / output unit includes a keyboard and mouse that receive input from the operator, a display that displays output from the processor, and a transmission unit that transmits output from the processor.
 制御部6は、記憶部61と、照射制御部62と、供給制御部63とを備える。記憶部61は、主にメモリにより実現され、基板9の処理レシピ等の各種情報を記憶する。照射制御部62は、主にプロセッサにより実現され、記憶部61に格納されている処理レシピ等に従って、紫外線照射部7等を制御する。供給制御部63は、主にプロセッサにより実現され、記憶部61に格納されている処理レシピ等に従って、処理液供給部5等を制御する。 The control unit 6 includes a storage unit 61, an irradiation control unit 62, and a supply control unit 63. The storage unit 61 is mainly realized by a memory and stores various information such as processing recipes of the substrate 9. The irradiation control unit 62 is mainly realized by a processor and controls the ultraviolet irradiation unit 7 and the like according to a processing recipe and the like stored in the storage unit 61. The supply control unit 63 is mainly realized by the processor and controls the processing liquid supply unit 5 and the like according to the processing recipe and the like stored in the storage unit 61.
 基板保持部31は、水平状態の基板9の下側の主面(すなわち、下面)と対向し、基板9を下側から保持する。基板保持部31は、例えば、基板9を機械的に支持するメカニカルチャックである。基板保持部31は、上下方向を向く中心軸J1を中心として回転可能に設けられる。 The substrate holding portion 31 faces the main surface (that is, the lower surface) on the lower side of the substrate 9 in the horizontal state, and holds the substrate 9 from the lower side. The substrate holding portion 31 is, for example, a mechanical chuck that mechanically supports the substrate 9. The substrate holding portion 31 is rotatably provided about a central axis J1 that faces in the vertical direction.
 基板保持部31は、保持部本体と、複数のチャックピンとを備える。保持部本体は、基板9の下面と対向する略円板状の部材である。複数のチャックピンは、保持部本体の周縁部にて中心軸J1を中心とする周方向(以下、単に「周方向」とも呼ぶ。)に略等角度間隔にて配置される。各チャックピンは、保持部本体の上面から上方へと突出し、基板9の下面の周縁領域および側面に接触して基板9を支持する。なお、基板保持部31は、基板9の下面中央部を吸着して保持するバキュームチャック等であってもよい。 The board holding portion 31 includes a holding portion main body and a plurality of chuck pins. The holding portion main body is a substantially disk-shaped member facing the lower surface of the substrate 9. The plurality of chuck pins are arranged at substantially equal angular intervals in the circumferential direction (hereinafter, also simply referred to as “circumferential direction”) about the central axis J1 at the peripheral edge of the holding portion main body. Each chuck pin projects upward from the upper surface of the holding portion main body and contacts the peripheral region and the side surface of the lower surface of the substrate 9 to support the substrate 9. The substrate holding portion 31 may be a vacuum chuck or the like that attracts and holds the central portion of the lower surface of the substrate 9.
 基板回転機構33は、基板保持部31の下方に配置される。基板回転機構33は、中心軸J1を中心として基板9を基板保持部31と共に回転する。基板回転機構33は、例えば、回転シャフトが基板保持部31の保持部本体に接続された電動回転式モータを備える。基板回転機構33は、中空モータ等の他の構造を有していてもよい。 The board rotation mechanism 33 is arranged below the board holding portion 31. The substrate rotation mechanism 33 rotates the substrate 9 together with the substrate holding portion 31 about the central axis J1. The substrate rotation mechanism 33 includes, for example, an electric rotary motor in which a rotation shaft is connected to a holding portion main body of the substrate holding portion 31. The substrate rotation mechanism 33 may have another structure such as a hollow motor.
 処理液供給部5は、基板9に複数種類の処理液を個別に供給する。当該複数種類の処理液には、例えば、後述する薬液およびリンス液が含まれる。処理液供給部5は、ノズル51と、アーム511と、ノズル回転機構512とを備える。ノズル51は、基板9の上方から基板9の上側の主面(以下、「上面91」という。)に向けて処理液を供給する。ノズル51は、例えば、テフロン(登録商標)等の高い耐薬品性を有する樹脂により形成される。 The treatment liquid supply unit 5 individually supplies a plurality of types of treatment liquids to the substrate 9. The plurality of types of treatment solutions include, for example, chemical solutions and rinse solutions described later. The processing liquid supply unit 5 includes a nozzle 51, an arm 511, and a nozzle rotation mechanism 512. The nozzle 51 supplies the processing liquid from above the substrate 9 toward the main surface (hereinafter, referred to as “upper surface 91”) on the upper side of the substrate 9. The nozzle 51 is formed of, for example, a resin having high chemical resistance such as Teflon (registered trademark).
 アーム511は、略水平方向に延びる棒状の部材であり、ノズル51を支持する。ノズル回転機構512は、中心軸J1を中心とする径方向(以下、単に「径方向」とも呼ぶ。)において、カップ部4の外側に配置される。ノズル回転機構512は、例えば、上下方向に延びる回転シャフトを有する電動回転式モータを備える。当該回転シャフトは、アーム511の一方の端部に接続される。ノズル回転機構512は、上下方向を向く回転軸を中心としてアーム511を回転することにより、ノズル51を水平方向に移動して、基板9の上方からカップ部4の径方向外側の退避位置へと退避させる。 The arm 511 is a rod-shaped member extending in a substantially horizontal direction and supports the nozzle 51. The nozzle rotation mechanism 512 is arranged outside the cup portion 4 in the radial direction (hereinafter, also simply referred to as “diameter direction”) about the central axis J1. The nozzle rotation mechanism 512 includes, for example, an electric rotary motor having a rotary shaft extending in the vertical direction. The rotating shaft is connected to one end of the arm 511. The nozzle rotation mechanism 512 moves the nozzle 51 in the horizontal direction by rotating the arm 511 around a rotation axis facing in the vertical direction, and moves from the upper side of the substrate 9 to the retracted position on the radial outer side of the cup portion 4. Evacuate.
 カップ部4は、中心軸J1を中心とする環状の部材である。カップ部4は、基板9および基板保持部31の周囲において全周に亘って配置され、基板9および基板保持部31の側方および下方を覆う。カップ部4は、回転中の基板9から周囲に向かって飛散する処理液等の液体を受ける受液容器である。カップ部4の内側面は、例えば撥水性材料により形成される。カップ部4は、基板9の回転および静止に関わらず、周方向において静止している。カップ部4の底部には、カップ部4にて受けられた処理液等をハウジング11の外部へと排出する排液ポート(図示省略)が設けられる。カップ部4は、図1に示す基板9の周囲の位置である処理位置と、当該処理位置よりも下側の退避位置との間を、図示省略の昇降機構により上下方向に移動可能である。 The cup portion 4 is an annular member centered on the central axis J1. The cup portion 4 is arranged around the substrate 9 and the substrate holding portion 31 over the entire circumference, and covers the side and the lower side of the substrate 9 and the substrate holding portion 31. The cup portion 4 is a liquid receiving container that receives a liquid such as a processing liquid that scatters from the rotating substrate 9 toward the surroundings. The inner surface of the cup portion 4 is formed of, for example, a water repellent material. The cup portion 4 is stationary in the circumferential direction regardless of the rotation and stationary of the substrate 9. The bottom of the cup portion 4 is provided with a drainage port (not shown) for discharging the treatment liquid or the like received by the cup portion 4 to the outside of the housing 11. The cup portion 4 can be moved in the vertical direction between a processing position, which is a position around the substrate 9 shown in FIG. 1, and a retracting position below the processing position, by an elevating mechanism (not shown).
 カップ部4は、図1に示す単層構造とは異なり、径方向に複数のカップが積層される積層構造であってもよい。カップ部4が積層構造を有する場合、複数のカップはそれぞれ独立して上下方向に移動可能であり、基板9から飛散する処理液の種類に合わせて、複数のカップが切り替えられて処理液の受液に使用される。 Unlike the single-layer structure shown in FIG. 1, the cup portion 4 may have a laminated structure in which a plurality of cups are laminated in the radial direction. When the cup portion 4 has a laminated structure, the plurality of cups can move independently in the vertical direction, and the plurality of cups are switched to receive the treatment liquid according to the type of the treatment liquid scattered from the substrate 9. Used for liquids.
 図2は、基板処理装置1の処理液供給部5を示すブロック図である。図2では、処理液供給部5以外の構成も併せて示す。処理液供給部5は、薬液供給部52と、リンス液供給部53とを備える。薬液供給部52は、ノズル51と、アーム511(図1参照)と、ノズル回転機構512(図1参照)と、薬液供給源521と、薬液配管522とを備える。ノズル51は、薬液配管522を介して薬液供給源521に接続される。ノズル51は、薬液供給源521から送出された薬液を、基板9の上面91に向けて吐出する薬液吐出部である。薬液は、基板9のウェットエッチングに用いられるエッチング液である。当該エッチング液は、例えば、水酸化アンモニウム(NHOH)水溶液等のアルカリ系エッチング液である。 FIG. 2 is a block diagram showing a processing liquid supply unit 5 of the substrate processing apparatus 1. FIG. 2 also shows configurations other than the processing liquid supply unit 5. The treatment liquid supply unit 5 includes a chemical liquid supply unit 52 and a rinse liquid supply unit 53. The chemical solution supply unit 52 includes a nozzle 51, an arm 511 (see FIG. 1), a nozzle rotation mechanism 512 (see FIG. 1), a chemical solution supply source 521, and a chemical solution pipe 522. The nozzle 51 is connected to the chemical solution supply source 521 via the chemical solution pipe 522. The nozzle 51 is a chemical liquid discharge unit that discharges the chemical liquid sent from the chemical liquid supply source 521 toward the upper surface 91 of the substrate 9. The chemical solution is an etching solution used for wet etching of the substrate 9. The etching solution is, for example, an alkaline etching solution such as an aqueous solution of ammonium hydroxide (NH 4 OH).
 リンス液供給部53は、上述のノズル51と、アーム511と、ノズル回転機構512と、リンス液供給源531と、リンス液配管532とを備える。ノズル51は、リンス液配管532を介してリンス液供給源531に接続される。ノズル51は、リンス液供給源531から送出されたリンス液を、基板9の上面91に向けて吐出するリンス液吐出部である。リンス液としては、例えば、DIW(De-ionized Water)、炭酸水、オゾン水または水素水等の水性処理液が利用される。 The rinse liquid supply unit 53 includes the above-mentioned nozzle 51, an arm 511, a nozzle rotation mechanism 512, a rinse liquid supply source 531 and a rinse liquid pipe 532. The nozzle 51 is connected to the rinse liquid supply source 531 via the rinse liquid pipe 532. The nozzle 51 is a rinse liquid discharge unit that discharges the rinse liquid delivered from the rinse liquid supply source 531 toward the upper surface 91 of the substrate 9. As the rinsing liquid, for example, an aqueous treatment liquid such as DIW (De-ionized Water), carbonated water, ozone water or hydrogen water is used.
 上述のように、ノズル51、アーム511およびノズル回転機構512は、薬液供給部52およびリンス液供給部53により共有される。ノズル51の下端には、例えば、薬液用の吐出口、および、リンス液用の吐出口が個別に設けられており、種類の異なる処理液は、異なる配管および吐出口を介して基板9の上面91に供給される。また、薬液吐出用のノズルと、リンス液吐出用のノズルとは、別々に設けられてもよい。 As described above, the nozzle 51, the arm 511, and the nozzle rotation mechanism 512 are shared by the chemical liquid supply unit 52 and the rinse liquid supply unit 53. For example, a discharge port for a chemical liquid and a discharge port for a rinse liquid are individually provided at the lower end of the nozzle 51, and different types of treatment liquids are placed on the upper surface of the substrate 9 via different pipes and discharge ports. It is supplied to 91. Further, the nozzle for discharging the chemical solution and the nozzle for discharging the rinse solution may be provided separately.
 紫外線照射部7は、紫外線ランプ71と、ランプ昇降機構72とを備える。紫外線ランプ71は、基板9の上方に配置される略円板状のランプである。ランプ昇降機構72は、カップ部4の径方向外側に配置される。ランプ昇降機構72は、例えば、電動リニアモータ、または、ボールネジおよび電動回転式モータを備える。ランプ昇降機構72は紫外線ランプ71に接続されており、紫外線ランプ71を上下方向に移動させる。紫外線ランプ71は、図1中において実線にて示す退避位置と、当該退避位置よりも下側の照射位置(二点鎖線にて示す。)との間で、上下方向に移動可能である。紫外線ランプ71が退避位置から照射位置へと移動する際には、ノズル51がノズル回転機構512により基板9の上方から退避位置へと退避する。紫外線ランプ71は、当該照射位置から基板9の上面91全体に向けて紫外線を照射する。 The ultraviolet irradiation unit 7 includes an ultraviolet lamp 71 and a lamp elevating mechanism 72. The ultraviolet lamp 71 is a substantially disk-shaped lamp arranged above the substrate 9. The lamp elevating mechanism 72 is arranged on the outer side in the radial direction of the cup portion 4. The lamp elevating mechanism 72 includes, for example, an electric linear motor or a ball screw and an electric rotary motor. The lamp elevating mechanism 72 is connected to the ultraviolet lamp 71 and moves the ultraviolet lamp 71 in the vertical direction. The ultraviolet lamp 71 can move in the vertical direction between the retracted position shown by the solid line in FIG. 1 and the irradiation position (indicated by the alternate long and short dash line) below the retracted position. When the ultraviolet lamp 71 moves from the retracted position to the irradiation position, the nozzle 51 retracts from above the substrate 9 to the retracted position by the nozzle rotation mechanism 512. The ultraviolet lamp 71 irradiates ultraviolet rays from the irradiation position toward the entire upper surface 91 of the substrate 9.
 紫外線ランプ71としては、エキシマランプまたは低圧水銀ランプ等が利用される。紫外線ランプ71から出射される紫外線の波長は、好ましくは250nm以下であり、より好ましくは172nm以下である。当該紫外線の波長の下限は、特に限定されないが、例えば120nm以上である。 As the ultraviolet lamp 71, an excimer lamp, a low-pressure mercury lamp, or the like is used. The wavelength of the ultraviolet rays emitted from the ultraviolet lamp 71 is preferably 250 nm or less, more preferably 172 nm or less. The lower limit of the wavelength of the ultraviolet rays is not particularly limited, but is, for example, 120 nm or more.
 図3は、基板9の上面91近傍の部位を拡大して示す断面図である。図3に例示する基板9では、シリコン基板本体93の上面上に絶縁膜94が形成されており、絶縁膜94の上面上に窒化チタン(TiN)膜95が形成されており、窒化チタン膜95の上面上に窒化シリコン膜96が形成されている。絶縁膜94、窒化チタン膜95および窒化シリコン膜96はそれぞれ、図3中におけるシリコン基板本体93の上面全体上に略均一な厚さにて設けられる。 FIG. 3 is an enlarged cross-sectional view showing a portion of the substrate 9 near the upper surface 91. In the substrate 9 illustrated in FIG. 3, an insulating film 94 is formed on the upper surface of the silicon substrate main body 93, a titanium nitride (TiN) film 95 is formed on the upper surface of the insulating film 94, and the titanium nitride film 95 is formed. A silicon nitride film 96 is formed on the upper surface of the above. The insulating film 94, the titanium nitride film 95, and the silicon nitride film 96 are each provided with a substantially uniform thickness on the entire upper surface of the silicon substrate main body 93 in FIG.
 窒化シリコン膜96の上面上には、アモルファスシリコン層97が形成されている。アモルファスシリコン層97は、複数のパターン要素971の集合である微細パターンである。アモルファスシリコン層97は、基板9に対するマルチパターニング途上で形成された中間パターンである。図3では、4つのパターン要素971を図示している。図3中におけるパターン要素971の左右方向の幅は、例えば30nm~100nmである。パターン要素の971の上下方向の高さは、例えば20nm~100nmである。隣接するパターン要素971の間では、窒化シリコン膜96の上面が露出している。 An amorphous silicon layer 97 is formed on the upper surface of the silicon nitride film 96. The amorphous silicon layer 97 is a fine pattern that is an aggregate of a plurality of pattern elements 971. The amorphous silicon layer 97 is an intermediate pattern formed in the process of multi-patterning with respect to the substrate 9. In FIG. 3, four pattern elements 971 are illustrated. The width of the pattern element 971 in FIG. 3 in the left-right direction is, for example, 30 nm to 100 nm. The vertical height of the pattern element 971 is, for example, 20 nm to 100 nm. The upper surface of the silicon nitride film 96 is exposed between the adjacent pattern elements 971.
 アモルファスシリコン層97の各パターン要素971の側面は、側壁981により覆われている。側壁981は、シリコン酸化物、シリコン窒化物またはシリコン酸窒化物等により形成された薄膜である。図3中における側壁981の左右方向の幅は、パターン要素971の幅よりも小さく、例えば10nm~20nmである。側壁981の上下方向の高さは、パターン要素の971の高さと略同じであり、側壁981の上端および下端は、パターン要素971の上端および下端と上下方向の略同じ位置に位置する。パターン要素971の上面は、上述のシリコン酸化物、シリコン窒化物またはシリコン酸窒化物等により形成された薄膜により覆われておらず、パターン要素971の両側面を覆う2つの側壁981から露出している。 The side surface of each pattern element 971 of the amorphous silicon layer 97 is covered with a side wall 981. The side wall 981 is a thin film formed of a silicon oxide, a silicon nitride, a silicon oxynitride, or the like. The width of the side wall 981 in FIG. 3 in the left-right direction is smaller than the width of the pattern element 971, for example, 10 nm to 20 nm. The vertical height of the side wall 981 is substantially the same as the height of the pattern element 971, and the upper and lower ends of the side wall 981 are located at substantially the same positions as the upper and lower ends of the pattern element 971 in the vertical direction. The upper surface of the pattern element 971 is not covered with the thin film formed of the above-mentioned silicon oxide, silicon nitride, silicon oxynitride or the like, and is exposed from the two side walls 981 covering both side surfaces of the pattern element 971. There is.
 図3に示す基板9は、基板処理装置1とは異なる他の装置において形成される。具体的には、まず、シリコン基板本体93上に絶縁膜94、窒化チタン膜95、窒化シリコン膜96およびアモルファスシリコン層97(すなわち、中間パターン)が順に形成されている状態で、図4に示すように、最上層のアモルファスシリコン層97を覆う被覆膜98がが形成される。被覆膜98は、例えば、シリコン酸化膜、シリコン窒化膜またはシリコン酸窒化膜である。被覆膜98は、アモルファスシリコン層97の各パターン要素971の上面および側面、並びに、各パターン要素971の間から露出する窒化シリコン膜96の上面を全面に亘って被覆する。被覆膜98の形成は、例えば、CVD(Chemical Vapor Deposition:化学的気相成長)、PVD(Physical Vapor Deposition:物理的気相成長)、または、ALD(原子層堆積:Atomic Layer Deposition)により行われる。 The substrate 9 shown in FIG. 3 is formed in another apparatus different from the substrate processing apparatus 1. Specifically, first, FIG. 4 shows a state in which an insulating film 94, a titanium nitride film 95, a silicon nitride film 96, and an amorphous silicon layer 97 (that is, an intermediate pattern) are formed in this order on the silicon substrate main body 93. As described above, the coating film 98 covering the uppermost amorphous silicon layer 97 is formed. The coating film 98 is, for example, a silicon oxide film, a silicon nitride film, or a silicon oxynitride film. The coating film 98 covers the upper surface and side surfaces of each pattern element 971 of the amorphous silicon layer 97, and the upper surface of the silicon nitride film 96 exposed from between the pattern elements 971 over the entire surface. The coating film 98 is formed by, for example, CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), or ALD (Atomic Layer Deposition). Will be
 続いて、図4に示す被覆膜98に対して、ドライエッチングが行われる。当該ドライエッチングは、例えば、フルオロカーボン系ガス(CxFy)および酸素ガスを用いて生成されたプラズマによるプラズマエッチングである。当該ドライエッチングは、実質的に上下方向のみにエッチングが進行する異方性エッチングである。被覆膜98に対して当該異方性エッチングが行われることにより、アモルファスシリコン層97の各パターン要素971の上面が被覆膜98から露出し、隣接するパターン要素971間の窒化シリコン膜96の上面も被覆膜98から露出する。また、アモルファスシリコン層97の各パターン要素971の側面は、被覆膜98により覆われた状態が維持される。これにより、図3に示す基板9が形成される。各パターン要素971の側面を覆う側壁981は、上述の被覆膜98(図4参照)のうちドライエッチングの際に残置された部位である。 Subsequently, dry etching is performed on the coating film 98 shown in FIG. The dry etching is, for example, plasma etching by plasma generated by using a fluorocarbon gas (CxFy) and an oxygen gas. The dry etching is anisotropic etching in which etching proceeds substantially only in the vertical direction. By performing the anisotropic etching on the coating film 98, the upper surface of each pattern element 971 of the amorphous silicon layer 97 is exposed from the coating film 98, and the silicon nitride film 96 between the adjacent pattern elements 971 The upper surface is also exposed from the coating film 98. Further, the side surface of each pattern element 971 of the amorphous silicon layer 97 is maintained in a state of being covered with the coating film 98. As a result, the substrate 9 shown in FIG. 3 is formed. The side wall 981 covering the side surface of each pattern element 971 is a portion of the above-mentioned coating film 98 (see FIG. 4) left during dry etching.
 基板9では、当該ドライエッチングの際に、被覆膜98から露出した各パターン要素971の上面(すなわち、アモルファスシリコン層97のシリコン基板本体93とは反対側の表面)に、酸素(O)、炭素(C)およびフッ素(F)等が入射し、図5に示すように、各パターン要素971の上面に変質層972が形成される。図5では、変質層972に、パターン要素971のうち変質層972以外の部位と異なる平行斜線を付す。前工程のドライエッチング由来の当該変質層972では、アモルファスシリコン層97に入射した酸素および炭素と、アモルファスシリコン層97のシリコンとが結合して「Si-O結合」および「Si-C結合」が形成されていると考えられる。そして、これらのSi-O結合およびSi-C結合が、基板処理装置1におけるアモルファスシリコン層97のウェットエッチング(後述)を阻害する要因であると考えられる。なお、変質層972では、Si-O結合およびSi-C結合のうち一方のみが形成されている可能性もある。 In the substrate 9, oxygen (O) is applied to the upper surface of each pattern element 971 exposed from the coating film 98 (that is, the surface of the amorphous silicon layer 97 opposite to the silicon substrate body 93) during the dry etching. Carbon (C), fluorine (F), and the like are incident on the surface, and as shown in FIG. 5, an altered layer 972 is formed on the upper surface of each pattern element 971. In FIG. 5, the altered layer 972 is provided with a parallel diagonal line different from the portion of the pattern element 971 other than the altered layer 972. In the altered layer 972 derived from the dry etching in the previous step, oxygen and carbon incident on the amorphous silicon layer 97 and the silicon of the amorphous silicon layer 97 are bonded to form "Si—O bond" and "Si—C bond". It is thought that it has been formed. Then, it is considered that these Si—O bond and Si—C bond are factors that hinder the wet etching (described later) of the amorphous silicon layer 97 in the substrate processing apparatus 1. In the altered layer 972, it is possible that only one of the Si—O bond and the Si—C bond is formed.
 次に、図6を参照しつつ、基板処理装置1における基板9の処理について説明する。基板処理装置1では、まず、図3に示すアモルファスシリコン層97および側壁981を有する基板9が、図1に示す基板処理装置1に搬入され,基板保持部31により水平状態で保持される(ステップS11)。アモルファスシリコン層97の表面には、図5に示すように、ドライエッチング由来の変質層972が形成されている。 Next, the processing of the substrate 9 in the substrate processing apparatus 1 will be described with reference to FIG. In the substrate processing apparatus 1, first, the substrate 9 having the amorphous silicon layer 97 and the side wall 981 shown in FIG. 3 is carried into the substrate processing apparatus 1 shown in FIG. 1 and held in a horizontal state by the substrate holding portion 31 (step). S11). As shown in FIG. 5, an altered layer 972 derived from dry etching is formed on the surface of the amorphous silicon layer 97.
 続いて、照射制御部62により紫外線照射部7が制御されることにより、紫外線ランプ71が、図1中において二点鎖線にて示す照射位置に配置され、紫外線ランプ71から基板9の上面91全体に向けて紫外線が出射される。これにより、アモルファスシリコン層97の変質層972に紫外線が照射される。紫外線ランプ71から変質層972への紫外線の照射は、所定時間行われる。これにより、変質層972におけるSi-O結合およびSi-C結合が切断される。その結果、変質層972が改質されて改質層が生成される(ステップS12)。 Subsequently, by controlling the ultraviolet irradiation unit 7 by the irradiation control unit 62, the ultraviolet lamp 71 is arranged at the irradiation position indicated by the alternate long and short dash line in FIG. 1, and the ultraviolet lamp 71 to the entire upper surface 91 of the substrate 9 are arranged. Ultraviolet rays are emitted toward. As a result, the altered layer 972 of the amorphous silicon layer 97 is irradiated with ultraviolet rays. Irradiation of ultraviolet rays from the ultraviolet lamp 71 to the altered layer 972 is performed for a predetermined time. As a result, the Si—O bond and the Si—C bond in the altered layer 972 are cleaved. As a result, the altered layer 972 is modified to form a modified layer (step S12).
 ステップS12において、アモルファスシリコン層97に照射される紫外線の波長は、上述のように、250nm以下であることが好ましい。波長250nm以下の紫外線のエネルギーは478kJ/mol以上であり、Si-O結合の結合エネルギーである443kJ/mol、および、Si-C結合の結合エネルギーである337kJ/molよりも大きい。このため、波長250nm以下の紫外線を変質層972に照射することにより、変質層972のSi-O結合およびSi-C結合を好適に切断することができる。 In step S12, the wavelength of the ultraviolet rays irradiated to the amorphous silicon layer 97 is preferably 250 nm or less, as described above. The energy of ultraviolet rays having a wavelength of 250 nm or less is 478 kJ / mol or more, which is larger than the binding energy of Si—O bond of 443 kJ / mol and the binding energy of Si—C bond of 337 kJ / mol. Therefore, by irradiating the altered layer 972 with ultraviolet rays having a wavelength of 250 nm or less, the Si—O bond and the Si—C bond of the altered layer 972 can be suitably cut.
 ステップS12において、紫外線ランプ71からアモルファスシリコン層97の変質層972に照射される紫外線の積算照射量は、好ましくは1000mJ/cm以上である。当該積算照射量の上限は特に限定されないが、例えば3000mJ/cmである。積算照射量は、アモルファスシリコン層97の上面における紫外線の照度(mW/cm)に、紫外線の照射時間(sec)を積算することにより求められる。 In step S12, the cumulative irradiation amount of ultraviolet rays irradiated from the ultraviolet lamp 71 to the altered layer 972 of the amorphous silicon layer 97 is preferably 1000 mJ / cm 2 or more. The upper limit of the integrated irradiation amount is not particularly limited, but is, for example, 3000 mJ / cm 2 . The integrated irradiation amount is obtained by integrating the ultraviolet irradiation time (sec) with the ultraviolet illuminance (mW / cm 2 ) on the upper surface of the amorphous silicon layer 97.
 ステップS12におけるアモルファスシリコン層97への紫外線の照射は、好ましくは、低酸素雰囲気にて行われる。より好ましくは、当該紫外線の照射は、酸素濃度が1体積%以下の雰囲気中にて行われる。当該低酸素雰囲気は、様々な方法により実現されてよい。例えば、気流形成部12からハウジング11の内部空間に窒素(N)ガス等の不活性ガスが供給され、ハウジング11の内部空間が不活性ガス雰囲気とされることにより、上記低酸素雰囲気が実現されてもよい。ハウジング11への不活性ガスの供給は、気流形成部12以外のガス供給機構により行われてもよい。また、紫外線ランプ71と基板9との間の空間にのみ、当該空間の側方等から不活性ガスが供給されることにより、上記紫外線の照射が低酸素雰囲気にて行われてもよい。 Irradiation of the amorphous silicon layer 97 with ultraviolet rays in step S12 is preferably performed in a low oxygen atmosphere. More preferably, the irradiation of the ultraviolet rays is performed in an atmosphere having an oxygen concentration of 1% by volume or less. The low oxygen atmosphere may be realized by various methods. For example, the low oxygen atmosphere is realized by supplying an inert gas such as nitrogen (N 2 ) gas from the airflow forming portion 12 to the internal space of the housing 11 and making the internal space of the housing 11 an inert gas atmosphere. May be done. The supply of the inert gas to the housing 11 may be performed by a gas supply mechanism other than the airflow forming unit 12. Further, the irradiation of the ultraviolet rays may be performed in a low oxygen atmosphere by supplying the inert gas only to the space between the ultraviolet lamp 71 and the substrate 9 from the side of the space or the like.
 アモルファスシリコン層97への紫外線照射が終了すると、ランプ昇降機構72により、紫外線ランプ71が上記照射位置から退避位置へと移動される。また、ノズル回転機構512により、ノズル51が退避位置から基板9の上方へと移動される。そして、基板回転機構33による基板9の回転が開始され、供給制御部63により薬液供給部52が制御されることにより、回転中の基板9に対してノズル51から薬液が供給される。具体的には、ノズル51から基板9の上面91の中央部に向けて、液柱状の薬液が吐出される。基板9上に供給された薬液は、遠心力により基板9の中央部から径方向外方へと広がり、基板9の上面91全体に付与される。 When the irradiation of the amorphous silicon layer 97 with ultraviolet rays is completed, the ultraviolet lamp 71 is moved from the irradiation position to the retracted position by the lamp elevating mechanism 72. Further, the nozzle rotation mechanism 512 moves the nozzle 51 from the retracted position to the upper side of the substrate 9. Then, the rotation of the substrate 9 by the substrate rotation mechanism 33 is started, and the chemical liquid supply unit 52 is controlled by the supply control unit 63, so that the chemical liquid is supplied from the nozzle 51 to the rotating substrate 9. Specifically, the liquid columnar chemical solution is discharged from the nozzle 51 toward the central portion of the upper surface 91 of the substrate 9. The chemical solution supplied onto the substrate 9 spreads radially outward from the central portion of the substrate 9 by centrifugal force and is applied to the entire upper surface 91 of the substrate 9.
 当該薬液は、水酸化アンモニウム水溶液等のエッチング液であり、上記改質層を表面に有するアモルファスシリコン層97に薬液が供給されることにより、アモルファスシリコン層97に対するウェットエッチングが行われる(ステップS13)。基板9上では、アモルファスシリコン層97の各パターン要素971が選択的にエッチングされて除去され、パターン要素971の側面を覆う側壁981はエッチングされず、窒化シリコン膜96上に残置される。 The chemical solution is an etching solution such as an aqueous ammonium hydroxide solution, and by supplying the chemical solution to the amorphous silicon layer 97 having the modified layer on the surface, wet etching is performed on the amorphous silicon layer 97 (step S13). .. On the substrate 9, each pattern element 971 of the amorphous silicon layer 97 is selectively etched and removed, and the side wall 981 covering the side surface of the pattern element 971 is not etched and is left on the silicon nitride film 96.
 基板処理装置1では、アモルファスシリコン層97に対するウェットエッチングが行われている間、供給制御部63によりノズル回転機構512が駆動されることにより、ノズル51が基板9の上方にて略径方向に往復移動されてもよい。これにより、基板9の全面に対するエッチング液の付与の均一性を向上することができる。 In the substrate processing apparatus 1, the nozzle 51 is reciprocated in the substantially radial direction above the substrate 9 by driving the nozzle rotation mechanism 512 by the supply control unit 63 while the amorphous silicon layer 97 is wet-etched. It may be moved. As a result, the uniformity of applying the etching solution to the entire surface of the substrate 9 can be improved.
 図7は、上述のウェットエッチングにおけるアモルファスシリコン層97のエッチングレートを示す図である。当該エッチングレートは、水酸化アンモニウムおよびDIWを1:15の比率で混合して作製した65℃の水酸化アンモニウム水溶液をエッチング液として使用した場合のものである。図中の実施例1は、上述の改質層が表面に形成されているアモルファスシリコン層97のエッチングレートを示す。実施例1では、上記ステップS12における変質層972への紫外線の積算照射量は、1000mJ/cmであった。また、比較例1は、変質層972が表面に形成されているアモルファスシリコン層97(すなわち、紫外線照射前のアモルファスシリコン層)のエッチングレートを示す。比較例2は、表面に変質層972および改質層が形成されていないアモルファスシリコン層97(すなわち、プラズマエッチングが施されていないアモルファスシリコン層)のエッチングレートを示す。 FIG. 7 is a diagram showing the etching rate of the amorphous silicon layer 97 in the above-mentioned wet etching. The etching rate is based on the case where an aqueous solution of ammonium hydroxide at 65 ° C. prepared by mixing ammonium hydroxide and DIW at a ratio of 1:15 is used as the etching solution. Example 1 in the figure shows the etching rate of the amorphous silicon layer 97 on which the above-mentioned modified layer is formed on the surface. In Example 1, the integrated irradiation amount of ultraviolet rays on the altered layer 972 in step S12 was 1000 mJ / cm 2 . Further, Comparative Example 1 shows the etching rate of the amorphous silicon layer 97 (that is, the amorphous silicon layer before ultraviolet irradiation) in which the altered layer 972 is formed on the surface. Comparative Example 2 shows the etching rate of the altered layer 972 and the amorphous silicon layer 97 having no modified layer formed on the surface (that is, the amorphous silicon layer not subjected to plasma etching).
 図7に示すように、比較例1のエッチングレートは、変質層972によりウェットエッチングが阻害されるため、比較例2のエッチングレートの3%程度と極めて低い。したがって、比較例1の状態では、アモルファスシリコン層97のウェットエッチングは実質的に行われていない。一方、実施例1のエッチングレートは、紫外線照射により変質層972が改質されているため、比較例2のエッチングレートの約43%まで回復している。したがって、アモルファスシリコン層97に対するウェットエッチングを好適に行うことができる。なお、実施例1のエッチングレートは、比較例1のエッチングレートの10倍以上である。 As shown in FIG. 7, the etching rate of Comparative Example 1 is extremely low, about 3% of the etching rate of Comparative Example 2, because wet etching is inhibited by the altered layer 972. Therefore, in the state of Comparative Example 1, wet etching of the amorphous silicon layer 97 is not substantially performed. On the other hand, the etching rate of Example 1 has recovered to about 43% of the etching rate of Comparative Example 2 because the altered layer 972 has been modified by ultraviolet irradiation. Therefore, wet etching of the amorphous silicon layer 97 can be preferably performed. The etching rate of Example 1 is 10 times or more the etching rate of Comparative Example 1.
 基板処理装置1では、ノズル51からの薬液(すなわち、エッチング液)の供給が所定時間継続されることにより、側壁981の間からアモルファスシリコン層97の全パターン要素971が除去され、基板9に対するウェットエッチングが終了する。 In the substrate processing apparatus 1, by continuing the supply of the chemical solution (that is, the etching solution) from the nozzle 51 for a predetermined time, all the pattern elements 971 of the amorphous silicon layer 97 are removed from between the side walls 981 and the substrate 9 is wetted. Etching is completed.
 当該ウェットエッチングが終了すると、供給制御部63によりリンス液供給部53が制御されることにより、回転中の基板9の上面91にノズル51からリンス液が供給され、基板9のリンス処理が行われる(ステップS14)。その後、リンス液の供給が停止され、基板9の乾燥処理が行われる(ステップS15)。乾燥処理では、基板9の回転速度が増大され、基板9上に残っている処理液が、遠心力により基板9のエッジから径方向外方へとへと飛散し、基板9上から除去される。上述のステップS13~S15中に基板9上から径方向外方へと飛散した薬液およびリンス液等の処理液は、カップ部4により受けられ、ハウジング11の外部へと排出される。乾燥処理が終了した基板9は、基板処理装置1から搬出され、後工程を行う他の装置へと搬入される。当該他の装置では、例えば、側壁981をマスクとして用いて、窒化シリコン膜96のドライエッチングが行われる。基板処理装置1では、上述のステップS11~S15の処理が、複数の基板9に対して順次行われる。 When the wet etching is completed, the rinse liquid supply unit 53 is controlled by the supply control unit 63, so that the rinse liquid is supplied from the nozzle 51 to the upper surface 91 of the rotating substrate 9, and the substrate 9 is rinsed. (Step S14). After that, the supply of the rinse liquid is stopped, and the substrate 9 is dried (step S15). In the drying process, the rotation speed of the substrate 9 is increased, and the processing liquid remaining on the substrate 9 is scattered from the edge of the substrate 9 to the outside in the radial direction by centrifugal force and is removed from the substrate 9. The treatment liquids such as the chemical liquid and the rinsing liquid scattered radially outward from the substrate 9 during the above steps S13 to S15 are received by the cup portion 4 and discharged to the outside of the housing 11. The substrate 9 for which the drying process has been completed is carried out from the substrate processing device 1 and carried into another device for performing a subsequent process. In the other apparatus, for example, the side wall 981 is used as a mask to perform dry etching of the silicon nitride film 96. In the substrate processing apparatus 1, the processes of steps S11 to S15 described above are sequentially performed on the plurality of substrates 9.
 以上に説明したように、上述の基板処理方法は、ドライエッチング由来の変質層972が表面に形成されたアモルファスシリコン層97を有する基板9を水平状態で保持する工程(ステップS11)と、変質層972に紫外線を照射することにより、変質層972を改質して改質層を生成する工程(ステップS12)と、当該改質層を表面に有するアモルファスシリコン層97に薬液を供給して、アモルファスシリコン層97に対するウェットエッチングを行う工程(ステップS13)と、を備える。 As described above, the above-mentioned substrate treatment method includes a step (step S11) of holding the substrate 9 having the amorphous silicon layer 97 in which the alteration layer 972 derived from dry etching is formed on the surface in a horizontal state, and the alteration layer. A step of modifying the altered layer 972 to form a modified layer by irradiating the 972 with ultraviolet rays (step S12), and supplying a chemical solution to the amorphous silicon layer 97 having the modified layer on the surface to be amorphous. A step (step S13) of performing wet etching on the silicon layer 97 is provided.
 これにより、変質層972により低下したアモルファスシリコン層97のエッチングレートを増大させることができる。その結果、アモルファスシリコン層97のウェットエッチングを効率良く行うことができる。 As a result, the etching rate of the amorphous silicon layer 97 lowered by the altered layer 972 can be increased. As a result, wet etching of the amorphous silicon layer 97 can be efficiently performed.
 上述のドライエッチングでは、フルオロカーボン系ガスおよび酸素ガスを用いて生成されたプラズマにより、アモルファスシリコン層97の表面に形成された被覆膜98のエッチングが行われることが好ましい。上記基板処理方法では、アモルファスシリコン層97への紫外線照射により、変質層972におけるSi-O結合およびSi-C結合を切断することができるため、Si-O結合およびSi-C結合により低下したアモルファスシリコン層97のエッチングレートを増大させることができる。 In the above-mentioned dry etching, it is preferable that the coating film 98 formed on the surface of the amorphous silicon layer 97 is etched by the plasma generated by using the fluorocarbon gas and the oxygen gas. In the above substrate treatment method, the Si—O bond and the SiC bond in the altered layer 972 can be cleaved by irradiating the amorphous silicon layer 97 with ultraviolet rays, so that the amorphous silicon layer 97 is reduced by the Si—O bond and the SiC bond. The etching rate of the silicon layer 97 can be increased.
 上述のように、好ましくは、アモルファスシリコン層97は、基板9に対するマルチパターニング途上で形成された中間パターンである。また、上記ドライエッチングでは、当該中間パターンの上面および側面を覆う被覆膜98に対する異方性エッチングが行われることにより、中間パターンの上面が被覆膜98から露出し、中間パターンの側面を覆う被覆膜98の側壁981が形成される。そして、上記ウェットエッチングでは、当該中間パターンが除去されて側壁981が残る。上記基板処理方法では、変質層972への紫外線照射により、アモルファスシリコン層97のエッチングレートを増大させることができるため、基板9に対する上記マルチパターニングを効率良く行うことができる。 As described above, preferably, the amorphous silicon layer 97 is an intermediate pattern formed in the process of multi-patterning with respect to the substrate 9. Further, in the above dry etching, anisotropic etching is performed on the coating film 98 covering the upper surface and the side surface of the intermediate pattern, so that the upper surface of the intermediate pattern is exposed from the coating film 98 and covers the side surface of the intermediate pattern. The side wall 981 of the coating film 98 is formed. Then, in the wet etching, the intermediate pattern is removed and the side wall 981 remains. In the substrate processing method, the etching rate of the amorphous silicon layer 97 can be increased by irradiating the altered layer 972 with ultraviolet rays, so that the multi-patterning on the substrate 9 can be efficiently performed.
 上述のように、ステップS12において変質層972に照射される紫外線の波長は、250nm以下であることが好ましい。波長250nm以下の紫外線のエネルギーはSi-O結合の結合エネルギーおよびSi-C結合の結合エネルギーよりも大きいため、紫外線照射による変質層972の改質(すなわち、変質層972におけるSi-O結合およびSi-C結合の切断)を好適に行うことができる。 As described above, the wavelength of the ultraviolet rays irradiated to the altered layer 972 in step S12 is preferably 250 nm or less. Since the energy of ultraviolet rays having a wavelength of 250 nm or less is larger than the binding energy of Si—O bond and the binding energy of Si—C bond, the modification of the altered layer 972 by ultraviolet irradiation (that is, the Si—O bond and Si in the altered layer 972). -C-bond cleavage) can be preferably performed.
 上述のように、ステップS12における紫外線の積算照射量は、1000mJ/cm以上であることが好ましい。これにより、紫外線照射による変質層972の改質を好適に行うことができる。 As described above, the integrated irradiation amount of ultraviolet rays in step S12 is preferably 1000 mJ / cm 2 or more. Thereby, the alteration layer 972 can be suitably modified by ultraviolet irradiation.
 上述のように、ステップS12における紫外線の照射は、低酸素雰囲気にて行われることが好ましい。これにより、アモルファスシリコン層97に照射される途上の紫外線が、酸素により吸収されることを防止または抑制することができる。その結果、紫外線照射による変質層972の改質を効率良く行うことができる。 As described above, the irradiation of ultraviolet rays in step S12 is preferably performed in a low oxygen atmosphere. As a result, it is possible to prevent or suppress the absorption of ultraviolet rays in the process of irradiating the amorphous silicon layer 97 by oxygen. As a result, the alteration layer 972 can be efficiently modified by ultraviolet irradiation.
 上述の基板処理装置1は、基板保持部31と、紫外線照射部7と、薬液供給部52とを備える。基板保持部31は、ドライエッチング由来の変質層972が表面に形成されたアモルファスシリコン層97を有する基板9を、水平状態で保持する。紫外線照射部7は、変質層972に紫外線を照射することにより、変質層972を改質して改質層を生成する。薬液供給部52は、当該改質層を表面に有するアモルファスシリコン層97に薬液を供給して、アモルファスシリコン層97に対するウェットエッチングを行う。これにより、上記と同様に、変質層972により低下したアモルファスシリコン層97のエッチングレートを増大させることができる。その結果、アモルファスシリコン層97のウェットエッチングを効率良く行うことができる。 The above-mentioned substrate processing device 1 includes a substrate holding unit 31, an ultraviolet irradiation unit 7, and a chemical solution supply unit 52. The substrate holding portion 31 holds the substrate 9 having the amorphous silicon layer 97 on which the altered layer 972 derived from dry etching is formed on the surface in a horizontal state. The ultraviolet irradiation unit 7 modifies the altered layer 972 to form a modified layer by irradiating the altered layer 972 with ultraviolet rays. The chemical solution supply unit 52 supplies the chemical solution to the amorphous silicon layer 97 having the modified layer on the surface, and wet-etches the amorphous silicon layer 97. As a result, the etching rate of the amorphous silicon layer 97 lowered by the altered layer 972 can be increased in the same manner as described above. As a result, wet etching of the amorphous silicon layer 97 can be efficiently performed.
 基板処理装置1による基板9の処理では、図8に示すように、ステップS12におけるアモルファスシリコン層97に対する紫外線の照射と、ステップS13におけるアモルファスシリコン層97に対する薬液(すなわち、エッチング液)の供給との間に、アモルファスシリコン層97に対する前処理(ステップS121)が行われてもよい。ステップS121では、アモルファスシリコン層97に対して、ステップS13の薬液とは異なる他の薬液(例えば、フッ酸(HF))が供給され、これにより、アモルファスシリコン層97の表面(すなわち、変質層972の上面)の表面自然酸化膜が除去される。 In the processing of the substrate 9 by the substrate processing apparatus 1, as shown in FIG. 8, the irradiation of ultraviolet rays on the amorphous silicon layer 97 in step S12 and the supply of a chemical solution (that is, an etching solution) to the amorphous silicon layer 97 in step S13. In the meantime, the pretreatment (step S121) for the amorphous silicon layer 97 may be performed. In step S121, another chemical solution (for example, hydrofluoric acid (HF)) different from the chemical solution of step S13 is supplied to the amorphous silicon layer 97, whereby the surface of the amorphous silicon layer 97 (that is, the altered layer 972) is supplied. The natural oxide film on the surface of the surface) is removed.
 この場合、基板処理装置1の処理液供給部5には、図9に示すように、薬液供給部52およびリンス液供給部53に加えて、当該他の薬液を基板9に供給する他の薬液供給部54がさらに設けられる。他の薬液供給部54は、ノズル51と、アーム511(図1参照)と、ノズル回転機構512(図1参照)と、他の薬液供給源541と、他の薬液配管542とを備える。ノズル51は、他の薬液配管542を介して他の薬液供給源541に接続される。ノズル51は、他の薬液供給源541から送出された上記他の薬液(例えば、濃度0.3%の常温の希フッ酸)を、基板9の上面91に向けて吐出する他の薬液吐出部でもある。なお、当該他の薬液を吐出するノズルは、上述のエッチング液吐出用のノズルとは別に設けられてもよい。 In this case, as shown in FIG. 9, the treatment liquid supply unit 5 of the substrate processing apparatus 1 is provided with another chemical liquid that supplies the other chemical liquid to the substrate 9 in addition to the chemical liquid supply unit 52 and the rinse liquid supply unit 53. A supply unit 54 is further provided. The other chemical solution supply unit 54 includes a nozzle 51, an arm 511 (see FIG. 1), a nozzle rotation mechanism 512 (see FIG. 1), another chemical solution supply source 541, and another chemical solution pipe 542. The nozzle 51 is connected to another chemical solution supply source 541 via another chemical solution pipe 542. The nozzle 51 is another chemical discharge unit that discharges the other chemicals (for example, dilute hydrofluoric acid at room temperature having a concentration of 0.3%) sent from the other chemical supply source 541 toward the upper surface 91 of the substrate 9. But also. The nozzle for discharging the other chemical solution may be provided separately from the nozzle for discharging the etching solution described above.
 以上に説明したように、上述の基板処理方法は、ステップS12とステップS13との間に、アモルファスシリコン層97に他の薬液を供給してアモルファスシリコン層97の表面自然酸化膜を除去する工程(ステップS121)をさらに備えることが好ましい。このように、アモルファスシリコン層97のウェットエッチングの前に表面自然酸化膜を除去することにより、表面自然酸化膜によるエッチングレートの低下を防止または抑制することができる。その結果、アモルファスシリコン層97のウェットエッチングをさらに効率良く行うことができる。 As described above, the above-mentioned substrate processing method is a step of supplying another chemical solution to the amorphous silicon layer 97 between steps S12 and S13 to remove the surface natural oxide film of the amorphous silicon layer 97 ( It is preferable to further include step S121). By removing the surface natural oxide film before the wet etching of the amorphous silicon layer 97 in this way, it is possible to prevent or suppress a decrease in the etching rate due to the surface natural oxide film. As a result, wet etching of the amorphous silicon layer 97 can be performed more efficiently.
 次に、本発明の第2の実施の形態に係る基板処理装置1aについて説明する。図10は、基板処理装置1aの構成を示す側面図である。基板処理装置1aでは、図3に示す基板9に対して、図1に示す基板処理装置1と略同様の処理が行われ、アモルファスシリコン層97がウェットエッチングされる。 Next, the substrate processing apparatus 1a according to the second embodiment of the present invention will be described. FIG. 10 is a side view showing the configuration of the substrate processing device 1a. In the substrate processing apparatus 1a, the substrate 9 shown in FIG. 3 is subjected to substantially the same processing as that of the substrate processing apparatus 1 shown in FIG. 1, and the amorphous silicon layer 97 is wet-etched.
 基板処理装置1aは、照射ユニット14と、液処理ユニット15と、制御部6と、ハウジング11とを備える。照射ユニット14および液処理ユニット15は、1つのハウジング11の内部に配置される。制御部6は、図1に示す制御部6と同様の構造を有する。制御部6は、上述のように、記憶部61と、照射制御部62と、供給制御部63とを備える。 The substrate processing device 1a includes an irradiation unit 14, a liquid processing unit 15, a control unit 6, and a housing 11. The irradiation unit 14 and the liquid treatment unit 15 are arranged inside one housing 11. The control unit 6 has the same structure as the control unit 6 shown in FIG. As described above, the control unit 6 includes a storage unit 61, an irradiation control unit 62, and a supply control unit 63.
 照射ユニット14は、第1基板保持部31aと、紫外線照射部7aとを備える。第1基板保持部31aは、図1に示す基板保持部31と略同様の構造を有し、水平状態の基板9を下側から保持する。なお、図10に示す例では、照射ユニット14には基板回転機構33は設けられておらず、第1基板保持部31aは回転しない。 The irradiation unit 14 includes a first substrate holding portion 31a and an ultraviolet irradiation unit 7a. The first substrate holding portion 31a has substantially the same structure as the substrate holding portion 31 shown in FIG. 1, and holds the substrate 9 in the horizontal state from below. In the example shown in FIG. 10, the irradiation unit 14 is not provided with the substrate rotation mechanism 33, and the first substrate holding portion 31a does not rotate.
 紫外線照射部7aは、紫外線ランプ71aと、照射領域走査機構73とを備える。紫外線ランプ71aは、図中の紙面に垂直な方向に略直線状に延びる略棒状のランプである。紫外線ランプ71aから出射された紫外線は、基板9上において紙面に垂直な方向に略直線状に延びる帯状または線状の照射領域に照射される。当該照射領域は、基板9の上面91の一部であり、紙面に垂直な方向に基板9の上面91を横断する。紫外線ランプ71aとしては、上述の紫外線ランプ71と同様に、エキシマランプまたは低圧水銀ランプ等が利用される。紫外線ランプ71aから出射される紫外線の波長は、好ましくは250nm以下であり、より好ましくは172nm以下である。当該紫外線の波長の下限は、特に限定されないが、例えば120nm以上である。 The ultraviolet irradiation unit 7a includes an ultraviolet lamp 71a and an irradiation area scanning mechanism 73. The ultraviolet lamp 71a is a substantially rod-shaped lamp extending substantially linearly in the direction perpendicular to the paper surface in the drawing. The ultraviolet rays emitted from the ultraviolet lamp 71a are applied to the band-shaped or linear irradiation region extending substantially linearly in the direction perpendicular to the paper surface on the substrate 9. The irradiation region is a part of the upper surface 91 of the substrate 9, and crosses the upper surface 91 of the substrate 9 in a direction perpendicular to the paper surface. As the ultraviolet lamp 71a, an excimer lamp, a low-pressure mercury lamp, or the like is used in the same manner as the above-mentioned ultraviolet lamp 71. The wavelength of the ultraviolet rays emitted from the ultraviolet lamp 71a is preferably 250 nm or less, more preferably 172 nm or less. The lower limit of the wavelength of the ultraviolet rays is not particularly limited, but is, for example, 120 nm or more.
 照射領域走査機構73は、紫外線ランプ71aを基板9の上方において図中の左右方向に移動することにより、基板9上の照射領域を図中の左右方向に走査する。照射領域走査機構73は、例えば、電動リニアモータ、または、ボールネジおよび電動回転式モータを備える。基板処理装置1aでは、制御部6の照射制御部62が照射領域走査機構73を制御することにより、紫外線ランプ71aの移動速度が制御され、基板9上における紫外線の照射領域の走査速度が制御される。なお、紫外線ランプ71aの移動中、紫外線ランプ71aからの出力は略一定に維持される。 The irradiation area scanning mechanism 73 scans the irradiation area on the substrate 9 in the left-right direction in the drawing by moving the ultraviolet lamp 71a above the substrate 9 in the left-right direction in the drawing. The irradiation area scanning mechanism 73 includes, for example, an electric linear motor or a ball screw and an electric rotary motor. In the substrate processing device 1a, the irradiation control unit 62 of the control unit 6 controls the irradiation region scanning mechanism 73 to control the moving speed of the ultraviolet lamp 71a and control the scanning speed of the ultraviolet irradiation region on the substrate 9. To. While the ultraviolet lamp 71a is moving, the output from the ultraviolet lamp 71a is maintained substantially constant.
 液処理ユニット15は、紫外線照射部7が省略されている点、および、基板保持部31と同様の構造を有する第2基板保持部31bを備える点を除き、図1に示す基板処理装置1と略同様の構造を有する。以下の説明では、液処理ユニット15において基板処理装置1の各構成に対応する構成に同符号を付す。基板処理装置1aでは、第1基板保持部31aおよび第2基板保持部31bにより、基板9を水平状態で保持する基板保持部31が構成される。 The liquid treatment unit 15 has the same as the substrate processing apparatus 1 shown in FIG. 1, except that the ultraviolet irradiation unit 7 is omitted and the second substrate holding unit 31b having the same structure as the substrate holding unit 31 is provided. It has almost the same structure. In the following description, the same reference numerals are given to the configurations corresponding to the respective configurations of the substrate processing apparatus 1 in the liquid processing unit 15. In the substrate processing device 1a, the first substrate holding portion 31a and the second substrate holding portion 31b form a substrate holding portion 31 that holds the substrate 9 in a horizontal state.
 液処理ユニット15では、ノズル51から基板9の上面91に薬液(すなわち、エッチング液)が吐出される際に、ノズル回転機構512によりノズル51が基板9の上方にて略径方向に往復移動される。これにより、基板9の上面91上における薬液の吐出位置が走査される。換言すれば、ノズル回転機構512は、基板9の上面91上における薬液の吐出位置を走査する吐出位置走査機構である。基板処理装置1aでは、制御部6の供給制御部63がノズル回転機構512を制御することにより、ノズル51の移動速度が制御され、基板9上における薬液の吐出位置の走査速度が制御される。 In the liquid treatment unit 15, when the chemical solution (that is, the etching solution) is discharged from the nozzle 51 to the upper surface 91 of the substrate 9, the nozzle 51 is reciprocated in the substantially radial direction above the substrate 9 by the nozzle rotation mechanism 512. To. As a result, the discharge position of the chemical solution on the upper surface 91 of the substrate 9 is scanned. In other words, the nozzle rotation mechanism 512 is a discharge position scanning mechanism that scans the discharge position of the chemical liquid on the upper surface 91 of the substrate 9. In the substrate processing device 1a, the supply control unit 63 of the control unit 6 controls the nozzle rotation mechanism 512 to control the moving speed of the nozzle 51 and control the scanning speed of the chemical liquid discharge position on the substrate 9.
 基板処理装置1aにおける基板9の処理の流れは、図6に示すステップS11~S15と略同様である。基板処理装置1aにおける基板9の処理では、まず、図3に示すアモルファスシリコン層97および側壁981を有する基板9が、基板処理装置1aに搬入され、照射ユニット14の第1,基板保持部31aにより水平状態で保持される(ステップS11)。アモルファスシリコン層97の表面には、上述のように、ドライエッチング由来の変質層972(図5参照)が形成されている。 The processing flow of the substrate 9 in the substrate processing apparatus 1a is substantially the same as in steps S11 to S15 shown in FIG. In the processing of the substrate 9 in the substrate processing apparatus 1a, first, the substrate 9 having the amorphous silicon layer 97 and the side wall 981 shown in FIG. 3 is carried into the substrate processing apparatus 1a, and is carried by the first substrate holding portion 31a of the irradiation unit 14. It is held in a horizontal state (step S11). As described above, the altered layer 972 (see FIG. 5) derived from dry etching is formed on the surface of the amorphous silicon layer 97.
 続いて、照射制御部62により照射ユニット14の紫外線照射部7aが制御されることにより、アモルファスシリコン層97の変質層972への紫外線の照射が行われる。具体的には、紫外線ランプ71aから紫外線が出射され、基板9の上面91上において略直線状に延びる照射領域に照射される。そして、照射領域走査機構73により、紫外線ランプ71aが基板9の上方にて図中の左側から右側へと走査されることにより、基板9の上面91全体に対する紫外線の照射が行われる。これにより、変質層972におけるSi-O結合およびSi-C結合が切断されて変質層972が改質され、上述の改質層が生成される(ステップS12)。 Subsequently, the irradiation control unit 62 controls the ultraviolet irradiation unit 7a of the irradiation unit 14, so that the altered layer 972 of the amorphous silicon layer 97 is irradiated with ultraviolet rays. Specifically, ultraviolet rays are emitted from the ultraviolet lamp 71a and irradiate an irradiation region extending substantially linearly on the upper surface 91 of the substrate 9. Then, the irradiation region scanning mechanism 73 scans the ultraviolet lamp 71a above the substrate 9 from the left side to the right side in the drawing, so that the entire upper surface 91 of the substrate 9 is irradiated with ultraviolet rays. As a result, the Si—O bond and the Si—C bond in the altered layer 972 are cleaved to modify the altered layer 972, and the above-mentioned modified layer is generated (step S12).
 ステップS12において、アモルファスシリコン層97に照射される紫外線の波長は、上述のように、250nm以下であることが好ましい。これにより、紫外線照射による変質層972の改質(すなわち、変質層972におけるSi-O結合およびSi-C結合の切断)を好適に行うことができる。ステップS12において、紫外線ランプ71aからアモルファスシリコン層97の変質層972に照射される紫外線の積算照射量は、上記と同様に、1000mJ/cm以上であることが好ましい。これにより、紫外線照射による変質層972の改質を好適に行うことができる。 In step S12, the wavelength of the ultraviolet rays irradiated to the amorphous silicon layer 97 is preferably 250 nm or less as described above. Thereby, the modification of the altered layer 972 by irradiation with ultraviolet rays (that is, the cleavage of the Si—O bond and the Si—C bond in the altered layer 972) can be preferably performed. In step S12, the cumulative irradiation amount of ultraviolet rays irradiated from the ultraviolet lamp 71a to the altered layer 972 of the amorphous silicon layer 97 is preferably 1000 mJ / cm 2 or more as described above. Thereby, the alteration layer 972 can be suitably modified by ultraviolet irradiation.
 ステップS12におけるアモルファスシリコン層97への紫外線の照射は、好ましくは、低酸素雰囲気にて行われる。これにより、上記と同様に、アモルファスシリコン層97に照射される途上の紫外線が、酸素により吸収されることを防止または抑制することができる。その結果、紫外線照射による変質層972の改質を効率良く行うことができる。なお、ステップS12では、紫外線ランプ71aが基板9の上方にて左右方向に往復することにより、基板9に対して複数回の紫外線の走査が行われてもよい。 Irradiation of the amorphous silicon layer 97 with ultraviolet rays in step S12 is preferably performed in a low oxygen atmosphere. Thereby, similarly to the above, it is possible to prevent or suppress the ultraviolet rays in the process of irradiating the amorphous silicon layer 97 from being absorbed by oxygen. As a result, the alteration layer 972 can be efficiently modified by ultraviolet irradiation. In step S12, the ultraviolet lamp 71a reciprocates in the left-right direction above the substrate 9, so that the substrate 9 may be scanned for ultraviolet rays a plurality of times.
 ステップS12が終了すると、ロボットハンド等の搬送機構(図示省略)により、基板9が照射ユニット14から液処理ユニット15へと搬送され、液処理ユニット15の第2基板保持部31bにより水平状態で保持される。続いて、基板回転機構33による基板9の回転が開始され、供給制御部63により薬液供給部52(図2参照)が制御されることにより、回転中の基板9に対してノズル51から薬液(すなわち、エッチング液)が供給される。上述のように、ノズル51は、ノズル回転機構512により基板9の上方にて略径方向に往復移動され、基板9の上面91上における薬液の吐出位置が走査される。そして、上記改質層を表面に有するアモルファスシリコン層97に薬液が供給されることにより、アモルファスシリコン層97に対するウェットエッチングが行われる(ステップS13)。 When step S12 is completed, the substrate 9 is transported from the irradiation unit 14 to the liquid treatment unit 15 by a transport mechanism (not shown) such as a robot hand, and is held in a horizontal state by the second substrate holding portion 31b of the liquid treatment unit 15. Will be done. Subsequently, the rotation of the substrate 9 by the substrate rotation mechanism 33 is started, and the chemical solution supply unit 52 (see FIG. 2) is controlled by the supply control unit 63, so that the chemical solution (from the nozzle 51) with respect to the rotating substrate 9 (see FIG. 2). That is, the etching solution) is supplied. As described above, the nozzle 51 is reciprocated in the substantially radial direction above the substrate 9 by the nozzle rotation mechanism 512, and the discharge position of the chemical solution on the upper surface 91 of the substrate 9 is scanned. Then, by supplying the chemical solution to the amorphous silicon layer 97 having the modified layer on the surface, wet etching is performed on the amorphous silicon layer 97 (step S13).
 当該ウェットエッチングが終了すると、回転中の基板9の上面91にノズル51からリンス液が供給され、基板9のリンス処理が行われる(ステップS14)。その後、リンス液の供給が停止され、基板9の乾燥処理が行われる(ステップS15)。基板処理装置1aでは、上述のステップS11~S15の処理が、複数の基板9に対して順次行われる。なお、基板処理装置1aにおいても、ステップS12とステップS13との間に、上述のステップS121(図8参照)が行われてもよい。 When the wet etching is completed, the rinse liquid is supplied from the nozzle 51 to the upper surface 91 of the rotating substrate 9, and the substrate 9 is rinsed (step S14). After that, the supply of the rinse liquid is stopped, and the substrate 9 is dried (step S15). In the substrate processing apparatus 1a, the processes of steps S11 to S15 described above are sequentially performed on the plurality of substrates 9. In the substrate processing apparatus 1a, the above-mentioned step S121 (see FIG. 8) may be performed between the steps S12 and S13.
 基板処理装置1aでは、図1に示す基板処理装置1と同様に、変質層972により低下したアモルファスシリコン層97のエッチングレートを増大させることができる。具体的には、変質層972におけるSi-O結合およびSi-C結合を切断することにより、アモルファスシリコン層97のエッチングレートを増大させることができる。これにより、アモルファスシリコン層97のウェットエッチングを効率良く行うことができる。その結果、基板9に対する上記マルチパターニングを効率良く行うことができる。 In the substrate processing apparatus 1a, the etching rate of the amorphous silicon layer 97 lowered by the altered layer 972 can be increased, similarly to the substrate processing apparatus 1 shown in FIG. Specifically, the etching rate of the amorphous silicon layer 97 can be increased by breaking the Si—O bond and the SiC bond in the altered layer 972. As a result, wet etching of the amorphous silicon layer 97 can be efficiently performed. As a result, the multi-patterning on the substrate 9 can be efficiently performed.
 上述のように、基板処理装置1aでは、ステップS12において、基板9上における紫外線の照射領域が走査される。このとき、好ましくは、照射制御部62により照射領域走査機構73が制御されることにより、アモルファスシリコン層97のうち変質層972が厚い領域に対する紫外線の照射領域の走査速度が、変質層972が薄い領域に対する紫外線の照射領域の走査速度よりも小さくされる。これにより、アモルファスシリコン層97のうち、変質層972が厚い領域に対する紫外線の積算照射量が、変質層972が薄い領域に対する紫外線の積算照射量よりも大きくなる。その結果、アモルファスシリコン層97の全体における変質層972の改質の均一性を向上することができる。なお、当該改質の均一性向上は、アモルファスシリコン層97の全体におけるエッチングレートの均一性向上により確認することができる。 As described above, in the substrate processing apparatus 1a, the ultraviolet irradiation region on the substrate 9 is scanned in step S12. At this time, preferably, by controlling the irradiation region scanning mechanism 73 by the irradiation control unit 62, the scanning speed of the ultraviolet irradiation region with respect to the region of the amorphous silicon layer 97 in which the alteration layer 972 is thick is set to be low in the alteration layer 972. It is made smaller than the scanning speed of the ultraviolet irradiation area with respect to the area. As a result, among the amorphous silicon layers 97, the integrated irradiation amount of ultraviolet rays for the region where the altered layer 972 is thick becomes larger than the integrated irradiation amount of ultraviolet rays for the region where the altered layer 972 is thin. As a result, the uniformity of modification of the altered layer 972 in the entire amorphous silicon layer 97 can be improved. The improvement in the uniformity of the modification can be confirmed by the improvement in the uniformity of the etching rate in the entire amorphous silicon layer 97.
 基板処理装置1aでは、照射制御部62により紫外線ランプ71aの出力が制御され、変質層972が厚い領域に対する紫外線の照度が、変質層972が薄い領域に対する紫外線の照度よりも大きくされてもよい。この場合、紫外線の照射領域の走査速度を一定に維持しつつ、アモルファスシリコン層97のうち、変質層972が厚い領域に対する紫外線の積算照射量を、変質層972が薄い領域に対する紫外線の積算照射量よりも大きくすることができる。その結果、上記と同様に、アモルファスシリコン層97の全体における変質層972の改質の均一性を向上することができる。 In the substrate processing device 1a, the output of the ultraviolet lamp 71a is controlled by the irradiation control unit 62, and the illuminance of the ultraviolet rays for the region where the alteration layer 972 is thick may be larger than the illuminance of the ultraviolet rays for the region where the alteration layer 972 is thin. In this case, while maintaining the scanning speed of the ultraviolet irradiation region constant, the integrated irradiation amount of ultraviolet rays for the region where the altered layer 972 is thick and the integrated irradiation amount of ultraviolet rays for the region where the altered layer 972 is thin among the amorphous silicon layers 97. Can be larger than. As a result, similarly to the above, the uniformity of modification of the altered layer 972 in the entire amorphous silicon layer 97 can be improved.
 上述のように、基板処理装置1aでは、ステップS13において、基板9上における薬液の吐出位置が走査される。このとき、好ましくは、供給制御部63によりノズル回転機構512(すなわち、吐出位置走査機構)が制御されることにより、アモルファスシリコン層97のうち変質層972が厚い領域に対する薬液の吐出位置の走査速度が、変質層972が薄い領域に対する薬液の吐出位置の走査速度よりも小さくされる。これにより、アモルファスシリコン層97のうち、変質層972が厚い領域に対する薬液の吐出時間が、変質層972が薄い領域に対する薬液の吐出時間よりも長くなる。その結果、アモルファスシリコン層97の全体におけるウェットエッチングの均一性(例えば、ウェットエッチングの進行速度の均一性)を向上することができる。 As described above, in the substrate processing apparatus 1a, the discharge position of the chemical solution on the substrate 9 is scanned in step S13. At this time, preferably, the nozzle rotation mechanism 512 (that is, the discharge position scanning mechanism) is controlled by the supply control unit 63, so that the scanning speed of the chemical liquid discharge position with respect to the region where the altered layer 972 is thick in the amorphous silicon layer 97. However, the alteration layer 972 is made smaller than the scanning speed of the ejection position of the chemical solution with respect to the thin region. As a result, among the amorphous silicon layers 97, the discharge time of the chemical solution to the region where the altered layer 972 is thick becomes longer than the discharge time of the chemical solution to the region where the altered layer 972 is thin. As a result, the uniformity of wet etching (for example, the uniformity of the progress rate of wet etching) in the entire amorphous silicon layer 97 can be improved.
 上述の基盤処理方法および基板処理装置1,1aでは、様々な変更が可能である。 Various changes can be made in the above-mentioned substrate processing method and substrate processing devices 1, 1a.
 例えば、ステップS12におけるアモルファスシリコン層97への紫外線照射は、必ずしも低酸素雰囲気にて行われる必要はなく、例えば大気雰囲気にて行われてもよい。 For example, the irradiation of the amorphous silicon layer 97 with ultraviolet rays in step S12 does not necessarily have to be performed in a low oxygen atmosphere, and may be performed in an air atmosphere, for example.
 ステップS12では、変質層972の種類や厚さ等に合わせて、アモルファスシリコン層97に対する紫外線の積算照射量は適宜変更されてよい。例えば、アモルファスシリコン層97に対する紫外線の積算照射量は、1000mJ/cm未満であってもよい。 In step S12, the integrated irradiation amount of ultraviolet rays to the amorphous silicon layer 97 may be appropriately changed according to the type and thickness of the altered layer 972. For example, the integrated irradiation amount of ultraviolet rays on the amorphous silicon layer 97 may be less than 1000 mJ / cm 2 .
 ステップS12では、変質層972の種類や厚さ等に合わせて、アモルファスシリコン層97に照射される紫外線の波長も適宜変更されてよい。例えば、アモルファスシリコン層97に照射される紫外線の波長は、250nmよりも長くてもよい。 In step S12, the wavelength of the ultraviolet rays irradiated to the amorphous silicon layer 97 may be appropriately changed according to the type and thickness of the altered layer 972. For example, the wavelength of the ultraviolet rays applied to the amorphous silicon layer 97 may be longer than 250 nm.
 基板処理装置1,1aにおいて処理される基板9のアモルファスシリコン層97は、必ずしも、基板9に対するマルチパターニング途上で形成された中間パターンである必要はなく、マルチパターニング以外の処理が施されたアモルファスシリコン層であってもよい。 The amorphous silicon layer 97 of the substrate 9 processed in the substrate processing devices 1 and 1a does not necessarily have to be an intermediate pattern formed in the process of multi-patterning with respect to the substrate 9, and the amorphous silicon subjected to processing other than multi-patterning It may be a layer.
 基板処理装置1,1aにおいて改質される変質層972は、必ずしも、フルオロカーボン系ガスおよび酸素ガスを用いて生成されたプラズマによるプラズマエッチングの際に形成されたものには限定されず、他の処理によりアモルファスシリコン層97の表面が変質したものであってもよい。 The altered layer 972 modified in the substrate processing apparatus 1, 1a is not necessarily limited to the one formed during plasma etching with plasma generated using fluorocarbon gas and oxygen gas, and other treatments are performed. The surface of the amorphous silicon layer 97 may be altered by this.
 基板処理装置1では、アモルファスシリコン層97に対する紫外線の照射は、図10に示す紫外線照射部7aにより行われてもよい。また、基板処理装置1aでは、アモルファスシリコン層97に対する紫外線の照射は、図1に示す紫外線照射部7により行われてもよい。また、基板処理装置1aでは、照射ユニット14と液処理ユニット15とは異なるハウジングに収容されてもよい。 In the substrate processing apparatus 1, the amorphous silicon layer 97 may be irradiated with ultraviolet rays by the ultraviolet irradiation unit 7a shown in FIG. Further, in the substrate processing apparatus 1a, the irradiation of the amorphous silicon layer 97 with ultraviolet rays may be performed by the ultraviolet irradiation unit 7 shown in FIG. Further, in the substrate processing device 1a, the irradiation unit 14 and the liquid processing unit 15 may be housed in different housings.
 上述の基板処理装置1は、半導体基板以外に、液晶表示装置または有機EL(Electro Luminescence)表示装置等の平面表示装置(Flat Panel Display)に使用されるガラス基板、あるいは、他の表示装置に使用されるガラス基板の処理に利用されてもよい。また、上述の基板処理装置1は、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板および太陽電池用基板等の処理に利用されてもよい。 In addition to the semiconductor substrate, the above-mentioned substrate processing device 1 is used for a liquid crystal display device, a glass substrate used for a flat display device (Flat Panel Display) such as an organic EL (Electro Luminescence) display device, or another display device. It may be used for processing a glass substrate to be processed. Further, the above-mentioned substrate processing device 1 may be used for processing an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, a photomask substrate, a ceramic substrate, a solar cell substrate, and the like.
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The above-described embodiment and the configurations in each modification may be appropriately combined as long as they do not conflict with each other.
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。 Although the invention was described and explained in detail, the above-mentioned explanation is exemplary and not limited. Therefore, it can be said that many modifications and modes are possible without departing from the scope of the present invention.
 1,1a  基板処理装置
 7,7a  紫外線照射部
 9  基板
 31  基板保持部
 31a  第1基板保持部
 31b  第2基板保持部
 51  ノズル
 52  薬液供給部
 54  他の薬液供給部
 62  照射制御部
 63  供給制御部
 71,71a  紫外線ランプ
 73  照射領域走査機構
 97  アモルファスシリコン層
 98  被覆膜
 512  ノズル回転機構
 972  変質層
 981  側壁
 S11~S15  ステップ
1,1a Substrate processing device 7,7a Ultraviolet irradiation unit 9 Substrate 31 Substrate holding unit 31a First substrate holding unit 31b Second substrate holding unit 51 Nozzle 52 Chemical solution supply unit 54 Other chemical supply unit 62 Irradiation control unit 63 Supply control unit 71,71a Ultraviolet lamp 73 Irradiation area scanning mechanism 97 Amorphous silicon layer 98 Coating film 512 Nozzle rotation mechanism 972 Altered layer 981 Side wall S11 to S15 Step

Claims (18)

  1.  基板処理方法であって、
     a)ドライエッチング由来の変質層が表面に形成されたアモルファスシリコン層を有する基板を水平状態で保持する工程と、
     b)前記変質層に紫外線を照射することにより前記変質層を改質して改質層を生成する工程と、
     c)前記改質層を表面に有する前記アモルファスシリコン層に薬液を供給して前記アモルファスシリコン層に対するウェットエッチングを行う工程と、
    を備える。
    It is a substrate processing method
    a) A step of holding a substrate having an amorphous silicon layer having an altered layer derived from dry etching formed on the surface in a horizontal state, and
    b) A step of modifying the altered layer by irradiating the altered layer with ultraviolet rays to form a modified layer, and
    c) A step of supplying a chemical solution to the amorphous silicon layer having the modified layer on the surface and performing wet etching on the amorphous silicon layer.
    To be equipped.
  2.  請求項1に記載の基板処理方法であって、
     前記ドライエッチングでは、フルオロカーボン系ガスおよび酸素ガスを用いて生成されたプラズマにより、前記アモルファスシリコン層の表面に形成された被覆膜のエッチングが行われる。
    The substrate processing method according to claim 1.
    In the dry etching, the coating film formed on the surface of the amorphous silicon layer is etched by the plasma generated by using the fluorocarbon gas and the oxygen gas.
  3.  請求項2に記載の基板処理方法であって、
     前記アモルファスシリコン層は、前記基板に対するマルチパターニング途上で形成された中間パターンであり、
     前記ドライエッチングでは、前記中間パターンの上面および側面を覆う前記被覆膜に対する異方性エッチングが行われることにより、前記中間パターンの前記上面が前記被覆膜から露出し、前記中間パターンの前記側面を覆う前記被覆膜の側壁が形成され、
     前記ウェットエッチングでは、前記中間パターンが除去されて前記側壁が残る。
    The substrate processing method according to claim 2.
    The amorphous silicon layer is an intermediate pattern formed in the process of multi-patterning with respect to the substrate.
    In the dry etching, anisotropic etching is performed on the coating film covering the upper surface and the side surface of the intermediate pattern, so that the upper surface of the intermediate pattern is exposed from the coating film and the side surface of the intermediate pattern is exposed. A side wall of the coating film covering the coating film is formed.
    In the wet etching, the intermediate pattern is removed and the side wall remains.
  4.  請求項1ないし3のいずれか1つに記載の基板処理方法であって、
     前記紫外線の波長は、250nm以下である。
    The substrate processing method according to any one of claims 1 to 3.
    The wavelength of the ultraviolet rays is 250 nm or less.
  5.  請求項1ないし4のいずれか1つに記載の基板処理方法であって、
     前記b)工程における前記紫外線の積算照射量は、1000mJ/cm以上である。
    The substrate processing method according to any one of claims 1 to 4.
    The integrated irradiation amount of the ultraviolet rays in the step b) is 1000 mJ / cm 2 or more.
  6.  請求項1ないし5のいずれか1つに記載の基板処理方法であって、
     前記b)工程における前記紫外線の照射は低酸素雰囲気にて行われる。
    The substrate processing method according to any one of claims 1 to 5.
    The irradiation of the ultraviolet rays in the step b) is performed in a low oxygen atmosphere.
  7.  請求項1ないし6のいずれか1つに記載の基板処理方法であって、
     前記b)工程において、前記基板上における前記紫外線の照射領域が走査され、
     前記アモルファスシリコン層のうち、前記変質層が厚い領域に対する前記紫外線の積算照射量は、前記変質層が薄い領域に対する前記紫外線の積算照射量よりも大きい。
    The substrate processing method according to any one of claims 1 to 6.
    In the step b), the ultraviolet irradiation region on the substrate is scanned.
    Among the amorphous silicon layers, the integrated irradiation amount of the ultraviolet rays for the region where the altered layer is thick is larger than the integrated irradiation amount of the ultraviolet rays for the region where the altered layer is thin.
  8.  請求項1ないし7のいずれか1つに記載の基板処理方法であって、
     前記c)工程において、前記基板上における前記薬液の吐出位置が走査され、
     前記アモルファスシリコン層のうち、前記改質層が厚い領域に対する前記薬液の吐出時間は、前記改質層が薄い領域に対する前記薬液の吐出時間よりも長い。
    The substrate processing method according to any one of claims 1 to 7.
    In the step c), the discharge position of the chemical solution on the substrate is scanned.
    Of the amorphous silicon layers, the discharge time of the chemical solution for the region where the modified layer is thick is longer than the discharge time of the chemical solution for the region where the modified layer is thin.
  9.  請求項1ないし8のいずれか1つに記載の基板処理方法であって、
     前記b)工程と前記c)工程との間に、前記アモルファスシリコン層に他の薬液を供給して前記アモルファスシリコン層の表面自然酸化膜を除去する工程をさらに備える。
    The substrate processing method according to any one of claims 1 to 8.
    Between the step b) and the step c), a step of supplying another chemical solution to the amorphous silicon layer to remove the surface natural oxide film of the amorphous silicon layer is further provided.
  10.  基板処理装置であって、
     ドライエッチング由来の変質層が表面に形成されたアモルファスシリコン層を有する基板を水平状態で保持する基板保持部と、
     前記変質層に紫外線を照射することにより前記変質層を改質して改質層を生成する紫外線照射部と、
     前記改質層を表面に有する前記アモルファスシリコン層に薬液を供給して前記アモルファスシリコン層に対するウェットエッチングを行う薬液供給部と、
    を備える。
    It is a board processing device
    A substrate holding portion that holds a substrate having an amorphous silicon layer on which an altered layer derived from dry etching is formed in a horizontal state,
    An ultraviolet irradiation unit that modifies the altered layer by irradiating the altered layer with ultraviolet rays to generate a modified layer,
    A chemical solution supply unit that supplies a chemical solution to the amorphous silicon layer having the modified layer on the surface and performs wet etching on the amorphous silicon layer.
    To be equipped.
  11.  請求項10に記載の基板処理装置であって、
     前記ドライエッチングでは、フルオロカーボン系ガスおよび酸素ガスを用いて生成されたプラズマにより、前記アモルファスシリコン層の表面に形成された被覆膜のエッチングが行われる。
    The substrate processing apparatus according to claim 10.
    In the dry etching, the coating film formed on the surface of the amorphous silicon layer is etched by the plasma generated by using the fluorocarbon gas and the oxygen gas.
  12.  請求項11に記載の基板処理装置であって、
     前記アモルファスシリコン層は、前記基板に対するマルチパターニング途上で形成された中間パターンであり、
     前記ドライエッチングでは、前記中間パターンの上面および側面を覆う前記被覆膜に対する異方性エッチングが行われることにより、前記中間パターンの前記上面が前記被覆膜から露出し、前記中間パターンの前記側面を覆う前記被覆膜の側壁が形成され、
     前記ウェットエッチングでは、前記中間パターンが除去されて前記側壁が残る。
    The substrate processing apparatus according to claim 11.
    The amorphous silicon layer is an intermediate pattern formed in the process of multi-patterning with respect to the substrate.
    In the dry etching, anisotropic etching is performed on the coating film covering the upper surface and the side surface of the intermediate pattern, so that the upper surface of the intermediate pattern is exposed from the coating film and the side surface of the intermediate pattern is exposed. A side wall of the coating film covering the coating film is formed.
    In the wet etching, the intermediate pattern is removed and the side wall remains.
  13.  請求項10ないし12のいずれか1つに記載の基板処理装置であって、
     前記紫外線の波長は、250nm以下である。
    The substrate processing apparatus according to any one of claims 10 to 12.
    The wavelength of the ultraviolet rays is 250 nm or less.
  14.  請求項10ないし13のいずれか1つに記載の基板処理装置であって、
     前記アモルファスシリコン層に対する前記紫外線の積算照射量は、1000mJ/cm以上である。
    The substrate processing apparatus according to any one of claims 10 to 13.
    The integrated irradiation amount of the ultraviolet rays on the amorphous silicon layer is 1000 mJ / cm 2 or more.
  15.  請求項10ないし14のいずれか1つに記載の基板処理装置であって、
     前記アモルファスシリコン層に対する前記紫外線の照射は低酸素雰囲気にて行われる。
    The substrate processing apparatus according to any one of claims 10 to 14.
    Irradiation of the ultraviolet rays to the amorphous silicon layer is performed in a low oxygen atmosphere.
  16.  請求項10ないし15のいずれか1つに記載の基板処理装置であって、
     前記紫外線照射部を制御する照射制御部をさらに備え、
     前記紫外線照射部は、
     前記基板に前記紫外線を照射する紫外線ランプと、
     前記基板上における前記紫外線の照射領域を走査する照射領域走査機構と、
    を備え、
     前記照射制御部が前記紫外線ランプおよび前記照射領域走査機構の少なくとも一方を制御することにより、前記アモルファスシリコン層のうち、前記変質層が厚い領域に対する前記紫外線の積算照射量が、前記変質層が薄い領域に対する前記紫外線の積算照射量よりも大きくされる。
    The substrate processing apparatus according to any one of claims 10 to 15.
    An irradiation control unit that controls the ultraviolet irradiation unit is further provided.
    The ultraviolet irradiation unit is
    An ultraviolet lamp that irradiates the substrate with the ultraviolet rays,
    An irradiation area scanning mechanism that scans the ultraviolet irradiation area on the substrate,
    With
    By controlling at least one of the ultraviolet lamp and the irradiation region scanning mechanism, the irradiation control unit controls the integrated irradiation amount of the ultraviolet rays for the region of the amorphous silicon layer where the alteration layer is thick, and the alteration layer is thin. It is made larger than the integrated irradiation amount of the ultraviolet rays for the region.
  17.  請求項10ないし16のいずれか1つに記載の基板処理装置であって、
     前記薬液供給部を制御する供給制御部をさらに備え、
     前記薬液供給部は、
     前記基板に前記薬液を吐出する薬液吐出部と、
     前記基板上における前記薬液の吐出位置を走査する吐出位置走査機構と、
    を備え、
     前記供給制御部が前記吐出位置走査機構を制御することにより、前記アモルファスシリコン層のうち、前記改質層が厚い領域に対する前記薬液の吐出時間が、前記改質層が薄い領域に対する前記薬液の吐出時間よりも長くされる。
    The substrate processing apparatus according to any one of claims 10 to 16.
    A supply control unit for controlling the chemical supply unit is further provided.
    The chemical supply unit
    A chemical discharge unit that discharges the chemical solution onto the substrate,
    A discharge position scanning mechanism that scans the discharge position of the chemical solution on the substrate,
    With
    By controlling the discharge position scanning mechanism by the supply control unit, the discharge time of the chemical solution to the region where the modified layer is thick and the discharge time of the chemical solution to the region where the modified layer is thin in the amorphous silicon layer Be longer than time.
  18.  請求項10ないし17のいずれか1つに記載の基板処理装置であって、
     前記アモルファスシリコン層に対する前記紫外線の照射と前記薬液の供給との間において、前記アモルファスシリコン層に他の薬液を供給して前記アモルファスシリコン層の表面自然酸化膜を除去する他の薬液供給部をさらに備える。
    The substrate processing apparatus according to any one of claims 10 to 17.
    Between the irradiation of the ultraviolet rays to the amorphous silicon layer and the supply of the chemical solution, another chemical solution supply unit for supplying another chemical solution to the amorphous silicon layer to remove the surface natural oxide film of the amorphous silicon layer is further provided. Be prepared.
PCT/JP2020/000321 2019-03-20 2020-01-08 Substrate processing method and substrate processing device WO2020188958A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080022833.1A CN113614889A (en) 2019-03-20 2020-01-08 Substrate processing method and substrate processing apparatus
US17/439,445 US11881403B2 (en) 2019-03-20 2020-01-08 Substrate processing method and substrate processing apparatus
KR1020217032957A KR20210137178A (en) 2019-03-20 2020-01-08 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-053164 2019-03-20
JP2019053164A JP7126468B2 (en) 2019-03-20 2019-03-20 Substrate processing method and substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2020188958A1 true WO2020188958A1 (en) 2020-09-24

Family

ID=72519061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000321 WO2020188958A1 (en) 2019-03-20 2020-01-08 Substrate processing method and substrate processing device

Country Status (6)

Country Link
US (1) US11881403B2 (en)
JP (1) JP7126468B2 (en)
KR (1) KR20210137178A (en)
CN (1) CN113614889A (en)
TW (1) TWI753353B (en)
WO (1) WO2020188958A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220384199A1 (en) * 2021-06-01 2022-12-01 Tokyo Electron Limited Sacrificial capping layer for contact etch
KR102614406B1 (en) 2023-08-10 2023-12-15 주식회사 엠텍마이크라텍글로벌 Wafer edge exposure device using LED light source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180624A (en) * 1990-11-15 1992-06-26 Nec Corp Formation of pattern
JPH07283198A (en) * 1994-04-05 1995-10-27 Sony Corp Method of manufacturing semiconductor device
JPH0878352A (en) * 1994-09-06 1996-03-22 Sanyo Electric Co Ltd Treatment method of substrate
JP2001085387A (en) * 1999-09-13 2001-03-30 Toshiba Corp Manufacture of semiconductor device
JP2002093740A (en) * 2000-09-13 2002-03-29 Seiko Epson Corp Manufacturing method of semiconductor device
JP2011192764A (en) * 2010-03-15 2011-09-29 Fujitsu Semiconductor Ltd Method of removing film, and device for film removal

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040038438A1 (en) 2002-08-23 2004-02-26 Toppoly Optoelectronics Corp. Method for reducing surface roughness of polysilicon films for liquid crystal displays
JP3776092B2 (en) * 2003-03-25 2006-05-17 株式会社ルネサステクノロジ Etching apparatus, etching method, and manufacturing method of semiconductor device
JP4180624B2 (en) 2006-04-14 2008-11-12 日本航空電子工業株式会社 Connector device and backlight assembly using the same
JP4661753B2 (en) 2006-09-29 2011-03-30 東京エレクトロン株式会社 Substrate processing method, cleaning method, and storage medium
JP2013110139A (en) 2011-11-17 2013-06-06 Tokyo Electron Ltd Manufacturing method for semiconductor device
JP6300139B2 (en) 2012-05-15 2018-03-28 株式会社Screenホールディングス Substrate processing method and substrate processing system
JP6435385B2 (en) 2012-05-15 2018-12-05 株式会社Screenホールディングス Substrate processing chemical generation method, substrate processing chemical generation unit, substrate processing method, and substrate processing system
JPWO2018198288A1 (en) 2017-04-27 2020-05-14 株式会社島津製作所 Pump monitoring device, vacuum processing device, and vacuum pump
US9991129B1 (en) * 2017-05-23 2018-06-05 Applied Materials, Inc. Selective etching of amorphous silicon over epitaxial silicon
JP6807278B2 (en) 2017-05-24 2021-01-06 東京エレクトロン株式会社 Silicon nitride film deposition method and film deposition equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180624A (en) * 1990-11-15 1992-06-26 Nec Corp Formation of pattern
JPH07283198A (en) * 1994-04-05 1995-10-27 Sony Corp Method of manufacturing semiconductor device
JPH0878352A (en) * 1994-09-06 1996-03-22 Sanyo Electric Co Ltd Treatment method of substrate
JP2001085387A (en) * 1999-09-13 2001-03-30 Toshiba Corp Manufacture of semiconductor device
JP2002093740A (en) * 2000-09-13 2002-03-29 Seiko Epson Corp Manufacturing method of semiconductor device
JP2011192764A (en) * 2010-03-15 2011-09-29 Fujitsu Semiconductor Ltd Method of removing film, and device for film removal

Also Published As

Publication number Publication date
KR20210137178A (en) 2021-11-17
TW202036674A (en) 2020-10-01
CN113614889A (en) 2021-11-05
US11881403B2 (en) 2024-01-23
JP2020155603A (en) 2020-09-24
US20220189773A1 (en) 2022-06-16
TWI753353B (en) 2022-01-21
JP7126468B2 (en) 2022-08-26

Similar Documents

Publication Publication Date Title
KR102166974B1 (en) Method and hardware for enhanced removal of post etch polymer and hardmask removal
TWI698906B (en) Substrate processing method and substrate processing apparatus
JP4871444B2 (en) Oxide film removing method and semiconductor manufacturing apparatus for removing oxide film
JP2006253634A (en) Processing method of substrate, process for fabricating electronic device and program
WO2015064546A1 (en) Sacrificial-film removal method and substrate processing device
WO2020188958A1 (en) Substrate processing method and substrate processing device
CN108028195B (en) Substrate processing method, substrate processing apparatus, and storage medium
JP2017162916A (en) Substrate processing method and substrate processing apparatus
KR102006552B1 (en) Substrate processing method and substrate processing apparatus
JP2001176855A (en) Method and system for processing substrate
JP2004235559A (en) Method and device for substrate processing
CN109564858B (en) Sacrificial film forming method, substrate processing method, and substrate processing apparatus
JP4236109B2 (en) Substrate processing method and substrate processing apparatus
US20200168467A1 (en) Substrate processing method and substrate processing apparatus
JP7182880B2 (en) Substrate processing method and substrate processing apparatus
JP4299638B2 (en) Substrate processing apparatus and substrate processing method
JP2008147434A (en) Method for manufacturing semiconductor device
TWI720387B (en) Substrate processing apparatus and substrate processing method
JP2020184624A (en) Film removing method, substrate processing method, and substrate processing apparatus
TWI828373B (en) Substrate processing method and substrate processing device
JP2005347639A (en) Substrate processing method and substrate processing equipment
WO2019198575A1 (en) Substrate processing method and substrate processing device
JP2006351805A (en) Substrate processing method and device
JP2004247573A (en) Substrate processing method
JP2023515065A (en) core removal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217032957

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20773563

Country of ref document: EP

Kind code of ref document: A1