JPH1034229A - Manufacture of steel pillar - Google Patents

Manufacture of steel pillar

Info

Publication number
JPH1034229A
JPH1034229A JP19366696A JP19366696A JPH1034229A JP H1034229 A JPH1034229 A JP H1034229A JP 19366696 A JP19366696 A JP 19366696A JP 19366696 A JP19366696 A JP 19366696A JP H1034229 A JPH1034229 A JP H1034229A
Authority
JP
Japan
Prior art keywords
sleeve
temperature
heating
temp
square pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19366696A
Other languages
Japanese (ja)
Inventor
Yoshiteru Yamamoto
義輝 山本
Shinichi Kiriyama
伸一 桐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Asahi Chemical Industry Co Ltd
Original Assignee
IHI Corp
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Asahi Chemical Industry Co Ltd filed Critical IHI Corp
Priority to JP19366696A priority Critical patent/JPH1034229A/en
Publication of JPH1034229A publication Critical patent/JPH1034229A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently manufacture a steel pillar having a thickness part excellent in dimensional accuracy. SOLUTION: By heating the necessary position of a square pipe 2 to the vicinity of the lower limit temp. of a temp. at which crystal grains are coarsened, also heating a short square sleeve 8 which is possible to fit on the outside of the square pipe 2 to a working temp. at which the sleeve is plastically deformed, fitting the sleeve 8 on the heated part H of the square pipe 2 and pressing so that the sleeve 8 is bitten into the heated part H of the square pipe 2 from the outside using press dies 9, 10, a thick thickness part consisting of the heated part H and the sleeve 8 is formed. Successively, by cooling the heated part H of the square pipe 2 in the thick thickness part from the inside so as to get an intermediate temp. between the lower limit temp. of the temp. at which the crystal grains are coarsened and the ordinary temp., also rapidly cooling the sleeve 8 to the vicinity of the lower limit temp. of the temp. at which the crystal grains are coarsened and, after that, executing slow cooling, the sleeve 8 is shrinkage fit on the square pipe 2 by temp. difference between the heated part H and the sleeve 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い寸法精度の肉
厚部をもつ鉄骨柱を能率的に製造できる角形パイプによ
る鉄骨柱の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a steel column using a square pipe, which can efficiently manufacture a steel column having a thick portion with high dimensional accuracy.

【0002】[0002]

【従来の技術】図11は、従来の鉄骨柱の一例を示した
もので、鉄骨柱1は一般に断面四角形の角形パイプ2に
て構成されており、その長さ方向の途中における建物の
フロアに相当する位置には、梁3を取付金具4を介して
接合するための複数のねじ孔5を穿孔するようにした仕
口部6(接合部)が形成されており、この仕口部6は前
記ねじ孔5の穿孔によって強度が弱くなってしまうため
に補強する必要がある。
2. Description of the Related Art FIG. 11 shows an example of a conventional steel column. A steel column 1 is generally constituted by a square pipe 2 having a square cross section, and is mounted on a floor of a building in the middle of its length. At a corresponding position, a joint portion 6 (joint portion) is formed in which a plurality of screw holes 5 for joining the beam 3 via the mounting bracket 4 are formed. It is necessary to reinforce because the strength is weakened by the perforation of the screw hole 5.

【0003】鉄骨柱1の仕口部6は、従来より、図12
に示すように他の角形パイプ2部分に対して厚肉に構成
した肉厚部7として強度を増すようにしたものが用いら
れている。
[0003] The connection portion 6 of the steel column 1 is conventionally formed as shown in FIG.
As shown in FIG. 2, a thick portion 7 having a greater thickness than the other rectangular pipe 2 is used to increase the strength.

【0004】従来、前記鉄骨柱1の仕口部6に肉厚部7
を形成する技術としては、角形パイプ2の外側に補強部
材を溶接或いはボルト等にて追加固定する方式、或いは
角形パイプ2の中間を切断してその相互間に厚肉の角形
短パイプを溶接にて一体に接続する方式等が考えられて
いるが、このような方式においては仕口部6を肉厚部7
とするために多大の手数と時間を要し、鉄骨柱1の製作
コストが増加してしまう問題を有していた。
Conventionally, a thick portion 7 is formed on a connection portion 6 of the steel column 1.
As a technique for forming a rectangular pipe 2, a reinforcing member is additionally fixed to the outside of the rectangular pipe 2 by welding or bolts, or a thick rectangular short pipe is welded between the rectangular pipes 2 by cutting the middle of the pipes. In such a method, the connection part 6 is connected to the thick part 7.
It takes a lot of trouble and time to perform the above, and there is a problem that the manufacturing cost of the steel column 1 increases.

【0005】また、前記角形パイプ2の所要部分を加熱
して圧縮することにより、肉厚部7による仕口部6を形
成するようにした鉄骨柱1の製造法も考えられている。
[0005] A method of manufacturing the steel column 1 in which a required portion of the rectangular pipe 2 is heated and compressed to form the connection portion 6 by the thick portion 7 has also been considered.

【0006】[0006]

【発明が解決しようとする課題】しかし、前記角形パイ
プ2を加熱圧縮して肉厚部7を形成する方式は、考えら
れる方法ではあるが、肉厚部7外面の平面度、肉厚部7
の寸法精度等を制御することが困難であり、よって寸法
精度の優れた均一な鉄骨柱1を提供することができない
問題を有していた。
However, a method of forming the thick portion 7 by heating and compressing the rectangular pipe 2 is a conceivable method, but the flatness of the outer surface of the thick portion 7 and the thick portion 7 are not considered.
It is difficult to control the dimensional accuracy and the like of the steel columns, and therefore, there is a problem that it is not possible to provide a uniform steel column 1 having excellent dimensional accuracy.

【0007】本発明は、斯かる実情に鑑みてなしたもの
で、寸法精度に優れた肉厚部を有する継目(溶接接合)
のない鉄骨柱を能率的に製造できる鉄骨柱の製造法を提
供することを目的としている。
The present invention has been made in view of such circumstances, and has a seam having a thick portion with excellent dimensional accuracy (weld joining).
It is an object of the present invention to provide a method for manufacturing a steel column which can efficiently manufacture a steel column having no steel.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は、
角形パイプと、該角形パイプの外側に嵌合可能な角形の
短いスリーブとを用い、角形パイプの所要位置における
スリーブの長さより長い範囲を、結晶粒が粗大化する温
度の下限温度付近まで加熱すると共に、スリーブを塑性
変形する加工温度まで加熱し、角形パイプの加熱部にス
リーブを嵌合し、プレス金型を用いてスリーブが角形パ
イプの加熱部に食い込むように外側からプレスすること
により、前記加熱部とスリーブとからなる肉厚部を形成
し、続いて肉厚部における加熱部を結晶粒が粗大化する
温度の下限温度と常温との中間温度になるように内側か
ら冷却すると共に、スリーブを結晶粒が粗大化する温度
の下限温度付近まで急冷し、その後徐冷を行って加熱部
とスリーブとの温度差によりスリーブを角形パイプに焼
嵌めすることを特徴とする鉄骨柱の製造法、に係るもの
である。
According to the first aspect of the present invention,
A rectangular pipe and a rectangular short sleeve that can be fitted to the outside of the rectangular pipe are used, and a range longer than the length of the sleeve at a required position of the rectangular pipe is heated to near a lower limit temperature of a temperature at which crystal grains are coarsened. Along with heating the processing temperature to plastically deform the sleeve, fitting the sleeve to the heating part of the square pipe, and pressing from outside so that the sleeve bites into the heating part of the square pipe using a press die, Forming a thick portion consisting of a heating portion and a sleeve, and then cooling the heating portion in the thick portion from the inside so as to be an intermediate temperature between the lower limit temperature of the temperature at which the crystal grains are coarsened and the normal temperature, and the sleeve. Is rapidly cooled to near the lower limit of the temperature at which the crystal grains become coarse, then gradually cooled, and the sleeve is shrink-fitted into a square pipe due to the temperature difference between the heating part and the sleeve. It relates to the production process, the steel columns to be.

【0009】請求項2記載の発明は、スリーブのプレス
時に、対向する1対の直角溝形のプレス金型を用いてス
リーブをプレスし、続いて角形パイプを90゜回転させ
て再びプレスする操作を繰返すことを特徴とする鉄骨柱
の製造法、に係るものである。
According to a second aspect of the present invention, when the sleeve is pressed, the sleeve is pressed by using a pair of opposed right-angle groove-shaped press dies, and then the square pipe is rotated by 90 ° and pressed again. And a method for manufacturing a steel column, characterized by repeating the above.

【0010】請求項1記載の発明では、スリーブを角形
パイプの外側に食い込むようにプレスし、且つ焼嵌めに
よってスリーブを角形パイプに強固に一体化させて肉厚
部を形成するようにしているので、平面度、寸法精度に
優れた肉厚部を有する継目がなく品質の安定した鉄骨柱
を、能率的に低コストで製造することができる。
In the first aspect of the present invention, the sleeve is pressed so as to bite the outside of the rectangular pipe, and the sleeve is firmly integrated with the rectangular pipe by shrink fitting to form a thick portion. A seamless and stable quality steel column having a thick portion with excellent flatness and dimensional accuracy can be efficiently manufactured at low cost.

【0011】また、角形パイプの加熱部は結晶粒が粗大
化する温度の下限温度付近までしか加熱しないので、結
晶粒が粗大化することはなく、また、スリーブは塑性変
形する加工温度まで加熱してプレスを行うようにしてい
るので、小さなプレス力でスリーブを圧縮成形すること
ができ、また、プレス後にスリーブを結晶粒が粗大化す
る温度の下限温度付近まで急冷して結晶粒の緻密化を図
るようにし、その後徐冷を行うことにより組成の変化や
残留応力による品質への影響はない。
Further, since the heating portion of the rectangular pipe heats only up to the lower limit of the temperature at which the crystal grains are coarsened, the crystal grains are not coarsened, and the sleeve is heated to a processing temperature at which plastic deformation occurs. Press, so that the sleeve can be compression molded with a small pressing force, and after pressing, the sleeve is quenched to near the lower limit of the temperature at which the crystal grains are coarsened, thereby densifying the crystal grains. As a result, the quality is not affected by the change in composition or the residual stress by performing slow cooling.

【0012】請求項2記載の発明では、対向する1対の
直角溝形のプレス金型を用いてスリーブをプレスし、続
いて角形パイプを90゜回転させて再びスリーブをプレ
スする操作を繰返すようにしているので、スリーブのプ
レス成形作業を容易に行うことができる。
According to the second aspect of the present invention, the operation of pressing the sleeve using a pair of right-angled grooved pressing dies opposed to each other, and subsequently rotating the square pipe by 90 ° and pressing the sleeve again is repeated. Therefore, the press forming operation of the sleeve can be easily performed.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】本発明は、図1〜図3に示すような断面正
方形を有した鋼製の角形パイプ2の外周に、肉厚部を形
成するための短いスリーブ8を嵌合し、該スリーブ8を
プレスにより角形パイプ2に一体に固定することによ
り、図11、図12に示したような肉厚部7を備えた鉄
骨柱1を製造する方法に関する。
According to the present invention, a short sleeve 8 for forming a thick portion is fitted on the outer periphery of a steel square pipe 2 having a square cross section as shown in FIGS. The present invention relates to a method of manufacturing a steel column 1 having a thick portion 7 as shown in FIGS.

【0015】図1〜図3は、本発明の実施の形態におけ
る肉厚部の形成に用いるプレス装置の一例を示してい
る。図中28は、角形パイプ2を水平に、且つ角部2’
が上下左右方向を向くように支持する支持台であり、該
支持台28上に載置した角形パイプ2にスリーブ8を嵌
合し、該スリーブ8をプレスして前記角形パイプ2に一
体に固定するようにしたプレス金型9,10を、水平方
向に対向して備えている。
FIGS. 1 to 3 show an example of a press device used for forming a thick portion in the embodiment of the present invention. In the figure, reference numeral 28 denotes a rectangular pipe 2 which is horizontally and at a corner 2 '.
Is a support base for supporting in a vertical and horizontal direction. A sleeve 8 is fitted to the square pipe 2 placed on the support base 28, and the sleeve 8 is pressed to be integrally fixed to the square pipe 2. Press dies 9, 10 are provided to face each other in the horizontal direction.

【0016】プレス金型9,10は、図2に示すように
前記スリーブ8よりも長い長さを有し、且つ図1に示す
ように略V字状を有してスリーブ8の1つの角部2’に
合致する直角溝9a,10aを互に対向して備えてお
り、前記プレス金型9,10は液圧シリンダ11,12
によって互に近接離反するよう駆動されるようになって
いる。
Each of the press dies 9, 10 has a length longer than that of the sleeve 8 as shown in FIG. 2, and has a substantially V-shape as shown in FIG. The press dies 9, 10 are provided with right-angle grooves 9a, 10a corresponding to the portion 2 ', respectively.
Are driven so as to approach and separate from each other.

【0017】前記プレス金型9,10は、図3に示すよ
うに近接させて密着した際に正方形の空間13が形成さ
れるようになっており、この空間13の内角寸法L1
角形パイプ2の外角寸法L2(図1)より少し大きく、
例えば角形パイプ2の肉厚寸法分程度大きくなってい
る。尚、プレス金型としては、角形パイプ2の対向する
平行な2面を、平行なプレス面をもつ第1のプレス金型
でプレスし、続いて残りの対向する平行な2面を第2の
プレス金型でプレスするようにしたものでも良い。
[0017] The press die 9 is adapted to the space 13 of the square is formed upon contact proximity to, as shown in FIG. 3, the interior angle dimension L 1 of the space 13 is square pipe 2 is slightly larger than the outer angle dimension L 2 (FIG. 1),
For example, it is increased by the thickness of the rectangular pipe 2. As a press die, two opposing parallel surfaces of the rectangular pipe 2 are pressed by a first press die having a parallel press surface, and the remaining two opposing parallel surfaces are then pressed by a second press die. It may be one that is pressed by a press die.

【0018】図4中14は、前記スリーブ8を加熱する
加熱装置であり、該加熱装置14は、内部にスリーブ8
を挿入して耐火材からなる支持台15上に支持できるよ
うにした炉16を備えており、該炉16内には、スリー
ブ8の加熱を行うヒータ17が備えられていて、スリー
ブ8を塑性変形する加工温度T2(700℃〜900
℃)(図9参照)に加熱できるようになっている。
In FIG. 4, reference numeral 14 denotes a heating device for heating the sleeve 8, and the heating device 14 has a sleeve 8 therein.
And a heater 16 for heating the sleeve 8 is provided in the furnace 16 so as to heat the sleeve 8. Deformation processing temperature T 2 (700 ° C. to 900
C.) (see FIG. 9).

【0019】図5中18は、前記角形パイプ2を加熱す
る加熱装置であり、該加熱装置18は、内部に角形パイ
プ2を挿通させるようにした炉16を備えており、前記
角形パイプ2は外部支持台19によって支持するように
している。前記炉16内には、角形パイプ2の所要位置
を前記スリーブ8の長さより少し広い範囲で加熱するよ
うにしたヒータ17が備えてあり、角形パイプ2を結晶
粒が粗大化する温度の下限温度T1(400℃)付近
(図9参照)、例えば350℃〜400℃に加熱して加
熱部Hを形成するようにしている。
In FIG. 5, reference numeral 18 denotes a heating device for heating the rectangular pipe 2. The heating device 18 includes a furnace 16 in which the rectangular pipe 2 is inserted. It is supported by an external support 19. The furnace 16 is provided with a heater 17 for heating a required position of the rectangular pipe 2 in a range slightly larger than the length of the sleeve 8, and a lower limit temperature of a temperature at which crystal grains of the rectangular pipe 2 become coarse. The heating portion H is formed by heating to around T 1 (400 ° C.) (see FIG. 9), for example, 350 ° C. to 400 ° C.

【0020】図6、図7中20は、角形パイプ2の内部
に挿入して角形パイプ2の加熱部Hを冷却する内側冷却
装置であり、給水管21からの冷却水22を噴射ノズル
23により前記加熱部Hに均一に噴射して冷却を行うよ
うになっており、又24は、スリーブ8を冷却するよう
にした外側冷却装置であり、給水管25からの冷却水2
2を、図7に示すようにスリーブ8の外側を環状に取り
囲むか或いは四角い形状を有して取り囲む噴射ノズル2
6により前記スリーブ8に均一に噴射して冷却を行うよ
うになっている。
6 and 7, reference numeral 20 denotes an internal cooling device which is inserted into the rectangular pipe 2 to cool the heating portion H of the rectangular pipe 2, and the cooling water 22 from the water supply pipe 21 is injected by the injection nozzle 23. An outer cooling device 24 for cooling the sleeve 8 by uniformly jetting it to the heating section H, and cooling water 2 from the water supply pipe 25.
The injection nozzle 2 surrounds the outside of the sleeve 8 in an annular shape as shown in FIG.
6, cooling is performed by uniformly spraying onto the sleeve 8.

【0021】又、27は前記スリーブ8の温度を検出す
るようにした赤外線温度計であり、冷却時におけるスリ
ーブ8の温度を管理するためのものである。なお、前記
角形パイプ2の加熱部H及びスリーブ8の冷却時におけ
る温度の管理は、冷却水22の噴射時間によっても管理
することができる。
An infrared thermometer 27 detects the temperature of the sleeve 8 and controls the temperature of the sleeve 8 during cooling. The temperature of the heating portion H of the rectangular pipe 2 and the temperature of the sleeve 8 at the time of cooling can also be controlled by the injection time of the cooling water 22.

【0022】以下に、上記図1〜図7、及び作業工程フ
ローを示す図8、及び角形パイプ2とスリーブ8の温度
条件を示す図9を参照して本発明の実施の形態の手順及
び作用を説明する。
The procedure and operation of the embodiment of the present invention will be described below with reference to FIGS. 1 to 7, FIG. 8 showing the operation process flow, and FIG. 9 showing the temperature conditions of the rectangular pipe 2 and the sleeve 8. Will be described.

【0023】スリーブ8を図4に示すように加熱装置1
4の炉16内に挿入してヒータ17によりスリーブ8を
塑性変形する加工温度T2、例えば700℃〜900℃
に加熱する。
As shown in FIG.
4, a processing temperature T 2 at which the sleeve 8 is plastically deformed by the heater 17 by being inserted into the furnace 16, for example, 700 ° C. to 900 ° C.
Heat to

【0024】また、角形パイプ2を、図5に示す加熱装
置18の炉16内に挿入し、角形パイプ2に肉厚部7
(図11、図12)を形成する部分を、前記スリーブ8
の長さより長い範囲で、結晶粒が粗大化する温度の下限
より低い温度T1、例えば350℃〜400℃に加熱し
て加熱部Hを形成する。この時、角形パイプ2の長手方
向複数個所に肉厚部7を形成する場合には、前記加熱装
置18を所定の間隔で複数個配置して同時に加熱を行っ
て複数の加熱部Hを同時に形成させると共に、複数の加
熱装置14を備えてヒータ17により複数のスリーブ8
を同時に加熱する。
Further, the square pipe 2 is inserted into the furnace 16 of the heating device 18 shown in FIG.
(FIG. 11 and FIG. 12)
Is heated to a temperature T 1 lower than the lower limit of the temperature at which the crystal grains are coarsened, for example, 350 ° C. to 400 ° C. in a range longer than the length, to form the heating portion H. At this time, when forming the thick portions 7 at a plurality of locations in the longitudinal direction of the rectangular pipe 2, a plurality of the heating devices 18 are arranged at predetermined intervals and heating is performed simultaneously to form a plurality of heating portions H at the same time. And a plurality of heating devices 14 and a plurality of sleeves 8
Are heated simultaneously.

【0025】加熱したスリーブ8を、図1〜図3に示す
プレス金型9,10の直角溝9a,10aに嵌合するよ
うに液圧シリンダ11,12を伸張することにより挟み
付けて保持し、このように保持したスリーブ8内に前記
加熱部Hを形成した角形パイプ2を挿入し、角形パイプ
2の加熱部Hとスリーブ8との位置を合わせた後、液圧
シリンダ11,12を伸張してプレス金型9,10を接
近させることによりスリーブ8をプレスにより圧縮成形
する。この時、スリーブ8は塑性変形する温度まで予め
加熱されているので、比較的小さなプレス力で圧縮成形
することができる。
The heated sleeve 8 is pinched and held by extending the hydraulic cylinders 11 and 12 so as to fit into the right-angle grooves 9a and 10a of the press dies 9 and 10 shown in FIGS. Then, the rectangular pipe 2 having the heating section H formed therein is inserted into the sleeve 8 thus held, and the heating section H of the rectangular pipe 2 is aligned with the sleeve 8, and then the hydraulic cylinders 11 and 12 are extended. Then, the press molds 9 and 10 are brought close to each other to compress the sleeve 8 by pressing. At this time, since the sleeve 8 is preliminarily heated to a temperature at which it is plastically deformed, compression molding can be performed with a relatively small pressing force.

【0026】続いて、角形パイプ2を図1に矢印で示す
ように90度回転させて再びプレスを行う。この作業を
繰返して、プレス金型9,10同士が図3のように接触
した状態になると、スリーブ8が角形パイプ2の加熱部
Hに食い込んだ状態となり、この時、スリーブ8の平面
度が決定され、且つ外角寸法がプレス金型9,10の空
間13の内角寸法L1に一致された高い寸法精度の肉厚
部7が形成される。
Subsequently, the rectangular pipe 2 is rotated 90 degrees as indicated by the arrow in FIG. 1 and pressed again. This operation is repeated, and when the press dies 9 and 10 come into contact with each other as shown in FIG. 3, the sleeve 8 enters the heating portion H of the rectangular pipe 2, and at this time, the flatness of the sleeve 8 is reduced. It is determined, and the exterior angle dimension internal angle dimension L high dimensional accuracy of the thickness portion 7 which is matched to one of the space 13 of the press die 9 and 10 are formed.

【0027】続いて、前記肉厚部7を形成した角形パイ
プ2をプレス金型9,10から取出し、図6、図7に示
すように、角形パイプ2内に内側冷却装置20を挿入す
ると共に、スリーブ8の外周に外側冷却装置24を配置
し、前記内側冷却装置20により加熱部Hに冷却水22
を均一に噴射して、加熱部Hを、結晶粒が粗大化する温
度の下限温度T1(略400℃)と常温(25℃)との
中間温度、例えば200℃程度に冷却すると共に、上記
外側冷却装置24によりスリーブ8を結晶粒が粗大化す
る下限温度T1(400℃)付近まで急冷する。このス
リーブ8の急冷によって、スリーブ8を加工温度T
2(700℃〜900℃)に加熱したことによって粗大
化した結晶粒を緻密化する。この時、前記加熱部Hは急
冷を行っても、温度が低いために結晶粒の大きさは殆ど
変化しない。
Subsequently, the rectangular pipe 2 on which the thick portion 7 is formed is taken out from the pressing dies 9 and 10, and as shown in FIGS. 6 and 7, the inside cooling device 20 is inserted into the rectangular pipe 2 and , An outer cooling device 24 is arranged on the outer periphery of the sleeve 8, and the cooling water 22 is supplied to the heating section H by the inner cooling device 20.
Is uniformly sprayed to cool the heating section H to an intermediate temperature between the lower limit temperature T 1 (approximately 400 ° C.) of the temperature at which the crystal grains become coarse and the normal temperature (25 ° C.), for example, about 200 ° C. The outer cooling device 24 rapidly cools the sleeve 8 to around the lower limit temperature T 1 (400 ° C.) at which the crystal grains become coarse. Due to the rapid cooling of the sleeve 8, the sleeve 8 is cooled to the processing temperature T.
2 The crystal grains coarsened by heating to (700 ° C to 900 ° C) are densified. At this time, even if the heating section H is quenched, the size of the crystal grains hardly changes because the temperature is low.

【0028】続いて、前記角形パイプ2及びスリーブ8
を徐冷する。この時、加熱部Hは200℃程度からの徐
冷であるのに対して、スリーブは400℃付近からの徐
冷であるため、この略200℃の温度差によりスリーブ
8は加熱部Hに焼嵌めされることになる。
Subsequently, the square pipe 2 and the sleeve 8
Is gradually cooled. At this time, while the heating section H is gradually cooled from about 200 ° C., the sleeve 8 is gradually cooled from about 400 ° C., so that the temperature difference of about 200 ° C. causes the sleeve 8 to be heated to the heating section H. Will be fitted.

【0029】上記により、図10に示すように、スリー
ブ8が角形パイプ2に食い込むようにプレスされ、且つ
焼嵌めによってスリーブ8が強固に角形パイプ2に一体
化された肉厚部7を有する鉄骨柱1を製造することがで
きる。
As described above, as shown in FIG. 10, a steel frame having a thick portion 7 in which the sleeve 8 is pressed so as to bite into the square pipe 2 and the sleeve 8 is firmly integrated with the square pipe 2 by shrink fitting. The pillar 1 can be manufactured.

【0030】尚、前記結晶粒が粗大化する温度の下限温
度T1(略400℃)以上に加熱を行っても、その温度
を長時間保持し続けなければ結晶粒の粗大化は起こらな
いので、前記温度の管理を必要以上に厳重に行う必要は
ない。
Even if the heating is performed at a temperature equal to or higher than the lower limit temperature T 1 (about 400 ° C.) of the temperature at which the crystal grains are coarsened, the crystal grains will not be coarsened unless the temperature is maintained for a long time. It is not necessary to control the temperature more strictly than necessary.

【0031】また、本発明は上記実施の形態例にのみ限
定されるものではなく、角形パイプ及びスリーブの加熱
方式等は種々変更できること、その他本発明の要旨を逸
脱しない範囲内において種々変更を加え得ること等は勿
論である。
The present invention is not limited only to the above-described embodiment, and various modifications can be made to the heating method of the rectangular pipe and the sleeve, and other various modifications can be made without departing from the gist of the present invention. Needless to say, it can be obtained.

【0032】[0032]

【発明の効果】請求項1記載の発明によれば、スリーブ
を角形パイプの外側に食い込むようにプレスし、且つ焼
嵌めによってスリーブを角形パイプに強固に一体化させ
て肉厚部を形成するようにしているので、平面度、寸法
精度に優れた肉厚部を有する溶接々合による継目のない
品質の安定した鉄骨柱を能率的に低コストで製造するこ
とができる。
According to the first aspect of the present invention, the sleeve is pressed so as to bite the outside of the rectangular pipe, and the sleeve is firmly integrated with the rectangular pipe by shrink fitting to form a thick portion. Therefore, it is possible to efficiently manufacture a seamless steel column having a thick portion having excellent flatness and dimensional accuracy and having a seamless quality by welding together at a low cost.

【0033】また、角形パイプの加熱部は結晶粒が粗大
化する温度の下限温度付近までしか加熱しないので、結
晶粒が粗大化することはなく、また、スリーブは塑性変
形する加工温度まで加熱してプレスを行うようにしてい
るので、小さなプレス力でスリーブを圧縮成形すること
ができ、また、プレス後にスリーブを結晶粒が粗大化す
る温度の下限温度付近まで急冷して結晶粒の緻密化を図
るようにし、その後徐冷を行うことにより組成の変化や
残留応力の影響のない安定した品質が得られる。
Further, since the heating portion of the square pipe heats only up to the lower limit temperature of the temperature at which the crystal grains are coarsened, the crystal grains are not coarsened, and the sleeve is heated to the processing temperature at which the plastic deformation occurs. Press, so that the sleeve can be compression molded with a small pressing force, and after pressing, the sleeve is quenched to near the lower limit of the temperature at which the crystal grains are coarsened, thereby densifying the crystal grains. As a result, by performing slow cooling, stable quality free from the influence of composition change and residual stress can be obtained.

【0034】請求項2記載の発明では、対向する1対の
直角溝形のプレス金型を用いてスリーブをプレスし、続
いて角形パイプを90゜回転させて再びスリーブをプレ
スする操作を繰返すようにしているので、スリーブのプ
レス成形作業を容易に行うことができる。
According to the second aspect of the present invention, the operation of pressing the sleeve using a pair of right-angle groove-shaped pressing dies facing each other, and subsequently rotating the square pipe by 90 ° and pressing the sleeve again is repeated. Therefore, the press forming operation of the sleeve can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に用いる肉厚部を形成する
ためのプレス装置の一例を示す切断正面図である。
FIG. 1 is a cut-away front view showing an example of a press device for forming a thick portion used in an embodiment of the present invention.

【図2】図1のII−II方向断面図である。FIG. 2 is a sectional view taken along the line II-II of FIG.

【図3】図1のプレス装置によりスリーブをプレスして
いる状態を示す切断正面図である。
FIG. 3 is a cut front view showing a state where the sleeve is pressed by the press device of FIG. 1;

【図4】スリーブの加熱装置の一例を示す切断側面図で
ある。
FIG. 4 is a cut-away side view showing an example of a heating device for a sleeve.

【図5】角形パイプの加熱装置の一例を示す切断側面図
である。
FIG. 5 is a cut-away side view showing an example of a heating device for a square pipe.

【図6】冷却装置の一例を示す切断側面図である。FIG. 6 is a cut-away side view showing an example of the cooling device.

【図7】図6のVII−VII方向断面図である。FIG. 7 is a sectional view taken along the line VII-VII of FIG. 6;

【図8】本発明の実施の形態の作業工程フローを示すブ
ロック図である。
FIG. 8 is a block diagram showing a work process flow according to the embodiment of the present invention.

【図9】本発明を実施する際の温度条件の形態を示す線
図である。
FIG. 9 is a diagram showing a form of a temperature condition when carrying out the present invention.

【図10】本発明によって製造された鉄骨柱の断面図で
ある。
FIG. 10 is a sectional view of a steel column manufactured according to the present invention.

【図11】従来の鉄骨柱と梁の接続を行う仕口部を示す
概略側面図である。
FIG. 11 is a schematic side view showing a conventional joint for connecting a steel column and a beam.

【図12】角形パイプに形成された肉厚部を示す断面図
である。
FIG. 12 is a cross-sectional view showing a thick portion formed in a rectangular pipe.

【符号の説明】[Explanation of symbols]

2 角形パイプ 7 肉厚部 8 スリーブ 9,10 プレス金型 9a,10a 直角溝 H 加熱部 T1 下限温度 T2 加工温度2 square pipe 7 thick part 8 sleeve 9 and 10 press dies 9a, 10a perpendicular groove H heating unit T 1 lower limit temperature T 2 processing temperature

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 角形パイプと、該角形パイプの外側に嵌
合可能な角形の短いスリーブとを用い、角形パイプの所
要位置におけるスリーブの長さより長い範囲を、結晶粒
が粗大化する温度の下限温度付近まで加熱すると共に、
スリーブを塑性変形する加工温度まで加熱し、角形パイ
プの加熱部にスリーブを嵌合し、プレス金型を用いてス
リーブが角形パイプの加熱部に食い込むように外側から
プレスすることにより、前記加熱部とスリーブとからな
る肉厚部を形成し、続いて肉厚部における加熱部を結晶
粒が粗大化する温度の下限温度と常温との中間温度にな
るように内側から冷却すると共に、スリーブを結晶粒が
粗大化する温度の下限温度付近まで急冷し、その後徐冷
を行って加熱部とスリーブとの温度差によりスリーブを
角形パイプに焼嵌めすることを特徴とする鉄骨柱の製造
法。
1. A rectangular pipe and a rectangular short sleeve which can be fitted to the outside of the rectangular pipe, and a lower limit of a temperature at which crystal grains are coarsened in a range longer than a length of the sleeve at a required position of the rectangular pipe. While heating to near the temperature,
The sleeve is heated to a processing temperature at which the sleeve is plastically deformed, the sleeve is fitted to the heating part of the square pipe, and the sleeve is pressed from the outside using a press die so that the sleeve bites into the heating part of the square pipe. Forming a thick portion composed of a sleeve and a sleeve, and then cooling the heating portion in the thick portion from the inside so that the temperature becomes an intermediate temperature between the lower limit temperature of the temperature at which the crystal grains become coarse and the normal temperature, and crystallizes the sleeve. A method of manufacturing a steel column, comprising: quenching to a temperature near a lower limit of a temperature at which grains are coarsened, gradually cooling the material, and shrink-fitting the sleeve to a rectangular pipe by a temperature difference between a heating portion and the sleeve.
【請求項2】 スリーブのプレス時に、対向する1対の
直角溝形のプレス金型を用いてスリーブをプレスし、続
いて角形パイプを90゜回転させて再びプレスする操作
を繰返すことを特徴とする請求項1記載の鉄骨柱の製造
法。
2. The method according to claim 1, wherein when the sleeve is pressed, the operation of pressing the sleeve using a pair of right-angle groove-shaped pressing dies facing each other, and then rotating the square pipe by 90 ° and pressing again is repeated. The method for producing a steel column according to claim 1.
JP19366696A 1996-07-23 1996-07-23 Manufacture of steel pillar Withdrawn JPH1034229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19366696A JPH1034229A (en) 1996-07-23 1996-07-23 Manufacture of steel pillar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19366696A JPH1034229A (en) 1996-07-23 1996-07-23 Manufacture of steel pillar

Publications (1)

Publication Number Publication Date
JPH1034229A true JPH1034229A (en) 1998-02-10

Family

ID=16311763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19366696A Withdrawn JPH1034229A (en) 1996-07-23 1996-07-23 Manufacture of steel pillar

Country Status (1)

Country Link
JP (1) JPH1034229A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU724737B2 (en) * 1996-12-19 2000-09-28 Dimitrios TRAMBAS Fabricated structural members
CN104588964A (en) * 2014-12-29 2015-05-06 温爱春 Dissimilar metal tube material and preparation method and application thereof
CN112847906A (en) * 2021-01-25 2021-05-28 宜宾天亿新材料科技有限公司 Multi-section type pipe heating device used before preparation of PVC-O pipe fitting
CN114273565A (en) * 2020-09-28 2022-04-05 广州科荟泽生物科技有限公司 Stamping die and needle-adding and wire-clamping method of metal flat wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU724737B2 (en) * 1996-12-19 2000-09-28 Dimitrios TRAMBAS Fabricated structural members
CN104588964A (en) * 2014-12-29 2015-05-06 温爱春 Dissimilar metal tube material and preparation method and application thereof
CN114273565A (en) * 2020-09-28 2022-04-05 广州科荟泽生物科技有限公司 Stamping die and needle-adding and wire-clamping method of metal flat wire
CN112847906A (en) * 2021-01-25 2021-05-28 宜宾天亿新材料科技有限公司 Multi-section type pipe heating device used before preparation of PVC-O pipe fitting
CN112847906B (en) * 2021-01-25 2023-03-14 宜宾天亿新材料科技有限公司 Multi-section type pipe heating device used before preparation of PVC-O pipe fitting

Similar Documents

Publication Publication Date Title
US7431194B2 (en) Joining structural members by friction welding
KR20050019041A (en) Stir forming apparatus and method
JPH1034229A (en) Manufacture of steel pillar
JP2922830B2 (en) Low pressure casting apparatus and low pressure casting method
EP0373618B1 (en) Forming thermoplastic material
JPH04274819A (en) Receiver having flat hole for use for extruding molding machine and method for manufacture thereof
JP3654538B2 (en) Manufacturing method of frame-like structure
JP5883235B2 (en) Method of welding resin, glass fiber reinforced plastic (GFRP), carbon fiber reinforced plastic (CFRP), or carbon material
JP2000233235A (en) Hydraulic forming device
JP5187010B2 (en) Method and apparatus for hot bending of metal material
JPH04274820A (en) Receiver having flat receiver for use for extruding molding machine and method for manufacture
JPH09125600A (en) Steel pipe with flange and its manufacture
JPH0938721A (en) Production of square steel tube
JPH10180808A (en) Device and method for molding resin
JP3725076B2 (en) Manufacturing equipment for square steel pipes
JP2504100B2 (en) Flare tube manufacturing method
JP3522089B2 (en) Method of Partial Wall Thickening of Tube and Partial Wall Thickening Equipment of Tube
KR101090073B1 (en) Apparatus for bonding metal plates
RU2096148C1 (en) Method of manufacture of long products from different metals
JP3504107B2 (en) Manufacturing method of steel pipe with internal reinforcement
JP3518983B2 (en) Metal tube with reinforcement and method of manufacturing the same
JPH1034262A (en) Production of steel frame column
JP3444702B2 (en) Metal tube with reinforcement and method of manufacturing the same
JPH09317085A (en) Metal pipe having locally irregular shape and its manufacture
WO2018230254A1 (en) Cross flow fan manufacturing method, and cross flow fan manufacturing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007