JP5247733B2 - Plastic molded product - Google Patents

Plastic molded product Download PDF

Info

Publication number
JP5247733B2
JP5247733B2 JP2010005499A JP2010005499A JP5247733B2 JP 5247733 B2 JP5247733 B2 JP 5247733B2 JP 2010005499 A JP2010005499 A JP 2010005499A JP 2010005499 A JP2010005499 A JP 2010005499A JP 5247733 B2 JP5247733 B2 JP 5247733B2
Authority
JP
Japan
Prior art keywords
smc
molded product
bmc
thick
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010005499A
Other languages
Japanese (ja)
Other versions
JP2011143594A (en
Inventor
義一 鵜飼
庸平 臣
徹男 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010005499A priority Critical patent/JP5247733B2/en
Publication of JP2011143594A publication Critical patent/JP2011143594A/en
Application granted granted Critical
Publication of JP5247733B2 publication Critical patent/JP5247733B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

この発明は、シートモールディングコンパウンド(SMC)やバルクモールディングコンパウンド(BMC)を用いた熱硬化性樹脂成形品に関するものであり、特に15mm以上の厚肉部を有する熱硬化性樹脂成形品に係るものである。   The present invention relates to a thermosetting resin molded product using a sheet molding compound (SMC) or a bulk molding compound (BMC), and particularly relates to a thermosetting resin molded product having a thick portion of 15 mm or more. is there.

SMC等の熱硬化性樹脂はガラス繊維等で強化された複合材料であるため、強度が大きく、また、金属と比べると複雑な形状を比較的容易に成形できる特長を有するため、種々の製品に用いられている。
SMCの成形品は、圧縮成形法により製造されることがほとんどである。圧縮成形法は、プレス装置に取り付けられ、所定の温度に制御(加熱)された金型(下型と上型)に、適量の樹脂材料を投入し、プレス機による型締めにより、上型と下型で樹脂材料を加熱しながら圧縮することで、金型に沿った形状に成形し、この状態で一定時間保持することで、樹脂材料を硬化させた後、金型より取り出し成形品を得る方法である。
SMCを用いた圧縮成形による成形品の場合、製品に求められる機能により、成形品には部分的に厚肉部を設ける場合がある。SMCは硬化時の硬化収縮や硬化反応による発熱とその後の冷却による熱収縮などによって、成形品内部に歪が生じてしまうことが多い。特に肉厚が大きい成形品の場合、内部歪が大きく、内部クラックやヒケ、変形といった成形不良が発生してしまう。
Thermosetting resin such as SMC is a composite material reinforced with glass fiber, etc., so it has high strength and has the advantage of being able to form complex shapes relatively easily compared to metals, so it can be used in various products. It is used.
Most SMC molded products are manufactured by compression molding. In the compression molding method, an appropriate amount of resin material is put into a mold (lower mold and upper mold) that is attached to a press machine and controlled (heated) to a predetermined temperature, and the upper mold is clamped by a press machine. By compressing while heating the resin material in the lower mold, it is molded into a shape along the mold, and is held in this state for a certain period of time. After the resin material is cured, a molded product is obtained from the mold. Is the method.
In the case of a molded product by compression molding using SMC, a thick part may be partially provided in the molded product depending on the function required for the product. SMC often causes distortion in the molded product due to curing shrinkage during curing, heat generation due to a curing reaction, and thermal contraction due to subsequent cooling. In particular, in the case of a molded product having a large thickness, internal distortion is large, and molding defects such as internal cracks, sink marks, and deformation occur.

このような成形不良の発生を抑制する技術としては、金型内に予めABS樹脂などからなる中芯材を金型キャビティの中央部に配置し、その外周部に熱硬化性樹脂液を注入し、加熱する際に、熱硬化性樹脂の硬化収縮体積量に見合った体積膨張量を中芯材に発生させるとともに中芯材の膨張と熱硬化性樹脂の硬化収縮とを同期させることで、成形品表面のヒケを抑制する技術が示されている(例えば、特許文献1)。   As a technique for suppressing the occurrence of such molding defects, a core material made of ABS resin or the like is placed in advance in the center of the mold cavity, and a thermosetting resin liquid is injected into the outer periphery of the mold. When heating, a volume expansion amount corresponding to the curing shrinkage volume amount of the thermosetting resin is generated in the core material, and the expansion of the core material and the curing shrinkage of the thermosetting resin are synchronized, thereby forming A technique for suppressing sink marks on the product surface is disclosed (for example, Patent Document 1).

特開2000−079620号公報JP 2000-079620 A

しかしながら上記特許文献1に示された技術では、成形品表面に発生するヒケ不良を抑制することはできるが、内部に挿入した熱可塑性樹脂である中芯材が想定以上に膨張することにより、熱硬化性樹脂と熱可塑性樹脂の界面にクラックが発生してしまう等の不良が発生する場合があるという問題点がある。
この発明は、上記のような課題を解決するためになされたものであって、SMCなどの熱硬化性樹脂を用いて厚肉部を有する成形品を成形する場合に、成形品内部に発生するクラック不良を抑制し、不良のない健全な樹脂成形品を得ることを目的としている。
However, the technique disclosed in Patent Document 1 can suppress sink defects occurring on the surface of the molded product, but the core material, which is a thermoplastic resin inserted inside, expands more than expected. There is a problem that defects such as cracks may occur at the interface between the curable resin and the thermoplastic resin.
The present invention has been made to solve the above-described problems, and occurs when a molded product having a thick portion is molded using a thermosetting resin such as SMC. The object is to suppress crack defects and obtain a sound resin molded product free from defects.

この発明に係る樹脂成形品は、熱硬化性樹脂材を加熱、圧縮して形成され、薄肉部位と厚肉部位とが一体化して設けられた樹脂成形品であって、前記薄肉部位は、SMC成形部またはLSMC成形部のいずれか一方で形成されており、前記厚肉部位は15mm以上の肉厚を有し、その肉厚方向中央部分にBMC成形部が設けられているとともに、前記BMC成形部を囲むようにSMC成形部またはLSMC成形部のいずれか一方が形成されているものである。   The resin molded product according to the present invention is a resin molded product that is formed by heating and compressing a thermosetting resin material, and in which a thin-walled portion and a thick-walled portion are integrally provided, and the thin-walled portion is an SMC. It is formed by either the molded part or the LSMC molded part, the thick part has a thickness of 15 mm or more, and a BMC molded part is provided at the center in the thickness direction, and the BMC molded part Either the SMC molded part or the LSMC molded part is formed so as to surround the part.

この発明は上記のような構成を採用しているので、厚肉部位を有した樹脂成形品であるのにもかかわらず、成形品内部にクラックの発生や、ヒケさらには変形を抑制した優れた品質の樹脂成形品を得ることができるという効果がある。   Since the present invention adopts the above-described configuration, it is excellent in suppressing the occurrence of cracks, sink marks, and deformation inside the molded product, despite being a resin molded product having a thick portion. There is an effect that a quality resin molded product can be obtained.

SMCの製造工程を説明する図である。It is a figure explaining the manufacturing process of SMC. SMC、LSMC、BMCの特性測定結果及び成形品の内部クラック発生数を示す図である。It is a figure which shows the characteristic measurement result of SMC, LSMC, and BMC and the number of internal crack generation of a molded article. SMC成形品の曲げ試験法を説明する図である。It is a figure explaining the bending test method of a SMC molded article. 参考例の成形品を示す外観図である。It is an external view which shows the molded article of a reference example. 参考例の成形品の断面を示す図である。It is a figure which shows the cross section of the molded article of a reference example. 参考例の材料チャージパターンを説明する図である。It is a figure explaining the material charge pattern of a reference example. 参考例の成形品の配向模式を示す図である。It is a figure which shows the orientation model of the molded article of a reference example. 成形品の内部クラックを示す模式図である。It is a schematic diagram which shows the internal crack of a molded article. 成形品内部の発熱状況を示す模式図である。It is a schematic diagram which shows the heat_generation | fever condition inside a molded article. 圧縮成形時の樹脂温度変化を示す図である。It is a figure which shows the resin temperature change at the time of compression molding. 実施の形態1による成形品の断面を示す図である。3 is a diagram showing a cross section of a molded product according to Embodiment 1. FIG. 実施の形態1の厚肉部の配向模式図である。FIG. 3 is an alignment schematic diagram of a thick portion according to the first embodiment. 実施の形態1の材料チャージパターンを説明する図である。FIG. 3 is a diagram for explaining a material charge pattern according to the first embodiment. 実施の形態2による成形品の断面を示す図である。6 is a view showing a cross section of a molded product according to Embodiment 2. FIG. 実施の形態2の材料チャージパターンを説明する図である。It is a figure explaining the material charge pattern of Embodiment 2. FIG. 実施の形態2の厚肉部の配向模式図である。FIG. 5 is an orientation schematic diagram of a thick part in the second embodiment. 実施の形態2の他の実施例による成形品の断面を示す図である。FIG. 10 is a diagram showing a cross section of a molded product according to another example of the second embodiment.

実施の形態1.
この発明の実施の形態1による樹脂成形品の優れた特徴をより理解し易くする為、まず以下にSMC(シートモールディングコンパウンド)シートの製法およびSMC成形品から切り出した試験品の強度調査結果について説明する。
Embodiment 1 FIG.
In order to make it easier to understand the excellent characteristics of the resin molded product according to Embodiment 1 of the present invention, first, a method for producing an SMC (Sheet Molding Compound) sheet and a strength investigation result of a test product cut out from the SMC molded product will be described below. To do.

SMCシートは、通常、図1に示す工程で製造される。図1に示すST1で不飽和ポリエステルを主材料に、粘度調整剤、離型剤、硬化剤等が混合された液状樹脂材料を幅1000mm程度の下側シート上に塗布する。ST2で塗布された樹脂材料を、ブレードを用いて樹脂材料を一定厚さに延ばす。ST3で樹脂材料の上に直径数ミクロンの繊維を1000本程度撚って撚線とした直径1mm、長さ25mm程度のガラス繊維等の強化材料を散布する。ST4で上側のシートに樹脂材料を塗布し、ブレードで一定厚さ延ばす。ST5で下側シートと上側シートを重ね合わせ、シート間に樹脂材料、強化繊維を挟み込む。ST6でシート間の樹脂を、ローラを用いて加圧・圧延し、一定の厚みにする。ST7でシートを巻き取る。
このような工程でSMCシートは製造されるため、ガラス繊維等の強化材料はシートの面方向に配向される。SMCシートは、金型の面に沿って投入(チャージ)されることが多いため、成形品となった場合にも、ガラス繊維は成形品の厚みと直交する方向に配向するケースが多い。そのため、成形品の厚み方向と直交する方向の面(平面部)に曲げ応力を受ける場合などに対して、強度を向上することができる。
The SMC sheet is usually manufactured by the process shown in FIG. In ST1 shown in FIG. 1, a liquid resin material in which an unsaturated polyester is used as a main material and a viscosity modifier, a release agent, a curing agent and the like are mixed is applied on a lower sheet having a width of about 1000 mm. The resin material applied in ST2 is extended to a certain thickness using a blade. In ST3, a reinforcing material such as glass fiber having a diameter of about 1 mm and a length of about 25 mm is formed by twisting about 1000 fibers having a diameter of several microns on the resin material. In ST4, a resin material is applied to the upper sheet, and is extended to a certain thickness with a blade. In ST5, the lower sheet and the upper sheet are overlapped, and the resin material and the reinforcing fiber are sandwiched between the sheets. In ST6, the resin between the sheets is pressed and rolled using a roller to obtain a constant thickness. In ST7, the sheet is wound up.
Since the SMC sheet is manufactured in such a process, the reinforcing material such as glass fiber is oriented in the surface direction of the sheet. Since the SMC sheet is often charged (charged) along the surface of the mold, the glass fiber is often oriented in a direction orthogonal to the thickness of the molded product even when it is a molded product. Therefore, the strength can be improved, for example, when bending stress is applied to the surface (plane portion) in the direction orthogonal to the thickness direction of the molded product.

図2は、SMC、LSMC、BMCの特性測定結果及び成形品の内部クラック発生数を示す図である。
SMCを用いて成形した成形品から、試験片を切り出し、曲げ強度を測定した結果を図2(a)に示す。なお、内部クラック発生数を示す図2(b)についての説明は後述する。曲げ試験は、図3(a)、図3(b)のように実施し、面方向の曲げ強度は図3(b)に示す方向に曲げ応力が掛かった時の強度を示し、積層方向の曲げ強度は、図3(a)方向に曲げ応力が掛かった時の強度を示す。図2(a)から分かる通り、面方向の強度は積層方向の強度の20倍程度である。
SMCと同じ工程で製造されるが、長さが約1000mmのガラス繊維を用いるLSMCおよび、樹脂材料と繊維長25mm程度のガラス繊維を混練した材料であるBMC(バルクモールディングコンパウンド)の特性についても図2(a)に記している。
また、図2(a)に示す流動性とは、流動のしやすさを示す指標であり、例えば、ある加圧力でSMC、LSMC、BMCを加圧した場合に、どの程度樹脂材料の面積が広がるか(厚みをどこまで圧延(薄く)できるか)を示すものである。さらに図2(a)に示すようにLSMC(長尺のSMC)は繊維長が長いため、SMCよりも面方向強度が高いが、流動性は最も劣る結果となっている。BMCは、材料の状態では、混練されているだけなので、ガラス繊維に配向はないが、金型内での圧縮成形される時の樹脂材料流動により、面方向にガラス繊維が配向されるため、面方向と積層方向で強度に差が現れている。ただし、その差はSMCよりも小さく、3倍程度である。また、この試験により、積層方向に関しては、SMCよりもBMCの方が大きな強度を発揮できるという知見を得た。
FIG. 2 is a diagram showing the result of measuring the characteristics of SMC, LSMC, and BMC and the number of internal cracks generated in the molded product.
FIG. 2 (a) shows the result of cutting out a test piece from the molded product molded using SMC and measuring the bending strength. The description of FIG. 2B showing the number of internal cracks will be described later. The bending test is carried out as shown in FIGS. 3 (a) and 3 (b), and the bending strength in the surface direction indicates the strength when bending stress is applied in the direction shown in FIG. 3 (b). The bending strength indicates the strength when bending stress is applied in the direction of FIG. As can be seen from FIG. 2A, the strength in the plane direction is about 20 times the strength in the stacking direction.
Although it is manufactured in the same process as SMC, the characteristics of LSMC using glass fibers with a length of about 1000 mm and BMC (bulk molding compound), which is a material obtained by kneading a resin material and glass fibers with a fiber length of about 25 mm, are also shown. 2 (a).
Further, the fluidity shown in FIG. 2A is an index indicating the ease of flow. For example, when SMC, LSMC, and BMC are pressurized with a certain pressure, how much the area of the resin material is. It indicates whether it spreads (how much the thickness can be rolled (thinned)). Further, as shown in FIG. 2 (a), LSMC (long SMC) has a long fiber length, and thus has a higher strength in the surface direction than SMC, but the fluidity is inferior. Since BMC is only kneaded in the material state, the glass fiber is not oriented, but the glass fiber is oriented in the plane direction by the resin material flow when compression molding in the mold, There is a difference in strength between the surface direction and the lamination direction. However, the difference is smaller than SMC and about 3 times. In addition, this test has revealed that BMC can exhibit greater strength than SMC in the stacking direction.

次に、本願発明の熱硬化性樹脂成形品を得るために実施した、試作品を参考例として説明する。
図4は参考例の熱硬化性樹脂成形品20の外観を示す図であり、幅1000mm、奥行き1200mm、高さ700mm、厚さ5〜50mmの大きさである。
図5は図4の断面図であり、これらの図から判るように厚さ50mmの厚肉部位21と、5mmの薄肉部位22とが一体化して成形されている。次にこの成形品20の製造方法を図に基づいて説明する。
図6に示すようにまず、予め下型の形状に合わせて裁断されたSMCシート材2を必要枚数重ねて、下型1に投入し、その状態で図示省略したプレス機の機構により、上型3を下降させて、SMC2を圧縮・流動(変形)させて、金型のキャビティ(上型3と下型1で形成される空間)内をSMC材2で充填し、加熱硬化することでキャビティ形状に沿った形状の成形品20となる。
Next, a prototype manufactured to obtain the thermosetting resin molded product of the present invention will be described as a reference example.
FIG. 4 is a view showing the appearance of the thermosetting resin molded product 20 of the reference example, which has a width of 1000 mm, a depth of 1200 mm, a height of 700 mm, and a thickness of 5 to 50 mm.
FIG. 5 is a cross-sectional view of FIG. 4. As can be seen from these drawings, the thick portion 21 having a thickness of 50 mm and the thin portion 22 having a thickness of 5 mm are integrally formed. Next, the manufacturing method of this molded product 20 is demonstrated based on figures.
As shown in FIG. 6, first, a necessary number of SMC sheet materials 2 cut in advance to the shape of the lower die are stacked and put into the lower die 1, and in that state, the upper die is removed by the mechanism of the press machine not shown. 3 is lowered, the SMC 2 is compressed and fluidized (deformed), the inside of the mold cavity (the space formed by the upper mold 3 and the lower mold 1) is filled with the SMC material 2, and then heated and cured to form the cavity. The molded product 20 has a shape along the shape.

成形品20の厚肉部位21の配向模式を示す断面詳細図を図7に示す。図中の線はガラス繊維2aの配向を示している。図6のようにSMC2をチャージした場合、厚肉部位21では、図7のようにガラス繊維2aは面方向に強く配向するため、面方向には非常に強い強度を有する。しかしながら、このような成形品20の20mm以上の厚肉部位21の中央部には、図8に示すような内部クラックが発生してしまい、成形品20の品質を劣化させる不良を引起す。
SMC2を用いて、5〜50mmまでの肉厚のサンプル成形品(縦100mm、横100mmの試験片)を各50個成形し、内部クラックの発生状況を確認した結果を図2(b)に示す。肉厚15mm以下ではクラックの発生はないが、20mmで50個中の35個、25mm以上では全数にクラックが発生していた。SMC2を用いた場合には、20mm以上の肉厚を有する成形品を品質よく成形することが困難であることが分かった。
ここで、圧縮成形時の成形品内部と表面の温度を測定した結果を、図9に示す。金型温度140℃で成形を行なった。成形品の厚さ方向表面部は金型温度140℃より若干高くなった後、金型温度140℃と同等の温度になっているが、成形品の厚さ方向中央部は、圧縮開始後17〜18分で、200℃以上に達していることが分かった。樹脂の硬化反応による発熱により、このような高温となった。
FIG. 7 is a detailed cross-sectional view showing an orientation pattern of the thick portion 21 of the molded product 20. The line in the figure indicates the orientation of the glass fiber 2a. When the SMC 2 is charged as shown in FIG. 6, the glass fiber 2a is strongly oriented in the plane direction as shown in FIG. 7 in the thick portion 21, and thus has a very strong strength in the plane direction. However, an internal crack as shown in FIG. 8 is generated in the central portion of the thick portion 21 having a thickness of 20 mm or more of such a molded product 20, causing a defect that deteriorates the quality of the molded product 20.
FIG. 2 (b) shows the result of confirming the occurrence of internal cracks by molding 50 sample molded products (100 mm long and 100 mm wide test pieces) each having a thickness of 5 to 50 mm using SMC2. . Cracks did not occur when the thickness was 15 mm or less, but cracks occurred in all of the 35 pieces out of 50 pieces at 20 mm and 25 mm or more. When SMC2 was used, it turned out that it is difficult to shape | mold the molded product which has a thickness of 20 mm or more with sufficient quality.
Here, the result of having measured the temperature of the inside of a molded article and the surface at the time of compression molding is shown in FIG. Molding was performed at a mold temperature of 140 ° C. The surface portion in the thickness direction of the molded product is slightly higher than the mold temperature 140 ° C. and then the temperature is equal to the mold temperature 140 ° C., but the central portion in the thickness direction of the molded product 17 It was found that the temperature reached 200 ° C. or higher in ˜18 minutes. Such a high temperature was caused by heat generated by the curing reaction of the resin.

成形品厚さ方向内部の高温領域は概ね、図10に示すとおりである。この時点(加圧開始後、17〜18分)で樹脂は硬化している。成形品の冷却時に、厚さ方向中央部は200℃以上から室温まで冷却されるが、表面近傍は140℃から室温までの冷却となり、厚さ方向中央部の方が表面部よりも熱収縮量が大きくなる。このために厚さ方向中央部に発生した引張り応力により、内部にクラックが生じた。肉厚が小さくなると、高温領域(高温領域の厚さ方向の寸法)が小さくなるため、表面部との熱収縮量の差も小さく、引張り応力が小さくなり、クラックが発生しない。
また、金型1、3の近傍ほど金型からの伝熱が早く、硬化するのが早くなる。前記中央部は温度が上昇するのに時間がかかるため、金型1、3近傍(側面図)部が昇温して硬化し、弾性体となった後に、硬化反応が開始されるため(前記表面部が硬化した時点、前記中央部はまだ未硬化の状態である)、中央部の硬化収縮によっても引張り応力が発生し、クラックの原因となる。
このように、SMC2を用いた厚肉品21の成形では、20mm以上の肉厚では、内部クラックの発生を抑制することはできなかった。
The high temperature region inside the molded product thickness direction is generally as shown in FIG. At this point (17-18 minutes after the start of pressurization), the resin is cured. During cooling of the molded product, the central part in the thickness direction is cooled from 200 ° C. or more to room temperature, but the vicinity of the surface is cooled from 140 ° C. to room temperature, and the heat shrinkage amount in the central part in the thickness direction is more than the surface part. Becomes larger. For this reason, a crack was generated inside due to the tensile stress generated in the central portion in the thickness direction. When the wall thickness is reduced, the high temperature region (dimension in the thickness direction of the high temperature region) is reduced, so that the difference in thermal shrinkage from the surface portion is also small, the tensile stress is small, and cracks are not generated.
Moreover, the heat transfer from a metal mold | die is so quick that it is near the metal mold | dies 1 and 3, and it becomes quick to harden | cure. Since it takes time for the central portion to rise in temperature, the vicinity of the molds 1 and 3 (side view) is heated and cured to become an elastic body, and then a curing reaction is started (see above) When the surface portion is cured, the central portion is still in an uncured state), and tensile stress is generated even by curing shrinkage of the central portion, causing cracks.
Thus, in the molding of the thick product 21 using SMC2, the generation of internal cracks could not be suppressed with a thickness of 20 mm or more.

実施の形態1による熱硬化性樹脂成形品は、前述した試作品から得られた諸データに基づいて創出されたものである。まず、製造方法について説明する。
この実施の形態1の熱硬化性樹脂成形品(以下、成形品と称す)20の形状、寸法は試作した成形品で示した図4,図5と同一である。しかしながら本実施の形態1による成形品20はその断面を図11に示すように厚肉部位21の構成が前述した試作品の厚肉部位とは異なる。すなわち15mm以上であって図11では50mmの厚肉部位21はその厚さ方向の中央部分にBMC成形部21bが設けられ、このBMC成形部21bを囲んでSMC成形部21aが設けられている。上記厚肉部位21の配向模式図を図12に示す。図12からも判るように厚さ50mmの中央部はBMC21bが、その上、下表面にはSMC21aが設けられている。
The thermosetting resin molded product according to Embodiment 1 is created based on various data obtained from the prototype described above. First, the manufacturing method will be described.
The shape and dimensions of the thermosetting resin molded product (hereinafter referred to as a molded product) 20 according to Embodiment 1 are the same as those shown in FIGS. However, the molded product 20 according to the first embodiment has a cross-sectional configuration as shown in FIG. 11 in which the structure of the thick portion 21 is different from the thick portion of the prototype described above. That is, in FIG. 11, a thick portion 21 having a thickness of 15 mm or more and a 50 mm thick portion 21 is provided with a BMC molding portion 21b at the center in the thickness direction, and an SMC molding portion 21a is provided surrounding the BMC molding portion 21b. An orientation schematic diagram of the thick part 21 is shown in FIG. As can be seen from FIG. 12, a BMC 21b is provided at the center part having a thickness of 50 mm, and an SMC 21a is provided on the lower surface.

このような構成の成形品20を形成するためのSMC材とBMC材のチャージパターンを図13に示す。下型1に図11で示した成形品20の大部分を構成する仕上がり厚さ15mm以下の薄肉部位22に相当する部位に、未硬化のSMCシート材2Aを投入する。仕上がり厚さ15mm以上の厚肉部位21に相当する部位には、下型1の上面1aにSMCシート材2Bを投入し、その上部に厚肉部21の中央部分を充填するのに必要な量の硬化前の半固形状態のBMC2Cを投入した後、前記BMC2Cを囲むように厚肉部位のSMCシート材2Bを投入する。このSMCシート材2Bは下型1に投入したSMCシート材2Aを延伸したものであってもよい。ここで圧縮成形後の薄肉部位22の寸法が15mm以下となるように投入されるSMCシート材2Aの厚さは、圧縮成形後に厚さが30%圧縮されるとして、21mm(15/0.7=21mm)以下となる。このように下型1にSMC材2A、2B、BMC材2Cをチャージした状態で、上型3を図示省略のプレス材の機構によって下降させて圧縮成形することにより、圧縮成形前に投入された薄肉部位22のSMC材2Aが薄肉部のSMC成形部22aに、厚肉部位21のSMC2Bは厚肉部のSMC成形部21aに、BMC材2Cは厚肉部のBMC成形部21bと圧縮成形されて、図11に示す成形品20が得られる。なお、下型1、上型3は共に所定の温度となるよう加熱されている。   FIG. 13 shows a charge pattern of the SMC material and the BMC material for forming the molded product 20 having such a configuration. The uncured SMC sheet material 2A is put into a portion corresponding to the thin portion 22 having a finished thickness of 15 mm or less, which constitutes most of the molded product 20 shown in FIG. In a portion corresponding to the thick portion 21 having a finished thickness of 15 mm or more, an amount necessary for charging the upper portion 1a of the lower mold 1 with the SMC sheet material 2B and filling the upper portion with the central portion of the thick portion 21. After the BMC 2C in a semi-solid state before being cured is charged, the thick SMC sheet material 2B is charged so as to surround the BMC 2C. This SMC sheet material 2B may be obtained by stretching the SMC sheet material 2A charged into the lower mold 1. Here, the thickness of the SMC sheet material 2A introduced so that the dimension of the thin-walled portion 22 after compression molding is 15 mm or less is 21 mm (15 / 0.7) assuming that the thickness is compressed by 30% after compression molding. = 21 mm) or less. In this manner, with the lower mold 1 charged with the SMC materials 2A, 2B, and BMC material 2C, the upper die 3 was lowered by a press material mechanism (not shown) and compression molded, so that it was put before compression molding. The SMC material 2A of the thin portion 22 is compression-molded with the SMC molding portion 22a of the thin portion, the SMC 2B of the thick portion 21 is compression-molded with the SMC molding portion 21a of the thick portion, and the BMC material 2C is compression-molded with the BMC molding portion 21b of the thick portion. Thus, the molded product 20 shown in FIG. 11 is obtained. The lower mold 1 and the upper mold 3 are both heated to a predetermined temperature.

前述した図2(b)のSMC/BMCに示したように、BMCの場合、面方向の強度は小さいが、SMCの3倍の積層方向強度を有するため、圧縮成形時の成形品厚さ方向の中央部の発熱などにより引張り応力が発生しても、厚肉部位21の内部にクラックが発生することなく、ヒケや変形を抑制した品質の安定し、歩留りの向上した成形品を得ることができる。また、厚肉部位21の表面部にSMC21a、15mm以下の薄肉部位22にSMC22aを配置しているので、面方向の曲げ強度は、BMCだけを用いる場合よりも大きく、強度と品質の優れた熱硬化性樹脂成形品を得ることができる。
また、厚肉部位21の表面部や15mm以下の部位にLSMC(長尺のSMC)を用いることもできる。この場合更に、強度を向上することができる。
また、本実施の形態1の製造方法によれば、薄肉部位22にSMCまたはLSMCを用い、厚肉部位21をSMCまたはLSMCのいずれかでBMCを囲む構成とすることにより、図11のような形状に限らず多様な形状で薄肉部位22と厚肉部位21とを有する形状の強度と品質の優れた熱硬化性樹脂成形品の製造が容易となる。
As shown in the SMC / BMC of FIG. 2 (b) described above, in the case of BMC, the strength in the surface direction is small, but the strength in the stacking direction is three times that of SMC. Even if a tensile stress is generated due to heat generation in the central portion of the steel plate, cracks are not generated in the thick portion 21, and a molded product with a stable quality with improved sink and deformation and an improved yield can be obtained. it can. In addition, since the SMC 21a is disposed on the surface portion of the thick portion 21 and the SMC 22a is disposed on the thin portion 22 having a thickness of 15 mm or less, the bending strength in the surface direction is larger than when only BMC is used, and heat with excellent strength and quality. A curable resin molded product can be obtained.
Moreover, LSMC (long SMC) can also be used for the surface portion of the thick portion 21 or a portion of 15 mm or less. In this case, the strength can be further improved.
Further, according to the manufacturing method of the first embodiment, SMC or LSMC is used for the thin portion 22 and the thick portion 21 is configured to surround the BMC with either SMC or LSMC, as shown in FIG. It becomes easy to manufacture a thermosetting resin molded product excellent in strength and quality of a shape having the thin portion 22 and the thick portion 21 in various shapes as well as the shape.

実施の形態2.
次に実施の形態2の成形品20について説明する。
この実施の形態2による成形品20は、図14に示すような厚肉部位21が設けられている以外は、前述した実施の形態1で示した図4、図5に記載の成形品20と同様である。すなわちこの実施の形態2の厚肉部位21は、厚肉部位21の中央部分を金属性加工物などのインサートワーク21Cを設け、このインサートワーク21Cの側部であって厚肉部位21のSMC成形部21aとの空間部分にインサートワーク21Cを挟むようにBMC成形部21bを設けたものである。
厚肉部位21にインサートワーク21Cが単に設けられた成形品は、20mm以上の厚肉部位21が存在する形状であると、厚肉部厚さ方向の中央部に図8で示したような内部クラックが発生する。しかしながらこの実施の形態2による図15に述べるような材料チャージパターンにより製造される構成の成形品20は内部クラックの発生は無い。
以下、材料のチャージパターンを図15によって説明する。まず下型1に仕上がり厚さ15mm以下の薄肉部位22に相当する部位に未硬化のSMCシート材2Aを投入する。なお、投入する量は実施の形態1と同じである。仕上がり厚さは15mm以上の厚肉部位21に相当する部位には、下型1の上面1aにSMCシート材2Bを投入し、その上部に金属性加工物などのインサートワーク21Cを投入する。
次にインサートワーク21CとSMCシート材2Bとの空間部分を充填するのに十分な量の半固形状態のBMC2Cを投入後、インサートワーク21Cと厚肉部BMC2Cを囲むようにSMCシート材2Bを投入する。このSMCシート材2Bは下型1に投入したSMCシート材2Aを延伸したものであってもよい。その後実施の形態1と同様に圧縮成形することで図14に示す成形品20が得られる。図16に成形後の厚肉部21の配向模式(断面図)を示す。
Embodiment 2. FIG.
Next, the molded product 20 of Embodiment 2 is demonstrated.
The molded product 20 according to the second embodiment is the same as the molded product 20 shown in FIGS. 4 and 5 described in the first embodiment except that a thick portion 21 as shown in FIG. 14 is provided. It is the same. That is, the thick portion 21 of the second embodiment is provided with an insert work 21C such as a metal workpiece at the center of the thick portion 21, and is formed by SMC molding of the thick portion 21 on the side of the insert work 21C. The BMC molding part 21b is provided so that the insert work 21C is sandwiched between the space part and the part 21a.
The molded product in which the insert part 21C is simply provided in the thick part 21 has an internal shape as shown in FIG. Cracks occur. However, the molded product 20 having the structure manufactured by the material charge pattern as shown in FIG. 15 according to the second embodiment has no occurrence of internal cracks.
The material charge pattern will be described below with reference to FIG. First, the uncured SMC sheet material 2A is introduced into a portion corresponding to the thin portion 22 having a finished thickness of 15 mm or less in the lower mold 1. The amount to be charged is the same as in the first embodiment. In a part corresponding to the thick part 21 having a finished thickness of 15 mm or more, the SMC sheet material 2B is introduced into the upper surface 1a of the lower mold 1, and an insert work 21C such as a metallic workpiece is introduced into the upper part.
Next, after a sufficient amount of semi-solid BMC2C is filled to fill the space between the insert work 21C and the SMC sheet material 2B, the SMC sheet material 2B is charged so as to surround the insert work 21C and the thick part BMC2C. To do. This SMC sheet material 2B may be obtained by stretching the SMC sheet material 2A charged into the lower mold 1. Thereafter, the molded product 20 shown in FIG. 14 is obtained by compression molding in the same manner as in the first embodiment. FIG. 16 shows an orientation model (cross-sectional view) of the thick portion 21 after molding.

以上のように、この実施の形態2は実施の形態1と同様に、厚肉部の厚み方向中央部にはBMC成形部21bが配置されているので、圧縮成形時の成形品の厚さ方向中央部の発熱等により引張り応力が発生しても、厚肉部位21の内部にクラックが発生することなく、品質の安定した成形品を得ることができる。また、図14に示した15mm以下の薄肉部位22にSMC材22aを配置しているので、面方向の曲げ強度は、BMCだけを用いる場合よりも大きく、強度と品質の優れた熱硬化性樹脂成形品を得ることができる。
また、BMCは図2(a)に示すとおり、LSMCの3倍、SMCの1.5倍の流動性を有しており、樹脂流動時の樹脂圧力が小さい(小さな圧力で流動(変形)する)。実施の形態2のように、インサートワーク21Cの周囲にBMC2Cを配置することで、圧縮成形時の樹脂(BMC)流動により、インサートワーク21Cが変形したり、インサートワーク21Cの位置が変動したりするのを防止することができる。すなわち材料のチャージパターンに不均一があった場合などは、圧縮成形時に、金型1、3内の材料の密度が均一になるように、材料が金型1、3内で流動するが、流動抵抗の大きいSMCが大きく流動すると、インサートワーク21Cもその流動とともに位置が変動したり、インサートワーク21Cが変形したりする可能性がある。しかしながら、インサートワーク21Cの周辺に流動性の高いBMC2Cが配置されていると、BMC2Cのみが流動するため、インサートワーク21Cの位置が変動したり、変形したりすることがない。また、実施の形態1と同様に、厚肉部位21の表面部や15mm以下の部位にLSMCを用いることもできる。この場合更に、強度を向上することができる。
なお、前述した図14の厚肉部位21の構成に代替して、図17に示すような厚肉部位21であってもよい。
すなわち、図14に示した厚肉部位21はBMC成形部21bがインサートワーク21Cを挟むように設けられた構成であったが、図17に示すように、インサートワーク21Cの片側のみにBMC成形部21bを設けた構成であっても同様の効果を奏する。なおここでBMC成形部21bをインサートワーク21Cの外側に設ける例を示したが、これに限らず内側に設けてもよい。
As described above, in the second embodiment, as in the first embodiment, since the BMC molding portion 21b is arranged at the central portion in the thickness direction of the thick portion, the thickness direction of the molded product at the time of compression molding is arranged. Even if tensile stress is generated due to heat generation in the central portion, a molded product having a stable quality can be obtained without causing cracks in the thick portion 21. Further, since the SMC material 22a is disposed in the thin portion 22 of 15 mm or less shown in FIG. 14, the bending strength in the surface direction is larger than that in the case of using only BMC, and the thermosetting resin having excellent strength and quality. A molded product can be obtained.
Further, as shown in FIG. 2A, BMC has a fluidity that is three times that of LSMC and 1.5 times that of SMC, and the resin pressure during resin flow is small (flows (deforms) with a small pressure). ). By disposing BMC 2C around the insert work 21C as in the second embodiment, the insert work 21C is deformed or the position of the insert work 21C is changed due to resin (BMC) flow during compression molding. Can be prevented. That is, when the charge pattern of the material is not uniform, the material flows in the molds 1 and 3 so that the density of the material in the molds 1 and 3 becomes uniform during compression molding. When the SMC having a large resistance flows greatly, the position of the insert work 21C may change with the flow or the insert work 21C may be deformed. However, when the BMC 2C having high fluidity is arranged around the insert work 21C, only the BMC 2C flows, so that the position of the insert work 21C does not fluctuate or deform. Further, as in the first embodiment, LSMC can be used for the surface portion of the thick portion 21 or a portion of 15 mm or less. In this case, the strength can be further improved.
Instead of the configuration of the thick portion 21 of FIG. 14 described above, a thick portion 21 as shown in FIG. 17 may be used.
That is, the thick portion 21 shown in FIG. 14 has a configuration in which the BMC molding portion 21b is provided so as to sandwich the insert workpiece 21C. However, as shown in FIG. 17, the BMC molding portion is provided only on one side of the insert workpiece 21C. Even if it is the structure which provided 21b, there exists the same effect. In addition, although the example which provides the BMC shaping | molding part 21b on the outer side of the insert work 21C was shown here, you may provide not only in this but on the inner side.

1 下型、2A 薄肉部位のSMC材、2B 厚肉部位のSMC材、
2C BMC材、3 上型、20 成形品、21 厚肉部位、
21a 厚肉部位SMC成形部、21b BMC成形部、21C インサートワーク、
22a 薄肉部位SMC成形部。
1 Lower mold, 2A Thin part SMC material, 2B Thick part SMC material,
2C BMC material, 3 upper mold, 20 molded product, 21 thick part,
21a thick part SMC molding part, 21b BMC molding part, 21C insert work,
22a Thin part SMC molding part.

Claims (2)

熱硬化性樹脂材を加熱、圧縮して形成され、薄肉部位と厚肉部位とが一体化して設けられた樹脂成形品であって、前記薄肉部位は、SMC成形部またはLSMC成形部のいずれか一方で形成されており、前記厚肉部位は15mm以上の肉厚を有し、その肉厚方向中央部分にBMC成形部が設けられているとともに、前記BMC成形部を囲むようにSMC成形部またはLSMC成形部のいずれか一方が形成されていることを特徴とする樹脂成形品。 It is a resin molded product formed by heating and compressing a thermosetting resin material, and a thin-walled portion and a thick-walled portion are integrated. The thin-walled portion is either an SMC molded portion or an LSMC molded portion. On the other hand, the thick part has a thickness of 15 mm or more, and a BMC molding part is provided at the central part in the thickness direction, and an SMC molding part or a so as to surround the BMC molding part. One of the LSMC molding part is formed, The resin molded product characterized by the above-mentioned. 前記厚肉部位の肉厚方向中央部分には、金属材のインサートワークが設けられ、前記BMC成形部は前記インサートワークの側部に設けられているとともに、前記SMC成形部またはLSMC成形部のいずれか一方が前記インサートワークおよびBMC成形部を囲むように形成されていることを特徴とする請求項1に記載の樹脂成形品。 A metal material insert work is provided at a central portion in the thickness direction of the thick part, and the BMC molding part is provided on a side part of the insert work, and either the SMC molding part or the LSMC molding part is provided. 2. The resin molded product according to claim 1, wherein either one is formed so as to surround the insert work and the BMC molding part.
JP2010005499A 2010-01-14 2010-01-14 Plastic molded product Expired - Fee Related JP5247733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010005499A JP5247733B2 (en) 2010-01-14 2010-01-14 Plastic molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010005499A JP5247733B2 (en) 2010-01-14 2010-01-14 Plastic molded product

Publications (2)

Publication Number Publication Date
JP2011143594A JP2011143594A (en) 2011-07-28
JP5247733B2 true JP5247733B2 (en) 2013-07-24

Family

ID=44458893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010005499A Expired - Fee Related JP5247733B2 (en) 2010-01-14 2010-01-14 Plastic molded product

Country Status (1)

Country Link
JP (1) JP5247733B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512412B2 (en) 2018-03-16 2022-11-29 Mitsubishi Chemical Corporation Sheet molding compound and carbon fiber composite material molded article

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285260A (en) * 1976-01-08 1977-07-15 Mitsubishi Plastics Ind Method of molding of molded products of fiber reinforced plastic
JPS6031644B2 (en) * 1977-10-24 1985-07-23 大日本インキ化学工業株式会社 Molding method for SMC molded products
JPH07117067A (en) * 1993-10-22 1995-05-09 Toto Ltd Molding of resin molded product having thick-walled part
JP2006316540A (en) * 2005-05-13 2006-11-24 Hitachi Housetec Co Ltd Bath-room unit wall panel and waterproofed pan
JP2007143832A (en) * 2005-11-28 2007-06-14 Hitachi Housetec Co Ltd Bathroom molding and bathroom member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512412B2 (en) 2018-03-16 2022-11-29 Mitsubishi Chemical Corporation Sheet molding compound and carbon fiber composite material molded article

Also Published As

Publication number Publication date
JP2011143594A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
TWI616297B (en) Forming method of fiber reinforced plastics and forming apparatus thereof
CN106457697B (en) Method for manufacturing the SMC components for being equipped with unidirectional fibre scrim
KR101926945B1 (en) Fiber-reinforced composite material molding and manufacturing method therefor
CN104619480B (en) For the equipment manufacturing flanged component and the method manufacturing flanged component
CN103407019B (en) A kind of assembling die and the application in forming composite structural member thereof
CN110815856A (en) Soft die manufacturing method for forming I-beam composite material part and application thereof
JP5952510B2 (en) Method for producing molded body having opening
JP2012526679A5 (en)
CN104290338A (en) Method for realization of co-curing of reinforcing rib web composite produced part by high strength soft tooling
JP6611910B2 (en) FRP sheet press molding method and apparatus
CN111886119A (en) Method for producing fiber-reinforced resin
JP2015229279A (en) Method and apparatus for manufacturing resin component for motor vehicle
JP5247733B2 (en) Plastic molded product
CN101733886A (en) Method for manufacturing composite workpiece with barbs
JP5805456B2 (en) Manufacturing method of composite material mold for composite material long member
JP5293945B2 (en) Thermosetting resin molded product and manufacturing method thereof
JP5602370B2 (en) Manufacturing method of unit laminated rubber for seismic isolation structure
TWI610801B (en) Manufacturing apparatus and manufacturing method of resin molded article
JP4015179B1 (en) Manufacturing method of fuel cell separator
CN113246493B (en) Forming die of closed-angle part and manufacturing and using method thereof
JP2018134807A (en) Simulation method of resin fluidity
CN214773803U (en) Precision injection molding skeleton anti-deformation device
JP6794429B2 (en) FRP sheet press molding method and equipment, and FRP molded products
TW201302460A (en) Method of manufacturing fiber-reinforced outer casing
JP2019119161A (en) Method for manufacturing fiber-reinforced plastic molding having hole part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees