WO2018230014A1 - Elastic-plastic element, seismic tie comprising same, and boiler support structure - Google Patents

Elastic-plastic element, seismic tie comprising same, and boiler support structure Download PDF

Info

Publication number
WO2018230014A1
WO2018230014A1 PCT/JP2017/045078 JP2017045078W WO2018230014A1 WO 2018230014 A1 WO2018230014 A1 WO 2018230014A1 JP 2017045078 W JP2017045078 W JP 2017045078W WO 2018230014 A1 WO2018230014 A1 WO 2018230014A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic
plastic element
end surface
support structure
boiler body
Prior art date
Application number
PCT/JP2017/045078
Other languages
French (fr)
Japanese (ja)
Inventor
森川 昭二
清 相田
幸太郎 河村
邦宏 森下
基規 加藤
将樹 下野
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Publication of WO2018230014A1 publication Critical patent/WO2018230014A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/24Supporting, suspending, or setting arrangements, e.g. heat shielding

Definitions

  • the present invention relates to an elastoplastic element, a seismic tie including the same, and a boiler support structure.
  • a boiler support structure that supports a boiler body in which a heat exchanger such as a economizer, an evaporator, and a superheater is mounted by suspending the boiler body from an upper part of a support structure formed of a plurality of support steel frames.
  • a heat exchanger such as a economizer, an evaporator, and a superheater
  • a boiler support structure for example, when a vibration such as an earthquake occurs, the boiler body repeatedly shakes so as to perform a pendulum motion, so that the relative displacement between the boiler body and the support structure is limited to the limit. Seismic ties are used as a steady rest for the purpose.
  • Patent Document 1 and Patent Document 2 one end of a plurality of elastoplastic elements having variable cross-sections that become iso-stressed beams is fixed to a backstay provided on the water wall of the boiler body at a predetermined interval, and the other end Is attached to a rigid binder member, and a sandwich type seismic tie is disclosed in which a support member or its extension member is sandwiched from both sides with a predetermined gap.
  • This seismic tie elasto-plastic element has a rectangular plate with a roughly diamond-shaped opening, and the section modulus varies depending on the position (variable section).
  • the elastic-plastic element and each of the backstay and the binder member are fixed to each other by overlay welding.
  • the present invention provides an elastic-plastic element capable of ensuring fatigue strength that can withstand repeated vibration and improving durability, a seismic tie including the same, and a boiler support structure. With the goal.
  • a representative present invention is for restricting relative displacement due to vibration between a boiler body installed along a vertical direction and a support structure for supporting the boiler body.
  • a sandwich type seismic tie Used in a sandwich type seismic tie, one end surface along the width direction of the rectangular plate-shaped main body is welded to the boiler body side, and the other end surface along the width direction is welded to the support structure side.
  • An elastic-plastic element wherein a rhombus-shaped opening is provided in a central portion of the main body, a first top portion of the opening is disposed on the one end surface side, and a second top portion of the opening is disposed on the other end surface side.
  • first shoulders projecting outward from the both side surfaces along the length direction of the main body or both front and back surfaces in the thickness direction toward the one end surface
  • main body Length A pair of second shoulders projecting outwardly from the both side surfaces along the thickness direction or both the front and back surfaces in the thickness direction toward the other end surface, and expansion of the first shoulder portion
  • the separation length from the end point position to the one end surface is set to be larger than the separation length from the first top portion to the one end surface, and the separation distance from the enlargement end point position to the other end surface in the second shoulder portion.
  • the length is set larger than the separation length from the second top to the other end surface.
  • the above characteristics can ensure fatigue strength that can withstand repeated vibrations and improve durability. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 5A is a graph showing the relationship of stress to the position in the length direction of the elastic-plastic element according to the first embodiment, and FIG.
  • 5B is a graph showing the relationship of stress to the position in the length direction of the elastic-plastic element of the conventional structure. It is.
  • the elastic plastic element which concerns on 2nd Embodiment shows the state joined to each of a backstay and a binder member, an upper figure is a top view, a center figure is a side view, a lower figure is the BB line in an upper figure It is sectional drawing. It is a figure which shows the example of 1 structure of the seismic tie which concerns on 3rd Embodiment.
  • FIG. 1 is a schematic diagram showing an example of the structure of a boiler apparatus 1 to which the present invention is applied.
  • a direction parallel to the ground on which the boiler device 1 is installed is referred to as a “horizontal direction”, and a direction orthogonal to the horizontal direction is referred to as a “vertical direction”.
  • the boiler device 1 is a large boiler device installed in a thermal power plant, for example.
  • the boiler device 1 includes a boiler body 10 installed along the vertical direction and a support structure 11 for supporting the boiler body 10.
  • the boiler body 10 includes a furnace for burning fuel such as fossil fuel, and a heat exchanger such as a economizer, an evaporator, and a superheater, and surrounds it with a water wall 101 (see FIG. 2). It has a housing structure.
  • fuel such as fossil fuel
  • heat exchanger such as a economizer, an evaporator, and a superheater
  • the support structure 11 is suspended by a support steel 111 as a plurality of support pillars that support the boiler body 10 and a support steel 111 arranged at an upper portion of the plurality of support steels 111 in the vertical direction, and the boiler body 10 is suspended.
  • a plurality of suspending members 112 to be lowered and a plurality of sandwich type seismic ties 110 for limiting relative displacement due to vibration between the boiler body 10 and the support structure 11 are provided.
  • FIG. 2 is a perspective view showing a configuration example of the seismic tie 110 according to the first embodiment.
  • FIG. 3 is a plan view showing a configuration example of the elastic-plastic element 3.
  • FIG. 4 shows a state in which the elastoplastic element 3 is joined to each of the backstay 102 and the binder member 2, the upper view is a plan view, the center view is a side view, and the lower view is AA in the upper view. It is line sectional drawing.
  • FIG. 5A is a graph showing the relationship of stress to the position in the length direction in the elastic-plastic element 3 according to the first embodiment
  • FIG. 5B is the relationship of stress to the position in the length direction in the elastic-plastic element having the conventional structure. It is a graph which shows.
  • the nominal nominal stress is indicated by a two-dot chain line (thick solid line in the portion overlapping with the stress of the actual machine shape), and the stress of the actual machine shape is indicated by a thick solid line.
  • the water wall 101 of the boiler body 10 has a horizontal direction parallel to the water wall 101 and intersecting (orthogonal to) the vertical direction (in FIG. 2, the front-rear direction of the boiler body 10).
  • a backstay 102 as a reinforcing member extending in the direction is fixed.
  • a seismic tie 110 is provided in the vicinity of the center of the water wall 101 of the boiler body 10 so as to connect the backstay 102 and the supporting steel frame 111.
  • a seismic tie 110 shown in FIG. 2 includes a support steel 111 (for example, support steel 111V) extending in the vertical direction among the plurality of support steels 111 shown in FIG. 1 and a backstay extending in the front-rear direction of the boiler body 10. 102.
  • a support steel 111 for example, support steel 111V
  • a backstay extending in the front-rear direction of the boiler body 10. 102.
  • Seismic tie 110 includes a backstay between a pair of binder members 2 that sandwich support steel frame 111 with a predetermined gap from the extending direction (front-rear direction) of backstay 102, and backstay 102 and a pair of binder members 2.
  • a plurality of (eight in the present embodiment) elasto-plastic elements 3 arranged at predetermined intervals along the extending direction 102 and a tie plate 4 for connecting the pair of binder members 2 are provided. .
  • each of the pair of binder members 2 sandwiches the supporting steel frame 111 with a predetermined gap from the extending direction of the backstay 102, but this is not always necessary, and a binder member having another configuration is used.
  • the configuration of the seismic tie will be described in a third embodiment described later.
  • the elastic-plastic element 3 has a rectangular plate-shaped main body 30 formed of an elastic-plastic member such as a steel material. Between the boiler main body 10 and the support steel 111 (support structure 11) due to vibration such as an earthquake. When a relative displacement occurs, it is bent into a shear type and elastically deforms to absorb vibration energy.
  • the elastic-plastic element 3 has an end surface 3AE (one end portion 3A) along the width direction of the main body 30 on the backstay 102 (boiler main body 10 side) and the other along the width direction of the main body 30.
  • End face 3BE (other end part 3B) is joined to a pair of binder members 2 (support structure 11 side), respectively, by overlay welding.
  • Each of the pair of binder members 2 has such rigidity that the opposing surfaces can be kept parallel to the backstay 102 even when the elastic-plastic element 3 is deformed by vibration such as an earthquake.
  • the pair of binder members 2 sandwich the supporting steel frame 111 from the horizontal direction (front-rear direction) and are connected to each other by the tie plate 4, so that the boiler body 10 is in the horizontal direction. Even when a relative displacement is generated between the pair of binder members 2 and the supporting steel frame 111 due to vibration to the supporting steel frame 111, a relative displacement exceeding a predetermined gap formed in advance may occur. Absent. Therefore, the pair of binder members 2 and the supporting steel frame 111 can be regarded as an integral body, and most of the relative displacement between the boiler body 10 and the supporting steel frame 111 is the amount of deformation of the elastic-plastic element 3. The amount of deformation is the same in all of the plurality of elastic-plastic elements 3.
  • the elastic-plastic element 3 includes a pair of first shoulder portions 31 projecting from the both side surfaces along the length direction of the main body 30 toward the one end surface 3AE, and both side surfaces along the length direction of the main body 30. And a pair of second shoulder portions 32 projecting so as to expand toward the other end surface 3BE.
  • the “length direction” of the main body 30 indicates a direction that intersects (orthogonally) the width direction and the thickness direction in the main body 30.
  • the first shoulder 31 has a curved surface so as to draw an arc from the start point 311 to the end point 312 of the enlargement and from the start point 321 to the end point 322 of the second shoulder 32. linked.
  • pair of first shoulder portions 31 and the pair of second shoulder portions 32 are not necessarily formed so as to protrude outward from both side surfaces along the length direction of the main body 30. Other examples will be described in a second embodiment to be described later.
  • the main body 30 is formed with a rhombus-shaped opening 30 ⁇ / b> A penetrating in the thickness direction at the center for forming a variable cross section to be an iso-stress beam.
  • all of the four top portions 301 to 304 of the opening 30A are curved in an arc shape.
  • the four top portions 301 to 304 are such that the first top portion 301 and the second top portion 302 are opposed to each other in the length direction at the center in the width direction of the main body 30, and the third top portion 303 and the fourth top portion are the length of the main body 30. It arrange
  • the 1st top part 301 is arrange
  • the 2nd top part 302 is arrange
  • the first top portion 301 is located closer to the one end surface 3AE than the expansion end point position 312 in each of the pair of first shoulder portions 31, and the second top portion 302 is expanded in each of the pair of second shoulder portions 32. Is located closer to the other end surface 3BE than the end point position 322.
  • the separation length D12 from the enlargement end point 312 to the one end surface 3AE in the first shoulder 31 is set to be larger than the separation length D11 from the first top portion 301 to the one end surface 3AE. (D12> D11).
  • the separation length D22 from the enlargement end point position 322 to the other end surface 3BE in the second shoulder portion 32 is set larger than the separation length D21 from the second top portion 302 to the other end surface 3BE (D22>). D21).
  • the shaded portion shown in FIG. 3 (the region having distances D11 and D21 in the length direction) is defined as a “rigid region” with respect to an “elasto-plastic region” where stress for forming an equal strength beam is generated. Can be considered.
  • the stress generated in the “rigid body region” is sufficiently smaller than the stress generated in the “elastic-plastic region”.
  • the “elastic-plastic body region” in the elasto-plastic element 3 corresponds to the white portion shown in FIG.
  • the toe part 41E of the build-up welding part 41 of the one end part 3A and the backstay 102 is located between one end surface 3AE and the 1st top part 301 in the length direction.
  • the toe end portion 42E of the build-up weld portion 42 between the other end portion 3B and the binder member 2 is located between the other end surface 3BE and the second top portion 302 in the length direction. That is, the build-up welds 41 and 42 are formed in a “rigid region” corresponding to the hatched portion shown in FIG.
  • the stress peaks at the toe portions 41 ⁇ / b> E and 42 ⁇ / b> E of the build-up welds 41 and 42 are relative to the nominal stress. small. That is, in the built-up welds 41 and 42 that are structurally discontinuous portions, the magnitude of the value obtained by multiplying the stress generated in the “elastic-plastic region” by the stress concentration factor is generated in the “elastic-plastic region”. Under the stress, the build-up welds 41 and 42 do not become the weakest part in the elastic-plastic element 3.
  • the elasto-plastic element 3 can ensure fatigue strength that can withstand repeated vibrations, improve the durability of the seismic tie 110, and extend the life.
  • the elastic-plastic element 3 is chamfered on the side surface from the outside in the width direction and from one end to the other end in the length direction.
  • the center C in the width direction is indicated by a two-dot chain line.
  • produces in the starting point position 311 of the expansion in the 1st shoulder part 31 and the starting point position 321 of the expansion in the 2nd shoulder part 32 can further be suppressed, and the improvement of the reliability of the elastic-plastic element 3 can be aimed at. .
  • each of the chamfered portions is preferably 3 [mm] or more and less than half the thickness H1 [mm] of the elastic-plastic element 3 (3 [mm] ⁇ L1 ⁇ H1 / 2 [mm]).
  • the chamfered portion is formed in a flat shape, but it is not always necessary, and for example, it may be formed in a curved shape.
  • FIG. 6 shows a state in which the elastic-plastic element 5 according to the second embodiment is joined to each of the backstay 102 and the binder member 2, the upper view is a plan view, the center view is a side view, and the lower view is shown. It is a BB line sectional view in the above figure.
  • the elastoplastic element 5 is arranged so that the pair of first shoulder portions 51 move outward from the front and back surfaces in the thickness direction of the main body 50 toward the one end surface 5AE.
  • the pair of second shoulder portions 52 are formed so as to extend outward from the front and back surfaces in the thickness direction of the main body 50 toward the other end surface 5BE.
  • the enlargement start point position 511 to the end point position 512 in the first shoulder portion 51 and the enlargement start point position 521 to the end point position 522 in the second shoulder portion 52 are respectively provided. , Connected by curved surfaces to draw an arc.
  • the first top portion 501 of the opening 50A is located closer to the one end surface 5AE than the enlargement end point position 512 in each of the pair of first shoulder portions 51
  • the second top portion 502 is located closer to the other end surface 5BE than the enlargement end point position 522 in each of the pair of second shoulder portions 52.
  • a “rigid region” is formed in each of the one end portion 5A and the other end portion 5B of the elastic-plastic element 5, and the build-up welds 41 and 42 are formed in the “rigid region”.
  • the build-up welds 41 and 42 do not become the weakest part in the elastoplastic element 5, and fatigue failure due to repeated vibrations occurs in the "elastoplastic body region". . Therefore, it is possible to use the elastic plastic member (steel material) constituting the elastic-plastic element 5 up to its original strength, and it is possible to ensure the fatigue strength that can withstand repeated vibrations and improve the reliability.
  • the pair of first shoulder portions 51 and the pair of second shoulder portions 52 are formed so as to protrude from the main body 50 in the thickness direction, and the dimensions in the width direction are not different from the conventional structure. For example, it can be used even when the installation location is restricted.
  • the elastic-plastic element 5 is chamfered on the side surface from the outer side in the width direction and from one end to the other end in the length direction.
  • the center C in the width direction is indicated by a two-dot chain line.
  • the length L2 of each of the chamfered portions is preferably 3 [mm] or more and less than half the thickness H2 [mm] of the elastic-plastic element 5 ( 3 [mm] ⁇ L2 ⁇ H2 / 2 [mm]).
  • FIG. 7 is a diagram illustrating a configuration example of seismic tie 110A according to the third embodiment.
  • the seismic tie 110 ⁇ / b> A includes a support steel 111 (for example, a support steel 111 ⁇ / b> H) that extends in the left-right direction of the boiler body 10 among the plurality of support steels 111 illustrated in FIG. 1 and a left-right along the support steel 111.
  • a backstay 102 extending in the direction is disposed so as to face the front-rear direction of the boiler body 10.
  • the plurality of elasto-plastic elements 3 are arranged between the backstay 102 and the supporting steel frame 111 at a predetermined interval in the left-right direction.
  • Each of the plurality of elasto-plastic elements 3 has a first binder member 201 joined to a surface facing the backstay 102 and a second binder member 202 joined to a surface facing the support steel 111.
  • the plurality of elastic-plastic elements 3, the first binder member 201, and the second binder member 202 are joined by welding.
  • a pair of binder members (the first binder member 201 and the first binder member 201 and the first binder member 201) are sandwiched between the backstay 102 and the supporting steel frame 111 from the front-rear direction.
  • Two binder members 202) are provided.
  • the first binder member 201 disposed on the backstay 102 side is disposed between the pair of stoppers 6 joined to the backstay 102.
  • the pair of stoppers 6 are arranged facing each other so as to sandwich the first binder member 201 from the left-right direction.
  • the first binder member 201 and the pair of stoppers 6 are not joined by welding or the like, they are in an unconstrained relationship with each other in the vertical direction.
  • the second binder member 202 is joined to the support steel frame 111. Therefore, in the present embodiment, the plurality of elastoplastic elements 3 are fixed to the support steel 111 side, and need not be fixed to the backstay 102 side as in the first embodiment.
  • a pair of links 7 extending in the front-rear direction are provided side by side in the left-right direction between the first binder member 201 and the second binder member 202.
  • Each of the pair of links 7 has one end in the extending direction attached to the first binder member 201 and the other end in the extending direction attached to the second binder member 202 via the pin 8.
  • the pair of links 7 play a role of a parallel operation link mechanism in the horizontal direction (left-right direction), and when a horizontal relative displacement occurs between the boiler body 10 and the supporting steel frame 111 due to vibration such as an earthquake. A situation in which excessive deformation occurs in some of the plurality of elastic-plastic elements 3 can be suppressed.
  • the binder member may be at least a beam-like member provided between the backstay 102 and the support steel 111.
  • the backstay 102 is not limited to the configuration of the first embodiment or the present embodiment.
  • the structure which provided the one binder member extended along the side of the support steel frame 111 may be sufficient, and there is no restriction
  • the elastic-plastic element 3 has one end surface 3AE joined to the backstay 102 and the other end surface 3BE joined to the pair of binder members 2 by overlay welding.
  • the elastic-plastic element 3 is elastic-plastic.
  • the element 3 has one end surface 3AE (end surface on the backstay 102 side) joined to the first binder member 201 and the other end surface 3BE (end surface on the support steel frame 111 side) joined to the second binder member 202 by overlay welding. Yes.
  • Boiler body 11 Boiler support structure 30, 50 Body 30A, 50A Opening 31, 51 First 1 shoulder 32,52 2nd shoulder 101 water wall 102 back stay (reinforcing member) 110 Seismic tie 111 Support steel frame (support column) 112 Hanging member 301,501 First top 302,502 Second top

Abstract

Provided are an elastic-plastic element that ensures fatigue strength to be able to withstand repeated vibrations and that can improve durability, a seismic tie comprising same, and a boiler support structure. An elastic-plastic element (3) used in an insertion type seismic tie (110) is provided with a rhomboid opening (30A) in the body (30) and has a pair of first shoulders (31) and a pair of second shoulders (32) that extend so as to expand outward as same nears one end face (3AE) and the other end face (3BE) from both side faces along the length direction of the body (30) or from both the front and back faces in the thickness direction. The separation distance from end point positions (310) of the expansions of the first shoulder (31) and the second shoulder (32) to the one end face (3AE) and the other end face (3BE) is set to be larger than the separation distance from a first vertex (301) and a second vertex (302) to the one end face (3AE) and the other end face (3BE).

Description

弾塑性エレメント及びそれを備えたサイスミックタイ、ならびにボイラの支持構造体Elasto-plastic element, seismic tie including the same, and boiler support structure
 本発明は、弾塑性エレメント及びそれを備えたサイスミックタイ、ならびにボイラの支持構造体に関する。 The present invention relates to an elastoplastic element, a seismic tie including the same, and a boiler support structure.
 節炭器、蒸発器、及び過熱器等の熱交換器が内部に搭載されたボイラ本体を、複数の支持鉄骨で形成された支持構造体の上部から吊り下げて支持するボイラの支持構造体が知られている。このようなボイラの支持構造体では、例えば地震等の振動発生時にボイラ本体が振り子運動をするように繰り返し揺れてしまうため、ボイラ本体と支持構造体との間における相対変位を限度内に制限するための振れ止め装置としてサイスミックタイが用いられている。 A boiler support structure that supports a boiler body in which a heat exchanger such as a economizer, an evaporator, and a superheater is mounted by suspending the boiler body from an upper part of a support structure formed of a plurality of support steel frames. Are known. In such a boiler support structure, for example, when a vibration such as an earthquake occurs, the boiler body repeatedly shakes so as to perform a pendulum motion, so that the relative displacement between the boiler body and the support structure is limited to the limit. Seismic ties are used as a steady rest for the purpose.
 例えば、特許文献1及び特許文献2には、等応力梁となる変断面を有する複数個の弾塑性エレメントの一端をボイラ本体の水壁に設けたバックステーに所定の間隔をもって固着し、他端を剛性を有するバインダ部材に固着し、支持鉄骨又はその延長部材を両側から所定間隙をもって挟み込むごとくバインダ部材を設けて構成した挟み込み式のサイスミックタイが開示されている。 For example, in Patent Document 1 and Patent Document 2, one end of a plurality of elastoplastic elements having variable cross-sections that become iso-stressed beams is fixed to a backstay provided on the water wall of the boiler body at a predetermined interval, and the other end Is attached to a rigid binder member, and a sandwich type seismic tie is disclosed in which a support member or its extension member is sandwiched from both sides with a predetermined gap.
 このサイスミックタイの弾塑性エレメントは、長方形のプレートに略菱形の開口を設けて断面係数が位置により変化するもの(変断面)としている。また、弾塑性エレメントとバックステー及びバインダ部材のそれぞれとは、肉盛溶接により互いに固着されている。 This seismic tie elasto-plastic element has a rectangular plate with a roughly diamond-shaped opening, and the section modulus varies depending on the position (variable section). The elastic-plastic element and each of the backstay and the binder member are fixed to each other by overlay welding.
特許第3181371号Japanese Patent No. 3181371 特開平9-112805号公報JP-A-9-112805
 しかしながら、特許文献1及び特許文献2に記載のサイスミックタイでは、単体全体が1つの弾塑性体である弾塑性エレメントの一端部をバックステーに、他端部をバインダ部材に、それぞれ肉盛溶接するため、肉盛溶接部分の止端部が不均一に形成され、当該止端部で応力が集中してしまう。さらに、肉盛溶接による残留応力の発生や不均一な肉盛形状の形成によって応力集中係数が変わるため、肉盛溶接部分において定まった応力が生じにくく、弾塑性エレメント内の位置によって強度に差が出てしまう。 However, in the seismic ties described in Patent Document 1 and Patent Document 2, one end of an elastic-plastic element, which is a single elastic-plastic body as a whole, is used as a backstay, and the other end is used as a binder member. For this reason, the toe portion of the build-up welded portion is formed unevenly, and stress concentrates at the toe portion. Furthermore, since the stress concentration factor changes due to the generation of residual stress due to build-up welding or the formation of a non-uniform build-up shape, the stress determined at the build-up weld is unlikely to occur, and there is a difference in strength depending on the position in the elastic-plastic element. It will come out.
 したがって、例えば大地震等の繰り返しの振動が発生した場合、肉盛溶接部分が最弱部となって疲労破壊が生じやすくなり、弾塑性エレメントを構成する弾塑性体部材が本来有している強度まで使用することが難しかった。 Therefore, for example, when repeated vibrations such as a large earthquake occur, the build-up welded part becomes the weakest part and fatigue failure is likely to occur, and the inherent strength of the elastic-plastic member constituting the elastic-plastic element It was difficult to use until.
 そこで、本発明は、繰り返しの振動に耐え得る疲労強度を確保して、耐久性を向上させることが可能な弾塑性エレメント及びそれを備えたサイスミックタイ、ならびにボイラの支持構造体を提供することを目的とする。 Accordingly, the present invention provides an elastic-plastic element capable of ensuring fatigue strength that can withstand repeated vibration and improving durability, a seismic tie including the same, and a boiler support structure. With the goal.
 上記目的を達成するために、代表的な本発明は、鉛直方向に沿って設置されるボイラ本体と前記ボイラ本体を支持するための支持構造体との間における振動による相対変位を制限するための挟み込み式のサイスミックタイに用いられ、矩形板状の本体における幅方向に沿った一端面が前記ボイラ本体側に溶接され、かつ前記幅方向に沿った他端面が前記支持構造体側に溶接される弾塑性エレメントであって、前記本体の中央部に菱形状の開口が設けられ、前記開口の第1頂部が前記一端面側に配置され、かつ前記開口の第2頂部が前記他端面側に配置されていると共に、前記本体の長さ方向に沿った両側面又は厚み方向の表裏両面から前記一端面に向かうにつれて外方へ拡大するように張り出した一対の第1肩部と、前記本体の前記長さ方向に沿った前記両側面又は前記厚み方向の前記表裏両面から前記他端面に向かうにつれて外方へ拡大するように張り出した一対の第2肩部と、を有し、前記第1肩部における拡大の終点位置から前記一端面に至る離間長さは前記第1頂部から前記一端面に至る離間長さよりも大きく設定されており、かつ前記第2肩部における拡大の終点位置から前記他端面に至る離間長さは前記第2頂部から前記他端面に至る離間長さよりも大きく設定されていることを特徴とする。 In order to achieve the above-mentioned object, a representative present invention is for restricting relative displacement due to vibration between a boiler body installed along a vertical direction and a support structure for supporting the boiler body. Used in a sandwich type seismic tie, one end surface along the width direction of the rectangular plate-shaped main body is welded to the boiler body side, and the other end surface along the width direction is welded to the support structure side. An elastic-plastic element, wherein a rhombus-shaped opening is provided in a central portion of the main body, a first top portion of the opening is disposed on the one end surface side, and a second top portion of the opening is disposed on the other end surface side. And a pair of first shoulders projecting outward from the both side surfaces along the length direction of the main body or both front and back surfaces in the thickness direction toward the one end surface, and the main body Length A pair of second shoulders projecting outwardly from the both side surfaces along the thickness direction or both the front and back surfaces in the thickness direction toward the other end surface, and expansion of the first shoulder portion The separation length from the end point position to the one end surface is set to be larger than the separation length from the first top portion to the one end surface, and the separation distance from the enlargement end point position to the other end surface in the second shoulder portion. The length is set larger than the separation length from the second top to the other end surface.
 本発明によれば、上記の特徴により繰り返しの振動に耐え得る疲労強度を確保して、耐久性を向上させることができる。なお、上記した以外の課題、構成、及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the above characteristics can ensure fatigue strength that can withstand repeated vibrations and improve durability. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明が適用されるボイラ装置の構造の一例を示す概略図である。It is the schematic which shows an example of the structure of the boiler apparatus with which this invention is applied. 第1実施形態に係るサイスミックタイの一構成例を示す斜視図である。It is a perspective view which shows one structural example of the seismic tie which concerns on 1st Embodiment. 第1実施形態に係る弾塑性エレメントの一構成例を示す平面図である。It is a top view which shows one structural example of the elastic-plastic element which concerns on 1st Embodiment. 第1実施形態に係る弾塑性エレメントがバックステー及びバインダ部材のそれぞれに接合された状態を示し、上図が平面図であり、中央図が側面図であり、下図が上図におけるA-A線断面図である。The elastic plastic element which concerns on 1st Embodiment shows the state joined to each of a backstay and a binder member, an upper figure is a top view, a center figure is a side view, and a lower figure is the AA line in an upper figure It is sectional drawing. 図5Aは第1実施形態に係る弾塑性エレメントにおける長さ方向の位置に対する応力の関係を示すグラフであり、図5Bは従来構造の弾塑性エレメントにおける長さ方向の位置に対する応力の関係を示すグラフである。FIG. 5A is a graph showing the relationship of stress to the position in the length direction of the elastic-plastic element according to the first embodiment, and FIG. 5B is a graph showing the relationship of stress to the position in the length direction of the elastic-plastic element of the conventional structure. It is. 第2実施形態に係る弾塑性エレメントがバックステー及びバインダ部材のそれぞれに接合された状態を示し、上図が平面図であり、中央図が側面図であり、下図が上図におけるB-B線断面図である。The elastic plastic element which concerns on 2nd Embodiment shows the state joined to each of a backstay and a binder member, an upper figure is a top view, a center figure is a side view, a lower figure is the BB line in an upper figure It is sectional drawing. 第3実施形態に係るサイスミックタイの一構成例を示す図である。It is a figure which shows the example of 1 structure of the seismic tie which concerns on 3rd Embodiment.
<第1実施形態>
 本発明の第1実施形態について、図1~5を参照して説明する。
<First Embodiment>
A first embodiment of the present invention will be described with reference to FIGS.
(ボイラ装置1の構成)
 まず、本発明が適用されるボイラ装置1の全体構成について、図1を参照して説明する。
(Configuration of boiler device 1)
First, the whole structure of the boiler apparatus 1 to which this invention is applied is demonstrated with reference to FIG.
 図1は、本発明が適用されるボイラ装置1の構造の一例を示す概略図である。なお、以下の説明において、ボイラ装置1が設置された地面に対して平行な方向を「水平方向」とし、この水平方向に直交する方向を「鉛直方向」とする。 FIG. 1 is a schematic diagram showing an example of the structure of a boiler apparatus 1 to which the present invention is applied. In the following description, a direction parallel to the ground on which the boiler device 1 is installed is referred to as a “horizontal direction”, and a direction orthogonal to the horizontal direction is referred to as a “vertical direction”.
 ボイラ装置1は、例えば火力発電プラント内に設置される大型のボイラ装置である。このボイラ装置1は、鉛直方向に沿って設置されるボイラ本体10と、このボイラ本体10を支持するための支持構造体11と、を備えている。 The boiler device 1 is a large boiler device installed in a thermal power plant, for example. The boiler device 1 includes a boiler body 10 installed along the vertical direction and a support structure 11 for supporting the boiler body 10.
 ボイラ本体10は、化石燃料等の燃料を燃焼させる火炉や、節炭器、蒸発器、及び過熱器等の熱交換器が内部に搭載され、その周囲を水壁101(図2参照)で囲んだ筐体構造を有している。 The boiler body 10 includes a furnace for burning fuel such as fossil fuel, and a heat exchanger such as a economizer, an evaporator, and a superheater, and surrounds it with a water wall 101 (see FIG. 2). It has a housing structure.
 支持構造体11は、ボイラ本体10を支持する複数の支持柱としての支持鉄骨111と、複数の支持鉄骨111のうち鉛直方向の上部に配置された支持鉄骨111に懸架され、ボイラ本体10を吊り下げ支持する複数の吊り下げ部材112と、ボイラ本体10と支持構造体11との間における振動による相対変位を制限するための複数の挟み込み式のサイスミックタイ110と、を備えている。 The support structure 11 is suspended by a support steel 111 as a plurality of support pillars that support the boiler body 10 and a support steel 111 arranged at an upper portion of the plurality of support steels 111 in the vertical direction, and the boiler body 10 is suspended. A plurality of suspending members 112 to be lowered and a plurality of sandwich type seismic ties 110 for limiting relative displacement due to vibration between the boiler body 10 and the support structure 11 are provided.
 複数のサイスミックタイ110はそれぞれ、例えば地震等の振動によりボイラ本体10と支持構造体11(支持鉄骨111)との間に水平方向の相対変位が生じたとき、その変位量に応じた振動エネルギーを吸収して、ボイラ本体10に接続される配管やダクト等を保護するための振れ止め装置である。 When a plurality of seismic ties 110 cause horizontal relative displacement between the boiler body 10 and the support structure 11 (support steel 111) due to vibration such as an earthquake, for example, vibration energy corresponding to the amount of displacement is obtained. Is a steadying device for protecting pipes and ducts connected to the boiler body 10.
(サイスミックタイ110の構成)
 次に、サイスミックタイ110の具体的な構成について、図2~図5を参照して説明する。
(Configuration of Seismic Tie 110)
Next, a specific configuration of seismic tie 110 will be described with reference to FIGS.
 図2は、第1実施形態に係るサイスミックタイ110の一構成例を示す斜視図である。図3は、弾塑性エレメント3の一構成例を示す平面図である。図4は、弾塑性エレメント3がバックステー102及びバインダ部材2のそれぞれに接合された状態を示し、上図が平面図であり、中央図が側面図であり、下図が上図におけるA-A線断面図である。図5Aは、第1実施形態に係る弾塑性エレメント3における長さ方向の位置に対する応力の関係を示すグラフであり、図5Bは、従来構造の弾塑性エレメントにおける長さ方向の位置に対する応力の関係を示すグラフである。なお、図5A及び図5Bにおいて、基準となる公称応力を二点鎖線(実機形状の応力と重なる部分では太い実線)で、実機形状の応力を太い実線で、それぞれ示している。 FIG. 2 is a perspective view showing a configuration example of the seismic tie 110 according to the first embodiment. FIG. 3 is a plan view showing a configuration example of the elastic-plastic element 3. FIG. 4 shows a state in which the elastoplastic element 3 is joined to each of the backstay 102 and the binder member 2, the upper view is a plan view, the center view is a side view, and the lower view is AA in the upper view. It is line sectional drawing. FIG. 5A is a graph showing the relationship of stress to the position in the length direction in the elastic-plastic element 3 according to the first embodiment, and FIG. 5B is the relationship of stress to the position in the length direction in the elastic-plastic element having the conventional structure. It is a graph which shows. In FIG. 5A and FIG. 5B, the nominal nominal stress is indicated by a two-dot chain line (thick solid line in the portion overlapping with the stress of the actual machine shape), and the stress of the actual machine shape is indicated by a thick solid line.
 図2に示すように、ボイラ本体10の水壁101には、水壁101に対して平行な方向であって鉛直方向に交差(直交)する水平方向(図2ではボイラ本体10の前後方向)に延伸する補強部材としてのバックステー102が固定されている。ボイラ本体10の水壁101の中央部付近において、バックステー102と支持鉄骨111とを接続するようにサイスミックタイ110が設けられている。 As shown in FIG. 2, the water wall 101 of the boiler body 10 has a horizontal direction parallel to the water wall 101 and intersecting (orthogonal to) the vertical direction (in FIG. 2, the front-rear direction of the boiler body 10). A backstay 102 as a reinforcing member extending in the direction is fixed. A seismic tie 110 is provided in the vicinity of the center of the water wall 101 of the boiler body 10 so as to connect the backstay 102 and the supporting steel frame 111.
 なお、図2に示すサイスミックタイ110は、図1に示す複数の支持鉄骨111のうち鉛直方向に延伸する支持鉄骨111(例えば支持鉄骨111V)と、ボイラ本体10の前後方向に延伸するバックステー102との間に設けられたものである。 A seismic tie 110 shown in FIG. 2 includes a support steel 111 (for example, support steel 111V) extending in the vertical direction among the plurality of support steels 111 shown in FIG. 1 and a backstay extending in the front-rear direction of the boiler body 10. 102.
 サイスミックタイ110は、支持鉄骨111をバックステー102の延伸方向(前後方向)から所定の隙間を空けて挟み込む一対のバインダ部材2と、バックステー102と一対のバインダ部材2との間においてバックステー102の延伸方向に沿って所定の間隔を空けて複数(本実施形態では8つ)並べられた弾塑性エレメント3と、一対のバインダ部材2を連結するためのタイプレート4と、を備えている。 Seismic tie 110 includes a backstay between a pair of binder members 2 that sandwich support steel frame 111 with a predetermined gap from the extending direction (front-rear direction) of backstay 102, and backstay 102 and a pair of binder members 2. A plurality of (eight in the present embodiment) elasto-plastic elements 3 arranged at predetermined intervals along the extending direction 102 and a tie plate 4 for connecting the pair of binder members 2 are provided. .
 本実施形態では、一対のバインダ部材2がそれぞれ支持鉄骨111をバックステー102の延伸方向から所定の隙間を空けて挟み込んでいるが、必ずしもその必要はなく、他の構成からなるバインダ部材を用いたサイスミックタイの構成について、後述する第3実施形態にて説明する。 In the present embodiment, each of the pair of binder members 2 sandwiches the supporting steel frame 111 with a predetermined gap from the extending direction of the backstay 102, but this is not always necessary, and a binder member having another configuration is used. The configuration of the seismic tie will be described in a third embodiment described later.
 弾塑性エレメント3は、鋼材等の弾塑性体部材で形成された矩形板状の本体30を有しており、地震等の振動によってボイラ本体10と支持鉄骨111(支持構造体11)との間に相対変位が生じた場合にはせん断型に曲げられ弾塑性変形して振動エネルギーを吸収する。 The elastic-plastic element 3 has a rectangular plate-shaped main body 30 formed of an elastic-plastic member such as a steel material. Between the boiler main body 10 and the support steel 111 (support structure 11) due to vibration such as an earthquake. When a relative displacement occurs, it is bent into a shear type and elastically deforms to absorb vibration energy.
 図4に示すように、弾塑性エレメント3は、本体30における幅方向に沿った一端面3AE(一端部3A)がバックステー102(ボイラ本体10側)に、本体30における幅方向に沿った他端面3BE(他端部3B)が一対のバインダ部材2(支持構造体11側)に、それぞれ肉盛溶接により接合されている。 As shown in FIG. 4, the elastic-plastic element 3 has an end surface 3AE (one end portion 3A) along the width direction of the main body 30 on the backstay 102 (boiler main body 10 side) and the other along the width direction of the main body 30. End face 3BE (other end part 3B) is joined to a pair of binder members 2 (support structure 11 side), respectively, by overlay welding.
 図2に示すように、本実施形態では、8つの弾塑性エレメント3のうち4つの弾塑性エレメント3が一方のバインダ部材2に接合されてひと纏めにされ、残り4つの弾塑性エレメント3が他方のバインダ部材2に接合されてひと纏めにされている。 As shown in FIG. 2, in this embodiment, four of the eight elastoplastic elements 3 are joined together to one binder member 2 and the remaining four elastoplastic elements 3 are joined together. The binder members 2 are joined together.
 一対のバインダ部材2はそれぞれ、地震等の振動により弾塑性エレメント3が変形した場合であっても、バックステー102に対して対向面が平行に保てる程度の剛性を有している。 Each of the pair of binder members 2 has such rigidity that the opposing surfaces can be kept parallel to the backstay 102 even when the elastic-plastic element 3 is deformed by vibration such as an earthquake.
 前述したように、本実施形態では、一対のバインダ部材2は、支持鉄骨111を水平方向(前後方向)から挟み込んでおり、かつタイプレート4で互いに連結されているため、ボイラ本体10が水平方向に振動して支持鉄骨111との間に相対変位を生じた場合であっても、一対のバインダ部材2と支持鉄骨111との間には予め形成された所定の隙間以上の相対変位は生じ得ない。そのため、一対のバインダ部材2と支持鉄骨111とは一体としてみなすことができ、ボイラ本体10と支持鉄骨111との相対変位のほとんどは弾塑性エレメント3の変形量となる。なお、当該変形量は、複数の弾塑性エレメント3全てにおいて同一となっている。 As described above, in the present embodiment, the pair of binder members 2 sandwich the supporting steel frame 111 from the horizontal direction (front-rear direction) and are connected to each other by the tie plate 4, so that the boiler body 10 is in the horizontal direction. Even when a relative displacement is generated between the pair of binder members 2 and the supporting steel frame 111 due to vibration to the supporting steel frame 111, a relative displacement exceeding a predetermined gap formed in advance may occur. Absent. Therefore, the pair of binder members 2 and the supporting steel frame 111 can be regarded as an integral body, and most of the relative displacement between the boiler body 10 and the supporting steel frame 111 is the amount of deformation of the elastic-plastic element 3. The amount of deformation is the same in all of the plurality of elastic-plastic elements 3.
 弾塑性エレメント3は、本体30の長さ方向に沿った両側面から一端面3AEに向かうにつれて拡大するように張り出した一対の第1肩部31と、本体30の長さ方向に沿った両側面から他端面3BEに向かうにつれて拡大するように張り出した一対の第2肩部32と、を備えている。なお、本体30の「長さ方向」とは、本体30において、幅方向及び厚み方向に交差(直交)する方向を示す。 The elastic-plastic element 3 includes a pair of first shoulder portions 31 projecting from the both side surfaces along the length direction of the main body 30 toward the one end surface 3AE, and both side surfaces along the length direction of the main body 30. And a pair of second shoulder portions 32 projecting so as to expand toward the other end surface 3BE. The “length direction” of the main body 30 indicates a direction that intersects (orthogonally) the width direction and the thickness direction in the main body 30.
 本実施形態では、第1肩部31における拡大の始点位置311から終点位置312まで、及び第2肩部32における拡大の始点位置321から終点位置322までがそれぞれ、円弧を描くように湾曲面でつながっている。 In the present embodiment, the first shoulder 31 has a curved surface so as to draw an arc from the start point 311 to the end point 312 of the enlargement and from the start point 321 to the end point 322 of the second shoulder 32. linked.
 なお、一対の第1肩部31及び一対の第2肩部32はそれぞれ、必ずしも本体30の長さ方向に沿った両側面から外方に張り出して形成されている必要はない。他の例については、後述する第2実施形態において説明する。 It should be noted that the pair of first shoulder portions 31 and the pair of second shoulder portions 32 are not necessarily formed so as to protrude outward from both side surfaces along the length direction of the main body 30. Other examples will be described in a second embodiment to be described later.
 本体30には、等応力梁となる変断面を形成するための菱形状の開口30Aが中央部において厚み方向に貫通して形成されている。本実施形態では、開口30Aの4つの頂部301~304はいずれも、弧状に湾曲している。 The main body 30 is formed with a rhombus-shaped opening 30 </ b> A penetrating in the thickness direction at the center for forming a variable cross section to be an iso-stress beam. In the present embodiment, all of the four top portions 301 to 304 of the opening 30A are curved in an arc shape.
 4つの頂部301~304は、第1頂部301と第2頂部302とが本体30の幅方向の中央部において長さ方向に相対し、第3頂部303と第4頂部とが本体30の長さ方向の中央部において幅方向に相対して配置されている。なお、第1頂部301が一端面3AE側に配置され、第2頂部302が他端面3BE側に配置されている。 The four top portions 301 to 304 are such that the first top portion 301 and the second top portion 302 are opposed to each other in the length direction at the center in the width direction of the main body 30, and the third top portion 303 and the fourth top portion are the length of the main body 30. It arrange | positions facing the width direction in the center part of the direction. In addition, the 1st top part 301 is arrange | positioned at the one end surface 3AE side, and the 2nd top part 302 is arrange | positioned at the other end surface 3BE side.
 第1頂部301は、一対の第1肩部31のそれぞれにおける拡大の終点位置312よりも一端面3AE側に位置しており、第2頂部302は、一対の第2肩部32のそれぞれにおける拡大の終点位置322よりも他端面3BE側に位置している。 The first top portion 301 is located closer to the one end surface 3AE than the expansion end point position 312 in each of the pair of first shoulder portions 31, and the second top portion 302 is expanded in each of the pair of second shoulder portions 32. Is located closer to the other end surface 3BE than the end point position 322.
 つまり、図3に示すように、第1肩部31における拡大の終点位置312から一端面3AEに至る離間長さD12は、第1頂部301から一端面3AEに至る離間長さD11よりも大きく設定されている(D12>D11)。同様に、第2肩部32における拡大の終点位置322から他端面3BEに至る離間長さD22は、第2頂部302から他端面3BEに至る離間長さD21よりも大きく設定されている(D22>D21)。 That is, as shown in FIG. 3, the separation length D12 from the enlargement end point 312 to the one end surface 3AE in the first shoulder 31 is set to be larger than the separation length D11 from the first top portion 301 to the one end surface 3AE. (D12> D11). Similarly, the separation length D22 from the enlargement end point position 322 to the other end surface 3BE in the second shoulder portion 32 is set larger than the separation length D21 from the second top portion 302 to the other end surface 3BE (D22>). D21).
 したがって、図3に示す斜線部分(長さ方向に距離D11,D21を有する領域)は、平等強さ梁とするための応力が生じる「弾塑性体の領域」に対して「剛体の領域」としてみなすことが可能となる。この「剛体の領域」に生じる応力は、「弾塑性体の領域」に生じる応力よりも十分に小さい。なお、弾塑性エレメント3における「弾塑性体の領域」は、図3に示す白抜き部分に相当する。 Therefore, the shaded portion shown in FIG. 3 (the region having distances D11 and D21 in the length direction) is defined as a “rigid region” with respect to an “elasto-plastic region” where stress for forming an equal strength beam is generated. Can be considered. The stress generated in the “rigid body region” is sufficiently smaller than the stress generated in the “elastic-plastic region”. The “elastic-plastic body region” in the elasto-plastic element 3 corresponds to the white portion shown in FIG.
 そして、図4に示すように、一端部3Aとバックステー102との肉盛溶接部41の止端部分41Eは、長さ方向において一端面3AEと第1頂部301との間に位置しており、他端部3Bとバインダ部材2との肉盛溶接部42の止端部分42Eは、長さ方向において他端面3BEと第2頂部302との間に位置している。すなわち、肉盛溶接部41,42は、図3に示す斜線部分に相当する「剛体の領域」内に形成されている。 And as shown in FIG. 4, the toe part 41E of the build-up welding part 41 of the one end part 3A and the backstay 102 is located between one end surface 3AE and the 1st top part 301 in the length direction. The toe end portion 42E of the build-up weld portion 42 between the other end portion 3B and the binder member 2 is located between the other end surface 3BE and the second top portion 302 in the length direction. That is, the build-up welds 41 and 42 are formed in a “rigid region” corresponding to the hatched portion shown in FIG.
 一対の第1肩部31及び一対の第2肩部32が形成されていない矩形状の従来構造の弾塑性エレメントでは、図5Bに示すように、肉盛溶接部の止端部分において、基準となる公称応力に対して大きな応力のピークが生じている。よって、従来構造の弾塑性エレメントでは、止端部分を基点として肉盛溶接部に損傷が集中しやすかった。 In the elastic-plastic element having a rectangular shape in which the pair of first shoulder portions 31 and the pair of second shoulder portions 32 are not formed, as shown in FIG. A large stress peak occurs with respect to the nominal stress. Therefore, in the elasto-plastic element having a conventional structure, damage tends to concentrate on the build-up weld with the toe portion as a base point.
 これに対して、本実施形態に係る弾塑性エレメント3では、図5Aに示すように、肉盛溶接部41,42の止端部分41E,42Eにおける応力のピークが基準となる公称応力に対して小さい。すなわち、構造的に不連続部分となる肉盛溶接部41,42において、「弾塑性体の領域」に生じる応力に応力集中係数を乗じた値の大きさが「弾塑性体の領域」に生じる応力以下となり、肉盛溶接部41,42が弾塑性エレメント3内の最弱部にならなくなる。 On the other hand, in the elastic-plastic element 3 according to the present embodiment, as shown in FIG. 5A, the stress peaks at the toe portions 41 </ b> E and 42 </ b> E of the build-up welds 41 and 42 are relative to the nominal stress. small. That is, in the built-up welds 41 and 42 that are structurally discontinuous portions, the magnitude of the value obtained by multiplying the stress generated in the “elastic-plastic region” by the stress concentration factor is generated in the “elastic-plastic region”. Under the stress, the build-up welds 41 and 42 do not become the weakest part in the elastic-plastic element 3.
 これにより、例えば大地震等による繰り返しの振動による疲労破壊は、肉盛溶接部41,42に集中することなく、「弾塑性体の領域」に分散して生じることとなるため、弾塑性エレメント3を構成する弾塑性体部材(鋼材)が本来有する強度まで使用することが可能となる。よって、弾塑性エレメント3は、繰り返しの振動に耐えられる疲労強度を確保することができ、サイスミックタイ110の耐久性を向上させて延命化が図れる。 Thereby, for example, fatigue failure due to repeated vibration due to a large earthquake or the like is not concentrated on the build-up welds 41 and 42 but is distributed in the “elasto-plastic region”. It is possible to use up to the strength inherent in the elastic-plastic member (steel material) constituting the. Therefore, the elasto-plastic element 3 can ensure fatigue strength that can withstand repeated vibrations, improve the durability of the seismic tie 110, and extend the life.
 本実施形態では、図4の下図に示すように、弾塑性エレメント3は、幅方向の外側、かつ長さ方向の一端から他端に亘って、側面に面取りが施されている。図4の下図では、幅方向の中心Cを二点鎖線で示している。このように、弾塑性エレメント3の側面を面取りすることにより、第1肩部31における拡大の始点位置311、及び第2肩部32における拡大の始点位置321に応力が集中しにくくなる。これにより、第1肩部31における拡大の始点位置311、及び第2肩部32における拡大の始点位置321において発生する応力をさらに抑制することができ、弾塑性エレメント3の信頼性の向上が図れる。 In this embodiment, as shown in the lower diagram of FIG. 4, the elastic-plastic element 3 is chamfered on the side surface from the outside in the width direction and from one end to the other end in the length direction. In the lower diagram of FIG. 4, the center C in the width direction is indicated by a two-dot chain line. In this way, by chamfering the side surface of the elastic-plastic element 3, it becomes difficult for stress to concentrate on the expansion start point position 311 in the first shoulder portion 31 and the expansion start point position 321 in the second shoulder portion 32. Thereby, the stress which generate | occur | produces in the starting point position 311 of the expansion in the 1st shoulder part 31 and the starting point position 321 of the expansion in the 2nd shoulder part 32 can further be suppressed, and the improvement of the reliability of the elastic-plastic element 3 can be aimed at. .
 また、当該面取り部分のそれぞれの長さL1は、3[mm]以上であり、かつ弾塑性エレメント3の厚みH1[mm]の半分の長さ未満であることが望ましい(3[mm]≦L1<H1/2[mm])。なお、図4における下図では、面取り部分が平面状に形成されているが、必ずしもその必要はなく、例えば曲面状に形成されていてもよい。 In addition, the length L1 of each of the chamfered portions is preferably 3 [mm] or more and less than half the thickness H1 [mm] of the elastic-plastic element 3 (3 [mm] ≦ L1 <H1 / 2 [mm]). In the lower diagram in FIG. 4, the chamfered portion is formed in a flat shape, but it is not always necessary, and for example, it may be formed in a curved shape.
<第2実施形態>
 次に、本発明の第2実施形態に係る弾塑性エレメント5の構成について、図6を参照して説明する。なお、本実施形態及び後述する第3実施形態において、第1実施形態で説明した構成と同様の構成については、同一の符号を付し、その説明を省略する。
Second Embodiment
Next, the structure of the elastic-plastic element 5 which concerns on 2nd Embodiment of this invention is demonstrated with reference to FIG. In the present embodiment and the third embodiment described later, the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図6は、第2実施形態に係る弾塑性エレメント5がバックステー102及びバインダ部材2のそれぞれに接合された状態を示し、上図が平面図であり、中央図が側面図であり、下図が上図におけるB-B線断面図である。 FIG. 6 shows a state in which the elastic-plastic element 5 according to the second embodiment is joined to each of the backstay 102 and the binder member 2, the upper view is a plan view, the center view is a side view, and the lower view is shown. It is a BB line sectional view in the above figure.
 本実施形態に係る弾塑性エレメント5は、第1実施形態に係る弾塑性エレメント3の構成と異なり、一対の第1肩部51が本体50の厚み方向の表裏両面から一端面5AEに向かうにつれて外方へ拡大するように張り出して形成されると共に、一対の第2肩部52が本体50の厚み方向の表裏両面から他端面5BEに向かうにつれて外方へ拡大するように張り出して形成されている。 Unlike the configuration of the elastoplastic element 3 according to the first embodiment, the elastoplastic element 5 according to the present embodiment is arranged so that the pair of first shoulder portions 51 move outward from the front and back surfaces in the thickness direction of the main body 50 toward the one end surface 5AE. The pair of second shoulder portions 52 are formed so as to extend outward from the front and back surfaces in the thickness direction of the main body 50 toward the other end surface 5BE.
 なお、本実施形態に係る弾塑性エレメント5においても、第1肩部51における拡大の始点位置511から終点位置512まで、及び第2肩部52における拡大の始点位置521から終点位置522まではそれぞれ、円弧を描くように湾曲面でつながっている。 In the elastic-plastic element 5 according to this embodiment, the enlargement start point position 511 to the end point position 512 in the first shoulder portion 51 and the enlargement start point position 521 to the end point position 522 in the second shoulder portion 52 are respectively provided. , Connected by curved surfaces to draw an arc.
 また、本実施形態に係る弾塑性エレメント5においても、開口50Aの第1頂部501は、一対の第1肩部51のそれぞれにおける拡大の終点位置512よりも一端面5AE側に位置しており、第2頂部502は、一対の第2肩部52のそれぞれにおける拡大の終点位置522よりも他端面5BE側に位置している。 Also in the elastoplastic element 5 according to the present embodiment, the first top portion 501 of the opening 50A is located closer to the one end surface 5AE than the enlargement end point position 512 in each of the pair of first shoulder portions 51, The second top portion 502 is located closer to the other end surface 5BE than the enlargement end point position 522 in each of the pair of second shoulder portions 52.
 これにより、弾塑性エレメント5の一端部5A及び他端部5Bのそれぞれにおいて「剛体の領域」が形成され、肉盛溶接部41,42は「剛体の領域」内に形成される。 Thereby, a “rigid region” is formed in each of the one end portion 5A and the other end portion 5B of the elastic-plastic element 5, and the build-up welds 41 and 42 are formed in the “rigid region”.
 したがって、第1実施形態と同様に、肉盛溶接部41,42が弾塑性エレメント5内の最弱部にならなくなり、繰り返しの振動による疲労破壊が「弾塑性体の領域」で生じることとなる。そのため、弾塑性エレメント5を構成する弾塑性体部材(鋼材)が本来有する強度まで使用することが可能となり、繰り返しの振動に耐えられる疲労強度を確保して信頼性を向上させることができる。 Therefore, as in the first embodiment, the build-up welds 41 and 42 do not become the weakest part in the elastoplastic element 5, and fatigue failure due to repeated vibrations occurs in the "elastoplastic body region". . Therefore, it is possible to use the elastic plastic member (steel material) constituting the elastic-plastic element 5 up to its original strength, and it is possible to ensure the fatigue strength that can withstand repeated vibrations and improve the reliability.
 また、本実施形態では、一対の第1肩部51及び一対の第2肩部52がそれぞれ、本体50から厚み方向に張り出して形成されており、幅方向の寸法は従来構造と変わらないため、例えば設置場所の制約がある場合等においても使用することが可能となる。 In the present embodiment, the pair of first shoulder portions 51 and the pair of second shoulder portions 52 are formed so as to protrude from the main body 50 in the thickness direction, and the dimensions in the width direction are not different from the conventional structure. For example, it can be used even when the installation location is restricted.
 本実施形態においても、図6の下図に示すように、弾塑性エレメント5は、幅方向の外側、かつ長さ方向の一端から他端に亘って、側面に面取りが施されている。図6の下図では、幅方向の中心Cを二点鎖線で示している。これにより、第1肩部51における拡大の始点位置511、及び第2肩部52における拡大の始点位置521において発生する応力をさらに抑制することができ、弾塑性エレメント5の信頼性の向上が図れる。 Also in the present embodiment, as shown in the lower diagram of FIG. 6, the elastic-plastic element 5 is chamfered on the side surface from the outer side in the width direction and from one end to the other end in the length direction. In the lower diagram of FIG. 6, the center C in the width direction is indicated by a two-dot chain line. Thereby, the stress which generate | occur | produces in the expansion starting point position 511 in the 1st shoulder part 51 and the expansion starting point position 521 in the 2nd shoulder part 52 can further be suppressed, and the improvement of the reliability of the elastic-plastic element 5 can be aimed at. .
 また、本実施形態においても、当該面取り部分のそれぞれの長さL2は、3[mm]以上であり、かつ弾塑性エレメント5の厚みH2[mm]の半分の長さ未満であることが望ましい(3[mm]≦L2<H2/2[mm])。 Also in the present embodiment, the length L2 of each of the chamfered portions is preferably 3 [mm] or more and less than half the thickness H2 [mm] of the elastic-plastic element 5 ( 3 [mm] ≦ L2 <H2 / 2 [mm]).
<第3実施形態>
 次に、本発明の第3実施形態に係るサイスミックタイ110Aの構成について、図7を参照して説明する。
<Third Embodiment>
Next, the configuration of seismic tie 110A according to the third embodiment of the present invention will be described with reference to FIG.
 図7は、第3実施形態に係るサイスミックタイ110Aの一構成例を示す図である。 FIG. 7 is a diagram illustrating a configuration example of seismic tie 110A according to the third embodiment.
 本実施形態に係るサイスミックタイ110Aは、図1に示す複数の支持鉄骨111のうちボイラ本体10の左右方向に延伸する支持鉄骨111(例えば支持鉄骨111H)と、当該支持鉄骨111に沿って左右方向に延伸するバックステー102とが、ボイラ本体10の前後方向に対向して配置されている。複数の弾塑性エレメント3は、バックステー102と支持鉄骨111との間において左右方向に所定の間隔を空けて配置されている。 The seismic tie 110 </ b> A according to the present embodiment includes a support steel 111 (for example, a support steel 111 </ b> H) that extends in the left-right direction of the boiler body 10 among the plurality of support steels 111 illustrated in FIG. 1 and a left-right along the support steel 111. A backstay 102 extending in the direction is disposed so as to face the front-rear direction of the boiler body 10. The plurality of elasto-plastic elements 3 are arranged between the backstay 102 and the supporting steel frame 111 at a predetermined interval in the left-right direction.
 複数の弾塑性エレメント3はそれぞれ、バックステー102との対向面に第1バインダ部材201が接合され、支持鉄骨111との対向面に第2バインダ部材202が接合されている。本実施形態では、複数の弾塑性エレメント3と第1バインダ部材201及び第2バインダ部材202とは、溶接により接合されている。 Each of the plurality of elasto-plastic elements 3 has a first binder member 201 joined to a surface facing the backstay 102 and a second binder member 202 joined to a surface facing the support steel 111. In the present embodiment, the plurality of elastic-plastic elements 3, the first binder member 201, and the second binder member 202 are joined by welding.
 したがって、本実施形態に係るサイスミックタイ110Aでは、バックステー102と支持鉄骨111との間において、複数の弾塑性エレメント3を前後方向から挟み込むように一対のバインダ部材(第1バインダ部材201及び第2バインダ部材202)が設けられている。 Therefore, in the seismic tie 110A according to the present embodiment, a pair of binder members (the first binder member 201 and the first binder member 201 and the first binder member 201) are sandwiched between the backstay 102 and the supporting steel frame 111 from the front-rear direction. Two binder members 202) are provided.
 バックステー102の側に配置された第1バインダ部材201は、バックステー102に接合された一対のストッパ6の間に配置されている。これら一対のストッパ6は、左右方向から第1バインダ部材201を挟み込むように対向して並んでいる。 The first binder member 201 disposed on the backstay 102 side is disposed between the pair of stoppers 6 joined to the backstay 102. The pair of stoppers 6 are arranged facing each other so as to sandwich the first binder member 201 from the left-right direction.
 第1バインダ部材201と一対のストッパ6とは、溶接等によって接合されていないため、鉛直方向において互いに非拘束の関係にある。一方、第2バインダ部材202は支持鉄骨111に接合されている。したがって、本実施形態では、複数の弾塑性エレメント3は、支持鉄骨111の側に固定されており、第1実施形態のように、バックステー102の側に必ずしも固定されている必要はない。 Since the first binder member 201 and the pair of stoppers 6 are not joined by welding or the like, they are in an unconstrained relationship with each other in the vertical direction. On the other hand, the second binder member 202 is joined to the support steel frame 111. Therefore, in the present embodiment, the plurality of elastoplastic elements 3 are fixed to the support steel 111 side, and need not be fixed to the backstay 102 side as in the first embodiment.
 また、第1バインダ部材201と第2バインダ部材202との間には、前後方向に沿って延伸するリンク7が、左右方向に一対並んで設けられている。一対のリンク7はそれぞれ、延伸方向の一端部が第1バインダ部材201に、延伸方向の他端部が第2バインダ部材202に、ピン8を介してそれぞれ取り付けられている。 Also, a pair of links 7 extending in the front-rear direction are provided side by side in the left-right direction between the first binder member 201 and the second binder member 202. Each of the pair of links 7 has one end in the extending direction attached to the first binder member 201 and the other end in the extending direction attached to the second binder member 202 via the pin 8.
 これら一対のリンク7は、水平方向(左右方向)における平行作動リンク機構の役割を果たしており、地震等の振動によってボイラ本体10と支持鉄骨111との間に水平方向の相対変位が生じた場合に複数の弾塑性エレメント3の一部に過剰な変形が生じてしまうといった事態を抑制することができる。 The pair of links 7 play a role of a parallel operation link mechanism in the horizontal direction (left-right direction), and when a horizontal relative displacement occurs between the boiler body 10 and the supporting steel frame 111 due to vibration such as an earthquake. A situation in which excessive deformation occurs in some of the plurality of elastic-plastic elements 3 can be suppressed.
 このように、バインダ部材は、少なくともバックステー102と支持鉄骨111との間に設けられる梁状の部材であればよく、第1実施形態や本実施形態の構成以外にも、例えば、バックステー102に沿って延伸する1つのバインダ部材を支持鉄骨111の側に設けた構成であってもよく、その数や配置関係について特に制限はない。 As described above, the binder member may be at least a beam-like member provided between the backstay 102 and the support steel 111. For example, the backstay 102 is not limited to the configuration of the first embodiment or the present embodiment. The structure which provided the one binder member extended along the side of the support steel frame 111 may be sufficient, and there is no restriction | limiting in particular about the number and arrangement | positioning relationship.
 第1実施形態では、弾塑性エレメント3は、一端面3AEがバックステー102に、他端面3BEが一対のバインダ部材2に、それぞれ肉盛溶接により接合されていたが、本実施形態では、弾塑性エレメント3は、一端面3AE(バックステー102側の端面)が第1バインダ部材201に、他端面3BE(支持鉄骨111側の端面)が第2バインダ部材202に、それぞれ肉盛溶接により接合されている。 In the first embodiment, the elastic-plastic element 3 has one end surface 3AE joined to the backstay 102 and the other end surface 3BE joined to the pair of binder members 2 by overlay welding. In this embodiment, the elastic-plastic element 3 is elastic-plastic. The element 3 has one end surface 3AE (end surface on the backstay 102 side) joined to the first binder member 201 and the other end surface 3BE (end surface on the support steel frame 111 side) joined to the second binder member 202 by overlay welding. Yes.
 なお、本発明は上記した実施形態に限定されるものではなく、他の様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 Note that the present invention is not limited to the above-described embodiment, and includes various other modifications. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
 2,201,202 バインダ部材
 3,5 弾塑性エレメント
 3AE,5AE 一端面
 3BE,5BE 他端面
 6 ストッパ
 7 リンク
 8 ピン
 10 ボイラ本体
 11 ボイラの支持構造体
 30,50 本体
 30A,50A 開口
 31,51 第1肩部
 32,52 第2肩部
 101 水壁
 102 バックステー(補強部材)
 110 サイスミックタイ
 111 支持鉄骨(支持柱)
 112 吊り下げ部材
 301,501 第1頂部
 302,502 第2頂部
2, 201, 202 Binder member 3, 5 Elasto-plastic element 3AE, 5AE One end face 3BE, 5BE The other end face 6 Stopper 7 Link 8 Pin 10 Boiler body 11 Boiler support structure 30, 50 Body 30A, 50A Opening 31, 51 First 1 shoulder 32,52 2nd shoulder 101 water wall 102 back stay (reinforcing member)
110 Seismic tie 111 Support steel frame (support column)
112 Hanging member 301,501 First top 302,502 Second top

Claims (5)

  1.  鉛直方向に沿って設置されるボイラ本体と前記ボイラ本体を支持するための支持構造体との間における振動による相対変位を制限するための挟み込み式のサイスミックタイに用いられ、矩形板状の本体における幅方向に沿った一端面が前記ボイラ本体側に溶接され、かつ前記幅方向に沿った他端面が前記支持構造体側に溶接される弾塑性エレメントであって、
     前記本体の中央部に菱形状の開口が設けられ、前記開口の第1頂部が前記一端面側に配置され、かつ前記開口の第2頂部が前記他端面側に配置されていると共に、
     前記本体の長さ方向に沿った両側面又は厚み方向の表裏両面から前記一端面に向かうにつれて外方へ拡大するように張り出した一対の第1肩部と、
     前記本体の前記長さ方向に沿った前記両側面又は前記厚み方向の前記表裏両面から前記他端面に向かうにつれて外方へ拡大するように張り出した一対の第2肩部と、を有し、
     前記第1肩部における拡大の終点位置から前記一端面に至る離間長さは前記第1頂部から前記一端面に至る離間長さよりも大きく設定されており、かつ前記第2肩部における拡大の終点位置から前記他端面に至る離間長さは前記第2頂部から前記他端面に至る離間長さよりも大きく設定されている
    ことを特徴とする弾塑性エレメント。
    A rectangular plate-shaped body used for a sandwich type seismic tie for limiting relative displacement due to vibration between a boiler body installed along a vertical direction and a support structure for supporting the boiler body. An elastic-plastic element in which one end face along the width direction is welded to the boiler body side and the other end face along the width direction is welded to the support structure side,
    A rhombus-shaped opening is provided in the center of the main body, the first top of the opening is disposed on the one end surface side, and the second top of the opening is disposed on the other end surface side,
    A pair of first shoulders that project outwardly from both side surfaces along the length direction of the main body or both front and back surfaces in the thickness direction toward the one end surface;
    A pair of second shoulders projecting outwardly from the both side surfaces along the length direction of the main body or both the front and back surfaces in the thickness direction toward the other end surface;
    The separation length from the end point of enlargement at the first shoulder to the one end surface is set to be larger than the separation length from the first top to the one end surface, and the end point of enlargement at the second shoulder. An elastic-plastic element characterized in that a separation length from a position to the other end surface is set larger than a separation length from the second top to the other end surface.
  2.  請求項1に記載の弾塑性エレメントであって、
     前記開口における前記第1頂部及び前記第2頂部を含む4つの頂部はいずれも、弧状に湾曲している
    ことを特徴とする弾塑性エレメント。
    The elastic-plastic element according to claim 1,
    The four apexes including the first apex and the second apex in the opening are all curved in an arc shape.
  3.  請求項1又は2に記載の弾塑性エレメントであって、
     前記第1肩部における拡大の始点位置から終点位置まで、及び前記第2肩部における拡大の始点位置から終点位置まではそれぞれ、湾曲面でつながっている
    ことを特徴とする弾塑性エレメント。
    The elastic-plastic element according to claim 1 or 2,
    An elastic-plastic element, wherein the first shoulder portion is connected by a curved surface from an enlargement start point position to an end point position, and the second shoulder portion is enlarged from the start point position to the end point position.
  4.  鉛直方向に沿って設置されるボイラ本体と前記ボイラ本体を支持するための支持構造体との間における振動による相対変位を制限するための挟み込み式のサイスミックタイであって、
     前記ボイラ本体側に設けられて水平方向に延伸する補強部材と前記支持構造体との間に設けられたバインダ部材と、
     前記補強部材と前記バインダ部材との間において、前記補強部材の延伸方向に沿って所定の間隔を空けて複数並べられた請求項1~3の何れか1項に記載の弾塑性エレメントと、
    を備えた
    ことを特徴とするサイスミックタイ。
    A sandwich type seismic tie for limiting relative displacement due to vibration between a boiler body installed along a vertical direction and a support structure for supporting the boiler body,
    A binder member provided between the reinforcing member provided on the boiler body side and extending in the horizontal direction and the support structure;
    The elastic-plastic element according to any one of claims 1 to 3, wherein a plurality of elements are arranged at predetermined intervals along the extending direction of the reinforcing member between the reinforcing member and the binder member.
    Seismic tie characterized by having
  5.  鉛直方向に沿って設置されるボイラ本体を支持する複数の支持柱と、
     前記複数の支持柱のうち鉛直方向の上部に配置された支持柱に懸架され、前記ボイラ本体を吊り下げ支持する複数の吊り下げ部材と、
     請求項4に記載のサイスミックタイと、
    を備えた
    ことを特徴とするボイラの支持構造体。
    A plurality of support columns for supporting the boiler body installed along the vertical direction;
    A plurality of suspension members suspended from and supported by the support columns disposed in the upper part of the vertical direction among the plurality of support columns,
    A seismic tie according to claim 4;
    A boiler support structure characterized by comprising:
PCT/JP2017/045078 2017-06-12 2017-12-15 Elastic-plastic element, seismic tie comprising same, and boiler support structure WO2018230014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-115413 2017-06-12
JP2017115413A JP6805085B2 (en) 2017-06-12 2017-06-12 An elasto-plastic element and a cysmic tie with it, and a support structure for the boiler

Publications (1)

Publication Number Publication Date
WO2018230014A1 true WO2018230014A1 (en) 2018-12-20

Family

ID=64659832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045078 WO2018230014A1 (en) 2017-06-12 2017-12-15 Elastic-plastic element, seismic tie comprising same, and boiler support structure

Country Status (2)

Country Link
JP (1) JP6805085B2 (en)
WO (1) WO2018230014A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7242624B2 (en) * 2020-12-03 2023-03-20 三菱重工業株式会社 Elasto-plastic element, seismic tie with the same, and boiler support structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322104A (en) * 1992-05-26 1993-12-07 Babcock Hitachi Kk Supporting structure for boiler
JPH08158474A (en) * 1994-12-07 1996-06-18 Shimizu Corp Early yielding type brace
JPH08277651A (en) * 1995-08-21 1996-10-22 Kajima Corp Absorbing device for earthquake energy
JPH09112805A (en) * 1995-10-13 1997-05-02 Babcock Hitachi Kk Boiler supporting structure
JPH11140978A (en) * 1997-11-05 1999-05-25 Nippon Steel Corp Steel bracket with h-shaped section for connection of column and beam
JP2004232292A (en) * 2003-01-29 2004-08-19 Shimizu Corp Brace damper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322104A (en) * 1992-05-26 1993-12-07 Babcock Hitachi Kk Supporting structure for boiler
JPH08158474A (en) * 1994-12-07 1996-06-18 Shimizu Corp Early yielding type brace
JPH08277651A (en) * 1995-08-21 1996-10-22 Kajima Corp Absorbing device for earthquake energy
JPH09112805A (en) * 1995-10-13 1997-05-02 Babcock Hitachi Kk Boiler supporting structure
JPH11140978A (en) * 1997-11-05 1999-05-25 Nippon Steel Corp Steel bracket with h-shaped section for connection of column and beam
JP2004232292A (en) * 2003-01-29 2004-08-19 Shimizu Corp Brace damper

Also Published As

Publication number Publication date
JP6805085B2 (en) 2020-12-23
JP2019002595A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
KR101246894B1 (en) Pipe supporting apparatus for ship
JP2006037628A (en) Earthquake resistant reinforcement method for existing building
WO2018230014A1 (en) Elastic-plastic element, seismic tie comprising same, and boiler support structure
JP6126932B2 (en) Function-separated vibration control structure for bridges
JP4533359B2 (en) Buckling-restraining braces and load-bearing frames using buckling-restraining braces
JP5404679B2 (en) Shear damper
JP6954222B2 (en) Construction method of beam end joint structure and beam end joint structure
JP7242624B2 (en) Elasto-plastic element, seismic tie with the same, and boiler support structure
JP2010043415A (en) Seismic control device
JP2019210781A (en) Truss beam
JP2009161984A (en) Corrugated steel plate earthquake-resisting wall
JP6142518B2 (en) Support structure of exhaust heat recovery boiler
TWI744815B (en) Boiler plant
JP2014101655A (en) Brace aseismic reinforcement structure
JP2018091081A (en) Reinforcement structure of beam-column joint
JP2013024008A (en) Transverse rib structure for fatigue improvement, and steel floor slab using the same
JP5603741B2 (en) Buckling restraint brace
JP7353463B2 (en) Boiler equipment and boiler furnace wall reinforcement structure
JP7465792B2 (en) Support mechanism for heat recovery steam generator
JP6157992B2 (en) Column base reinforcement structure
JP5086901B2 (en) Building damping device
JP5568045B2 (en) Buckling restraint brace
JP2009114759A (en) Building unit jointing device
JP6038550B2 (en) Reinforcement structure of steel beam made of H-shaped steel
JP2000291903A (en) Seal plate structure of boiler ceiling wall penetrating part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913752

Country of ref document: EP

Kind code of ref document: A1