CN108593084A - 一种通信机房设备健康状态的检测分析方法 - Google Patents

一种通信机房设备健康状态的检测分析方法 Download PDF

Info

Publication number
CN108593084A
CN108593084A CN201810293147.2A CN201810293147A CN108593084A CN 108593084 A CN108593084 A CN 108593084A CN 201810293147 A CN201810293147 A CN 201810293147A CN 108593084 A CN108593084 A CN 108593084A
Authority
CN
China
Prior art keywords
data
equipment room
communications equipment
health status
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810293147.2A
Other languages
English (en)
Inventor
刘文飞
杨俊鹏
张虎
陈新平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810293147.2A priority Critical patent/CN108593084A/zh
Publication of CN108593084A publication Critical patent/CN108593084A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/12Measuring characteristics of vibrations in solids by using direct conduction to the detector of longitudinal or not specified vibrations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明提供了一种通信机房设备健康状态的检测分析方法,采集通信机房设备在一定时间范围内的声音数据和振动数据;通过手机app对声音数据和振动数据作初步的数据处理,若是异常数据则上传给分析平台作深度分析,即预先根据不同故障的声音或振动频谱特征进行分类,将异常数据的声音数据或振动数据中将随机信号和确定性信号分开,并提取出随机信号的周期成分;根据振动类型在振幅、频率、波长至少三个维度上对应比对所述机械松动的频谱特征、动静碰摩的频谱特征或轴承故障的频谱特征;最好预测出通信机房设备健康状态的发展趋向及达到危险水平的时间点。从而减少维护人员的工作强度和降低维护人员的技能要求,提高维护人员的工作效率,降低企业人员投入。

Description

一种通信机房设备健康状态的检测分析方法
技术领域
本发明涉及一种通信机房设备健康状态检测分析方法。
背景技术
由于目前通信行业机房的设备越来越多包含空调、UPS、开关电源、传输设备等众多设备。设备的正常运行需要投入人员进行维护和巡查,随着业务和设备的增加,越来越多的设备造成维护工作量和成本的增加,同时也考验着维护人员的应对能力和工作强度。为了减轻维护人员的负担、减少人员投入和提高工作效率,利用仪表对设备健康状态的预判和监测,并将检测数据分析给出合理的维护建议,将可能发生的故障提前发现并处理,以降低维护成本、人员成本和达到防患于未然的目的。
对于大部分设备在运转过程中均会产生一定的噪声和振动,根据生活经验和设备特性我们知道,设备在正常启动和运行过程时与故障时其产生的声音与设备的振动往往是会有一定的区别的。例如计算机散热的风扇转速不同代表其工作强度的区别,但若是声音比平时大的多则可能是计算机故障导致,此时应该引起关注;电梯在运行过程中正常都是比较平稳和安静的,但出现明显的抖动时,往往代表电梯处于异常状态。这样的例子不胜枚举,总结出来的结论就是机器或设备出现异常的声音或振动时极有可能表示机器或设备处于故障状态。因此对机房设备在运行状态时的声音和振动的检测并对比分析可以简单的判断设备的运行状态。
发明内容
本发明要解决的技术问题,在于提供一种通信机房设备健康状态的检测分析方法,通过分析通信机房设备的声音数据和振动数据来判断通信机房设备目前的健康状态是否异常;并预测通信机房设备健康状态的发展趋向及达到危险水平的时间点。
本发明是这样实现的:一种通信机房设备健康状态的检测分析方法,包括:S1、将噪声传感器和振动传感器靠近运行中的通信机房设备,采集通信机房设备在一定时间范围内的声音数据和振动数据;
S2、将采集到的声音数据和振动数据转为数字量传给手机app;
S3、手机app对接收到的数字量作初步的数据处理,即在手机app上分析数字量与参考范围值进行比较,若数字量超出参考范围值的则作为异常数据上传给分析平台,否则作为正常数据;
S4、所述分析平台对异常数据进行深度分析,从而判断通信机房设备目前的健康状态是否异常;所述深度分析是:
1)预先根据不同故障的声音或振动频谱特征进行分类,归纳出机械松动的频谱特征、动静碰摩的频谱特征和轴承故障的频谱特征;
2)在接收到的异常数据的声音数据或振动数据中将随机信号和确定性信号分开,并提取出随机信号的周期成分;根据振动类型在振幅、频率、波长至少三个维度上对应比对所述机械松动的频谱特征、动静碰摩的频谱特征或轴承故障的频谱特征,当随机信号的周期特性与归纳的故障频谱特征具有较高的相似度时判断为对应的故障类型;
S5、所述分析平台对每台通信机房设备建立“设备趋势情况记录表”,并将记录的数据绘制成曲线图,根据曲线图的斜率获得设备的变化情况和变化趋势,从而预测出通信机房设备健康状态的发展趋向及达到危险水平的时间点。
进一步的,所述较高的相似度为在振幅、频率、波长至少三个维度上均为70%以上的相似度;其中,只需分析所述声音数据或振动数据这两种数据中的一种即可,当同时分析这两种数据时则通过相互佐证分析结果来进一步判断为对应的故障类型。
进一步的,所述步骤S5中,记录的数据包括数据类型、历史数据和综合数据,该数据类型包括时间数据、振幅数据或频率数据,该综合数据包含通信机房设备的投入使用时间数据、正常记录数据、故障记录数据以及告警记录数据;绘制曲线图时,以时间数据为横坐标,振幅数据和频率数据为纵坐标,以所述投入使用时间数据、正常记录数据、故障记录数据以及告警记录数据为坐标值进行绘制。
本发明还可包括:S6、所述分析平台判断通信机房设备目前的健康状态为异常或根据发展趋向及达到危险水平的时间点,还给出故障类型和排除对策。
进一步的,所述参考范围值具有自我迭代功能,该自我迭代的过程是:
(1)先对通信机房内的正常设备进行声音数据和振动数据的采集,并上传到所述分析平台,由所述分析平台记录并设定为初始参考范围值;
(2)在检测分析过程中,手机app对接收到的数字量作初步的数据处理后得到正常数据和异常数据,再将正常数据和异常数据均上传至分析平台,由分析平台对比分析后再标定出故障数据;
(3)所述分析平台根据故障数据对初始参考范围值进行修正,得到迭代后的参考范围值;
(4)在后期的检测分析过程中,用同样的方法对上一次的参考范围值继续修正,使参考范围值继续得到迭代。
其中,初始参考范围值包括振幅的注意标准范围和危险标准范围,所述注意标准值范围和危险标准值范围的计算方法是:以等时间间隔为基础,取至少二十个同测点、同方向、同角度和压力的有效振幅数据并求出平均值,然后在平均值的基础上参考ISO建议的相对标准计算出所述注意标准值范围和所述危险标准值范围。
所述注意标准值范围和所述危险标准值范围的计算方法是:低频(<1KHZ)机械的注意标准范围为平均值的2.5倍,危险标准范围为平均值的6倍;高频(>4KHZ)机械的注意标准范围为平均值的10倍,危险标准范围为平均值的100倍。
进一步的,将噪声传感器和振动传感器靠近运行中的通信机房设备采集数据时,具体是靠近通信机房设备的机械转动部件外壳、轴承、重要的开关位置、设备主机外壳、设备重要模块的声音数据和振动数据。
本发明的优点在于:
(1)利用仪表对设备健康状态的预判和监测,并将检测数据分析给出合理的维护建议,可提前发现设备的潜在故障并处理故障,将可能发生的损失将至最低;
(2)利用仪表的检测以减少维护人员的工作强度和降低维护人员的技能要求,提高维护人员的工作效率,降低企业人员投入;
(3)随着采集数据的不断增加,参考范围值也将随之变得更加符合实际情况,意味着对设备的检测和诊断随着采集次数的增加也会更准确;
(4)利用设备和平台的相结合可实现维护检测的智能化、系统化、数字化、简单化。
附图说明
下面参照附图结合实施例对本发明作进一步的说明。
图1为本发明方法中采集分析系统的结构示意图。
图2为本发明方法的流程示意图。
具体实施方式
请参阅图1和图2所示,在这里描述了一种用于检测分析通信机房设备健康状态的方法。根据本发明的一个实施例,所述方法包括:
S1、将噪声传感器和振动传感器靠近运行中的通信机房设备,采集通信机房设备在一定时间范围内的声音数据和振动数据;将噪声传感器和振动传感器靠近运行中的通信机房设备采集数据时,具体是靠近通信机房设备的机械转动部件外壳、轴承、重要的开关位置、设备主机外壳、设备重要模块的声音数据和振动数据。
S2、将采集到的声音数据和振动数据经信号放大及信号调理处理后经OTC协议转为数字量传给手机app。
S3、手机app对接收到的数字量作初步的数据处理,即在手机app上分析数字量与参考范围值进行比较,若数字量超出参考范围值的则作为异常数据上传给分析平台,否则作为正常数据。
S4、所述分析平台对异常数据进行深度分析,从而判断通信机房设备目前的健康状态是否异常;所述深度分析是:
1)预先根据不同故障的声音或振动频谱特征进行分类,归纳出机械松动的频谱特征、动静碰摩的频谱特征和轴承故障的频谱特征;
2)在接收到的异常数据的声音数据或振动数据中将随机信号和确定性信号分开,并提取出随机信号的周期成分;根据振动类型在振幅、频率、波长至少三个维度上对应比对所述机械松动的频谱特征、动静碰摩的频谱特征或轴承故障的频谱特征,当随机信号的周期特性与归纳的故障频谱特征具有较高的相似度时判断为对应的故障类型;所述较高的相似度为在振幅、频率、波长至少三个维度上均为70%以上的相似度;
其中,只需分析所述声音数据或振动数据中的一种即可对设备状态进行分析判断,当同时检测到两种数据时可对两种数据同时分析并且相互佐证分析结果,而且设备某些特殊情况下声音或者振动的因素表现不明显,因此同时分析两种数据会使结果更为准确。
声波由声源振动产生,声波和振动波都是机械波,因此声波的特性与振动波的特性相似。设备可能会有产生多种故障,每种故障类型均有相应的频谱特征,当故障发生时,则故障的频谱特征在随机振动中变得明显,也就可以提取故障频谱特征的周期信号,所述故障的频谱特征是指故障信号的振幅、频率、波长等参数的周期特性,即频谱上具有稳定的不随时间变化的频谱结构。可根据不同故障的频谱特征进行分类,归纳机械松动的频谱特征、动静碰摩的频谱特征、轴承故障的频谱特征等类型。这样的归类可协助维护人员快速发现故障点和故障原因。
①机械松动的频谱特征
机械松动使连接刚度下降,这是松动振动异常的基本原因。松动振动显示出非线性特征,松动的典型特征是产生2倍、3倍、4倍及5倍等高频的振动。松动方向的振幅大,当高次谐波的振幅值大于转动频率振幅的1/2时,应怀疑有松动故障。
②动静碰摩的频谱特征
动静碰摩是当见习过小时发生动静件接触再弹开,改变结构的动态刚度。与松动具有类似特点,动静碰摩也是非线性特征,不过动静碰摩以分数谐波为特征;碰摩受间隙大小控制,与转速关系不甚密切;在波形表现形式上,摩擦常可见到削顶波形。
③轴承故障的频谱特征
轴承故障一般有疲劳剥落、磨损擦伤、锈蚀电蚀、裂纹断裂几种故障形式。以转轴横向裂纹故障为例,转轴每转一周裂纹总会发生张合,转轴的刚度部队称,从而引发非线性振动,能识别的振动主要是1倍、2倍、3倍的倍频分量;在开停机过程中,由于非线性谐频关系,会出现分频共振;全息谱表现为2倍频的椭圆形状。
S5、所述分析平台对每台通信机房设备建立“设备趋势情况记录表”,并将记录的数据绘制成曲线图,根据曲线图的斜率获得设备的变化情况和变化趋势,从而预测出通信机房设备健康状态的发展趋向及达到危险水平的时间点。所述记录的数据包括数据类型、历史数据和综合数据,该数据类型包括时间数据、振幅数据或频率数据,该综合数据包含通信机房设备的投入使用时间数据、正常记录数据、故障记录数据以及告警记录数据;绘制曲线图时,以时间数据为横坐标,振幅数据和频率数据为纵坐标,以所述投入使用时间数据、正常记录数据、故障记录数据以及告警记录数据为坐标值进行绘制。
S6、所述分析平台判断通信机房设备目前的健康状态为异常或根据发展趋向及达到危险水平的时间点,还给出故障类型和排除对策。
另外,根据本发明的一个实施例,步骤S3中的所述参考范围值具有自我迭代功能,随着数据的不断累积和完善,参考范围值的准确性也将随之提高,该自我迭代的过程是:
(1)先对通信机房内的正常设备进行声音数据和振动数据的采集,并上传到所述分析平台,由所述分析平台记录并设定为初始参考范围值;
(2)在检测分析过程中,手机app对接收到的数字量作初步的数据处理后得到正常数据和异常数据,再将正常数据和异常数据均上传至分析平台,由分析平台对比分析后再标定出故障数据;
(3)所述分析平台根据故障数据对初始参考范围值进行修正,得到迭代后的参考范围值;
(4)在后期的检测分析过程中,用同样的方法对上一次的参考范围值继续修正,使参考范围值继续得到迭代。
初始参考范围值包括振幅的注意标准范围和危险标准范围,所述注意标准值范围和危险标准值范围的计算方法是:以等时间间隔为基础,取至少二十个同测点、同方向、同角度和压力的有效振幅数据并求出平均值,然后在平均值的基础上参考ISO建议的相对标准计算出所述注意标准值范围和所述危险标准值范围。
所述注意标准值范围和所述危险标准值范围的计算方法是:低频(<1KHZ)机械的注意标准范围为平均值的2.5倍,危险标准范围为平均值的6倍;高频(>4KHZ)机械的注意标准范围为平均值的10倍,危险标准范围为平均值的100倍。其中,ISO建议的相对标准不是绝对标准,不能适用于所有设备,每种设备都应该有独立的标准,使用都可以查询得到各种设备的标准或依经验自行设定注意标准值范围和所述危险标准值范围。
虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。

Claims (8)

1.一种通信机房设备健康状态的检测分析方法,其特征在于:包括:
S1、采集通信机房设备在一定时间范围内的声音数据和振动数据;
S2、将采集到的声音数据和振动数据转为数字量传给手机app;
S3、手机app对接收到的数字量作初步的数据处理,即在手机app上分析数字量与参考范围值进行比较,若数字量超出参考范围值的则作为异常数据上传给分析平台,否则作为正常数据;
S4、所述分析平台对异常数据进行深度分析,从而判断通信机房设备目前的健康状态是否异常;所述深度分析是:
1)预先根据不同故障的声音或振动频谱特征进行分类,归纳出机械松动的频谱特征、动静碰摩的频谱特征和轴承故障的频谱特征;
2)在接收到的异常数据的声音数据或振动数据中将随机信号和确定性信号分开,并提取出随机信号的周期成分;根据振动类型在振幅、频率、波长至少三个维度上对应比对所述机械松动的频谱特征、动静碰摩的频谱特征或轴承故障的频谱特征,当随机信号的周期特性与归纳的故障频谱特征具有较高的相似度时判断为对应的故障类型;
S5、所述分析平台对每台通信机房设备建立“设备趋势情况记录表”,并将记录的数据绘制成曲线图,根据曲线图的斜率获得设备的变化情况和变化趋势,从而预测出通信机房设备健康状态的发展趋向及达到危险水平的时间点。
2.如权利要求1所述的一种通信机房设备健康状态的检测分析方法,其特征在于:所述较高的相似度为在振幅、频率、波长至少三个维度上均为70%以上的相似度;
其中,只需分析所述声音数据或振动数据这两种数据中的一种即可,当同时分析这两种数据时则通过相互佐证分析结果来进一步判断为对应的故障类型。
3.如权利要求1所述的一种通信机房设备健康状态的检测分析方法,其特征在于:所述步骤S5中,记录的数据包括数据类型、历史数据和综合数据,该数据类型包括时间数据、振幅数据或频率数据,该综合数据包含通信机房设备的投入使用时间数据、正常记录数据、故障记录数据以及告警记录数据;绘制曲线图时,以时间数据为横坐标,振幅数据和频率数据为纵坐标,以所述投入使用时间数据、正常记录数据、故障记录数据以及告警记录数据为坐标值进行绘制。
4.如权利要求1所述的一种通信机房设备健康状态的检测分析方法,其特征在于:还包括:
S6、所述分析平台判断通信机房设备目前的健康状态为异常或根据发展趋向及达到危险水平的时间点,还给出故障类型和排除对策。
5.如权利要求1所述的一种通信机房设备健康状态的检测分析方法,其特征在于:所述参考范围值具有自我迭代功能,该自我迭代的过程是:
(1)先对通信机房内的正常设备进行声音数据和振动数据的采集,并上传到所述分析平台,由所述分析平台记录并设定为初始参考范围值;
(2)在检测分析过程中,手机app对接收到的数字量作初步的数据处理后得到正常数据和异常数据,再将正常数据和异常数据均上传至分析平台,由分析平台对比分析后再标定出故障数据;
(3)所述分析平台根据故障数据对初始参考范围值进行修正,得到迭代后的参考范围值;
(4)在后期的检测分析过程中,用同样的方法对上一次的参考范围值继续修正,使参考范围值继续得到迭代。
6.如权利要求5所述的一种通信机房设备健康状态的检测分析方法,其特征在于:初始参考范围值包括振幅的注意标准范围和危险标准范围,所述注意标准值范围和危险标准值范围的计算方法是:以等时间间隔为基础,取至少二十个同测点、同方向、同角度和压力的有效振幅数据并求出平均值,然后在平均值的基础上参考ISO建议的相对标准计算出所述注意标准值范围和所述危险标准值范围。
7.如权利要求6所述的一种通信机房设备健康状态的检测分析方法,其特征在于:所述注意标准值范围和所述危险标准值范围的计算方法是:低频(<1KHZ)机械的注意标准范围为平均值的2.5倍,危险标准范围为平均值的6倍;高频(>4KHZ)机械的注意标准范围为平均值的10倍,危险标准范围为平均值的100倍。
8.如权利要求1所述的一种通信机房设备健康状态的检测分析方法,其特征在于:将噪声传感器和振动传感器靠近运行中的通信机房设备采集数据时,具体是靠近通信机房设备的机械转动部件外壳、轴承、重要的开关位置、设备主机外壳、设备重要模块的声音数据和振动数据。
CN201810293147.2A 2018-03-30 2018-03-30 一种通信机房设备健康状态的检测分析方法 Pending CN108593084A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810293147.2A CN108593084A (zh) 2018-03-30 2018-03-30 一种通信机房设备健康状态的检测分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810293147.2A CN108593084A (zh) 2018-03-30 2018-03-30 一种通信机房设备健康状态的检测分析方法

Publications (1)

Publication Number Publication Date
CN108593084A true CN108593084A (zh) 2018-09-28

Family

ID=63624330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810293147.2A Pending CN108593084A (zh) 2018-03-30 2018-03-30 一种通信机房设备健康状态的检测分析方法

Country Status (1)

Country Link
CN (1) CN108593084A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111121948A (zh) * 2020-01-03 2020-05-08 上海新晃空调设备股份有限公司 一种空气处理机组的震动特性的检测方法
CN111310697A (zh) * 2020-02-17 2020-06-19 硕橙(厦门)科技有限公司 设备运转周期检测及健康度分析方法、装置及存储介质
CN111473815A (zh) * 2020-04-02 2020-07-31 江苏科技大学 一种基于多传感器的双主机状态监测系统及其监测方法
CN112199977A (zh) * 2019-07-08 2021-01-08 中国移动通信集团浙江有限公司 通信机房异常检测方法、装置及计算设备
CN112402736A (zh) * 2020-11-17 2021-02-26 杭州师范大学钱江学院 一种输液监视方法
CN112814890A (zh) * 2021-02-05 2021-05-18 安徽绿舟科技有限公司 一种基于声纹和震动检测泵机故障的方法
CN115219016A (zh) * 2022-09-20 2022-10-21 烟台辰宇汽车部件有限公司 一种推力杆故障预警装置及方法
CN115865731A (zh) * 2022-11-28 2023-03-28 四川天邑康和通信股份有限公司 网关设备与网络机顶盒通信测试系统、方法及存储介质
CN117114420A (zh) * 2023-10-17 2023-11-24 南京启泰控股集团有限公司 一种基于图像识别的工贸安全事故风险管控系统和方法
CN117309299A (zh) * 2023-11-28 2023-12-29 天津信天电子科技有限公司 伺服驱动器振动试验方法、装置、设备及介质
CN117671606A (zh) * 2024-02-01 2024-03-08 四川并济科技有限公司 基于神经网络模型的智慧图像识别系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106776102A (zh) * 2016-12-27 2017-05-31 中国建设银行股份有限公司 一种应用系统健康检查方法及系统
CN107576488A (zh) * 2017-08-30 2018-01-12 沃德传动(天津)股份有限公司 一种采用振动算法对设备运行状态进行监测诊断的方法
CN107677360A (zh) * 2017-08-23 2018-02-09 深圳企管加企业服务有限公司 基于物联网的机房振动报警方法、装置及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106776102A (zh) * 2016-12-27 2017-05-31 中国建设银行股份有限公司 一种应用系统健康检查方法及系统
CN107677360A (zh) * 2017-08-23 2018-02-09 深圳企管加企业服务有限公司 基于物联网的机房振动报警方法、装置及存储介质
CN107576488A (zh) * 2017-08-30 2018-01-12 沃德传动(天津)股份有限公司 一种采用振动算法对设备运行状态进行监测诊断的方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112199977A (zh) * 2019-07-08 2021-01-08 中国移动通信集团浙江有限公司 通信机房异常检测方法、装置及计算设备
CN111121948B (zh) * 2020-01-03 2021-09-03 上海新晃空调设备股份有限公司 一种空气处理机组的震动特性的检测方法
CN111121948A (zh) * 2020-01-03 2020-05-08 上海新晃空调设备股份有限公司 一种空气处理机组的震动特性的检测方法
CN111310697B (zh) * 2020-02-17 2023-03-24 硕橙(厦门)科技有限公司 设备运转周期检测及健康度分析方法、装置及存储介质
CN111310697A (zh) * 2020-02-17 2020-06-19 硕橙(厦门)科技有限公司 设备运转周期检测及健康度分析方法、装置及存储介质
CN111473815A (zh) * 2020-04-02 2020-07-31 江苏科技大学 一种基于多传感器的双主机状态监测系统及其监测方法
CN111473815B (zh) * 2020-04-02 2022-03-11 江苏科技大学 一种基于多传感器的双主机状态监测系统及其监测方法
CN112402736A (zh) * 2020-11-17 2021-02-26 杭州师范大学钱江学院 一种输液监视方法
CN112814890A (zh) * 2021-02-05 2021-05-18 安徽绿舟科技有限公司 一种基于声纹和震动检测泵机故障的方法
CN115219016A (zh) * 2022-09-20 2022-10-21 烟台辰宇汽车部件有限公司 一种推力杆故障预警装置及方法
CN115865731A (zh) * 2022-11-28 2023-03-28 四川天邑康和通信股份有限公司 网关设备与网络机顶盒通信测试系统、方法及存储介质
CN115865731B (zh) * 2022-11-28 2024-04-09 四川天邑康和通信股份有限公司 网关设备与网络机顶盒通信测试系统、方法及存储介质
CN117114420A (zh) * 2023-10-17 2023-11-24 南京启泰控股集团有限公司 一种基于图像识别的工贸安全事故风险管控系统和方法
CN117114420B (zh) * 2023-10-17 2024-01-05 南京启泰控股集团有限公司 一种基于图像识别的工贸安全事故风险管控系统和方法
CN117309299A (zh) * 2023-11-28 2023-12-29 天津信天电子科技有限公司 伺服驱动器振动试验方法、装置、设备及介质
CN117309299B (zh) * 2023-11-28 2024-02-06 天津信天电子科技有限公司 伺服驱动器振动试验方法、装置、设备及介质
CN117671606A (zh) * 2024-02-01 2024-03-08 四川并济科技有限公司 基于神经网络模型的智慧图像识别系统及方法
CN117671606B (zh) * 2024-02-01 2024-04-02 四川并济科技有限公司 基于神经网络模型的智慧图像识别系统及方法

Similar Documents

Publication Publication Date Title
CN108593084A (zh) 一种通信机房设备健康状态的检测分析方法
CN108827632A (zh) 一种通信机房设备健康状态的检测分析方法
US20240068864A1 (en) Systems and methods for monitoring of mechanical and electrical machines
US20120330578A1 (en) Severity analysis apparatus and method for shafts of rotating machinery
US10704409B2 (en) Systems and methods to detect a fluid induced instability condition in a turbomachine
US20120330577A1 (en) Vibration severity analysis apparatus and method for rotating machinery
US10959077B2 (en) Preventive maintenance and failure cause determinations in turbomachinery
US20240068482A1 (en) Real-time pump monitoring with prescriptive analytics
US20190154494A1 (en) Detecting degradation in rotating machinery by using the fwhm metric to analyze a vibrational spectral density distribution
US20210034746A1 (en) Detection of cyber machinery attacks
US20120109569A1 (en) Diagnosis of bearing thermal anomalies in an electrical machine
US20210048792A1 (en) Diagnostic apparatus, system, diagnostic method, and program
Sun et al. Characterization of cavitation and seal damage during pump operation by vibration and motor current signal spectra
US20160062816A1 (en) Detection of outage in cloud based service using usage data based error signals
EP3441913A1 (en) Electronic volume corrector with cloud enabled health monitoring of associated gas distribution equipment
US7191096B1 (en) Multi-dimensional sequential probability ratio test for detecting failure conditions in computer systems
EP3417262A1 (en) Predictive monitoring system and method
CN107725456B (zh) 离心压缩机机组的分析诊断方法和装置
US11463032B2 (en) Detecting rotor anomalies by determining vibration trends during transient speed operation
US20200122859A1 (en) Predictive monitoring system and method
Rubhini et al. Machine condition monitoring using audio signature analysis
Badkoubeh A Non-Intrusive Condition Monitoring and Vibration Control System for Electric Submersible Pumps
KR20200136197A (ko) 회전 기계의 결함을 검출하는 장치 및 방법
WO2017212645A1 (ja) 軸受診断装置および軸受診断方法、並びに回転機器およびその保守方法
US11592327B2 (en) Torsional-lateral cross-coupling detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180928

WD01 Invention patent application deemed withdrawn after publication