WO2018230254A1 - Cross flow fan manufacturing method, and cross flow fan manufacturing device - Google Patents

Cross flow fan manufacturing method, and cross flow fan manufacturing device Download PDF

Info

Publication number
WO2018230254A1
WO2018230254A1 PCT/JP2018/019245 JP2018019245W WO2018230254A1 WO 2018230254 A1 WO2018230254 A1 WO 2018230254A1 JP 2018019245 W JP2018019245 W JP 2018019245W WO 2018230254 A1 WO2018230254 A1 WO 2018230254A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
cross flow
mold
flow fan
manufacturing
Prior art date
Application number
PCT/JP2018/019245
Other languages
French (fr)
Japanese (ja)
Inventor
佑規 伊東
古川 仁一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019525238A priority Critical patent/JP6708361B2/en
Publication of WO2018230254A1 publication Critical patent/WO2018230254A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling

Definitions

  • the present application relates to a manufacturing method and a manufacturing apparatus of a cross flow fan in which a plurality of thermoplastic resin moldings are welded and assembled.
  • resin molded bodies that are integrally molded by a mold, such as a disc and a large number of blades, are prepared (resin molding process), and then superimposed in the direction of the rotation axis of the fan to form these resin moldings
  • the resin molded bodies are welded together by applying ultrasonic vibration while pressing the assembly of bodies in the direction of the rotation axis (ultrasonic welding process).
  • the distortion after the ultrasonic welding process is caused by the distortion of the aggregate after the ultrasonic welding process, thereby removing the distortion.
  • the hollow structure fan parts obtained by gas-assist molding can produce cross flow fan components (molded products) with good melt fluidity, eliminating the need for annealing after the ultrasonic welding process. Is known (see, for example, Patent Document 1).
  • the annealing of the entire assembly of the resin molded bodies after ultrasonic welding must be matched with the fan components that require the annealing temperature to be set low, so that it is necessary to set the annealing time longer and the manufacturing efficiency is impaired.
  • the gas assist molding it is necessary to stop the injection of the resin and to switch to the gas injection before the mold product part is completely filled with the resin.
  • the injection nozzle is plugged with a needle valve or the like. Since the resin and gas injection operation stops during this operation, the resin cools and solidifies in the case of a thin wall such as a blade of a crossflow fan.
  • the manufacturing method of the cross flow fan disclosed in the present application is as follows. It has a first step of injecting resin into the mold and molding the fan parts, and a second step of ultrasonically welding and laminating the molded fan parts without stopping at the same rotational speed. .
  • a cross flow fan with less internal stress can be obtained without impairing the manufacturing efficiency.
  • FIG. 3 is a plan view of the cross flow fan according to the first embodiment.
  • FIG. 3 is a diagram illustrating a manufacturing flow of the cross flow fan according to the first embodiment. It is a figure explaining the metal mold
  • FIG. It is a schematic block diagram of the ultrasonic welding apparatus for assembling the cross flow fan of Embodiment 1, FIG. 4A shows a front view, and FIG. 4B shows a side view. It is an enlarged view of the table of the ultrasonic welding apparatus of FIG. It is a figure explaining operation
  • FIG. 10 is a diagram showing a manufacturing flow of the cross flow fan of the second embodiment. It is a figure which shows the result of the durability test of the crossflow fan of Embodiment 2.
  • FIG. 6 is a schematic configuration diagram of a mold for molding a fan part of a crossflow fan according to a fourth embodiment. It is a front view of the plate part of the metal mold
  • FIG. 1 is a diagram of a cross flow fan.
  • the cross-flow fan has an end plate 1 as a fan component, an intermediate fan 2 in which blades are integrated with the plate, and a blade in which blades are integrated with a plate provided with a fitting portion with a rotating shaft. It is comprised with the fan 3.
  • FIG. 2 is a diagram showing a manufacturing flow of the cross flow fan according to the first embodiment. First, as step ST1, fan parts are manufactured.
  • the medium for raising the mold temperature may be water vapor, hot water, hot oil, or the like having a high medium temperature.
  • step ST2 the molded product manufactured in step ST1 is assembled into a cross flow fan.
  • 4 is a schematic configuration diagram of an ultrasonic welding apparatus 100 that is a manufacturing apparatus for assembling the cross flow fan according to Embodiment 1
  • FIG. 4A is a front view
  • FIG. 4B is a side view.
  • the ultrasonic welding apparatus 100 holds a fan component and moves the holding mechanism 10 in the vertical direction, a positioning mechanism 20 for positioning the fan component, and an ultrasonic wave for applying ultrasonic vibration to the fan component. It consists of a mechanism 30.
  • the holding mechanism 10 includes a table 11 that is inserted so that the rotation shaft portion 1a of the end plate 1 shown in FIG.
  • the table 11 faces downward, and a moving mechanism 12 that moves the table 11 perpendicularly to the direction of the ultrasonic mechanism 30.
  • the connecting mechanism 13 is used to connect the table 11 to the moving mechanism 12.
  • the table 11 has a structure in which a bearing 14 is attached to the insertion portion of the rotating shaft portion 1a, and the end plate 1 can freely rotate around the rotating shaft portion 1a.
  • the moving mechanism 12 is a linear servo motor in FIG. 4B, but if the table 11 is a mechanism that can move to a desired position at a desired speed, a servo motor combined with a linear guide or a ball screw mechanism, or an air cylinder It may be.
  • the positioning mechanism 20 is parallel to the shaft center of the bearing 14 shown in FIG. 5 and is provided with at least three columnar guide bars 21 and a rotation for rotating the bearings 22 and the guide bars 21 of the guide bars 21. It consists of a mechanism 23.
  • the guide bar 21 is attached to an equipment frame (not shown) via a moving mechanism 24 so that when the fan parts are ultrasonically welded, the work of attaching the fan parts to the table 11 can be opened and closed without disturbing the guide bar 21. It is configured.
  • the rotation mechanism 23 is preferably a motor that can easily control the number of rotations when ultrasonic welding of a plurality of types of fan parts, but may be a rotary cylinder when only specific fan parts are ultrasonically welded.
  • the ultrasonic mechanism 30 includes a vibrator 31 of an ultrasonic welder, a tool horn 32 fixed to the vibrator 31, and a moving mechanism 33 of the vibrator 31.
  • the tool horn 32 is provided concentrically with the axis of the bearing 14 provided on the table 11.
  • the moving mechanism 33 is an air cylinder in the figure.
  • the vibrator 31 is a device that can move to a desired position at a desired speed, a servo motor combined with a linear guide or a ball screw mechanism, or a linear servo motor. It may be.
  • FIG. 6 As shown in FIG. 6A, the end plate 1 is attached to the table 11 with the rotating shaft portion 1 a facing down. Thereafter, the intermediate fan 2 is placed on the end plate 1 with the blade portion 2a facing down.
  • the guide rod 21 is advanced by the moving mechanism 24, and the axial center of the intermediate fan 2, the axial center of the tool horn 32, and the axial center of the bearing 14 provided on the table 11 are aligned.
  • the tool horn 32 is lowered and pressurizes the intermediate fan 2. Thereafter, as shown in FIG.
  • the guide rod 21 is rotated by the rotation mechanism 23, whereby the end plate 1 and the intermediate fan 2 are rotated at the same rotation speed.
  • the vibrator 31 is vibrated by an oscillator (not shown), so that the tool horn 32 is also vibrated, the intermediate fan 2 is vibrated, and the blade portion of the intermediate fan 2
  • the tip of 2a and the end plate 1 are ultrasonically welded.
  • the pressure applied by the tool horn 32 and the time during which the tool horn 32 vibrates are such that sufficient welding strength can be obtained between the blade portion 2a and the end plate 1, and the pressure and vibration time are determined by the cross flow fan. It is determined by size, number of parts, etc.
  • the pressure is 0.
  • a sufficient welding strength can be obtained in about 2 to 0.7 MPa and a vibration time of about 0.5 to 3 seconds.
  • the tool horn 32, the guide bar 21, and the table 11 are returned to the original position, which is the initial position, in the reverse procedure.
  • the next intermediate fan 2 is stacked on the already welded intermediate fan 2, and finally the end fan 3 is welded.
  • the rotation mechanism 23 is a motor
  • the guide rod 21 can be freely rotated in a state where the brake of the motor is released, and the fan component is directly applied to the fan component for welding by, for example, wind. May be rotated.
  • the crossflow fan since the crossflow fan is rotating when pressurized and vibrated by the tool horn 32, it is compared with a case where ultrasonic waves are used while the crossflow fan is fixed so as not to move. Thus, it is possible to suppress the force in the rotational direction unnecessary for the ultrasonic welding from being applied to the cross flow fan, and to reduce the internal stress caused by the ultrasonic welding.
  • the rotational speed at which the cross flow fan is ultrasonically welded is such that internal stress due to ultrasonic welding is not generated, and the speed is determined by the size of the crossflow fan, the number of parts, and the like.
  • the rotational speed is 60 rpm. It is possible to suppress internal stress due to ultrasonic welding. Furthermore, by incorporating a device that measures the internal stress of the fan component after ultrasonic welding (for example, an X-ray diffractometer) via a control circuit, the rotational speed of the fan component is automatically controlled so that the internal stress is minimized. And you can assemble a cross flow fan.
  • AS acryl-styrene
  • the results of the durability test of the cross flow fan manufactured in such a manufacturing flow are shown in FIG.
  • the durability test the amount of deformation in the rotation direction when rotating at 2000 ° C. or less at 60 ° C. or less was evaluated. According to FIG. 7, there is no significant difference in the amount of deformation between the case where the annealing process is performed by the manufacturing method according to the prior art and the case where the annealing method is not performed by the manufacturing method according to the first embodiment. It turns out that an annealing process is unnecessary.
  • FIG. FIG. 8 is a conceptual diagram showing the ultrasonic welding apparatus 200 when assembling the cross flow fan according to the second embodiment
  • FIG. 8A is a front view
  • FIG. 8B is a side view.
  • the fan parts end plate 1, intermediate fan 2, and end fan 3 prepared by the method described in the first embodiment are assembled by the ultrasonic welding apparatus 200 shown in FIG.
  • the ultrasonic welding apparatus 200 includes a holding mechanism 40 for holding and moving the fan component in the vertical direction, a positioning mechanism 50 for positioning the fan component, and an ultrasonic mechanism 30 for applying ultrasonic vibration to the fan. Consists of.
  • the holding mechanism 40 connects the table 41 inserted so that the rotation shaft portion 1a of the end plate 1 faces downward, the moving mechanism 42 for moving the table 41 in the vertical direction, and the table 41 to the moving mechanism 42. And a rotating mechanism 44 that rotates the rotating shaft portion 1a of the end plate 1 held by the table 41 about the rotating shaft.
  • the moving mechanism 42 is a linear servo motor in FIG. 8B.
  • the table 41 is a device that can move to a desired position at a desired speed, a linear motor, a servo motor combined with a ball screw mechanism, or an air It may be a cylinder.
  • the rotation mechanism 44 is preferably a motor that can easily control the number of rotations when ultrasonic welding of a plurality of types of fan parts, but may be a rotary cylinder when only specific fan parts are ultrasonically welded.
  • 1 is provided with a mechanism for chucking the rotary shaft portion 1a of the end plate 1 shown in FIG.
  • the positioning mechanism 50 includes a cylindrical guide bar 51 provided in at least three locations in parallel with the rotation axis center of the rotation mechanism 44 and a support bar 53 that holds the guide bar 51 rotatably via a bearing 52.
  • the support bar 53 is attached to an equipment frame (not shown) via a moving mechanism 54, and can be opened and closed so that the guide bar 51 does not interfere with the work of attaching the fan part to the table 41 when the fan part is ultrasonically welded. It is configured as follows.
  • the ultrasonic mechanism 30 is the same as that described in the first embodiment.
  • FIG. 9A in FIG. 9 the end plate 1 is attached to the table 41 with the rotary shaft portion 1a facing down. Thereafter, the intermediate fan 2 is placed on the end plate 1 with the blade portion 2a facing down.
  • FIG. 9B the guide bar 51 is advanced by the moving mechanism 54, and the axis of the intermediate fan 2, the axis of the tool horn 32, and the axis of the rotating shaft of the rotating mechanism 44 are matched.
  • FIG. 9C the tool horn 32 is lowered to pressurize the intermediate fan 2. Thereafter, as shown in FIG.
  • the rotating shaft 1a of the end plate 1 is rotated by the rotating mechanism 44, whereby the end plate 1 and the intermediate fan 2 rotate at the same rotational speed.
  • the vibrator 31 is vibrated by an oscillator (not shown), so that the tool horn 32 is also vibrated, the intermediate fan 2 is vibrated, and the blade portion of the intermediate fan 2
  • the tip of 2a and the end plate 1 are ultrasonically welded.
  • the pressure applied by the tool horn 32 and the time during which the tool horn 32 vibrates are such that sufficient welding strength can be obtained between the blade portion 2a and the end plate 1, and the pressure and vibration time are determined by the cross flow fan. It is determined by size, number of parts, etc.
  • the pressure is 0.
  • Sufficient welding strength can be obtained in about 2 to 0.7 MPa and vibration time of 0.5 to 3 seconds.
  • the tool horn 32, the guide bar 51, and the table 41 are returned to the initial position, which is the initial position, in the reverse order of the described procedure.
  • the next intermediate fan 2 is stacked on the already welded intermediate fan 2, and finally the end fan 3 is welded.
  • the tool horn 32, the guide bar 51, and the table 41 are returned to the origin every time they are welded.
  • the next fan part can be inserted in the middle. You can stop it.
  • the fan component for welding may be rotated directly by applying an external force, for example, with wind. .
  • FIG. 10 is a diagram illustrating a manufacturing flow of the cross flow fan according to the third embodiment.
  • the fan components end plate 1, intermediate fan 2, end fan 3
  • the fan components are formed by a normal forming method in which the mold temperature is not changed by the process (step ST101).
  • an annealing process is performed on the fan components alone before assembly by ultrasonic welding (step ST102).
  • the cross flow fan is assembled by ultrasonic welding using the ultrasonic welding apparatuses 100 and 200 shown in the first or second embodiment (step ST103).
  • FIG. 11 shows the result of the durability test of the cross flow fan manufactured in the manufacturing flow as shown in FIG. In the durability test, the amount of deformation in the rotation direction when rotating at 2000 ° C. at 60 ° C. was evaluated.
  • the annealing is performed after welding, and according to the third embodiment, the annealing is performed with the ultrasonic welding apparatuses 100 and 200 after annealing the fan components alone. It can be seen that there is no significant difference in the amount of deformation between the method and the manufacturing method according to Embodiment 3 does not require the annealing process after the assembly of the crossflow fan.
  • Annealing conditions according to each fan component can be set by annealing the fan component alone as described above. That is, since a metal shaft is generally used for the rotating shaft portion 1a of the end plate 1, it is preferable to anneal at a low temperature in order to suppress the tilt of the shaft.
  • a boss is embedded in the terminal fan 3 so as to be assembled to the motor. Generally, a rubber boss is used in order to secure a tolerance for assembly in the motor. In order to suppress the deterioration of the rubber, it is preferable to anneal at a lower temperature than the intermediate fan 2.
  • the annealing time has to be lengthened because the temperature is set according to the fan component that requires the lowest temperature setting.
  • the annealing temperature can be increased for the intermediate fan 2, so that the annealing time can be shortened.
  • FIG. 12 shows an annealing condition when a cross-flow fan using AS (acrylic-styrene) resin mixed with 20% glass fiber is annealed in a batch processing thermostat. Since the annealing time of the intermediate fan 2 can be halved, productivity is improved. Needless to say, even in cases other than the annealing processing method described with reference to FIG. 12, such as an in-line annealing apparatus or an annealing method using infrared rays, each component can be processed in an optimal processing time.
  • AS acrylic-styrene
  • FIG. 13 is a diagram illustrating a manufacturing flow of the cross flow fan according to the fourth embodiment.
  • a fan component end plate 1, intermediate fan 2, end fan 3
  • a mold cavity that is opened in advance by a predetermined amount, and then the cavity is compressed (so-called injection compression molding).
  • FIGS. 14, 15 and 16 show the structure of a mold 60 for molding the fan component (the intermediate fan 2 in the example shown) in the fourth embodiment.
  • FIG. 14 is a cross-sectional view of the mold 60
  • FIG. 15 is a front view of the plate portion 64
  • the mold 60 includes a mold cavity of a fixed mold 61 and a movable mold 62.
  • the movable mold 62 is a base part 63, a plate part 64 fixed to the base part 63, and a compression that is fitted to the base part 63 so as to be able to rotate in the thickness direction of the blade part 2a (see FIG. 6 or FIG. 9). It comprises a fixed portion 66 fixed to the portion 65 and the base portion 63.
  • the plate part 64 is provided with a molding part 67 of the plate part of the intermediate fan 2 and a molding part 68a of the blade part 2a.
  • the forming portions 68, 68a, 68b, 68c of the blade portion 2a of the intermediate fan 2 are indicated by hatched portions in the drawing.
  • the compression portion 65 Before injecting the resin, as shown in FIG. 16A, the compression portion 65 is opened in a certain amount so that the molding portion 68b of the blade portion 2a formed by the compression portion 65 and the fixing portion 66 is thicker than the blade portion 2a. is there. After the resin is injected into the mold 60 and the molding portion 68 is filled with about 80%, the compression portion 65 rotates counterclockwise as shown in FIG. 16B and compresses the resin to fill the molding portion 68 with the resin. .
  • the shape of the molded part 68c formed by the compressed compression part 65 and the fixed part 66 after rotation matches the molded part 68a provided on the plate part 64, and is aligned in a straight line in the length direction of the blade part 2a. Yes.
  • means for rotating the compression unit 65 is not shown, if the rotation operation of the compression unit 65 can be finished before the resin injected into the mold 60 is cooled and solidified, a hydraulic cylinder, an air cylinder, or a slide mechanism can be used. Anything using the opening and closing operation of the mold may be used.
  • the mold 60 generally has the structure and functions necessary for the molding mold as appropriate.
  • step ST201 the molded product manufactured in step ST201 is ultrasonically welded by the ultrasonic welding apparatuses 100 and 200 shown in the first or second embodiment to assemble a cross flow fan (step ST202). Since the crossflow fan manufactured by such a procedure is composed of a molded product having a low internal stress as in the crossflow fan described in the first or second embodiment, an annealing process after assembly is not required. Needless to say, there are.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided is a cross flow fan of which an internal stress is reduced without detracting from manufacturing efficiency. During the manufacture of the cross flow fan, fan components (1, 2, 3) are ultrasonically welded and assembled while being rotated around a fan rotating shaft. Application of force to the cross flow fan in an unwanted rotating direction for ultrasonic welding can be suppressed, making it possible to reduce an internal stress due to ultrasonic welding.

Description

クロスフローファンの製造方法、及びクロスフローファンの製造装置Cross flow fan manufacturing method and cross flow fan manufacturing apparatus
 本願は、複数の熱可塑性樹脂成形体を溶着して組み立てるクロスフローファンの製造方法、及び製造装置に関するものである。 The present application relates to a manufacturing method and a manufacturing apparatus of a cross flow fan in which a plurality of thermoplastic resin moldings are welded and assembled.
 樹脂製クロスフローファンは、円板と多数の羽根など、金型により一体成形される樹脂成形体を準備し(樹脂成形工程)、その後、ファンの回転軸方向に重ね合わせて、これらの樹脂成形体の集合体を回転軸方向に加圧しながら超音波振動を加えることで樹脂成形体同士を溶着させ( 超音波溶着工程)、製造されるものがよく知られている。しかし、この方法で製造されたものでは、超音波溶着工程後の集合体に歪みが生じてしまうという理由で、超音波溶着工程後の集合体の全体をアニーリングすることで、歪みを除去している。
 また、ガスアシスト成形により得られた中空構造のファン部品により、溶融流動性が良好なクロスフローファンの構成部品(成形品)が得られるため、超音波溶着工程後のアニール処理が不要になるものが知られている(例えば、特許文献1参照)。
For resin cross flow fans, resin molded bodies that are integrally molded by a mold, such as a disc and a large number of blades, are prepared (resin molding process), and then superimposed in the direction of the rotation axis of the fan to form these resin moldings It is well known that the resin molded bodies are welded together by applying ultrasonic vibration while pressing the assembly of bodies in the direction of the rotation axis (ultrasonic welding process). However, in the case of the product manufactured by this method, the distortion after the ultrasonic welding process is caused by the distortion of the aggregate after the ultrasonic welding process, thereby removing the distortion. Yes.
In addition, the hollow structure fan parts obtained by gas-assist molding can produce cross flow fan components (molded products) with good melt fluidity, eliminating the need for annealing after the ultrasonic welding process. Is known (see, for example, Patent Document 1).
特開平9-112491号公報JP-A-9-112491
 超音波溶着後の樹脂成形体の集合体全体のアニーリングは、アニーリング温度を低く設定することが必要なファン構成部品に合わせる必要があり、そのためアニール時間を長く設定する必要があり製造効率を損なう。また、ガスアシスト成形では、金型製品部に樹脂が充填完了する前に樹脂の射出を停止し、ガス注入に切り替える必要がある。一般的に、ガス注入の際には樹脂が射出成形機へ逆流するのを防止するために、射出ノズルをニードル弁などで栓をする。この動作の間に樹脂、及びガスの注入動作が止まるため、クロスフローファンの羽根のような薄肉の場合は、樹脂が冷えて固化してしまう。そのため1つの部品の羽根を長く出来ず、部品点数が増えてしまう課題がある。これによりクロスフローファンを組立てるために行う超音波溶着の回数が増え、製造効率が悪化する。
 本願はこのような課題を解決するものであり、製造効率を悪化させることなく、クロスフローファンを組み立てることを目的とする。
The annealing of the entire assembly of the resin molded bodies after ultrasonic welding must be matched with the fan components that require the annealing temperature to be set low, so that it is necessary to set the annealing time longer and the manufacturing efficiency is impaired. Further, in the gas assist molding, it is necessary to stop the injection of the resin and to switch to the gas injection before the mold product part is completely filled with the resin. Generally, in order to prevent the resin from flowing back to the injection molding machine during gas injection, the injection nozzle is plugged with a needle valve or the like. Since the resin and gas injection operation stops during this operation, the resin cools and solidifies in the case of a thin wall such as a blade of a crossflow fan. For this reason, there is a problem that the blade of one part cannot be lengthened and the number of parts increases. Thereby, the frequency | count of the ultrasonic welding performed in order to assemble a cross flow fan increases, and manufacturing efficiency deteriorates.
This application solves such a subject and aims at assembling a cross flow fan, without deteriorating manufacturing efficiency.
 本願に開示されるクロスフローファンの製造方法は、
金型に樹脂を注入し、ファン部品を成形する第一の工程、成形されたファン部品同士をそれぞれ同じ回転数で停止させずに回転させながら超音波溶着して積層する第二の工程を有する。
The manufacturing method of the cross flow fan disclosed in the present application is as follows.
It has a first step of injecting resin into the mold and molding the fan parts, and a second step of ultrasonically welding and laminating the molded fan parts without stopping at the same rotational speed. .
 本願に開示されるクロスフローファンの製造方法によれば、製造効率を損なうことなく内部応力の少ないクロスフローファンが得られる。 According to the method of manufacturing a cross flow fan disclosed in the present application, a cross flow fan with less internal stress can be obtained without impairing the manufacturing efficiency.
実施の形態1のクロスフローファンの平面図である。FIG. 3 is a plan view of the cross flow fan according to the first embodiment. 実施の形態1のクロスフローファンの製造フローを示す図である。FIG. 3 is a diagram illustrating a manufacturing flow of the cross flow fan according to the first embodiment. 実施の形態1の金型温度制御を説明する図である。It is a figure explaining the metal mold | die temperature control of Embodiment 1. FIG. 実施の形態1のクロスフローファンを組み立てるための超音波溶着装置の概略構成図であり、図4Aは正面図、図4Bは側面図を示す。It is a schematic block diagram of the ultrasonic welding apparatus for assembling the cross flow fan of Embodiment 1, FIG. 4A shows a front view, and FIG. 4B shows a side view. 図4の超音波溶着装置のテーブルの拡大図である。It is an enlarged view of the table of the ultrasonic welding apparatus of FIG. 図4の超音波溶着装置の動作を説明する図であり、図6A、図6B、図6C、図6Dの順に従って動作の手順を示す。It is a figure explaining operation | movement of the ultrasonic welding apparatus of FIG. 4, and shows the procedure of operation | movement in order of FIG. 6A, FIG. 6B, FIG. 6C, and FIG. 実施の形態1のクロスフローファンの耐久性試験の結果を示す説明図である。It is explanatory drawing which shows the result of the durability test of the crossflow fan of Embodiment 1. FIG. 実施の形態2のクロスフローファンを組み立てるための超音波溶着装置の概略構成図であり、図8Aは正面図、図8Bは側面図を示す。It is a schematic block diagram of the ultrasonic welding apparatus for assembling the cross flow fan of Embodiment 2, FIG. 8A shows a front view, and FIG. 8B shows a side view. 図8の超音波溶着装置の動作を説明する図であり、図9A、図9B、図9C、図9Dの順に従って動作の手順を示す。It is a figure explaining operation | movement of the ultrasonic welding apparatus of FIG. 8, and shows the procedure of operation | movement in order of FIG. 9A, FIG. 9B, FIG. 9C, and FIG. 実施の形態2のクロスフローファンの製造フローを示す図である。FIG. 10 is a diagram showing a manufacturing flow of the cross flow fan of the second embodiment. 実施の形態2のクロスフローファンの耐久性試験の結果を示す図である。It is a figure which shows the result of the durability test of the crossflow fan of Embodiment 2. FIG. 実施の形態3のクロスフローファンのファン部品単体でアニーリング処理する際のアニーリング条件を示す図である。It is a figure which shows the annealing conditions at the time of annealing processing with the fan component single-piece | unit of the crossflow fan of Embodiment 3. FIG. 実施の形態4のクロスフローファンの製造フローを示す図である。It is a figure which shows the manufacture flow of the crossflow fan of Embodiment 4. FIG. 実施の形態4のクロスフローファンのファン部品を成形するための金型の概略構成図である。FIG. 6 is a schematic configuration diagram of a mold for molding a fan part of a crossflow fan according to a fourth embodiment. 図14の金型のプレート部の正面図である。It is a front view of the plate part of the metal mold | die of FIG. 図14の金型の動作を説明する説明図であり、図16A、図16Bの順に従って動作の手順を示す。It is explanatory drawing explaining operation | movement of the metal mold | die of FIG. 14, and shows the procedure of operation | movement according to the order of FIG. 16A and FIG. 16B.
実施の形態1.
 以下、実施の形態1によるクロスフローファン、及びその製造方法を説明する。図1はクロスフローファンの図である。クロスフローファンは、ファン部品としてエンドプレート1と、プレートに羽根が一体化された形状の中間ファン2と、回転軸との嵌合部が設けられたプレートに羽根が一体化された形状の終端ファン3とで構成される。
 図2は実施の形態1によるクロスフローファンの製造フローを示す図である。
 まず、ステップST1として、ファン部品の製作を行う。樹脂を注入する際に金型を荷重たわみ温度以上の高温に保持することで、金型内に樹脂を注入する際に樹脂にほとんど圧力がかからないため、内部応力が少ない成形品(エンドプレート1、中間ファン2、及び終端ファン3)を得ることが出来る。
Embodiment 1 FIG.
Hereinafter, the crossflow fan according to the first embodiment and the manufacturing method thereof will be described. FIG. 1 is a diagram of a cross flow fan. The cross-flow fan has an end plate 1 as a fan component, an intermediate fan 2 in which blades are integrated with the plate, and a blade in which blades are integrated with a plate provided with a fitting portion with a rotating shaft. It is comprised with the fan 3.
FIG. 2 is a diagram showing a manufacturing flow of the cross flow fan according to the first embodiment.
First, as step ST1, fan parts are manufactured. By holding the mold at a temperature higher than the deflection temperature under load when injecting the resin, almost no pressure is applied to the resin when injecting the resin into the mold, so that the molded product (end plate 1, An intermediate fan 2 and an end fan 3) can be obtained.
 なお、金型が高温の場合、成形品を取り出すまでの冷却時間を長くする必要があり、成形サイクルが伸びて生産性が著しく悪化する。そこで、樹脂を金型内に注入する際のみ金型を荷重たわみ温度以上の高温に保持し、注入完了後に急冷することで、成形サイクルを通常と同等程度にすることもできる(いわゆる、ヒート&クール成形法)。その際の金型の温度制御の例を図3に示す。金型温度を上昇させる媒体は、媒体の温度が高い水蒸気、、温水、又は温油などでも良い。
 また、金型の温度を高温にしない場合でも、金型内に樹脂を注入する際に金型内の空間を大気圧よりも減圧することで、金型内に樹脂を注入する際に樹脂に加わる圧力を低減できるため、同様の内部応力の低減効果を得ることが出来る。
In addition, when a metal mold | die is high temperature, it is necessary to lengthen the cooling time until taking out a molded article, a molding cycle is extended and productivity deteriorates remarkably. Therefore, only when the resin is injected into the mold, the mold is kept at a high temperature that is equal to or higher than the deflection temperature under load. Cool molding method). An example of mold temperature control at that time is shown in FIG. The medium for raising the mold temperature may be water vapor, hot water, hot oil, or the like having a high medium temperature.
Even when the temperature of the mold is not increased, the space in the mold is reduced to a pressure lower than the atmospheric pressure when the resin is injected into the mold, so that the resin is injected into the mold when the resin is injected into the mold. Since the applied pressure can be reduced, the same effect of reducing internal stress can be obtained.
 次に、ステップST2において、ステップST1で製作した成形品をクロスフローファンに組み立てる。図4は実施の形態1によるクロスフローファンを組み立てるための製造装置である超音波溶着装置100の概略構成図で、図4Aは正面図であり、図4Bは側面図である。超音波溶着装置100は、ファン部品を保持し、垂直方向に移動させるための保持機構10と、ファン部品を位置決めするための位置決め機構20と、ファン部品に超音波振動を付加するための超音波機構30からなる。
 保持機構10は、図1で示すエンドプレート1の回転軸部1aが下向きとなるように挿入されるテーブル11と、テーブル11を超音波機構30の方向に垂直に移動させるための移動機構12と、テーブル11を移動機構12に連結するための連結機構13からなる。テーブル11は図5に示す通り、回転軸部1aの挿入部に軸受け14が取り付けられており、エンドプレート1が回転軸部1aを中心に自由に回転できる構造を有している。移動機構12は図4B中ではリニアサーボモータであるが、テーブル11が所望の速度で所望の位置に移動できる機構であれば、リニアガイド、或いはボールねじ機構などと組合せたサーボモータ、又はエアシリンダーであってもよい。
Next, in step ST2, the molded product manufactured in step ST1 is assembled into a cross flow fan. 4 is a schematic configuration diagram of an ultrasonic welding apparatus 100 that is a manufacturing apparatus for assembling the cross flow fan according to Embodiment 1, FIG. 4A is a front view, and FIG. 4B is a side view. The ultrasonic welding apparatus 100 holds a fan component and moves the holding mechanism 10 in the vertical direction, a positioning mechanism 20 for positioning the fan component, and an ultrasonic wave for applying ultrasonic vibration to the fan component. It consists of a mechanism 30.
The holding mechanism 10 includes a table 11 that is inserted so that the rotation shaft portion 1a of the end plate 1 shown in FIG. 1 faces downward, and a moving mechanism 12 that moves the table 11 perpendicularly to the direction of the ultrasonic mechanism 30. The connecting mechanism 13 is used to connect the table 11 to the moving mechanism 12. As shown in FIG. 5, the table 11 has a structure in which a bearing 14 is attached to the insertion portion of the rotating shaft portion 1a, and the end plate 1 can freely rotate around the rotating shaft portion 1a. The moving mechanism 12 is a linear servo motor in FIG. 4B, but if the table 11 is a mechanism that can move to a desired position at a desired speed, a servo motor combined with a linear guide or a ball screw mechanism, or an air cylinder It may be.
 位置決め機構20は、図5で示した軸受け14の軸中心と並行に、少なくとも3箇所に備えられた円柱状のガイド棒21と、ガイド棒21の軸受け22とガイド棒21を回転させるための回転機構23からなる。ガイド棒21は図示しない設備フレームに移動機構24を介して取り付けられており、ファン部品を超音波溶着する際に、テーブル11にファン部品を取り付ける作業をガイド棒21が邪魔しないように開閉できるように構成されている。回転機構23は複数の種類のファン部品を超音波溶着する場合は回転数を容易に制御できるモーターが望ましいが、特定のファン部品のみを超音波溶着する場合は回転シリンダでも良い。 The positioning mechanism 20 is parallel to the shaft center of the bearing 14 shown in FIG. 5 and is provided with at least three columnar guide bars 21 and a rotation for rotating the bearings 22 and the guide bars 21 of the guide bars 21. It consists of a mechanism 23. The guide bar 21 is attached to an equipment frame (not shown) via a moving mechanism 24 so that when the fan parts are ultrasonically welded, the work of attaching the fan parts to the table 11 can be opened and closed without disturbing the guide bar 21. It is configured. The rotation mechanism 23 is preferably a motor that can easily control the number of rotations when ultrasonic welding of a plurality of types of fan parts, but may be a rotary cylinder when only specific fan parts are ultrasonically welded.
 超音波機構30は、超音波溶着機の振動子31と、振動子31に固定された工具ホーン32と、振動子31の移動機構33からなる。工具ホーン32は前記テーブル11に設けられた軸受け14の軸心と同心上に設けられている。移動機構33は図中ではエアシリンダーであるが、振動子31が所望の速度で所望の位置に移動できる機器であれば、リニアガイドあるいはボールねじ機構などと組あわせたサーボモータ、又はリニアサーボモータであってもよい。 The ultrasonic mechanism 30 includes a vibrator 31 of an ultrasonic welder, a tool horn 32 fixed to the vibrator 31, and a moving mechanism 33 of the vibrator 31. The tool horn 32 is provided concentrically with the axis of the bearing 14 provided on the table 11. The moving mechanism 33 is an air cylinder in the figure. However, if the vibrator 31 is a device that can move to a desired position at a desired speed, a servo motor combined with a linear guide or a ball screw mechanism, or a linear servo motor. It may be.
 次に、超音波溶着装置100を用いてクロスフローファンを組立てる際の動作について、図6に基づいて説明する。まず図6中、図6Aに示す通り、テーブル11にエンドプレート1を回転軸部1aを下にして取り付ける。その後、中間ファン2を羽根部2aを下にしてエンドプレート1の上に乗せる。次に図6Bに示す通り、ガイド棒21が移動機構24により前進してきて、中間ファン2の軸心と工具ホーン32の軸心とテーブル11に設けられた軸受け14の軸心とを一致させる。この状態で図6Cに示す通り、工具ホーン32が下降し、中間ファン2を加圧する。その後、図6Dに示す通り、回転機構23によりガイド棒21が回転し、これによりエンドプレート1と中間ファン2とが同じ回転数で回転する。エンドプレート1及び中間ファン2を停止させずに回転させた状態で振動子31が図示しない発振器により振動することで工具ホーン32も振動し、中間ファン2が加振され、中間ファン2の羽根部2aの先端とエンドプレート1とが超音波溶着される。この際の工具ホーン32による加圧力および工具ホーン32が振動する時間は、羽根部2aとエンドプレート1とが充分な溶着強度を得られる程度であり、その加圧力および振動時間はクロスフローファンの大きさ、部品点数、などで決定される。例として、ガラス繊維が20%混合されたAS(アクリル-スチレン)樹脂を使用した外径100~110mm、長さ600~700mm、部品点数8~10個のクロスフローファンの場合は、加圧力0.2~0.7MPa程度、振動時間0.5~3秒程度で充分な溶着強度を得ることが出来る。 Next, the operation when the cross flow fan is assembled using the ultrasonic welding apparatus 100 will be described with reference to FIG. First, in FIG. 6, as shown in FIG. 6A, the end plate 1 is attached to the table 11 with the rotating shaft portion 1 a facing down. Thereafter, the intermediate fan 2 is placed on the end plate 1 with the blade portion 2a facing down. Next, as shown in FIG. 6B, the guide rod 21 is advanced by the moving mechanism 24, and the axial center of the intermediate fan 2, the axial center of the tool horn 32, and the axial center of the bearing 14 provided on the table 11 are aligned. In this state, as shown in FIG. 6C, the tool horn 32 is lowered and pressurizes the intermediate fan 2. Thereafter, as shown in FIG. 6D, the guide rod 21 is rotated by the rotation mechanism 23, whereby the end plate 1 and the intermediate fan 2 are rotated at the same rotation speed. When the end plate 1 and the intermediate fan 2 are rotated without stopping, the vibrator 31 is vibrated by an oscillator (not shown), so that the tool horn 32 is also vibrated, the intermediate fan 2 is vibrated, and the blade portion of the intermediate fan 2 The tip of 2a and the end plate 1 are ultrasonically welded. At this time, the pressure applied by the tool horn 32 and the time during which the tool horn 32 vibrates are such that sufficient welding strength can be obtained between the blade portion 2a and the end plate 1, and the pressure and vibration time are determined by the cross flow fan. It is determined by size, number of parts, etc. For example, in the case of a cross flow fan using AS (acrylic-styrene) resin mixed with 20% glass fiber and having an outer diameter of 100 to 110 mm, a length of 600 to 700 mm, and 8 to 10 parts, the pressure is 0. A sufficient welding strength can be obtained in about 2 to 0.7 MPa and a vibration time of about 0.5 to 3 seconds.
 溶着完了後は記載した手順と逆の手順で、工具ホーン32とガイド棒21とテーブル11が初期位置である原点に復帰する。この繰り返しで、次の中間ファン2を既に溶着した中間ファン2の上に積み重ねていき、最後に終端ファン3を溶着する。なお、この説明では、工具ホーン32とガイド棒21とテーブル11とが溶着するたびに原点に復帰する旨記載したが、生産サイクルを短縮するために、次のファン部品が挿入できる範囲で途中で停止しても構わない。さらに、回転機構23がモーターである場合はモーターのブレーキを解除した状態で、ガイド棒21が自由に回転できるようにし、溶着のためのファン部品に直接、例えば風などで外力を加えてファン部品を回転させても良い。 After the welding is completed, the tool horn 32, the guide bar 21, and the table 11 are returned to the original position, which is the initial position, in the reverse procedure. By repeating this process, the next intermediate fan 2 is stacked on the already welded intermediate fan 2, and finally the end fan 3 is welded. In this description, it is described that the tool horn 32, the guide bar 21, and the table 11 are returned to the origin every time they are welded. However, in order to shorten the production cycle, the next fan part can be inserted in the middle. You can stop it. Further, when the rotation mechanism 23 is a motor, the guide rod 21 can be freely rotated in a state where the brake of the motor is released, and the fan component is directly applied to the fan component for welding by, for example, wind. May be rotated.
 このような構成によれば、工具ホーン32により加圧、加振された際にクロスフローファンが回転しているため、クロスフローファンが動けないように固定された状態で超音波した場合と比べて、超音波溶着に不要な回転方向の力がクロスフローファンに加わることを抑制でき、超音波溶着に起因する内部応力を低減することが出来る。なお、クロスフローファンを超音波溶着する際の回転速度は、超音波溶着による内部応力が発生しない程度であり、その速度はクロスフローファンの大きさ、部品点数、などで決定される。例として、ガラス繊維が20%混合されたAS(アクリル-スチレン)樹脂を使用した外径100~110mm、長さ600~700mm、部品点数8~10個のクロスフローファンの場合は、回転速度60rpm程度で超音波溶着による内部応力を抑制することが出来る。さらに、超音波溶着後のファン部品の内部応力を測定する機器(例えばX線回折装置)を制御回路を介して組み込むことで、内部応力が最小となるようにファン部品の回転数を自動で制御して、クロスフローファンを組み立てることも出来る。 According to such a configuration, since the crossflow fan is rotating when pressurized and vibrated by the tool horn 32, it is compared with a case where ultrasonic waves are used while the crossflow fan is fixed so as not to move. Thus, it is possible to suppress the force in the rotational direction unnecessary for the ultrasonic welding from being applied to the cross flow fan, and to reduce the internal stress caused by the ultrasonic welding. The rotational speed at which the cross flow fan is ultrasonically welded is such that internal stress due to ultrasonic welding is not generated, and the speed is determined by the size of the crossflow fan, the number of parts, and the like. As an example, in the case of a cross flow fan using AS (acryl-styrene) resin mixed with 20% glass fiber and having an outer diameter of 100 to 110 mm, a length of 600 to 700 mm, and 8 to 10 parts, the rotational speed is 60 rpm. It is possible to suppress internal stress due to ultrasonic welding. Furthermore, by incorporating a device that measures the internal stress of the fan component after ultrasonic welding (for example, an X-ray diffractometer) via a control circuit, the rotational speed of the fan component is automatically controlled so that the internal stress is minimized. And you can assemble a cross flow fan.
 このような製造フローで製造されたクロスフローファンの耐久性試験の結果を図7に示す。耐久性試験では、60℃以下で2000Hr回転させた場合の回転方向への変形量を評価した。図7によると、従来技術での製造方法でアニーリング処理をした場合と実施の形態1による製造方法でアニーリングをしなかった場合とで変形量に有意差がなく、実施の形態1による製造方法ではアニーリング処理が不要であることがわかる。 The results of the durability test of the cross flow fan manufactured in such a manufacturing flow are shown in FIG. In the durability test, the amount of deformation in the rotation direction when rotating at 2000 ° C. or less at 60 ° C. or less was evaluated. According to FIG. 7, there is no significant difference in the amount of deformation between the case where the annealing process is performed by the manufacturing method according to the prior art and the case where the annealing method is not performed by the manufacturing method according to the first embodiment. It turns out that an annealing process is unnecessary.
実施の形態2.
 図8は実施の形態2によるクロスフローファンを組み立てる際の超音波溶着装置200を示す構成概念図で、図8Aは正面図であり、図8Bは側面図である。実施の形態2では、実施の形態1に記載の方法で準備したファン部品(エンドプレート1と中間ファン2と終端ファン3)を図8に示す超音波溶着装置200にて組み立てる。
 超音波溶着装置200は、ファン部品を保持、垂直方向に移動させるための保持機構40と、ファン部品を位置決めするための位置決め機構50と、ファンに超音波振動を付加するための超音波機構30からなる。保持機構40は、エンドプレート1の回転軸部1aが下向きとなるように挿入されるテーブル41と、テーブル41を垂直方向に移動させるための移動機構42と、テーブル41を移動機構42に連結するための連結機構43と、テーブル41で保持されたエンドプレート1の回転軸部1aを回転軸中心に回転させる回転機構44からなる。移動機構42は図8B中ではリニアサーボモータであるが、テーブル41が所望の速度で所望の位置に移動できる機器であれば、リニアガイド、或いはボールねじ機構などと組あわせたサーボモータ、又はエアシリンダーであってもよい。
Embodiment 2. FIG.
FIG. 8 is a conceptual diagram showing the ultrasonic welding apparatus 200 when assembling the cross flow fan according to the second embodiment, FIG. 8A is a front view, and FIG. 8B is a side view. In the second embodiment, the fan parts (end plate 1, intermediate fan 2, and end fan 3) prepared by the method described in the first embodiment are assembled by the ultrasonic welding apparatus 200 shown in FIG.
The ultrasonic welding apparatus 200 includes a holding mechanism 40 for holding and moving the fan component in the vertical direction, a positioning mechanism 50 for positioning the fan component, and an ultrasonic mechanism 30 for applying ultrasonic vibration to the fan. Consists of. The holding mechanism 40 connects the table 41 inserted so that the rotation shaft portion 1a of the end plate 1 faces downward, the moving mechanism 42 for moving the table 41 in the vertical direction, and the table 41 to the moving mechanism 42. And a rotating mechanism 44 that rotates the rotating shaft portion 1a of the end plate 1 held by the table 41 about the rotating shaft. The moving mechanism 42 is a linear servo motor in FIG. 8B. However, if the table 41 is a device that can move to a desired position at a desired speed, a linear motor, a servo motor combined with a ball screw mechanism, or an air It may be a cylinder.
 回転機構44は、複数の種類のファン部品を超音波溶着する場合は回転数を容易に制御できるモーターが望ましいが、特定のファン部品のみを超音波溶着する場合は回転シリンダでも良く、回転機構44の回転軸先端には、図1で示すエンドプレート1の回転軸部1aを、例えば空圧などでチャックする機構が備え付けられている。
 位置決め機構50は、回転機構44の回転軸中心と並行に少なくとも3箇所に備えられた円柱状のガイド棒51と、ガイド棒51を軸受け52を介して回転可能に保持した支持棒53からなる。支持棒53は、図示しない設備フレームに移動機構54を介して取り付けられており、ファン部品を超音波溶着する際に、テーブル41にファン部品を取り付ける作業をガイド棒51が邪魔しないように開閉できるように構成されている。尚、超音波機構30は、実施の形態1で説明したものと同じものである。
The rotation mechanism 44 is preferably a motor that can easily control the number of rotations when ultrasonic welding of a plurality of types of fan parts, but may be a rotary cylinder when only specific fan parts are ultrasonically welded. 1 is provided with a mechanism for chucking the rotary shaft portion 1a of the end plate 1 shown in FIG.
The positioning mechanism 50 includes a cylindrical guide bar 51 provided in at least three locations in parallel with the rotation axis center of the rotation mechanism 44 and a support bar 53 that holds the guide bar 51 rotatably via a bearing 52. The support bar 53 is attached to an equipment frame (not shown) via a moving mechanism 54, and can be opened and closed so that the guide bar 51 does not interfere with the work of attaching the fan part to the table 41 when the fan part is ultrasonically welded. It is configured as follows. The ultrasonic mechanism 30 is the same as that described in the first embodiment.
 次に、超音波溶着装置200を用いてクロスフローファンを組立てる際の動作について、図9に基づいて説明する。まず図9中、図9Aに示す通り、テーブル41にエンドプレート1を回転軸部1aを下にして取り付ける。その後、中間ファン2を羽根部2aを下にしてエンドプレート1の上に乗せる。次に、図9Bに示す通り、ガイド棒51が移動機構54により前進してきて、中間ファン2の軸心と工具ホーン32の軸心と回転機構44の回転軸の軸心とを一致させる。この状態で図9Cに示す通り、工具ホーン32が下降し、中間ファン2を加圧する。その後、図9Dに示す通り、回転機構44によりエンドプレート1の回転軸部1aが回転し、これによりエンドプレート1と中間ファン2とが同じ回転数で回転する。エンドプレート1及び中間ファン2を停止させずに回転させた状態で振動子31が図示しない発振器により振動することで工具ホーン32も振動し、中間ファン2が加振され、中間ファン2の羽根部2aの先端とエンドプレート1とが超音波溶着される。この際の工具ホーン32による加圧力および工具ホーン32が振動する時間は、羽根部2aとエンドプレート1とが充分な溶着強度を得られる程度であり、その加圧力および振動時間はクロスフローファンの大きさ、部品点数、などで決定される。例として、ガラス繊維が20%混合されたAS(アクリル-スチレン)樹脂を使用した外径100~110mm、長さ600~700mm、部品点数8~10個のクロスフローファンの場合は、加圧力0.2~0.7MPa程度、振動時間0.5~3秒で充分な溶着強度を得ることが出来る。 Next, the operation when the cross flow fan is assembled using the ultrasonic welding apparatus 200 will be described with reference to FIG. First, as shown in FIG. 9A in FIG. 9, the end plate 1 is attached to the table 41 with the rotary shaft portion 1a facing down. Thereafter, the intermediate fan 2 is placed on the end plate 1 with the blade portion 2a facing down. Next, as shown in FIG. 9B, the guide bar 51 is advanced by the moving mechanism 54, and the axis of the intermediate fan 2, the axis of the tool horn 32, and the axis of the rotating shaft of the rotating mechanism 44 are matched. In this state, as shown in FIG. 9C, the tool horn 32 is lowered to pressurize the intermediate fan 2. Thereafter, as shown in FIG. 9D, the rotating shaft 1a of the end plate 1 is rotated by the rotating mechanism 44, whereby the end plate 1 and the intermediate fan 2 rotate at the same rotational speed. When the end plate 1 and the intermediate fan 2 are rotated without stopping, the vibrator 31 is vibrated by an oscillator (not shown), so that the tool horn 32 is also vibrated, the intermediate fan 2 is vibrated, and the blade portion of the intermediate fan 2 The tip of 2a and the end plate 1 are ultrasonically welded. At this time, the pressure applied by the tool horn 32 and the time during which the tool horn 32 vibrates are such that sufficient welding strength can be obtained between the blade portion 2a and the end plate 1, and the pressure and vibration time are determined by the cross flow fan. It is determined by size, number of parts, etc. For example, in the case of a cross flow fan using AS (acrylic-styrene) resin mixed with 20% glass fiber and having an outer diameter of 100 to 110 mm, a length of 600 to 700 mm, and 8 to 10 parts, the pressure is 0. Sufficient welding strength can be obtained in about 2 to 0.7 MPa and vibration time of 0.5 to 3 seconds.
 溶着完了後は記載した手順と逆の手順で、工具ホーン32とガイド棒51とテーブル41が、初期位置である原点に復帰する。この繰り返しで次の中間ファン2を、既に溶着した中間ファン2の上に積み重ねていき、最後に終端ファン3を溶着する。なお、この説明では、工具ホーン32とガイド棒51とテーブル41とが溶着するたびに原点に復帰する旨記載したが、生産サイクルを短縮するために、次のファン部品が挿入できる範囲で途中で停止しても構わない。さらに、回転機構44で回転軸部1aをチャックしない状態(つまり、ファン部品が自由に回転できる状態)で、溶着のためのファン部品に直接、例えば風などで外力を加えて回転させても良い。 After the welding is completed, the tool horn 32, the guide bar 51, and the table 41 are returned to the initial position, which is the initial position, in the reverse order of the described procedure. By repeating this, the next intermediate fan 2 is stacked on the already welded intermediate fan 2, and finally the end fan 3 is welded. In this description, it is described that the tool horn 32, the guide bar 51, and the table 41 are returned to the origin every time they are welded. However, in order to shorten the production cycle, the next fan part can be inserted in the middle. You can stop it. Further, in a state in which the rotating shaft 1a is not chucked by the rotating mechanism 44 (that is, in a state where the fan component can freely rotate), the fan component for welding may be rotated directly by applying an external force, for example, with wind. .
 このような構成により、工具ホーン32により加圧、加振された際にクロスフローファンが回転しているため、実施の形態1に記載した効果と同様に、超音波溶着に起因する内部応力を低減することが出来る。 With such a configuration, since the cross flow fan rotates when being pressed and vibrated by the tool horn 32, the internal stress caused by ultrasonic welding is reduced as in the effect described in the first embodiment. It can be reduced.
実施の形態3.
 図10は、実施の形態3によるクロスフローファンの製造フローを示す図である。実施の形態3では、図3に示すように、金型温度を工程により変化させない通常の成形方法でファン構成部品(エンドプレート1、中間ファン2、終端ファン3)を成形する(ステップST101)。その後、超音波溶着での組立前にファン構成部品単体でアニーリング処理をする(ステップST102)。アニーリング処理をした後は実施の形態1或いは2で示した超音波溶着装置100、200にて超音波溶着してクロスフローファンを組み立てる(ステップST103)。
Embodiment 3 FIG.
FIG. 10 is a diagram illustrating a manufacturing flow of the cross flow fan according to the third embodiment. In the third embodiment, as shown in FIG. 3, the fan components (end plate 1, intermediate fan 2, end fan 3) are formed by a normal forming method in which the mold temperature is not changed by the process (step ST101). Thereafter, an annealing process is performed on the fan components alone before assembly by ultrasonic welding (step ST102). After the annealing process, the cross flow fan is assembled by ultrasonic welding using the ultrasonic welding apparatuses 100 and 200 shown in the first or second embodiment (step ST103).
 図10のような製造フローで製造されたクロスフローファンの耐久性試験の結果を図11に示す。耐久性試験では、60℃下で2000Hr回転させた場合の回転方向への変形量を評価した。図11によると、従来技術での製造方法で、溶着後にアニーリング処理をした場合と、実施の形態3による、ファン構成部品単体でアニーリングした後、超音波溶着装置100、200で溶着処理をする製造方法とで変形量に有意差がなく、実施の形態3による製造方法ではクロスフローファンの組立後のアニーリング処理が不要であることがわかる。 FIG. 11 shows the result of the durability test of the cross flow fan manufactured in the manufacturing flow as shown in FIG. In the durability test, the amount of deformation in the rotation direction when rotating at 2000 ° C. at 60 ° C. was evaluated. Referring to FIG. 11, in the manufacturing method according to the prior art, when the annealing process is performed after welding, and according to the third embodiment, the annealing is performed with the ultrasonic welding apparatuses 100 and 200 after annealing the fan components alone. It can be seen that there is no significant difference in the amount of deformation between the method and the manufacturing method according to Embodiment 3 does not require the annealing process after the assembly of the crossflow fan.
 このようにファン構成部品単体でアニーリングすることで、それぞれのファン構成部品に合わせたアニーリング条件を設定することが可能になる。即ち、エンドプレート1の回転軸部1aには一般的に金属製のシャフトが使われるため、シャフトの傾き抑制のためには低温でアニーリングすることが好ましい。また、終端ファン3にはモーターへ組み付けるためにボスが埋め込まれており、一般的にはモーターへの組み付け裕度を確保するためにゴム製のボスが使用される。このゴムの劣化を抑制するために、中間ファン2よりも低温でアニーリングすることが好ましい。これらの理由から組立後のクロスフローファンとしてアニーリングする際は、最も温度を低く設定する必要があるファン構成部品に合わせて温度設定しているため、アニーリング時間が長くせざるを得なかった。このようにファン構成部品単体でアニーリングすることで、中間ファン2はアニーリング温度を上げられるため、アニーリング時間が短縮できる。 Annealing conditions according to each fan component can be set by annealing the fan component alone as described above. That is, since a metal shaft is generally used for the rotating shaft portion 1a of the end plate 1, it is preferable to anneal at a low temperature in order to suppress the tilt of the shaft. In addition, a boss is embedded in the terminal fan 3 so as to be assembled to the motor. Generally, a rubber boss is used in order to secure a tolerance for assembly in the motor. In order to suppress the deterioration of the rubber, it is preferable to anneal at a lower temperature than the intermediate fan 2. For these reasons, when annealing as a cross-flow fan after assembly, the annealing time has to be lengthened because the temperature is set according to the fan component that requires the lowest temperature setting. By annealing the fan component parts as described above, the annealing temperature can be increased for the intermediate fan 2, so that the annealing time can be shortened.
 例として、ガラス繊維が20%混合されたAS(アクリル-スチレン)樹脂を使用したクロスフローファンを、バッチ処理式の恒温槽でアニーリングする場合のアニーリング条件を示す図を図12に示す。中間ファン2のアニーリング時間は半減できるため、生産性が向上する。なお、インライン式のアニーリング装置、又は赤外線を使用したアニーリング方法など、図12で説明したアニーリング処理方法以外の場合でも、構成部品ごとに最適な処理時間で処理できることは言うまでも無い。 As an example, FIG. 12 shows an annealing condition when a cross-flow fan using AS (acrylic-styrene) resin mixed with 20% glass fiber is annealed in a batch processing thermostat. Since the annealing time of the intermediate fan 2 can be halved, productivity is improved. Needless to say, even in cases other than the annealing processing method described with reference to FIG. 12, such as an in-line annealing apparatus or an annealing method using infrared rays, each component can be processed in an optimal processing time.
実施の形態4.
 図13は、実施の形態4によるクロスフローファンの製造フローを示す図である。実施の形態4では、ファン構成部品(エンドプレート1、中間ファン2、終端ファン3)を、予め一定量開いた金型キャビティに樹脂を注入した後にキャビティを圧縮する成形方法(いわゆる、射出圧縮成形法)にて成形する(ステップST201)。図14、図15、図16は実施の形態4におけるファン部品(図の例では中間ファン2)を成形するための金型60の構造を示している。図14は金型60の断面図、図15はプレート部64の正面図、図16は圧縮部65の動作を説明する図である。金型60は固定型61と可動型62の金型キャビティから構成される。可動型62はベース部63、ベース部63に固定されるプレート部64、ベース部63に羽根部2a(図6、又は図9参照)の厚さ方向に回転できるように嵌合されている圧縮部65、ベース部63に固定される固定部66から構成される。プレート部64には中間ファン2のプレート部の成形部67と羽根部2aの成形部68aが設けられている。なお、理解を助けるために中間ファン2の羽根部2aの成形部68、68a、68b、68cを図中に斜線部にて表示している。
Embodiment 4 FIG.
FIG. 13 is a diagram illustrating a manufacturing flow of the cross flow fan according to the fourth embodiment. In the fourth embodiment, a fan component (end plate 1, intermediate fan 2, end fan 3) is molded by injecting resin into a mold cavity that is opened in advance by a predetermined amount, and then the cavity is compressed (so-called injection compression molding). (Step ST201). FIGS. 14, 15 and 16 show the structure of a mold 60 for molding the fan component (the intermediate fan 2 in the example shown) in the fourth embodiment. FIG. 14 is a cross-sectional view of the mold 60, FIG. 15 is a front view of the plate portion 64, and FIG. The mold 60 includes a mold cavity of a fixed mold 61 and a movable mold 62. The movable mold 62 is a base part 63, a plate part 64 fixed to the base part 63, and a compression that is fitted to the base part 63 so as to be able to rotate in the thickness direction of the blade part 2a (see FIG. 6 or FIG. 9). It comprises a fixed portion 66 fixed to the portion 65 and the base portion 63. The plate part 64 is provided with a molding part 67 of the plate part of the intermediate fan 2 and a molding part 68a of the blade part 2a. In order to help understanding, the forming portions 68, 68a, 68b, 68c of the blade portion 2a of the intermediate fan 2 are indicated by hatched portions in the drawing.
 次に、金型60を用いて中間ファン2を成形する手順について説明する。樹脂を注入する前、圧縮部65は図16Aに示すとおり、圧縮部65と固定部66で形成する羽根部2aの成形部68bが、羽根部2aよりも厚くなるように一定量開いた状態である。樹脂が金型60に注入され成形部68を8割程度充填した後に、圧縮部65が図16Bに示すように反時計回りに回転し、樹脂を圧縮することで成形部68に樹脂を充填させる。回転後の圧縮部65と固定部66により形成される成形部68cの形状は、プレート部64に設けられた成形部68aと一致しており、羽根部2aの長さ方向に一直線上に並んでいる。圧縮部65を回転させる手段は図示しないが、金型60に注入した樹脂が冷却固化する前に圧縮部65の回転動作を終えることが出来れば、油圧シリンダ、エアシリンダー、又はスライド機構を用いて金型の開閉動作を利用したものでも、何でもよい。なお、ここでは金型構造を簡略化しているため図示および説明していないが、金型60は一般的に成形金型に必要な構造および機能は適宜有しているものとする。このように金型による圧縮動作を利用して金型キャビティ内に樹脂を充填することで、本来高い圧力での樹脂の充填が必要な薄肉の羽根部を、低い圧力で樹脂を充填することができるため、内部応力が少ない成形品(エンドプレート1、中間ファン2、終端ファン3)を得ることが出来る。 Next, a procedure for forming the intermediate fan 2 using the mold 60 will be described. Before injecting the resin, as shown in FIG. 16A, the compression portion 65 is opened in a certain amount so that the molding portion 68b of the blade portion 2a formed by the compression portion 65 and the fixing portion 66 is thicker than the blade portion 2a. is there. After the resin is injected into the mold 60 and the molding portion 68 is filled with about 80%, the compression portion 65 rotates counterclockwise as shown in FIG. 16B and compresses the resin to fill the molding portion 68 with the resin. . The shape of the molded part 68c formed by the compressed compression part 65 and the fixed part 66 after rotation matches the molded part 68a provided on the plate part 64, and is aligned in a straight line in the length direction of the blade part 2a. Yes. Although means for rotating the compression unit 65 is not shown, if the rotation operation of the compression unit 65 can be finished before the resin injected into the mold 60 is cooled and solidified, a hydraulic cylinder, an air cylinder, or a slide mechanism can be used. Anything using the opening and closing operation of the mold may be used. Although not shown and described here because the mold structure is simplified, it is assumed that the mold 60 generally has the structure and functions necessary for the molding mold as appropriate. In this way, by filling the mold cavity with the resin using the compression operation by the mold, it is possible to fill the thin blade portion, which originally needs to be filled with the resin at a high pressure, with the resin at a low pressure. Therefore, a molded product (end plate 1, intermediate fan 2, end fan 3) with less internal stress can be obtained.
その後、ステップST201で製作した成形品を、実施の形態1或いは2で示した超音波溶着装置100、200にて超音波溶着してクロスフローファンを組み立てる(ステップST202)。このような手順で製作されたクロスフローファンは、実施の形態1或いは2に記載されたクロスフローファンと同様に内部応力の少ない成形品で構成されているため、組立後のアニーリング処理が不要であることは言うまでも無い。 Thereafter, the molded product manufactured in step ST201 is ultrasonically welded by the ultrasonic welding apparatuses 100 and 200 shown in the first or second embodiment to assemble a cross flow fan (step ST202). Since the crossflow fan manufactured by such a procedure is composed of a molded product having a low internal stress as in the crossflow fan described in the first or second embodiment, an annealing process after assembly is not required. Needless to say, there are.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although this application describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more embodiments may be applied to particular embodiments. The present invention is not limited to this, and can be applied to the embodiments alone or in various combinations.
Accordingly, countless variations that are not illustrated are envisaged within the scope of the technology disclosed herein. For example, the case where at least one component is deformed, the case where the component is added or omitted, the case where the at least one component is extracted and combined with the component of another embodiment are included.
 1:エンドプレート、1a:回転軸部、2:中間ファン、2a:羽根部、3:終端ファン、10、40:保持機構、11、41:テーブル、12、24、33、42、54:移動機構、13、43:連結機構、14、22、52:軸受け、20、50:位置決め機構、21、51:ガイド棒、23、44:回転機構、30:超音波機構、31:振動子、32:工具ホーン、53:支持棒、60:金型、61:固定型、62:可動型、63:ベース部、64:プレート部、65:圧縮部、66:固定部、67:プレート部の成形部、68、68a、68b、68c:羽根部2aの成形部、100、200:超音波溶着装置。 1: End plate, 1a: Rotating shaft part, 2: Intermediate fan, 2a: Blade part, 3: End fan, 10, 40: Holding mechanism, 11, 41: Table, 12, 24, 33, 42, 54: Movement Mechanism, 13, 43: coupling mechanism, 14, 22, 52: bearing, 20, 50: positioning mechanism, 21, 51: guide rod, 23, 44: rotating mechanism, 30: ultrasonic mechanism, 31: vibrator, 32 : Tool horn, 53: Support rod, 60: Mold, 61: Fixed mold, 62: Movable mold, 63: Base part, 64: Plate part, 65: Compression part, 66: Fixed part, 67: Molding of plate part Part, 68, 68a, 68b, 68c: molding part of blade part 2a, 100, 200: ultrasonic welding apparatus.

Claims (8)

  1.  金型に樹脂を注入し、ファン部品を成形する第一の工程、成形されたファン部品同士をそれぞれ同じ回転数で停止させずに回転させながら超音波溶着して積層する第二の工程を有するクロスフローファンの製造方法。 It has a first step of injecting resin into the mold and molding the fan parts, and a second step of ultrasonically welding and laminating the molded fan parts without stopping at the same rotational speed. A manufacturing method of a cross flow fan.
  2.  前記金型の内部は、樹脂注入時に大気圧よりも減圧されていることを特徴とする請求項1に記載のクロスフローファンの製造方法。 The method of manufacturing a cross flow fan according to claim 1, wherein the inside of the mold is depressurized from the atmospheric pressure at the time of resin injection.
  3.  前記金型を熱可塑性樹脂の荷重たわみ温度以上として、前記樹脂を注入することを特徴とする請求項1に記載のクロスフローファンの製造方法。 2. The method of manufacturing a cross flow fan according to claim 1, wherein the mold is injected at a temperature equal to or higher than a deflection temperature under load of the thermoplastic resin.
  4.  前記金型に樹脂の注入が完了した後、前記金型を急冷することで、成形サイクルを短縮させることを特徴とする請求項3に記載のクロスフローファンの製造方法。 4. The method of manufacturing a cross flow fan according to claim 3, wherein the molding cycle is shortened by rapidly cooling the mold after the resin has been injected into the mold.
  5.  前記金型を構成する金型キャビティを予め一定量開いた状態で樹脂を注入し、その後、前記金型キャビティを圧縮して前記ファン部品を成形することを特徴とする請求項1に記載のクロスフローファンの製造方法。 2. The cloth according to claim 1, wherein a resin is injected in a state where a predetermined amount of a mold cavity constituting the mold is opened, and then the mold cavity is compressed to mold the fan part. A method of manufacturing a flow fan.
  6.  前記第一の工程と前記第二の工程の間に、前記ファン部品をアニーリング処理する第三の工程を有することを特徴とする請求項1に記載のクロスフローファンの製造方法。 The method of manufacturing a crossflow fan according to claim 1, further comprising a third step of annealing the fan component between the first step and the second step.
  7.  前記ファン部品は、エンドプレート、プレートに羽根が一体化された形状の複数の中間ファン、及び回転軸との嵌合部が設けられたプレートに羽根が一体化された形状の終端ファンを含み、前記エンドプレートの回転軸と軸心を一致させて前記エンドプレート、前記複数の中間ファン、前記終端ファンの順に超音波溶着して積層することを特徴とする請求項1から請求項6のいずれか一項に記載のクロスフローファンの製造方法。 The fan component includes an end plate, a plurality of intermediate fans having a shape in which blades are integrated with the plate, and a terminal fan having a shape in which the blades are integrated with a plate provided with a fitting portion with a rotating shaft, 7. The end plate, the plurality of intermediate fans, and the end fan are ultrasonically welded and laminated in this order so that the axis of rotation of the end plate coincides with the axis of the end plate. The manufacturing method of the cross flow fan of one term.
  8.  ファン部品を保持する保持機構、前記ファン部品と超音波振動を付加する超音波機構との軸心、及び前記超音波機構により超音波振動を付加するファン部品同士の軸心を一致させるための位置決め機構、位置決めされた前記ファン部品を回転させる回転機構を備え、前記ファン部品をそれぞれ同じ回転数で、停止させずに回転させながら超音波溶着を行うことを特徴とするクロスフローファンの製造装置。 A holding mechanism for holding a fan part, an axial center of the fan part and an ultrasonic mechanism for adding ultrasonic vibration, and positioning for matching the axial center of fan parts to which ultrasonic vibration is applied by the ultrasonic mechanism An apparatus for manufacturing a cross flow fan, comprising: a mechanism and a rotating mechanism for rotating the positioned fan component, wherein the ultrasonic welding is performed while rotating the fan component at the same rotational speed without stopping.
PCT/JP2018/019245 2017-06-12 2018-05-18 Cross flow fan manufacturing method, and cross flow fan manufacturing device WO2018230254A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019525238A JP6708361B2 (en) 2017-06-12 2018-05-18 Crossflow fan manufacturing method and crossflow fan manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017114873 2017-06-12
JP2017-114873 2017-06-12

Publications (1)

Publication Number Publication Date
WO2018230254A1 true WO2018230254A1 (en) 2018-12-20

Family

ID=64660877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019245 WO2018230254A1 (en) 2017-06-12 2018-05-18 Cross flow fan manufacturing method, and cross flow fan manufacturing device

Country Status (2)

Country Link
JP (1) JP6708361B2 (en)
WO (1) WO2018230254A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064981A (en) * 1998-08-19 2000-03-03 Mitsubishi Electric Corp Line flow fan, its manufacture, device for manufacturing it, and device for assembling it
JP2007040260A (en) * 2005-08-05 2007-02-15 Daikin Ind Ltd Resin cross-flow fan and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064981A (en) * 1998-08-19 2000-03-03 Mitsubishi Electric Corp Line flow fan, its manufacture, device for manufacturing it, and device for assembling it
JP2007040260A (en) * 2005-08-05 2007-02-15 Daikin Ind Ltd Resin cross-flow fan and its manufacturing method

Also Published As

Publication number Publication date
JPWO2018230254A1 (en) 2019-11-07
JP6708361B2 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
JP2018130026A (en) Manufacturing device of magnet embedded core
JP6123753B2 (en) Electromagnetic induction heating mold equipment for molding and vulcanization of rubber packing
WO2020196768A1 (en) Method for manufacturing motor core
US7820084B2 (en) Minute shape molding method and apparatus thereof
JP2009017712A (en) Permanent magnet motor and manufacturing method therefor
WO2018230254A1 (en) Cross flow fan manufacturing method, and cross flow fan manufacturing device
EP3603926B1 (en) Method and apparatus for injection moulding an iron core product
JP2011213103A (en) Molding machine, mold motor producing method using molding machine, and electric apparatus equipped with mold motor produced by the method
JP2015198255A (en) Method of manufacturing polymer bonded permanent magnet injection-molded and made of thermosetting resin containing particulate magnetic material, method of manufacturing polymer bonded permanent magnet injection-molded as two component forming part and made of thermosetting resin containing particulate magnetic material, and injection-molded polymer bonded permanent magnet
JP2010083085A (en) Resin sealing apparatus
JP2011079290A (en) Production process of secondary molding
JP2931044B2 (en) Rotary body manufacturing equipment
JP2011014586A (en) Resin sealing method of semiconductor device and resin sealing device of semiconductor device
KR20170075998A (en) Method of manufacturing of case
JP4210839B2 (en) Method for manufacturing motor stator piece
JP2003094459A (en) Injection-molding die, and manufacturing method for molded article using the die
JPH1034229A (en) Manufacture of steel pillar
JP5247733B2 (en) Plastic molded product
CN114552921B (en) Brushless motor rotor assembling process
JP5608494B2 (en) Enlarged shaft fitting method and rotating body manufactured by the method
JP5608495B2 (en) Shaft enlargement forming method and manufacturing apparatus
JPH0318252A (en) Integrally forming method for magnet
JPH09246446A (en) Resin-sealed electronic component and manufacture thereof
KR101696043B1 (en) Manufacturing apparatus and method for rotor of motor
KR101292100B1 (en) Butterfly valve disk and its disk manufacture method and mold device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818693

Country of ref document: EP

Kind code of ref document: A1