WO2018229836A1 - 軸受診断装置 - Google Patents
軸受診断装置 Download PDFInfo
- Publication number
- WO2018229836A1 WO2018229836A1 PCT/JP2017/021673 JP2017021673W WO2018229836A1 WO 2018229836 A1 WO2018229836 A1 WO 2018229836A1 JP 2017021673 W JP2017021673 W JP 2017021673W WO 2018229836 A1 WO2018229836 A1 WO 2018229836A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bearing
- vibration
- abnormality
- data
- information database
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/04—Bearings
Definitions
- the present invention relates to a bearing diagnostic apparatus.
- Bearings are used in rotating machines in various fields such as industrial equipment, railway vehicle equipment and construction machinery.
- a bearing is one of the mechanical elements, and is a part that receives a load and supports a shaft in contact with a counterpart part that rotates or reciprocates. When a failure occurs in a bearing, the operating rate of railway vehicle equipment, construction machinery, etc. will be reduced.
- a vibration sensor is attached to the bearing and the bearing damage is detected from a slight vibration change of the bearing.
- the outer ring, inner ring, and rolling element of the bearing are damaged, periodic ringing occurs, and the spectrum of the defect frequency generated when the bearing is damaged changes. It is possible to detect bearing damage by paying attention to such a change in spectrum.
- the defect frequency changes in accordance with the rotation speed of the bearing, in the case of a device in which the change in the rotation speed is remarkable, it is difficult to cut out the steady state, and thus there is a problem that the above method cannot be diagnosed.
- Patent Document 1 a diagnosis is periodically performed with a threshold linked to each rotation speed region of the rolling bearing, and the diagnosis result such as the presence or absence of abnormality is scored and stored, and this diagnosis is sequentially continued to be scored.
- Disclosed is a technology that integrates the diagnosis results for each rotation speed region, considers it abnormal if it exceeds the point threshold value set for each rotation speed region during a predetermined period, and feeds back the abnormality to the operating conditions of a warning or bearing-embedded application (See summary).
- the present invention eliminates the influence of vibration sources other than the bearing, or considers the influence of individual differences in the bearing, thereby making it possible to diagnose a bearing failure sign more accurately than in Patent Document 1.
- An object is to provide an apparatus.
- the bearing diagnostic apparatus of the present invention is made to solve such a problem, and vibration data and rotational speed data of a bearing of a rotating machine are inputted, and a vibration feature amount is calculated based on the vibration data. Diagnosing occurrence of abnormality in the bearing based on the relationship with the rotational speed data, and outputting the diagnosis result, a bearing information database storing a plurality of natural vibration frequencies of the bearing, and other than the bearing Vibration that calculates the vibration feature value by eliminating the influence of other vibration sources based on the other vibration source information database storing the generation frequency of other vibration sources, and the data of the bearing information database and the other vibration source information database And a feature amount calculation means.
- a bearing diagnosis apparatus that can more accurately diagnose a failure sign of a bearing by eliminating the influence of vibration sources other than the bearing or considering the influence of individual differences in the bearing. it can.
- FIG. 1 shows a functional block diagram of a bearing diagnostic apparatus 100 according to an embodiment.
- the bearing diagnosis apparatus 100 includes a computing device such as a CPU, a main storage device such as a semiconductor memory, an auxiliary storage device such as a hard disk, and hardware such as a communication device, and a program stored in the main storage device. 1 is implemented by referring to the database recorded in the auxiliary storage device. Hereinafter, such well-known operations will be omitted as appropriate.
- the bearing diagnosis apparatus 100 has a function of inputting the rotation speed data and vibration data of the bearing 1 incorporated in a device (not shown) and outputting a diagnosis result.
- the rotational speed data of the bearing 1 is acquired by the rotational speed measurement unit 10 (S1) attached to the device. Further, the vibration data of the bearing 1 is acquired by the vibration sensor 20 (S2) attached to the housing portion of the device in which the bearing 1 is housed.
- the rotation speed measurement unit 10 (S1) for example, by using a stroboscope, it is possible to directly acquire the rotation speed data of the bearing. If it is difficult to physically measure the rotational speed data, the driving current may be measured, and the rotational speed data may be calculated based on the frequency.
- the bearing diagnostic apparatus 100 includes a data receiving unit 102, a frequency conversion processing unit 104, a database rewriting unit (DB rewriting unit) 106, a bearing information database (bearing information DB) 108, an other vibration source information database ( Other vibration source information DB) 110, cut-out frequency band identification processing unit 112, specific frequency band power calculation unit 114, processing switching unit 118, learning processing unit 120, diagnostic model storage unit 122, abnormality diagnosis processing unit 126, input / output control Part 128.
- the bearing information DB 108, the other vibration source information DB 110, and the diagnostic model storage unit 122 are stored in an auxiliary storage device such as a hard disk, and the others are programs corresponding to the functions stored in the main storage device. This is realized by the execution of the arithmetic device.
- auxiliary storage device such as a hard disk
- the data receiving unit 102 receives the rotational speed data of the bearing 1 acquired by the rotational speed measuring unit 10 (S1) and the raw vibration data of the bearing 1 acquired by the vibration sensor 20 (S2).
- the frequency conversion processing unit 104 calculates the spectral intensity in the frequency domain by Fourier transform for the raw vibration data of the bearing 1 received by the data receiving unit 102.
- the bearing information DB 108 is a database that stores design information of the bearing 1 to be diagnosed and information on the natural vibration frequency.
- the other vibration source information DB 110 is a database that stores generation frequencies of other vibration sources (for example, an inverter, a load-side connection device, a driving belt, etc.) that are considered to affect the diagnosis of the bearing 1.
- other vibration sources for example, an inverter, a load-side connection device, a driving belt, etc.
- the DB rewriting unit 106 rewrites data stored in the bearing information DB 108 and the other vibration source information DB 110 based on an instruction from the outside.
- the cut-off frequency band identification processing unit 112 determines the overlap between the natural vibration frequency of the bearing 1 and the generation frequency of another vibration source based on information stored in the bearing information DB 108 and the other vibration source information DB 110. Then, a natural vibration frequency band that is not affected by other vibration sources is specified.
- the specific frequency band power calculation unit 114 calculates the power obtained by summing the spectral intensities for the natural vibration frequency band of the bearing 1 that is not affected by the other vibration sources cut out by the cut-out frequency band specifying processing unit 112. .
- the power calculated here is referred to as a specific frequency band power.
- the learning processing unit 120 Based on the specific frequency band power based on the vibration of the bearing 1 calculated by the specific frequency band power calculation unit 114 and the rotation speed data of the bearing 1 at that time, the learning processing unit 120 performs the rotation for each rotation speed region during normal operation. A specific frequency band power distribution is estimated and a diagnostic model used for diagnosis is learned and stored in the diagnostic model storage unit 122.
- the abnormality diagnosis processing unit 126 sequentially calculates a divergence degree corresponding to the distance from the distribution center based on the specific frequency band power distribution for each rotation speed region during normal operation learned by the learning processing unit 120, and an abnormality determination threshold value The result of the diagnosis by comparison with the above is output to the outside through the input / output control unit 128.
- FIG. 2 is a diagram illustrating an example of bearing information stored in the bearing information DB 108.
- the bearing information DB 108 stores bearing ID, design information, and information on the natural vibration frequency.
- the bearing ID is information corresponding to the type of the bearing 1 used in the device, and by storing this ID in the bearing information DB 108, it is possible to uniquely identify the bearing used by the device.
- the bearing information DB 108 stores design information of the bearing 1.
- the design information includes, for example, the number of rolling elements included in the bearing 1 and dimensional information of the rolling elements, outer ring, and inner ring.
- the bearing information DB 108 stores information related to the natural vibration frequency of the bearing 1.
- This natural vibration frequency can be specified from the frequency of the spectrum generated when the outer ring, inner ring and rolling element of the bearing 1 are hit with a hammer.
- the natural vibration frequency may be calculated from the dimensions of the design information based on the calculation formula of the annular vibration of the outer ring (that is, by substituting the bearing dimensions into the calculation formula of the annular vibration of the outer ring). Is possible. Since a plurality of spectra are usually observed, the natural vibration frequency is stored using a delimiter such as a comma (,) for the observed frequency.
- the other vibration source information DB 110 stores vibration sources other than the bearing 1 and their generated frequencies.
- the case where the bearing 1 is used for a motor is assumed, and the case where the other vibration sources are an inverter, a load side connection device, and a driving belt is illustrated.
- An inverter is a device used to control the number of rotations of a motor.
- the carrier frequency is a fundamental component and causes an oscillation of a harmonic component that is an integral multiple of the carrier frequency, so the spectrum corresponding to the fundamental component and the harmonic component is measured. There is a high possibility of being.
- a high-order generated frequency when the carrier frequency is 4 kHz is shown, and an integer multiple of 4 kHz (4 k * N, N: integer) corresponds to the generated frequency, such as 4 kHz, 8 kHz, and 12 kHz.
- the load-side connected devices and drive belts may be affected by propagation of their own vibrations and vibrations at the belt joints.
- the bearing vibration propagates to the housing of the connection device on the load side or periodic vibration generated by contact between the seam of the driving belt and the pulley.
- Such vibration generation frequency is also stored in the other vibration source information DB 110.
- the cut-out frequency band identification processing unit 112 reads the bearing information DB 108 and reads the bearing information illustrated in FIG.
- the cut-out frequency band identification processing unit 112 reads the other vibration source information DB 110 and reads the other vibration reduction information illustrated in FIG.
- the cut-out frequency band specifying processing unit 112 calculates the bearing natural vibration frequency band F (i) ⁇ ⁇ f in consideration of the bandwidth ⁇ f.
- the natural vibration frequency of the bearing 1 is observed as a sharp spectrum in the case of a single part such as an outer ring, an inner ring, or a rolling element, but the spectrum is observed as a broad spectrum when operating as a bearing.
- the cut-out frequency band identification processing unit 112 determines whether or not the generated frequency of the other vibration source information DB 110 exists within the range of F (i) ⁇ ⁇ f. Here, if it exists, it is determined that there is an influence of another vibration source, and the process proceeds to the next For Loop process. If it does not exist, it is determined that there is no influence of another vibration source, and the process of S24 is performed. Move on.
- the cut-out frequency band identification processing unit 112 includes the natural vibration frequency band F (i) ⁇ ⁇ f determined to be free from the influence of other vibration sources in the specific frequency band candidate list.
- FIG. 5 is a diagram illustrating an outline of the cut-out frequency band specifying processing unit 112 described above.
- the specific frequency band power calculation unit 114 receives frequency spectrum data, which is data after performing frequency conversion processing on the vibration data output from the frequency conversion processing unit 104, at regular time intervals. For example, when the data reception unit 102 receives the rotation speed data at intervals of 1 [sec], the frequency conversion processing unit 104 synchronizes with the data reception interval of the data reception unit 102 at time intervals of 1 [sec].
- the frequency spectrum data is output to the specific frequency band power calculation unit 114.
- the frequency spectrum data received by the specific frequency band power calculation unit 114 from the frequency conversion processing unit 104 is waveform data shown in FIG.
- the learning processing unit 120 is a processing unit that updates a diagnostic model serving as a base for abnormality diagnosis based on the specific frequency band power and the rotation speed data during normal operation of the bearing 1.
- the abnormality diagnosis processing unit 126 is a processing unit that performs abnormality detection using the latest diagnostic model updated by the learning processing unit 120. The processing by the learning processing unit 120 and the processing by the abnormality diagnosis processing unit 126 are not executed in parallel. After the learning processing unit 120 updates the diagnosis model in consideration of individual differences, the abnormality diagnosis processing unit 126 is a flow for performing the abnormality diagnosis process. From this point of view, the bearing diagnosis apparatus 100 includes a processing switching unit 118, and the processing flow of the rotational speed data and the specific frequency band power data is switched between the learning processing system and the diagnostic processing system.
- the diagnostic model is managed for one or a plurality of rotation speed regions, and for each rotation speed region, the number of learning points, the rotation speed range, the power average value, the power standard deviation, the deviation degree, and the abnormality It has a decision threshold parameter.
- the learning processing unit 120 performs a process of calculating and updating the power average value and the power standard deviation with reference to the learning point number and the rotation speed range.
- the learning score indicates the necessary score for the learning processing unit 120 to calculate the power average value ⁇ j and the power standard deviation ⁇ j for each rotation speed region j.
- the power average value ⁇ j and the power standard deviation ⁇ j are calculated and updated.
- the rotation speed range means the range of the rotation speed region j.
- the abnormality diagnosis processing unit 126 calculates the degree of divergence by referring to the parameters of the power average value and the power standard deviation, and performs abnormality determination processing by comparing the result with the abnormality determination threshold value.
- FIG. 7 is a graph showing the rotational speed data and the specific frequency band power received by the learning processing unit 120 during normal use of the bearing. One reception corresponds to one point and is a result of plotting about one day.
- the learning processing unit 120 performs a process of calculating the distribution statistics of the specific frequency band power for each rotation speed region and updating the diagnostic model.
- the power average value ⁇ j and the power standard deviation ⁇ j are calculated for each rotation speed region j as the distribution statistics. Thereby, as shown in the lower part of FIG. 7, it is possible to obtain a graph showing the relationship between the specific frequency band power and the frequency for each region.
- the diagnostic model is updated based on actual measurement data of the bearing 1 to be diagnosed and reflected in the diagnosis process.
- FIG. 8 is a flowchart showing a learning processing flow executed in the learning processing unit 120. The details of the learning process, that is, the update process of the diagnostic model in the diagnostic model storage unit 122 will be described with reference to FIG.
- the learning processing unit 120 reads the diagnostic model storage unit 122 and reads the diagnostic model stored therein.
- the learning processing unit 120 receives the rotational speed data from the data receiving unit 102 and the specific frequency band power data from the specific frequency band power calculating unit 114 every 1 [sec].
- the learning processing unit 120 compares the rotation speed data received in S31 with the rotation speed range of the rotation speed area j of the diagnostic model storage unit 122 to determine whether or not the rotation speed area is a processing target. Determine whether. If it is not the target, the rotational speed region j is incremented and the process proceeds to the next For loop. If it is the target, the determination is YES, and the process proceeds to the next S33.
- the learning processing unit 120 determines whether or not the number of data accumulated for learning in the rotation speed region j has reached the learning points (1000 points in the example of FIG. 6) in the diagnostic model storage unit 122. . If the learning score has not been reached, the data is accumulated and the process proceeds to the next For loop. If the learning score has been reached, the process proceeds to S34.
- the learning processing unit 120 calculates the power average value ⁇ j and the power standard deviation ⁇ j based on the data of the specific frequency band power that has reached the learning score.
- the learning processing unit 120 updates the power average value and power standard deviation fields of the diagnostic model storage unit 122 with the power average value ⁇ j and the power standard deviation ⁇ j calculated in the previous S34. As a result, the diagnostic model stored in the diagnostic model storage unit 122 is updated for the rotation speed region j.
- the learning processing unit 120 determines the power average value ⁇ j and the power standard in all the rotation speed regions j.
- the diagnostic model memorize
- storage part 122 is updated over all the rotation speed area
- this determination is performed by comparing the deviation degree a with the abnormality determination threshold Ath .
- the abnormality diagnosis processing unit 126 reads the diagnostic model storage unit 122 and reads the updated diagnostic model stored therein.
- the abnormality diagnosis processing unit 126 receives the rotation speed data from the data receiving unit 102 and the specific frequency band power data from the specific frequency band power calculation unit 114 every 1 [sec].
- the received number of rotations at one point is r
- the specific frequency band power is d.
- the abnormality diagnosis processing unit 126 specifies a rotation speed region j corresponding to the rotation speed r. This compares the rotation speed range for each rotation speed area j with the rotation speed r in the diagnostic model, and performs a process of specifying a rotation speed area that falls within that range.
- the rotation speed region 2 is specified as shown in FIG.
- the abnormality diagnosis processing unit 126 performs an abnormality determination process by comparing the deviation degree a calculated in S43 with the abnormality determination threshold Athj. Here, when it is larger than Athj, it is determined as abnormal, and when it is smaller, it is determined as normal.
- the abnormality diagnosis processing unit 126 outputs the diagnosis result determined in S44 via the input / output control unit 128 and ends the process.
- the normal distribution in the specific frequency band power for each rotation speed region is learned, and abnormality diagnosis based on the degree of deviation from the distribution is performed. Therefore, it is possible to realize a stable diagnostic performance that suppresses the occurrence of false alarms by absorbing differences in characteristics due to individual differences and installation environments.
- the specific frequency band power calculation unit 114 shown in FIG. 1 becomes a “specific frequency band peak value calculation unit” and a “specific frequency band crest factor calculation unit”, and data handled by the learning management unit 120 and the diagnostic model storage unit 122 is also included. It is clear that the data is related to the specific frequency band peak value and the specific frequency band crest factor.
- the vibration characteristic amount is calculated by a specific frequency band peak value calculation unit installed in place of the specific frequency band power calculation unit 114 of FIG. 1 and used for bearing abnormality detection.
- the vibration feature amount when using the specific frequency band crest factor, the value calculated by the specific frequency band peak value / specific frequency band power is used as the vibration feature amount.
- a vibration characteristic amount is calculated by a specific frequency band crest factor calculation unit installed in place of the specific frequency band power calculation unit 114 of FIG. 1 and used for bearing abnormality detection.
- the bearing diagnosis apparatus of the present embodiment described above the influence of vibration sources other than the bearings is excluded, and a bearing failure sign is diagnosed more accurately based on learned individual bearing differences and installation environment. can do.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
回転機の軸受の振動データと回転数データが入力され、前記振動データを基に振動特徴量を計算し、前記回転数データとの関係に基づいて前記軸受の異常発生を診断する軸受診断装置であって、前記軸受の複数の固有振動周波数を記憶した軸受情報データベースと、軸受以外の他振動源の発生周波数を記憶した他振動源情報データベースと、前記軸受情報データベースと前記他振動源情報データベースのデータを基に他振動源の影響を排除して前記振動特徴量を計算する振動特徴量算出手段と、を有している軸受診断装置。
Description
本発明は、軸受診断装置に関する。
産業機器をはじめ鉄道車両設備や建設機械などさまざまな分野の回転機において、軸受が使われている。軸受は機械要素のひとつであり、回転や往復運動をする相手部品に接して荷重を受け、軸を支持する部品である。軸受に故障が発生した場合、鉄道車両設備や建設機械等の稼働率低下を招くことになる。
このような事態を未然に防ぐため、軸受に振動センサを取り付け、軸受の微弱な振動変化から軸受損傷を検知する技術が提案されている。例えば、軸受の外輪、内輪、転動体に傷が発生すると、周期的なリンギングが発生し、軸受が損傷したときに発生する欠陥周波数のスペクトルが変化する。このようなスペクトルの変化に着目することで軸受損傷を検知することが可能である。しかし、欠陥周波数は軸受の回転数に応じて変化するため、回転数変化が顕著な機器の場合、定常状態の切り出しが困難であることから、上記手法では診断できないといった課題があった。
そこで、回転数が変化するケースにおいても安定した軸受診断を行うために、回転数と振動特徴量の定常的な関係に基づいて診断する技術が提案されている。特許文献1には、定期的に転がり軸受の回転数領域ごとに連動した閾値で診断を行い、異常の有無等の診断結果を点数化して保存し、順次、この診断を継続し、点数化された診断結果を回転数領域ごとに積算し、所定の期間中に回転数領域ごとに設けられた点数閾値を超えると異常とみなし、異常を警告又は軸受組込みアプリケーションの運転条件にフィードバックする技術が開示されている(要約参照)。
特許文献1に開示された技術の場合、軸受以外の他の振動源の影響が排除されていない点が課題である。通常、軸受は機器に組み込まれた形で使われており、軸受以外のコンポーネントの振動も計測されてしまう。特許文献1では、軸受の複数の固有振動周波数のパワーについて閾値比較による診断を行っているが、固有振動周波数が他の振動源の発生周波数と重なってしまった場合に、軸受以外の振動成分も取り込んでいることになり誤報を招く恐れがある。例えば、インバータによって回転数制御されたモータの軸受診断の場合、インバータのキャリア周波数を基本成分として、その整数倍の高調波成分に相当するスペクトルが観測されることが多いが、この成分が固有振動周波数と重なっていた場合、通常より振動が大きいと判断して誤報を招いてしまう恐れがある。
また、軸受の個体差の影響が考慮されていない点も課題である。軸受の振動特性には個体差があると共に、組み込まれる機器や使われ方、設置環境によっても振動特性が変化する。特許文献1では、回転数領域ごとに事前設定した閾値に基づいて診断を行っており、個体差や設置環境によっては誤った診断結果を招く可能性がある。
そこで、本発明は、軸受以外の他の振動源の影響を排除、または、軸受の個体差の影響を考慮することで、特許文献1に比べ、軸受の故障予兆をより正確に診断できる軸受診断装置を提供することを目的とする。
本発明の軸受診断装置はこのような課題を解決するためになされたものであり、回転機の軸受の振動データと回転数データが入力され、前記振動データを基に、振動特徴量を計算し、前記回転数データとの関係に基づいて前記軸受の異常発生を診断し、該診断結果を出力するものであって、前記軸受の複数の固有振動周波数を記憶した軸受情報データベースと、軸受以外の他振動源の発生周波数を記憶した他振動源情報データベースと、前記軸受情報データベースと前記他振動源情報データベースのデータを基に、他振動源の影響を排除して前記振動特徴量を計算する振動特徴量算出手段と、を有しているものとした。
本発明によれば、軸受以外の他の振動源の影響を排除、または、軸受の個体差の影響を考慮することで、軸受の故障予兆をより正確に診断できる軸受診断装置を提供することができる。
本発明の実施形態について、図面を用いながら、以下説明する。
図1は、一実施例の軸受診断装置100の機能ブロック図を示している。なお、軸受診断装置100は、CPU等の演算装置、半導体メモリ等の主記憶装置、ハードディスク等の補助記憶装置、および、通信装置などのハードウェアを備えており、主記憶装置に記憶されたプログラムを演算装置が実行し、補助記憶装置に記録されたデータベースを参照することで、図1に示す各機能が実現されるが、以下では、このような周知動作を適宜省略しながら説明する。
軸受診断装置100は、図示しない機器に組み込まれた軸受1の回転数データおよび振動データを入力として、診断結果を出力する機能を有する。軸受1の回転数データは、機器に取り付けられた回転数計測ユニット10(S1)により、取得される。また、軸受1の振動データは、軸受1を収めている機器の筐体部分に取り付けられた振動センサ20(S2)により、取得される。
回転数計測ユニット10(S1)として、例えば、ストロボスコープを用いることにより、直接的に軸受の回転数データを取得することが可能である。また物理的に回転数データを計測することが困難な場合には駆動電流を計測し、その周波数を基に、回転数データを計算しても良い。
軸受診断装置100は、図1に示すように、データ受信部102、周波数変換処理部104、データベース書換部(DB書換部)106、軸受情報データベース(軸受情報DB)108、他振動源情報データベース(他振動源情報DB)110、切出周波数帯特定処理部112、特定周波数帯パワー演算部114、処理切替部118、学習処理部120、診断モデル記憶部122、異常診断処理部126、入出力制御部128、を備えている。なお、軸受情報DB108、他振動源情報DB110、診断モデル記憶部122は、ハードディスク等の補助記憶装置に記憶されたものであり、他は、主記憶装置に記憶された各機能に対応するプログラムを演算装置が実行することで実現されるものである。以下、各々の構成を詳細説明する。
データ受信部102は、回転数計測ユニット10(S1)により取得された軸受1の回転数データと、振動センサ20(S2)により取得された軸受1の振動生データとを受信する。
周波数変換処理部104は、データ受信部102で受信した軸受1の振動生データについて、フーリエ変換により周波数領域でのスペクトル強度を計算する。
軸受情報DB108は、診断対象とする軸受1の設計情報および固有振動周波数に関する情報が記憶されるデータベースである。
他振動源情報DB110は、軸受1の診断に影響すると考えられる他の振動源(例えば、インバータ、負荷側接続機器、駆動用ベルト等)の発生周波数が記憶憶されるデータベースである。
DB書換部106は、外部からの指示に基づいて軸受情報DB108と、他振動源情報DB110とに記憶されているデータを書き換える。
切出周波数帯特定処理部112は、軸受情報DB108と、他振動源情報DB110とに記憶されている情報を基に、軸受1の固有振動周波数と他の振動源の発生周波数との重なりを判断し、他の振動源の影響を受けていない固有振動周波数の帯域を特定する。
特定周波数帯パワー演算部114は、切出周波数帯特定処理部112によって切り出した他の振動源の影響を受けていない軸受1の固有振動周波数の帯域について、スペクトル強度を積和したパワーを計算する。ここで計算したパワーを、特定周波数帯パワーと呼ぶことにする。
学習処理部120は、特定周波数帯パワー演算部114で計算した軸受1の振動に基づく特定周波数帯パワーと、そのときの軸受1の回転数データを基に、正常動作時の回転数領域ごとの特定周波数帯パワー分布を推定し診断に用いる診断モデルを学習して診断モデル記憶部122に記憶する。
異常診断処理部126は、学習処理部120が学習した正常動作時の回転数領域ごとの特定周波数帯パワー分布を基に、分布中心からの距離に相当する乖離度を逐次計算し、異常判定閾値との比較により診断した結果について入出力制御部128を通じて外部に出力する。
<他振動減の影響の排除機能>
まず、軸受診断装置100の他振動源の影響を排除する機能について、図2から図5を用いて以下詳細を説明する。
<他振動減の影響の排除機能>
まず、軸受診断装置100の他振動源の影響を排除する機能について、図2から図5を用いて以下詳細を説明する。
図2は、軸受情報DB108に記憶されている軸受情報の一例を示す図である。ここに示すように、軸受情報DB108には、軸受IDと、設計情報と、固有振動周波数に関する情報が記憶されている。軸受IDは、機器で使用している軸受1の型式に相当する情報であり、このIDが軸受情報DB108に記憶されることにより、機器の使用軸受を一意に特定することが可能である。また、軸受情報DB108には、軸受1の設計情報が記憶されている。設計情報としては、例えば、軸受1に含まれる転動体の個数や、転動体、外輪、内輪の寸法情報が含まれる。また、軸受情報DB108には、軸受1の固有振動周波数に関する情報が記憶されている。この固有振動周波数は、軸受1の外輪、内輪、転動体をハンマーでたたいたときに発生するスペクトルの周波数から特定することが可能である。また、固有振動周波数は、外輪の円環振動の計算式を基に、設計情報の寸法から演算的に(すなわち、外輪の円環振動の計算式に軸受寸法を代入することにより)求めることも可能である。固有振動周波数は、通常複数のスペクトルが観測されることから、観測された周波数についてカンマ(,)等の区切り記号を用いて記憶される。
次に、図3を基に、他振動源情報DB110に記憶されているデータについて説明する。図3に示すように、他振動源情報DB110には、軸受1以外の他の振動源と、それらの発生周波数が記憶されている。ここでは、軸受1がモータに使われるケースを想定し、他の振動源がインバータ、負荷側接続機器、駆動用ベルトである場合を例示している。インバータは、モータの回転数制御に用いられる機器で、前記したようにキャリア周波数を基本成分として、その整数倍の高調波成分の振動を引き起こすため、基本成分及び高調波成分に相当するスペクトルが計測される可能性が高い。ここでは、キャリア周波数4kHzとした場合の高次の発生周波数を示しており、4kHz, 8kHz,, 12kHzのように、4kHzの整数倍(4k*N, N:整数)が発生周波数に相当する。
また、負荷側の接続機器や駆動用ベルトについても、その固有振動やベルトの継ぎ目の振動などが伝播して影響する可能性がある。例えば、軸受振動が負荷側の接続機器の筐体に伝播する場合や、駆動用ベルトの継ぎ目とプーリーとの接触により発生する周期的な振動が想定される。他振動源情報DB110には、このような振動の発生周波数も記憶される。
次に、切出周波数帯特定処理部112において実行される処理について、図4に示すフローチャートを用いて説明する。
S20では、切出周波数帯特定処理部112は、軸受情報DB108を読み取り、図2に例示した軸受情報を読み込む。
S21では、切出周波数帯特定処理部112は、他振動源情報DB110を読み取り、図3に例示した他振動減情報を読み込む。
続いて、図2に示した軸受情報DB108の固有振動周波数フィールドに、カンマ(,)区切りにて記憶している要素毎に、S22~S24のForループ処理を繰り返す。なお、ここでは、要素数をnとして固有振動周波数をF(i) (i = 0,1,2,…,n-1)と表すことにする。
Forループ最初のS22では、切出周波数帯特定処理部112は、帯域幅Δfを考慮して軸受固有振動周波数帯域F(i)±Δfを計算する。軸受1の固有振動周波数は外輪や内輪、転動体などの単体部品の場合には鋭いスペクトルとして観測されるが、軸受として組み合わさって動作するときにはスペクトルは広がって観測される。この帯域Δfはその作用を反映したパラメータであり、ここでは経験的にΔf =0.5kHzとする。
S23では、切出周波数帯特定処理部112は、F(i)±Δfの範囲内に他振動源情報DB110の発生周波数が存在するか否かを判断する。ここで、存在する場合には、他の振動源の影響ありと判断して、次のForループ処理に移り、存在しない場合には、他の振動源の影響なしと判断して、S24の処理に移る。
S24では、切出周波数帯特定処理部112は、他の振動源の影響が存在しないと判断した固有振動周波数帯F(i)±Δfを特定周波数帯の候補リストに含める。
以上のS22~S24のForループ処理をすべての固有振動周波数F(i) (i = 0,1,2,…,n-1)に対して実行した後に、切出周波数帯特定処理部112は、最後のS25において、他の振動源の影響が存在しないと判断した固有振動周波数帯F(i)±Δfの候補リストを特定周波数帯パワー演算部114に出力して処理を終了する。
図5は、以上で説明した切出周波数帯特定処理部112の概要を説明した図である。ここに示すように、図2に例示した軸受情報に基づいて、すべての固有振動周波数帯F(i)±Δf (i = 0,1,2,3,4)について他振動源情報DB110の発生周波数との重なりをチェックすると、F(i)±Δf (i=0,1,2)は、負荷側接続機器またはインバータの発生周波数の影響を受けていることが分かり、他の振動源の影響のない固有振動周波数帯はF(i)±Δf (i=3,4)のみとなる。そのため、F(3)=10.2kHzとF(4)=13.0kHzの二つの周波数帯のみが特定周波数帯の候補として特定周波数帯パワー演算部114に出力される。
次に、特定周波数帯パワー演算部114の処理について、引き続き図5を用いて説明する。
特定周波数帯パワー演算部114は、周波数変換処理部104から出力される振動データに対して周波数変換処理を実行した後のデータである、周波数スペクトルデータを一定時間間隔ごとに受信する。例えば、データ受信部102が回転数データを1[sec]間隔に受信する場合、周波数変換処理部104は、データ受信部102のデータ受信間隔に同期して、1[sec]毎の時間間隔で特定周波数帯パワー演算部114に周波数スペクトルデータを出力する。ここで、特定周波数帯パワー演算部114が周波数変換処理部104から受信する周波数スペクトルデータは、図5に示す波形状のデータとなる。
特定周波数帯パワー演算部114は、周波数変換処理部104から受信する1[sec]毎の周波数スペクトルデータについて、切出周波数帯特定処理部112から受信した他の振動源の影響のない固有振動周波数帯F(i)±Δf (i=3,4)の情報を基に、特定周波数帯パワーを計算する。この特定周波数帯パワーは、周波数スペクトルデータについてF(i)±Δf (i=3,4)の範囲について積分することで計算する。そして、特定周波数帯パワー演算部114は、ここで計算した特定周波数帯パワーについて、次の処理ブロックに出力するように動作する。
以上のように他の振動源の発生周波数と重ならない固有振動周波数帯域に限定して特定周波数帯パワーを演算することで他の振動源の影響を排除することが可能である。すなわち、ここまでの処理で、精度の高い軸受故障予兆診断に必要な、他の振動源の影響を排除したデータを得ることができる。
<軸受の個体差の影響の排除機能>
次に、軸受診断装置100の軸受の個体差の影響を考慮して診断を行う機能について、図1、及び図6~図10を用いて詳細に説明する。
<軸受の個体差の影響の排除機能>
次に、軸受診断装置100の軸受の個体差の影響を考慮して診断を行う機能について、図1、及び図6~図10を用いて詳細に説明する。
図1の軸受診断装置100において、学習処理部120は、軸受1の正常動作時における特定周波数帯パワーと回転数データとを基に、異常診断のベースとなる診断モデルを更新する処理部である。また、異常診断処理部126は、学習処理部120が更新した最新の診断モデルを用いて異常検知を行う処理部である。学習処理部120による処理と異常診断処理部126による処理とは、並列的に実行するものではなく、学習処理部120による、診断モデルについて個体差を考慮した更新を行った後に、異常診断処理部126による異常診断処理を行う流れとなる。その観点から軸受診断装置100は処理切替部118を有しており、回転数データと特定周波数帯パワーデータの処理の流れが学習処理系統と診断処理系統で切り替えられるようになっている。
まず、学習処理部120と異常診断処理部126とが共に参照する、診断モデル記憶部122に記憶されるデータである診断モデルについて、図6を用いて説明する。図6に示すように、診断モデルは、1又は複数の回転数領域毎に管理されており、各回転数領域について、学習点数、回転数範囲、パワー平均値、パワー標準偏差、乖離度と異常判定閾値のパラメータを有している。学習処理部120は、学習点数と回転数範囲とを参照して、パワー平均値とパワー標準偏差を計算して更新する処理を行う。
ここで、学習点数は、学習処理部120が回転数領域j毎のパワー平均値μj、パワー標準偏差σjを計算するための必要点数を示している。この点数に達した段階でパワー平均値μj、パワー標準偏差σjを計算して更新する。回転数範囲は、回転数領域jの範囲を意味する。
また、異常診断処理部126は、パワー平均値とパワー標準偏差のパラメータを参照して乖離度を計算し、その結果について異常判定閾値との比較により異常判定処理を行う。
続いて、学習処理部120が行う学習処理について、図7と図8を用いて詳細に説明する。
図7は、正常な軸受の使用中に、学習処理部120が受信した回転数データと特定周波数帯パワーとをグラフ化して示したものである。1回の受信が1点に対応しており、約1日分をプロットした結果である。学習処理部120は、回転数領域毎に特定周波数帯パワーの分布統計量を計算して、診断モデルを更新する処理を行う。
前述したように、分布統計量として、回転数領域j毎にパワー平均値μj、パワー標準偏差σjを計算する。これにより、図7の下に示すように、領域毎の特定周波数帯パワーと頻度の関係を示すグラフを得ることが可能となる。この学習処理では、診断対象とする軸受1の個体差を吸収するために、診断対象の軸受1の実際の計測データを基に、診断モデルを更新し診断処理に反映することが特徴である。
図8は、学習処理部120において実行される学習処理フローを示すフローチャートである。図8に沿って、学習処理、すなわち、診断モデル記憶部122内の診断モデルの更新処理の詳細を説明する。
S30では、学習処理部120は、診断モデル記憶部122を読み取り、そこに記憶された診断モデルを読込む。
S31では、学習処理部120は、1[sec]毎にデータ受信部102からの回転数データと、特定周波数帯パワー演算部114からの特定周波数帯パワーのデータを受信する。
続いて、診断モデル記憶部122の回転数領域j毎に、S32からS35のForループ処理を実行する。
Forループ最初のS32では、学習処理部120は、S31で受信した回転数データと診断モデル記憶部122の回転数領域jの回転数範囲を比較して処理対象とする回転数領域であるか否かを判断する。対象で無い場合には、回転数領域jをインクリメントして次のForループに進み、対象である場合にはYESの判定となり、次のS33に進む。
S33では、学習処理部120は、当該回転数領域jにおいて学習用に蓄積したデータ数が、診断モデル記憶部122の学習点数(図6の例では1000点)に達したか否かを判断する。ここで学習点数に達していない場合には、データを蓄積して次のForループに進み、学習点数に達した場合には、次のS34に進む。
S34では、学習処理部120は、学習点数に達した特定周波数帯パワーのデータを基に、パワー平均値μj、パワー標準偏差σjを計算する。
S35では、学習処理部120は、前のS34で計算したパワー平均値μj、パワー標準偏差σjで、診断モデル記憶部122のパワー平均値とパワー標準偏差のフィールドを更新する。この結果、当該の回転数領域jに関して、診断モデル記憶部122に記憶された診断モデルが更新される。
すべての診断モデル記憶部122の回転数領域毎に、S32からS35のForループ処理を実行した後、S36では、学習処理部120は、すべての回転数領域jにおいてパワー平均値μj、パワー標準偏差σjを計算して更新が完了した場合に、処理を終了する。これにより、診断モデル記憶部122に記憶された診断モデルが全ての回転数領域に亘り更新されることになる。
次に、図9を用いて異常診断処理の概要を説明する。異常診断処理では学習処理部120によって更新された正常分布統計量のパワー平均値μj、パワー標準偏差σjを用いて、診断対象データdと分布中心との距離に相当する乖離度aをa = (d-μj) / σjで計算する。この距離が所定の閾値より小さいことは、現在使用中の軸受の特性(個体差)を踏まえた上で、正常状態である確率が高いことを意味し、この距離が大きいことは異常状態である確率が高いことを意味している。図9の異常診断処理では、この判定を乖離度aと異常判定閾値Athとの比較によって行う。
続いて、図10に示すフローチャートを用いて、異常診断処理部126での異常診断処理フローの詳細について説明する。
S40では、異常診断処理部126は、診断モデル記憶部122を読み取り、そこに記憶されている更新された診断モデルを読み込む。
S41では、異常診断処理部126は、1[sec]毎にデータ受信部102からの回転数データと、特定周波数帯パワー演算部114からの特定周波数帯パワーのデータをそれぞれ受信する。ここでは受信した一点の回転数をr、特定周波数帯パワーをdとする。
次にS42では、異常診断処理部126は、回転数rに対応する回転数領域jを特定する。これは診断モデルにおける回転数領域jごとの回転数範囲と回転数rを比較しその範囲内に収まる回転数領域を特定する処理を行う。なお、ここでは、図9に示すように、回転数領域2が特定されたものとする。
次にS43では、異常診断処理部126は、診断対象となる特定周波数帯パワーdの対象となる回転数領域jにおける乖離度aをa = (d-μj) / σjから計算する。
S44では、異常診断処理部126は、S43で計算した乖離度aと異常判定閾値Athjとの比較により異常判定処理を行う。ここで、Athjより大の場合は異常と判定し、小の場合は正常と判定する。
そして、最後のS45では、異常診断処理部126は、S44で判定した診断結果を、入出力制御部128を介して出力して処理を終了する。
以上のように、診断対象とする軸受1の実際の計測データを基に、回転数領域ごとの特定周波数帯パワーにおける正常分布を学習し、その分布からの乖離度に基づいた異常診断を行うことで、個体差や設置環境による特性の違いを吸収して誤報発生を抑制した安定した診断性能を実現することが可能である。
なお、以上の実施例では、図5に示したように、異常診断に用いる振動特徴量として、他の振動源の影響を受けていない固有振動周波数帯F(i)±Δf (i=3,4)の周波数スペクトルを積分して求めた特定周波数帯パワーを用いる例を示したが、他の振動特徴量、例えば、特定周波数帯ピーク値や、特定周波数帯波高率を用いて異常診断を行っても良い。この場合、図1に示す特定周波数帯パワー演算部114は、「特定周波数帯ピーク値演算部」「特定周波数帯波高率演算部」となり、学習管理部120や診断モデル記憶部122で扱うデータも、特定周波数帯ピーク値や、特定周波数帯波高率に関するデータになることは、明らかである。
特定周波数帯ピーク値を用いる場合は、他の振動源の影響を受けていない固有振動周波数帯F(i)±Δf(i=3,4)の範囲における周波数スペクトルのピーク値を振動特徴量とする。この場合、図1の特定周波数帯パワー演算部114に代えて設置した特定周波数帯ピーク値演算部で振動特徴量を演算し、これを軸受異常検知に用いる。
また、特定周波数帯波高率を用いる場合は、特定周波数帯ピーク値/特定周波数帯パワーで計算した値を振動特徴量とする。この場合、図1の特定周波数帯パワー演算部114に代えて設置した、特定周波数帯波高率演算部で振動特徴量を演算し、これを軸受異常検知に用いる。
以上で説明した本実施例の軸受診断装置によれば、軸受以外の他の振動源の影響を排除するとともに、学習した軸受個体差、設置環境を踏まえて、軸受の故障予兆をより正確に診断することができる。
1…軸受、
10…回転数計測ユニット、20…振動センサ、100…軸受診断装置、102…データ受信部、104…周波数変換処理部、106…DB書換部、108…軸受情報DB、110…他振動源情報DB、112…切出周波数帯特定処理部、114…特定周波数帯パワー演算部、118…処理切替部、120…学習処理部、122…診断モデル記憶部、126…異常診断処理部、128…入出力制御部
10…回転数計測ユニット、20…振動センサ、100…軸受診断装置、102…データ受信部、104…周波数変換処理部、106…DB書換部、108…軸受情報DB、110…他振動源情報DB、112…切出周波数帯特定処理部、114…特定周波数帯パワー演算部、118…処理切替部、120…学習処理部、122…診断モデル記憶部、126…異常診断処理部、128…入出力制御部
Claims (9)
- 回転機の軸受の振動データと回転数データが入力され、前記振動データを基に振動特徴量を計算し、前記回転数データとの関係に基づいて前記軸受の異常発生を診断し、該診断結果を出力する軸受診断装置であって、
前記軸受の複数の固有振動周波数を記憶した軸受情報データベースと、
軸受以外の他振動源の発生周波数を記憶した他振動源情報データベースと、
前記軸受情報データベースと前記他振動源情報データベースのデータを基に他振動源の影響を排除して前記振動特徴量を計算する振動特徴量算出手段と、
を有していることを特徴とする軸受診断装置。 - 請求項1に記載の軸受診断装置において、
前記振動特徴量算出手段は、
前記軸受情報データベースに記載の複数の固有振動周波数の帯域と、
前記他振動源情報データベースの他振動源の発生周波数との重なりを基に各帯域の他振動源の影響の有無を確認し、
他振動源の影響のない前記帯域のスペクトル強度を基に前記振動特徴量を算出することを特徴とする軸受診断装置。 - 請求項2に記載の軸受診断装置において、
前記振動特徴量算出手段は、
他振動源の影響のない前記帯域のスペクトル強度を積和した特定周波数帯パワーを振動特徴量とすることを特徴とする軸受診断装置。 - 請求項1から請求項3の何れか一項に記載の軸受診断装置において、
前記軸受はモータに組み込まれた軸受であり、前記他振動源情報データベースにはインバータ、負荷側接続機器、駆動用ベルトの何れかの発生周波数が記憶されていることを特徴とする軸受診断装置。 - 請求項1から請求項4の何れか一項に記載の軸受診断装置において、
さらに、
前記振動特徴量算出手段が出力する振動特徴量について前記軸受の正常動作時における正常分布統計量を計算する学習手段と、
該正常分布統計量を基に前記軸受の異常発生を診断する異常診断手段と、
を有していることを特徴とする軸受診断装置。 - 請求項5に記載の軸受診断装置において、
前記学習手段は、前記正常分布統計量を前記軸受の回転速度領域毎に分けて計算し、
前記異常診断手段は、前記回転速度領域毎の前記正常分布統計量を基に前記軸受の異常発生を診断することを特徴とする軸受診断装置。 - 請求項6に記載の軸受診断装置において、
前記異常診断手段は、診断対象とする振動特徴量について前記正常分布の中心からの距離に相当する乖離度を計算し、該乖離度が所定の閾値を超えたときに異常発生を診断することを特徴とする軸受診断装置。 - 請求項5から請求項7の何れか一項に記載の軸受診断装置において、
前記正常分布統計量として前記振動特徴量の平均値と標準偏差を用いることを特徴とする軸受診断装置。 - 回転機の軸受の振動データと回転数データが入力され、前記振動データを基に振動特徴量を計算し、前記回転数データとの関係に基づいて前記軸受の異常発生を診断し、該診断結果を出力する軸受診断装置であって、
前記軸受の複数の固有振動周波数を記憶した軸受情報データベースと、
該軸受情報データベースの内容を基に前記振動特徴量を計算する振動特徴量算出手段と、
該振動特徴量算出手段が出力する振動特徴量について前記軸受の正常動作時における正常分布統計量を計算する学習手段と、
該正常分布統計量を基に前記軸受の異常発生を診断する異常診断手段と、を有していることを特徴とする軸受診断装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/021673 WO2018229836A1 (ja) | 2017-06-12 | 2017-06-12 | 軸受診断装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/021673 WO2018229836A1 (ja) | 2017-06-12 | 2017-06-12 | 軸受診断装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018229836A1 true WO2018229836A1 (ja) | 2018-12-20 |
Family
ID=64660695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/021673 WO2018229836A1 (ja) | 2017-06-12 | 2017-06-12 | 軸受診断装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018229836A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110987427A (zh) * | 2019-12-31 | 2020-04-10 | 安徽容知日新科技股份有限公司 | 一种用于机械设备的数据处理方法、装置及系统 |
JP2020134310A (ja) * | 2019-02-20 | 2020-08-31 | 株式会社竹田技研 | 振動分析装置、振動分析方法及びプログラム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0943091A (ja) * | 1995-07-31 | 1997-02-14 | Ricoh Co Ltd | 振動測定システム |
JP2006113002A (ja) * | 2004-10-18 | 2006-04-27 | Nsk Ltd | 機械設備の異常診断システム |
JP2009020090A (ja) * | 2007-06-11 | 2009-01-29 | Nsk Ltd | 異常診断装置、及び異常診断方法 |
JP2012008030A (ja) * | 2010-06-25 | 2012-01-12 | Toshiba Plant Systems & Services Corp | 回転機軸受診断装置 |
JP2013224853A (ja) * | 2012-04-20 | 2013-10-31 | Hitachi Building Systems Co Ltd | 昇降機の低速回転軸受の異常診断方法 |
WO2016089238A1 (en) * | 2014-12-02 | 2016-06-09 | Siemens Aktiengesellschaft | Monitoring of a device having a movable part |
-
2017
- 2017-06-12 WO PCT/JP2017/021673 patent/WO2018229836A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0943091A (ja) * | 1995-07-31 | 1997-02-14 | Ricoh Co Ltd | 振動測定システム |
JP2006113002A (ja) * | 2004-10-18 | 2006-04-27 | Nsk Ltd | 機械設備の異常診断システム |
JP2009020090A (ja) * | 2007-06-11 | 2009-01-29 | Nsk Ltd | 異常診断装置、及び異常診断方法 |
JP2012008030A (ja) * | 2010-06-25 | 2012-01-12 | Toshiba Plant Systems & Services Corp | 回転機軸受診断装置 |
JP2013224853A (ja) * | 2012-04-20 | 2013-10-31 | Hitachi Building Systems Co Ltd | 昇降機の低速回転軸受の異常診断方法 |
WO2016089238A1 (en) * | 2014-12-02 | 2016-06-09 | Siemens Aktiengesellschaft | Monitoring of a device having a movable part |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020134310A (ja) * | 2019-02-20 | 2020-08-31 | 株式会社竹田技研 | 振動分析装置、振動分析方法及びプログラム |
CN110987427A (zh) * | 2019-12-31 | 2020-04-10 | 安徽容知日新科技股份有限公司 | 一种用于机械设备的数据处理方法、装置及系统 |
CN110987427B (zh) * | 2019-12-31 | 2021-11-09 | 安徽容知日新科技股份有限公司 | 一种用于机械设备的数据处理方法、装置及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230080171A1 (en) | Systems and methods for monitoring of mechanical and electrical machines | |
US10670016B2 (en) | Pump monitoring apparatus and method | |
JP5216903B2 (ja) | 歯車噛み合い障害検出の側波帯エネルギー比率方法 | |
Wu et al. | Remaining useful life prediction of bearing with vibration signals based on a novel indicator | |
CN108593084A (zh) | 一种通信机房设备健康状态的检测分析方法 | |
JP6514239B2 (ja) | 機械診断装置および機械診断方法 | |
KR20140084159A (ko) | 기어박스의 상태를 모니터링하는 방법 및 시스템 | |
US10895873B2 (en) | Machine health monitoring of rotating machinery | |
CN111122191B (zh) | 一种基于ewma控制的设备安康报警阈值设定方法 | |
EP4043699A1 (en) | System and method for automated failure mode detection of rotating machinery | |
JP7460545B2 (ja) | 電気機械的マシンの調子を監視して故障を予測するシステム及び方法 | |
JP4635194B2 (ja) | 異常検知装置 | |
WO2018229836A1 (ja) | 軸受診断装置 | |
US20210048792A1 (en) | Diagnostic apparatus, system, diagnostic method, and program | |
US11566974B2 (en) | Systems and methods for analyzing machine performance | |
CN112985578A (zh) | 一种风电机组共振诊断方法及装置 | |
KR102545672B1 (ko) | 기계고장 진단 방법 및 장치 | |
KR20130045589A (ko) | 진동센서를 이용한 진단시스템 | |
US20200122859A1 (en) | Predictive monitoring system and method | |
Galar et al. | Application of dynamic benchmarking of rotating machinery for e-maintenance | |
EP4354244A1 (en) | Anomaly detection for industrial assets | |
US20230266738A1 (en) | Systems and methods for plant equipment condition monitoring | |
WO2024214165A1 (ja) | 電動機の診断装置および電動機の診断システム | |
US20240112504A1 (en) | Machine function analysis with radar plot | |
CN110440910B (zh) | 振动监测方法、装置、驱动系统、工控设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17914056 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17914056 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |