WO2018229597A1 - Charging control system, charging control method, and electronic equipment - Google Patents

Charging control system, charging control method, and electronic equipment Download PDF

Info

Publication number
WO2018229597A1
WO2018229597A1 PCT/IB2018/054029 IB2018054029W WO2018229597A1 WO 2018229597 A1 WO2018229597 A1 WO 2018229597A1 IB 2018054029 W IB2018054029 W IB 2018054029W WO 2018229597 A1 WO2018229597 A1 WO 2018229597A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
charging
deterioration
wiring
switch
Prior art date
Application number
PCT/IB2018/054029
Other languages
French (fr)
Japanese (ja)
Inventor
田島亮太
豊高耕平
伊佐敏行
宍戸英明
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2019524540A priority Critical patent/JP7235409B2/en
Publication of WO2018229597A1 publication Critical patent/WO2018229597A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One embodiment of the present invention relates to an object, a method, or a manufacturing method. Alternatively, one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter).
  • One embodiment of the present invention relates to a semiconductor device, a display device, a light-emitting device, a power storage device, a lighting device, an electronic device, or a manufacturing method thereof.
  • the present invention relates to a charge control system, a charge control method, and an electronic device having a secondary battery.
  • One embodiment of the present invention relates to a vehicle or a vehicle electronic device provided in the vehicle.
  • a power storage device refers to all elements and devices having a power storage function.
  • a storage battery also referred to as a secondary battery
  • a lithium ion secondary battery such as a lithium ion secondary battery, a lithium ion capacitor, an all-solid battery, and an electric double layer capacitor are included.
  • One embodiment of the present invention relates to a neural network and a charge control system using the same. Another embodiment of the present invention relates to a vehicle using a neural network. Another embodiment of the present invention relates to an electronic device using a neural network. One embodiment of the present invention is not limited to a vehicle, and can also be applied to a charge control system for a power storage device for storing power obtained from power generation equipment such as a solar power generation panel installed in a structure or the like. .
  • lithium ion secondary batteries with high output and high energy density are portable information terminals such as mobile phones, smartphones, tablets, or notebook computers, portable music players, digital cameras, medical devices, or hybrid vehicles (HEV).
  • EVs electric vehicles
  • PHEVs plug-in hybrid vehicles
  • a plurality of secondary batteries are connected in series or in parallel to provide a protection circuit and used as a battery pack (also referred to as an assembled battery).
  • the battery pack refers to a battery in which a plurality of secondary batteries are stored together with a predetermined circuit in a container (metal can, film outer package) in order to facilitate handling of the secondary battery.
  • the battery pack is provided with an ECU (Electronic Control Unit) in order to manage the operation state. If the characteristics of each of the secondary batteries constituting the battery pack vary, an imbalance will occur. When an imbalance occurs, a secondary battery that is overcharged during charging or a secondary battery that is not fully charged is generated, and the apparent capacity of the entire battery pack is reduced. However, since charging ends when a certain voltage is reached, there is a difference between the actual capacity and the capacity output by the calculation.
  • An electric vehicle is a vehicle that uses only an electric motor as a drive unit, but there is also a hybrid vehicle that includes both an internal combustion engine such as an engine and an electric motor.
  • a plurality of sets of battery packs each including a plurality of secondary batteries as one battery pack are arranged in a lower part of an automobile using the secondary batteries.
  • Secondary batteries used in electric vehicles and hybrid vehicles are deteriorated depending on the number of times of charge / discharge, depth of discharge, charging current, charging environment (temperature change), and the like.
  • the temperature at the time of charging, the frequency of quick charging, the amount of charge by the regenerative brake, the charging timing by the regenerative brake, etc. may affect the degree of deterioration of the battery.
  • Patent Document 1 describes a method of controlling charging / discharging from a discharging battery cell to a charging battery cell by controlling a transistor according to the capacity of the battery cell.
  • a head mounted display also referred to as HMD
  • a spectacle type device the weight of the battery or the weight balance due to the arrangement of the battery is emphasized.
  • a spectacle-type device incorporating a plurality of batteries is disclosed in Patent Document 2.
  • Patent Document 3 discloses a device that zooms in the field of view while observing an image with an HMD.
  • the actual remaining capacity of a secondary battery can be obtained by discharging and detecting the secondary battery, but the device cannot be used if it is actually discharged.
  • the remaining capacity is estimated from correlated parameters (battery voltage and integrated current).
  • the secondary battery since the secondary battery uses a chemical reaction, it may be erroneous if the remaining capacity is instantaneously estimated based on a small amount of data.
  • the deteriorated secondary battery has a large terminal voltage during charging and a small terminal voltage during discharging. There is a difference. Therefore, it is an object to make the degree of deterioration uniform among a plurality of secondary batteries. Another object is to reduce a difference in terminal voltage between a plurality of secondary batteries used in an electronic device and reduce an unbalance between the secondary batteries.
  • An object of one embodiment of the present invention is to provide a novel battery management circuit, a power storage device, an electronic device, and the like.
  • the secondary batteries are selected and the secondary batteries are individually charged to reduce the unbalance between the secondary batteries.
  • a plurality of secondary batteries have been controlled together.
  • a plurality of secondary batteries preferably two or more secondary batteries are individually controlled, so Reduce balance.
  • the charging condition is changed to suppress the deterioration, and charging is stopped within a range where the battery is not fully charged. It is also effective in an electric vehicle equipped with a solar cell that repeatedly charges and an electric vehicle equipped with a power generation engine.
  • the current, voltage, temperature, etc. of the secondary battery are detected by a detecting element or sensor, and the state of charge (SOC) is calculated.
  • SOC state of charge
  • the SOC is also called a charging rate, and is defined by the ratio of the remaining capacity to the maximum capacity of the secondary battery.
  • the optimal charging condition may be determined using the second neural network.
  • the first neural network and the second neural network are preferably configured in separate microcomputers.
  • the invention disclosed in this specification includes an integrated circuit, a first secondary battery, and a second secondary battery, and the SOC (charge rate) of the secondary battery is 1% or more.
  • charge / discharge is performed within an arbitrary fixed range (discharge lower limit voltage or more and charge upper limit voltage or less), and the integrated circuit is connected to the first secondary battery and the second secondary battery using a neural network.
  • the integrated circuit Diagnoses the deterioration level, the integrated circuit detects the secondary battery with the higher level of deterioration, and the secondary battery with the higher level of deterioration is within a narrower range than the secondary battery with the lower level of deterioration.
  • It is a charge control system that performs charging under a charging condition that provides a charging rate that fits. For example, the progress of deterioration is suppressed by selectively setting a lower charging upper limit voltage of a secondary battery having a higher degree of deterioration and charging at a lower charge rate.
  • a charging condition that provides a charging rate that falls within a narrower range than the secondary battery having a smaller degree of deterioration may be determined using the second neural network.
  • the first secondary battery is electrically connected to the first switch
  • the second secondary battery is electrically connected to the second switch
  • the first and second switches are Controlled by an integrated circuit.
  • the integrated circuit has a memory for storing charge / discharge characteristic data correlated with SOC (charge rate).
  • the integrated circuit includes a CPU (Central Processing Unit) and manages devices such as the entire electric vehicle.
  • the CPU is not particularly limited as long as it can perform the necessary computation, and a GPU (Graphics Processing Unit) or an APU (Accelerated Processing Unit) may be used.
  • APU refers to a chip in which a CPU and a GPU are integrated.
  • the above configuration shows an example in which two secondary batteries are used, but there is no particular limitation, and the number of secondary batteries is 3 or more, or 100 or more, or 7000 or more and 10,000 or less.
  • a service plug or a circuit breaker that can cut off a high voltage without using a tool is provided to cut off power from a plurality of secondary batteries. For example, when 48 battery modules having 2 to 10 cells are connected in series, a service plug or a circuit breaker is provided between the 24th battery module and the 25th battery module. .
  • an individual switch is provided. For example, the same number of IC chips (including switches) as the secondary battery are prepared, and one IC chip is electrically connected to one secondary battery.
  • a plurality of secondary batteries are provided, and preferably two or more are individually controlled using a neural network, thereby reducing imbalance between the secondary batteries.
  • the invention disclosed in this specification includes a first display area, a second display area, an integrated circuit, a first secondary battery, and a second secondary battery, and includes a neural network.
  • the integrated circuit uses the first secondary battery or the second secondary battery for deterioration analysis, and the secondary battery having the larger deterioration degree has a lower SOC than the secondary battery having the lower deterioration degree. It is an electronic device that charges in a narrow range.
  • the first secondary battery is electrically connected to the first switch
  • the second secondary battery is electrically connected to the second switch
  • the first and second switches are Controlled by an integrated circuit.
  • the integrated circuit has a memory for storing charge / discharge characteristic data correlated with the SOC.
  • the first display area is the first display device
  • the second display area is the second display device.
  • the above configuration shows an example in which two secondary batteries are used, but there is no particular limitation, and the number of secondary batteries is 3 or more, or 100 or more.
  • an individual switch is provided in order to control an individual secondary battery. For example, the same number of IC chips (including switches) as the secondary battery are prepared, and one IC chip is electrically connected to one secondary battery.
  • the invention disclosed in this specification includes a first display region, a second display region, a first integrated circuit, a second integrated circuit, a first secondary battery, and a second secondary battery.
  • a first secondary battery is electrically connected to the first switch
  • a second secondary battery is electrically connected to the second switch
  • the first switch is The second switch is an electronic device controlled by the second integrated circuit, and is controlled by the first integrated circuit.
  • the electronic device may be an electronic device having an imaging device having a function of imaging a pupil.
  • a change in the shape of the pupil can be detected based on the captured pupil shape.
  • the integrated circuit may generate display data based on a change in setting according to a change in the shape of the pupil.
  • an integrated circuit produces
  • generation of display data in an integrated circuit involves processing in a circuit such as a processor, and therefore display data may be calculated and generated.
  • the integrated circuit may generate display data that reduces drunkness of the user by viewing the display image of the display device, and may correct the display image of the display device.
  • the first integrated circuit performs a deterioration analysis of the first secondary battery using a neural network
  • the second integrated circuit performs a deterioration analysis of the second secondary battery using a neural network. Then, charging is performed in a range in which the SOC is narrower than that of the secondary battery having the smaller deterioration degree than the secondary battery having the larger deterioration degree.
  • the integrated circuit may include a transistor including an oxide semiconductor.
  • a transistor in which an oxide semiconductor or a metal oxide is used for a channel formation region is referred to as an oxide semiconductor transistor or an OS transistor.
  • the channel formation region of the OS transistor preferably includes a metal oxide.
  • a metal oxide is a metal oxide in a broad expression.
  • Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as oxide semiconductors or simply OS), and the like.
  • oxide semiconductors also referred to as oxide semiconductors or simply OS
  • the metal oxide may be referred to as an oxide semiconductor. That is, when a metal oxide has at least one of an amplifying function, a rectifying function, and a switching function, the metal oxide can be referred to as a metal oxide semiconductor, or OS for short.
  • the metal oxide included in the channel formation region preferably contains indium (In).
  • the metal oxide included in the channel formation region is a metal oxide containing indium, carrier mobility (electron mobility) of the OS transistor is increased.
  • the metal oxide included in the channel formation region is preferably an oxide semiconductor containing the element M.
  • the element M is preferably aluminum (Al), gallium (Ga), tin (Sn), or the like.
  • the element M may be a combination of a plurality of the aforementioned elements.
  • the element M is an element having a high binding energy with oxygen, for example. For example, it is an element whose binding energy with oxygen is higher than that of indium.
  • the metal oxide included in the channel formation region is preferably a metal oxide containing zinc (Zn). A metal oxide containing zinc may be easily crystallized.
  • the metal oxide contained in the channel formation region is not limited to a metal oxide containing indium.
  • the metal oxide contained in the channel formation region is, for example, zinc-tin oxide, gallium tin oxide, or the like, which does not contain indium, zinc-containing metal oxide, gallium-containing metal oxide, tin-containing metal oxide, etc. It does not matter.
  • the secondary battery having a higher degree of deterioration stops charging so as not to be fully charged at the time of charging, and the secondary battery having a lower degree of deterioration is fully charged at the time of charging.
  • the fully charged state means a state in which charging is performed until the voltage of the secondary battery that has started charging falls within the range of the charge end voltage.
  • the state of charge is indicated by an SOC in which the charge amount is expressed as a ratio with respect to the capacity of the secondary battery.
  • Priority is given to charging or discharging a secondary battery with little deterioration, thereby making a difference between the secondary battery with high deterioration and the number of times it has been charged or the maintenance period of a fully charged state. As the number of times of charging increases, or the longer the fully charged state is maintained, the longer the deterioration, the more accelerated the deterioration. The difference is reduced, and the difference in the degree of deterioration between the secondary batteries is reduced.
  • the secondary battery having a higher degree of deterioration stops the discharge by increasing the discharge lower limit voltage so that the SOC (charge rate) does not become less than 30% at the time of discharging, and the degree of deterioration is small.
  • the secondary battery is discharged until the SOC (charge rate) reaches less than 30%.
  • the charge control method is also one of the inventions disclosed in this specification. Diagnose the degree of deterioration of the first secondary battery and the second secondary battery, and turn on the switch connected to one of the first secondary battery and the second secondary battery that is less deteriorated The first charging condition is fully charged, the switch connected to the other battery having a large deterioration is turned on, and charging is started under a second charging condition different from the first charging condition. Rate) Stop charging in the range of 50% to 80% and record the charging history.
  • the second charging condition is determined by neural network processing.
  • Neural network processing is a system that learns using a plurality of data.
  • the second charging condition may be determined by selecting one of several predetermined charging conditions using a learning result obtained by using a neural network learned in advance.
  • втори ⁇ ество Since some of the secondary batteries are not fully charged in the assembled battery, secondary batteries having different remaining capacities are used, and the voltage of the secondary battery having a low voltage is individually increased by the booster circuit. Also, information on individual secondary batteries is collected, and discharge is performed by selecting optimum conditions for the individual secondary batteries using the second neural network. For example, a secondary battery with low deterioration is used preferentially, and a secondary battery with high deterioration hardly uses (discharges or charges), and maintains capacity. By using the assembled battery so that the degree of deterioration between the batteries is the same, the imbalance between the secondary batteries is reduced.
  • the cooling means such as the blower and the liquid circulation device is controlled. Further, if the temperature of the outside air is low and the temperature of the detected secondary battery is low, the temperature may be increased by controlling heating means such as a heater.
  • the charging method includes a CHAdeMO method and a Combo method. Moreover, you may use a non-contact-type charging device. Power is exchanged from the transmitting coil to the receiving coil.
  • Non-contact methods include a resonance method and an electromagnetic induction method.
  • a charging control device is one aspect of the present invention.
  • the charge control device includes: a first switch electrically connected to the first secondary battery; a second switch electrically connected to the second secondary battery; the first secondary battery; An integrated circuit for performing deterioration analysis or deterioration diagnosis or deterioration estimation of the second secondary battery, a neural network unit for determining a charging condition suitable for the deterioration state of the secondary battery, one secondary battery and the second second battery And a converter that boosts the smaller output voltage so that the output voltages of the secondary batteries are the same.
  • the difference in performance deterioration among a plurality of secondary batteries used in electronic devices can be reduced, and the unbalance between secondary batteries can be reduced.
  • the secondary battery By connecting a plurality of secondary batteries in series or in parallel, the secondary battery can be efficiently used by reducing the unbalance of the secondary batteries, and the assembled battery can be used for a long time.
  • the secondary battery can be built into the HMD or glasses-type device. Moreover, it becomes easy to adjust the weight balance of an electronic device by arrange
  • the charging condition is adjusted by a microprocessor capable of performing neural network calculation individually, so that a long life is achieved even if there is a difference in the usage period of the secondary battery. be able to.
  • FIG. 1 is an example of a block diagram illustrating one embodiment of the present invention.
  • 6 is an example of a flowchart illustrating one embodiment of the present invention.
  • 6 is an example of a flowchart illustrating one embodiment of the present invention.
  • 6 is an example of a flowchart illustrating one embodiment of the present invention.
  • the graph which shows an example of SOC, and the graph which shows a capacity
  • the block diagram which shows the structural example of a product-sum operation circuit.
  • the circuit diagram which shows the structural example of a circuit.
  • the timing chart which shows the operation example of a product-sum operation circuit.
  • the figure which shows a cylindrical secondary battery.
  • 10A and 10B each illustrate an example of an electronic device.
  • 10A and 10B each illustrate an example of an electronic device.
  • 10A and 10B each illustrate an example of an electronic device.
  • 4A and 4B are a top view and a schematic view illustrating one embodiment of the present invention.
  • 10A and 10B each illustrate an electronic device.
  • FIG. 1A shows an example of a block diagram of a passenger car equipped with a plurality of secondary batteries, here two secondary batteries. Note that in FIG. 1A, for simplification, a seat, a door, a frame for increasing rigidity, and the like are not illustrated.
  • 1A includes a secondary battery 301a, a secondary battery 301b, a boost converter 302, an inverter 303, a motor 305, a regenerative brake emphasis control valve 304, a tire 306, and the like.
  • the secondary battery 301a and the secondary battery 301b are lithium ion secondary batteries, and are provided with switches 311a and 311b, respectively, and charging or discharging can be controlled using a plurality of switches.
  • the switch is controlled by the first ECU.
  • the exchange of electric power between the regenerative brake emphasis control valve 304 and the secondary battery 301a (or the secondary battery 301b) is controlled by an ECU (first ECU or second ECU).
  • ECU first ECU or second ECU
  • a range controlled by the ECU is surrounded by a dotted line.
  • the ECU indicates an electronic control unit and is a kind of integrated circuit such as a microcomputer.
  • the first ECU may be composed of an LSI (Large Scale Integrated Circuit) manufactured by being integrated on one chip. Further, the integration method is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, an FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of the circuit cells inside the LSI may be used.
  • LSI Large Scale Integrated Circuit
  • the power supplied from the secondary battery is supplied to the motor 305 via the boost converter 302 and the inverter 303.
  • the motor 305 rotates the tire 306 to move the passenger car.
  • the brake is used, regenerative energy is collected and the secondary battery is charged via the second ECU and the first ECU.
  • the charging destination can be determined by switching the switches 311a and 311b in consideration of the degree of deterioration.
  • the deterioration state of a plurality of secondary batteries is analyzed (or diagnosed or estimated) while the passenger car is running using a neural network. If the SOC is 30% or more, the switch is turned on and the power consumption is reduced. Supply. For the secondary battery in which the SOC is discharged to less than 30%, the power supply to the motor is stopped by turning off the switch. Alternatively, the secondary battery in which the SOC is discharged to less than 30% is switched on to preferentially start charging from the regenerative brake. Further, the secondary battery having a small degree of deterioration is switched on to preferentially start charging from the regenerative brake.
  • FIG. 2 is a flowchart showing a charging operation while the vehicle is stopped.
  • a microprocessor capable of performing neural network processing is mounted on the ECU.
  • the microprocessor built in the ECU of the passenger car may have an analog product-sum operation circuit. Details of the analog product-sum operation circuit will be described in a later embodiment. Note that a microprocessor capable of performing neural network processing can be configured without using an analog product-sum operation circuit.
  • an external power source single-phase AC200V or three-phase AC200V, etc.
  • a plug are electrically connected using a charging cable
  • the microprocessor of the first ECU provides information such as the remaining capacity (SOC) of the secondary battery. Obtained automatically (S1).
  • SOC remaining capacity
  • S1 Obtained automatically
  • As a method for measuring the remaining capacity of the secondary battery there are a detection method by a voltage method, a detection method by an integration method, and the like.
  • the detection of SOC based on a physical model involves a model that relies on variables such as current, voltage, internal temperature, no-load voltage, external temperature, impedance, and the like.
  • the method for detecting the SOC is coulometry.
  • the microprocessor of the first ECU performs neural network processing to diagnose the degree of deterioration of the first and second secondary batteries (S2).
  • the secondary battery deterioration degree diagnosis refers to the time series data of the reference secondary battery SOC (for example, SOC at the time of shipment) and the time series data of the SOC after using the secondary battery to determine the degree of deterioration. It is to be.
  • the degree of deterioration is calculated (S4).
  • a charging profile may be inferred from the transition of the charging voltage after the start of charging, and the degree of deterioration may be diagnosed from the inferred charging capacity.
  • the degree of deterioration can be diagnosed by estimating the SOC of the secondary battery and comparing it with the SOC at the time of shipment of the target secondary battery. Further, the deterioration degree may be diagnosed not by comparing with the SOC at the time of shipment but by comparing with other secondary batteries.
  • various known neural network calculation methods can be used.
  • a threshold value may be provided to determine the degree of deterioration of the secondary battery.
  • a secondary battery with great deterioration turns on the first charge switch (S5). Then, charging is started (S6), and charging is stopped before the fully charged state is reached. The first charging switch is turned off to stop charging (S7).
  • the secondary battery having a large deterioration is charged so that the SOC is in the range of 50% to 80% (S8).
  • the degree of deterioration and the charge history are stored in a memory or the like (S10), and the data can be referred to as a past charge history (S3) when calculating the degree of deterioration (also called the degree of deterioration).
  • the rechargeable secondary battery is charged in such a series of flows.
  • the second charging switch is turned on (S5), charging is started (S6), and the process is terminated (S9) when the fully charged state is reached. Then, the second charging switch is turned off (S11). Charging of the secondary battery with small deterioration is performed in such a series of flows. Note that the first charging switch and the second charging switch correspond to the switches 311a and 311b in FIG.
  • FIG. 3 and FIG. 4 are examples of flowcharts showing a discharge operation and a charge operation during the start of travel and travel of a passenger car equipped with a plurality of secondary batteries. Note that regenerative energy or a power generation engine is used as a power supply to the secondary battery during the charging operation while the passenger car is running.
  • a switch installed between the power supply circuit and the secondary battery is turned on (S1). Power is supplied from the secondary battery to the power supply circuit (S2).
  • the secondary battery voltage check (S3) is performed, and the SOCs of the plurality of secondary batteries are respectively determined (S4). If the SOCs of the plurality of secondary batteries are equal to or greater than the threshold value, the voltage of the secondary battery is determined. A difference is detected (S5). In addition, if the voltage of a secondary battery is less than a threshold value, it will be set as charge operation.
  • the determination of the SOC (S4) is performed by a comparison circuit in which a threshold value is determined in advance and the data is stored in a memory.
  • the secondary battery having the maximum voltage among the plurality of secondary batteries is detected, and the voltage difference between the secondary battery having the maximum voltage and the other secondary battery is detected (S5).
  • a plurality of secondary batteries to be used have different voltages.
  • the secondary battery is used by boosting to the intended voltage using a DCDC converter or the like at a boosting rate corresponding to the voltage of each secondary battery.
  • a normal secondary battery In the case of a secondary battery having a small voltage difference from the secondary battery having the maximum voltage (that is, a secondary battery having a large voltage), a normal secondary battery is used.
  • the boosting rate is calculated (S6), the connection with the booster circuit is turned on (S7), and boosting is started (S8).
  • the switch for controlling the power supply is turned on (S9), the power supply to the circuit is started (S10), the passenger car is run, the vehicle is stopped, and the power supply to the circuit is stopped.
  • Neural network processing may be used to calculate the boosting rate and the like.
  • the secondary battery voltage check (S11) is performed for the second time, the second SOC is determined (S12), and if there is sufficient remaining capacity, the power supply stop instruction (S13) to the circuit is not issued.
  • the power supply to the circuit is continued (S14), and after a predetermined time, the voltage check is performed again, and the process is repeated until the discharge is no longer possible.
  • power supply to the circuit is stopped (S15), and charging is performed if necessary.
  • a secondary battery having a medium voltage difference from the secondary battery having the maximum voltage is substantially the same as the secondary battery having a small voltage difference except that the remaining capacity is different. However, detailed description is omitted here.
  • Any secondary battery is switched to a charging operation (charging mode) if the SOC calculation result is out of a discharge permission range.
  • the charging end voltage is read with reference to the past charging history (S16). Since the charging history of each secondary battery is different, the numerical value of the end-of-charge voltage is also different.
  • the end-of-charge voltage of each secondary battery may be determined using neural network processing.
  • start charging S18 to obtain a charging profile.
  • the degree of deterioration of the battery can be diagnosed by comparing the charging profiles.
  • feedback S19 is performed on the charging history, and the deterioration degree of each secondary battery is recorded in a memory or the like.
  • the charging switch is turned off (S20) at the stage where the charging end voltage that has been set in advance is reached by continuing charging.
  • neural network processing may be used.
  • the stop of the running operation is accelerated or the deterioration is accelerated, so that only the secondary battery is switched to the charging mode.
  • the charging switch is turned on (S17), and charging by the regenerative brake is started (S18).
  • the charging by the regenerative brake is not a rapid charging but a charging condition that hardly deteriorates.
  • the charge / discharge rate, end-of-charge voltage, temperature, and charging method are determined using neural network processing. Good.
  • the secondary battery having a large degree of deterioration is set to have a low end-of-charge voltage so as not to be fully charged.
  • the end-of-charge voltage is set so that the SOC is in the range of 50% to 80%.
  • FIG. 1A is an example in which regenerative energy is obtained by braking or deceleration, but FIG. 1B is one of the modifications. Since a power generation engine 307 using gasoline and a power generation motor 308 are provided, and energy can be obtained by appropriately generating power, if a secondary battery in which SOC is discharged to less than 30% is detected. The secondary battery can be charged with priority, and deterioration can be reduced.
  • the passenger car shown in FIG. 1B has three secondary batteries, and has switches 311a, 311b, and 311c for driving the motor, and power generation switches 311d, 311e, and 311f.
  • a secondary battery that is optimal for the load of the circuit to be operated may be used and leveled so that the degree of deterioration is the same.
  • the secondary battery 301a is the A-rank product with the least deterioration
  • the secondary battery 301c is the C-rank product with the greatest deterioration
  • the secondary battery 301b is moderately deteriorated. It is assumed that the product is a B rank product.
  • FIG. 23 shows the cycle characteristics of these three secondary batteries. As shown in FIG. 23, the secondary battery 301c is the most deteriorated and the unbalance increases.
  • the secondary battery 301a is operated within the SOC range as shown in FIG. 5A
  • the secondary battery 301b is operated within the SOC range as shown in FIG. 5B
  • the secondary battery 301c is operated.
  • 5 is operated within the SOC range as shown in FIG. 5C
  • the deterioration of the secondary battery 301a is promoted
  • the deterioration of the secondary battery 301c is slowed down as shown in FIG. 5D.
  • the degree of. 5A, FIG. 5B, FIG. 5C, and FIG. 5D show an example.
  • the designer determines the allowable use range of the SOC. For example, when the SOC is 20% or more and 80% or less and the SOC is less than 20%, the power supply from the secondary battery is cut off. .
  • the microprocessor of the ECU performs the second neural network process, and the optimum charging condition and the optimum discharging condition for each secondary battery. It is desirable to select the so that the degree of deterioration between the secondary batteries is uniform.
  • a secondary battery that exhibits abnormal behavior occurs, the secondary battery is detected and turned off so that it is not used. Do not charge or discharge the battery. By doing so, a safe control system can be realized.
  • a neural network process capable of inferring the occurrence of a secondary battery exhibiting abnormal behavior, and to cope with or warn in advance.
  • Embodiments described below include the use of dedicated or general purpose computers, including various computer hardware or software. Also, the embodiments described below in this specification can be implemented using a computer-readable recording medium.
  • the recording medium may also include RAM, ROM, or optical disks, magnetic disks, or any other storage medium that can be accessed by a computer.
  • algorithms, components, flows, programs, and the like shown as examples in the embodiments described below in this specification can be executed in software or a combination of hardware and software.
  • FIG. 6 shows an example of a neural network according to one embodiment of the present invention.
  • the neural network NN shown in FIG. 6 has an input layer IL, an output layer OL, and a hidden layer (intermediate layer) HL.
  • the neural network NN can be configured by a neural network having a plurality of hidden layers HL, that is, a deep neural network. Note that learning in a deep neural network is sometimes called deep learning.
  • the output layer OL, the input layer IL, and the hidden layer HL each have a plurality of neuron circuits, and neuron circuits provided in different layers are connected via a synapse circuit.
  • the neural network NN a function of analyzing the operation of the storage battery is added by learning.
  • arithmetic processing is performed in each layer. Arithmetic processing in each layer is executed by a sum-of-products operation between the output data of the neuron circuit included in the previous layer and the weighting coefficient.
  • the coupling between layers may be a total coupling in which all the neuron circuits are coupled, or a partial coupling in which some neuron circuits are coupled.
  • CNN convolutional neural network
  • the convolved data is converted by the activation function and then output to the pooling layer.
  • the activation function ReLU (Rectified Linear Unit) or the like can be used.
  • ReLU is a function that outputs “0” when the input value is negative, and outputs the input value as it is when the input value is “0” or more.
  • a sigmoid function, a tanh function, etc. can also be used as an activation function.
  • the CNN performs feature extraction by the above convolution processing and pooling processing.
  • the CNN can be composed of a plurality of convolution layers and a plurality of pooling layers.
  • the entire bonding layer is arranged.
  • the configuration example of the neural network NN illustrated in FIG. 7A may be referred to as a recurrent neural network (RNN).
  • RNN recurrent neural network
  • the output of the hidden layer HL is input (returned) to itself by the hidden layer HL having a feedback path.
  • RNN it is possible to analyze time-series data and estimate data to be acquired in the future.
  • time-series data the cycle characteristics and charge / discharge characteristics of the secondary battery are used.
  • the degree of deterioration of the secondary battery may be estimated with high accuracy.
  • the weighting factor from the input layer IL to the hidden layer HL is expressed as Win
  • the weighting factor from the hidden layer HL to the output layer OL is expressed as Wout
  • the weighting factor of feedback from the hidden layer HL is expressed as Wr.
  • the RNN expands with time so that different layers (input layer IL (1) to input layer in time T (1) to time T (x) in FIG. 7) are obtained.
  • LSTM Long Short-Term Memory
  • the LSTM can store a state when the hidden layer has memory cells in the RNN, and can perform analysis, for example, estimation for a longer time.
  • the neural network NN includes a neuron circuit NC and a synapse circuit SC provided between the neuron circuits.
  • FIG. 8A shows a configuration example of the neuron circuit NC and the synapse circuit SC constituting the neural network NN.
  • Input data x 1 to x L (L is a natural number) is input to the synapse circuit SC.
  • the synapse circuit SC has a function of storing a weight coefficient w k (k is an integer of 1 or more and L or less).
  • the weighting factor w k corresponds to the strength of the connection between the neuron circuits NC.
  • the neuron circuit NC When the input data x 1 to x L are input to the synapse circuit SC, the neuron circuit NC has a product of the input data x k input to the synapse circuit SC and the weight coefficient w k stored in the synapse circuit SC.
  • the supplied value is supplied.
  • this value exceeds the threshold value ⁇ of the neuron circuit NC, the neuron circuit NC outputs a high level signal y. This phenomenon is called firing of the neuron circuit NC.
  • FIG. 8B shows a model of a neural network NN that forms a hierarchical persetron using the neuron circuit NC and the synapse circuit SC.
  • the neural network NN has an input layer IL, a hidden layer (intermediate layer) HL, and an output layer OL.
  • Input data x 1 to x L are output from the input layer IL.
  • the hidden layer HL has a hidden synapse circuit HS and a hidden neuron circuit HN.
  • the output layer OL has an output synapse circuit OS and an output neuron circuit ON.
  • the hidden neuron circuit HN is supplied with a value obtained by a product-sum operation using the input data x k and the weighting coefficient w k held in the hidden synapse circuit HS.
  • the output neuron circuit ON is supplied with the value obtained by the product-sum operation using the output of the hidden neuron circuit HN and the weighting coefficient w k held in the output synapse circuit OS. Then, output data y 1 to y L are output from the output neuron circuit ON.
  • the neural network NN given the predetermined input data outputs, as output data, values corresponding to the weighting coefficient held in the synapse circuit SC and the threshold value ⁇ ( ⁇ H , ⁇ O ) of the neuron circuit.
  • the neural network NN can perform supervised learning by inputting teacher data.
  • FIG. 8C shows a model of the neural network NN that performs supervised learning using the error back propagation method.
  • the error back propagation method is a method of changing the weight coefficient of the synapse circuit so that the error between the output data of the neural network and the teacher signal becomes small.
  • the weighting factor w k of the hidden synapse circuit HS is changed according to the error ⁇ O determined based on the output data y 1 to y L and the teacher data t 1 to t L.
  • further weighting factor w k of the preceding stage of the synapse circuit SC is changed.
  • the neural network NN can be learned by sequentially changing the weighting coefficient of the synapse circuit SC based on the teacher data t 1 to t L.
  • Deep learning can be performed by using a neural network having two or more hidden layers HL (deep neural network (DNN)).
  • DNN deep neural network
  • the precision of calculation of the deterioration degree of a secondary battery can be improved.
  • the accuracy of calculation of the degree of deterioration of the secondary battery may be increased by an algorithm combining deep learning and reinforcement learning (Q learning).
  • the RNN can be regarded as a forward-propagation network without a feedback path by time-expanding.
  • the weighting coefficient can be changed based on the teacher data using the error back propagation method described above.
  • the product-sum operation is preferably performed by an analog product-sum operation circuit (hereinafter referred to as APS (Analog Product-Sum circuit)).
  • APS Analog Product-Sum circuit
  • the APS preferably has an analog memory. By storing the weighting coefficient obtained by learning in the analog memory, the APS can execute a product-sum operation with analog data. As a result, an APS can efficiently construct a neural network with a small number of transistors.
  • FIG. 9 shows a configuration example of the product-sum operation circuit.
  • the product-sum operation circuit MAC shown in FIG. 9 is a circuit that performs a product-sum operation on first data held in a memory cell to be described later and input second data.
  • the first data and the second data can be analog data or multi-value data (discrete data).
  • the product-sum operation circuit MAC includes a current source circuit CS, a current mirror circuit CM, a circuit WDD, a circuit WLD, a circuit CLD, an offset circuit OFST, an activation function circuit ACTV, and a memory cell array CA.
  • the memory cell array CA includes a memory cell AM [1], a memory cell AM [2], a memory cell AMref [1], and a memory cell AMref [2].
  • the memory cell AM [1] and the memory cell AM [2] have a role of holding the first data, and the memory cell AMref [1] and the memory cell AMref [2] are for performing a product-sum operation. It has a function to hold necessary reference data.
  • the reference data can also be analog data or multi-valued data (discrete data), like the first data and the second data.
  • the memory cell array CA of FIG. 9 has two memory cells in the row direction and two in the column direction, which are arranged in a matrix. However, the memory cell array CA has three or more memory cells in the row direction. It is good also as a structure arrange
  • the memory cell AM [1], the memory cell AM [2], the memory cell AMref [1], and the memory cell AMref [2] each include a transistor Tr11, a transistor Tr12, and a capacitor C1. .
  • the transistor Tr11 is preferably an OS transistor.
  • the transistor Tr11 can be manufactured at the same time, and thus the product-sum operation circuit manufacturing process may be shortened.
  • the channel formation region of the transistor Tr12 may be made of amorphous silicon, polycrystalline silicon, or the like instead of oxide.
  • the first terminal of the transistor Tr11 is electrically connected to the gate of the transistor Tr12. Connected. A first terminal of the transistor Tr12 is electrically connected to the wiring VR. The first terminal of the capacitor C1 is electrically connected to the gate of the transistor Tr12.
  • the second terminal of the transistor Tr11 is electrically connected to the wiring WD, and the gate of the transistor Tr11 is electrically connected to the wiring WL [1].
  • a second terminal of the transistor Tr12 is electrically connected to the wiring BL, and a second terminal of the capacitor C1 is electrically connected to the wiring CL [1].
  • the connection point between the first terminal of the transistor Tr11, the gate of the transistor Tr12, and the first terminal of the capacitor C1 is a node NM [1].
  • the second terminal of the transistor Tr11 is electrically connected to the wiring WD, and the gate of the transistor Tr11 is electrically connected to the wiring WL [2].
  • a second terminal of the transistor Tr12 is electrically connected to the wiring BL, and a second terminal of the capacitor C1 is electrically connected to the wiring CL [2].
  • a connection point between the first terminal of the transistor Tr11, the gate of the transistor Tr12, and the first terminal of the capacitor C1 is a node NM [2].
  • a current flowing from the wiring BL to the second terminal of the transistor Tr12 is denoted as IAM [2] .
  • the second terminal of the transistor Tr11 is electrically connected to the wiring WDref, and the gate of the transistor Tr11 is electrically connected to the wiring WL [1].
  • a second terminal of the transistor Tr12 is electrically connected to the wiring BLref, and a second terminal of the capacitor C1 is electrically connected to the wiring CL [1].
  • a connection point between the first terminal of the transistor Tr11, the gate of the transistor Tr12, and the first terminal of the capacitor C1 is a node NMref [1].
  • I AMref [1] a current flowing from the wiring BLref to the second terminal of the transistor Tr12 is denoted as I AMref [1] .
  • the second terminal of the transistor Tr11 is electrically connected to the wiring WDref, and the gate of the transistor Tr11 is electrically connected to the wiring WL [2].
  • a second terminal of the transistor Tr12 is electrically connected to the wiring BLref, and a second terminal of the capacitor C1 is electrically connected to the wiring CL [2].
  • a connection point between the first terminal of the transistor Tr11, the gate of the transistor Tr12, and the first terminal of the capacitor C1 is a node NMref [2].
  • I AMref [2] a current flowing from the wiring BLref to the second terminal of the transistor Tr12 is denoted as I AMref [2] .
  • the node NM [1], the node NM [2], the node NMref [1], and the node NMref [2] described above function as holding nodes for the respective memory cells.
  • the wiring VR allows a current to flow between the first terminal and the second terminal of each of the transistors Tr12 of the memory cell AM [1], the memory cell AM [2], the memory cell AMref [1], and the memory cell AMref [2]. Wiring. Therefore, the wiring VR functions as a wiring for applying a predetermined potential. Note that in this embodiment, the potential provided by the wiring VR is a reference potential or a potential lower than the reference potential.
  • the current source circuit CS is electrically connected to the wiring BL and the wiring BLref.
  • the current source circuit CS has a function of supplying current to the wiring BL and the wiring BLref. Note that the amount of current supplied to each of the wiring BL and the wiring BLref may be different from each other. In this configuration example, the current flowing from the current source circuit CS to the wiring BL is I C , and the current flowing from the current source circuit CS to the wiring BLref is I Cref .
  • the current mirror circuit CM includes a wiring IE and a wiring IEref.
  • the wiring IE is electrically connected to the wiring BL.
  • the connection portion between the wiring IE and the wiring BL is illustrated as a node NP.
  • the wiring IEref is electrically connected to the wiring BLref.
  • a connection point between the wiring IEref and the wiring BLref is a node NPref.
  • the current mirror circuit CM has a function of discharging a current corresponding to the potential of the node NPref from the node NPref of the wiring BLref to the wiring IEref and discharging the same amount of current as the current from the node NP of the wiring BL to the wiring IE.
  • I CM the current discharged from the node NP to the wiring IE and the current discharged from the node NPref to the wiring IEref.
  • the circuit WDD is electrically connected to the wiring WD and the wiring WDref.
  • the circuit WDD has a function of transmitting data to be stored in each memory cell included in the memory cell array CA.
  • the circuit WLD is electrically connected to the wiring WL [1] and the wiring WL [2].
  • the circuit WLD has a function of selecting a memory cell to which data is written when data is written to a memory cell included in the memory cell array CA.
  • the circuit CLD is electrically connected to the wiring CL [1] and the wiring CL [2].
  • the circuit CLD has a function of applying a potential to the second terminal of the capacitor C1 of each memory cell included in the memory cell array CA.
  • the circuit OFST is electrically connected to the wiring BL and the wiring OE.
  • the circuit OFST has a function of measuring the amount of current flowing from the wiring BL to the circuit OFST and / or the amount of change in current flowing from the wiring BL to the circuit OFST.
  • the circuit OFST has a function of outputting the measurement result to the wiring OE.
  • the circuit OFST may have a configuration in which the measurement result is directly output as a current to the wiring OE, or may be converted into a voltage and output to the wiring OE.
  • a current flowing from the wiring BL to the circuit OFST is denoted as I ⁇ .
  • the circuit OFST can be configured as shown in FIG. In FIG. 10, the circuit OFST includes a transistor Tr21, a transistor Tr22, a transistor Tr23, a capacitor C2, and a resistor R.
  • the first terminal of the capacitive element C2 is electrically connected to the wiring BL, and the first terminal of the resistance element R is electrically connected to the wiring BL.
  • the second terminal of the capacitor C2 is electrically connected to the first terminal of the transistor Tr21, and the first terminal of the transistor Tr21 is electrically connected to the gate of the transistor Tr22.
  • the first terminal of the transistor Tr22 is electrically connected to the first terminal of the transistor Tr23, and the first terminal of the transistor Tr23 is electrically connected to the wiring OE.
  • an electrical connection point between the first terminal of the capacitor element C2 and the first terminal of the resistor element R is a node Na, the second terminal of the capacitor element C2, the first terminal of the transistor Tr21, and the transistor Tr22.
  • An electrical connection point with the gate is a node Nb.
  • the second terminal of the resistance element R is electrically connected to the wiring VrefL.
  • the second terminal of the transistor Tr21 is electrically connected to the wiring VaL, and the gate of the transistor Tr21 is electrically connected to the wiring RST.
  • a second terminal of the transistor Tr22 is electrically connected to the wiring VDDL.
  • a second terminal of the transistor Tr23 is electrically connected to the wiring VSSL, and a gate of the transistor Tr23 is electrically connected to the wiring VbL.
  • the wiring VrefL is a wiring that applies a potential Vref
  • the wiring VaL is a wiring that applies a potential Va
  • the wiring VbL is a wiring that applies a potential Vb.
  • the wiring VDDL is a wiring that applies the potential VDD
  • the wiring VSSL is a wiring that supplies the potential VSS.
  • the potential VDD is a high level potential
  • the potential VSS is a low level potential.
  • the wiring RST is a wiring that applies a potential for switching between the conductive state and the non-conductive state of the transistor Tr21.
  • the transistor Tr22, the transistor Tr23, the wiring VDDL, the wiring VSSL, and the wiring VbL constitute a source follower circuit.
  • a potential corresponding to the current flowing from the wiring BL and the resistance of the resistance element R is applied to the node Na by the resistance element R and the wiring VrefL.
  • a first current (hereinafter referred to as a first current) flows from the wiring BL, the resistance element R and the wiring VrefL cause the first current and the resistance of the resistance element R to correspond to the node Na. A potential is applied. At this time, the transistor Tr21 is turned on to apply the potential Va to the node Nb. Thereafter, the transistor Tr21 is turned off.
  • a second current (hereinafter referred to as a second current) flows from the wiring BL, similarly to when the first current flows, the resistance element R and the wiring VrefL cause the node Na to flow.
  • a potential corresponding to the second current and the resistance of the resistance element R is applied.
  • the potential of the node Nb since the node Nb is in a floating state, the potential of the node Nb also changes due to capacitive coupling when the potential of the node Na changes.
  • the change in the potential of the node Na is ⁇ V Na and the capacitive coupling coefficient is 1, the potential of the node Nb is Va + ⁇ V Na .
  • the potential Va + ⁇ Na -V th is output from the wiring OE.
  • the potential Va and the threshold voltage V th it is possible from the wiring OE outputs a potential [Delta] V Na.
  • the potential ⁇ V Na is determined according to the amount of change from the first current to the second current, the resistance element R, and the potential Vref.
  • a resistive element R, and the potential Vref, is because it can be known, by using a circuit OFST shown in FIG. 10, it is possible to determine the amount of change current flowing from the potential [Delta] V Na, the wiring BL.
  • the activation function circuit ACTV is electrically connected to the wiring OE and the wiring NIL.
  • the activation function circuit ACTV receives the amount of change in current measured by the circuit OFST via the wiring OE.
  • the activation function circuit ACTV is a circuit that performs an operation according to a predefined function system for the amount of change in the current.
  • a function system for example, a sigmoid function, a tanh function, a softmax function, a ReLU function, a threshold function, and the like can be used, and these functions are applied as activation functions in the neural network.
  • FIG. 11 shows a timing chart of an operation example of the product-sum operation circuit MAC.
  • the timing chart of FIG. 11 includes the wiring WL [1], the wiring WL [2], the wiring WD, the wiring WDref, and the node from time T01 to time T09.
  • the current I B -I ⁇ indicates the sum of currents flowing from the wiring BL to the memory cells AM [1] and AM [2] of the memory cell array CA.
  • ⁇ From time T01 to time T02 a high-level potential (indicated as High in FIG. 11) is applied to the wiring WL [1], and a low-level potential (Low in FIG. 11) is applied to the wiring WL [2]. Is applied).
  • a potential V PR ⁇ V W [1] larger than the ground potential is applied to the wiring WD, and a potential V PR larger than the ground potential is applied to the wiring WDref.
  • a reference potential (indicated as REFP in FIG. 11) is applied to each of the wiring CL [1] and the wiring CL [2].
  • the potential V W [1] is a potential corresponding to one of the first data.
  • the potential VPR is a potential corresponding to the reference data.
  • Tr11 becomes conductive, the potential of the node NM [1] becomes V PR ⁇ V W [1] , and the potential of the node NMref [1] becomes V PR .
  • k is a constant determined by the channel length, the channel width, the mobility, the capacitance of the gate insulating film, and the like of the transistor Tr12.
  • V th is the threshold voltage of the transistor Tr12.
  • the low-level potential is continuously applied to the wiring WL [2] from before time T02. For this reason, each transistor Tr11 of the memory cell AM [2] and the memory cell AMref [2] is in a non-conducting state before the time T02. Accordingly, the potentials of the node NM [1], the node NM [2], the node NMref [1], and the node NMref [2] are held between the time T02 and the time T03.
  • an OS transistor to the transistor Tr11, leakage current flowing between the first terminal and the second terminal of the transistor Tr11 can be reduced, so that the potential of each node can be held for a long time.
  • V W [2] is a potential corresponding to one of the first data.
  • IAM [2] When the current flowing from the wiring BL to the first terminal through the second terminal of the transistor Tr12 of the memory cell AM [2] is IAM [2], 0 , IAM [2], 0 is expressed by the following equation. be able to.
  • a current from the current source circuit CS is supplied to the wiring BLref.
  • current is discharged to the wiring BLref by the current mirror circuit CM, the memory cell AMref [1], and the memory cell AMref [2].
  • the following equation is established according to Kirchhoff's law.
  • V X [1] is a potential corresponding to one of the second data.
  • an increase in the gate potential of the transistor Tr12 is a potential obtained by multiplying the potential change of the wiring CL [1] by a capacitive coupling coefficient determined by the configuration of the memory cell.
  • the capacitive coupling coefficient is calculated from the capacitance of the capacitive element C1, the gate capacitance of the transistor Tr12, and the parasitic capacitance.
  • the increase in the potential of the wiring CL [1] and the increase in the potential of the gate of the transistor Tr12 are described as the same value. This corresponds to the case where the respective capacitive coupling coefficients in the memory cell AM [1] and the memory cell AMref [1] are 1.
  • the potential V X [1] is applied to the second terminal of each of the capacitive elements C1 of the memory cell AM [1] and the memory cell AMref [1], whereby the node NM [1] and the potential of the node NMref [1] rise by V X [1] , respectively.
  • IAMref [1] when the current flowing from the wiring BLref to the first terminal via the second terminal of the transistor Tr12 of the memory cell AMref [1] is IAMref [1], 1 , IAMref [1], 1 is It can be expressed by a formula.
  • ⁇ I ⁇ is referred to as a differential current in the product-sum operation circuit MAC.
  • the differential current ⁇ I ⁇ can be expressed as the following equation using the equations (E1) to (E10).
  • IAM [2] 1 When the current flowing from the wiring BL to the first terminal through the second terminal of the transistor Tr12 of the memory cell AM [2] is IAM [2], 1 , IAM [2], 1 is expressed by the following equation. be able to.
  • the differential current ⁇ I ⁇ can be expressed as the following equation using the equations (E1) to (E8) and (E12) to (E15).
  • the differential current ⁇ I ⁇ input to the circuit OFST corresponds to the sum of the products of the plurality of first data potentials V W and the plurality of second data potentials V X. Value. That is, the sum of products of the first data and the second data can be obtained by measuring the differential current ⁇ I ⁇ with the circuit OFST.
  • a reference potential is applied to the wiring CL [1] and the wiring CL [2] from time T08 to time T09. At this time, the reference potential is applied to the second terminals of the respective capacitor elements C1 of the memory cell AM [1], the memory cell AM [2], the memory cell AMref [1], and the memory cell AMref [2].
  • the potentials of the node NM [1], the node NM [2], the node NMref [1], and the node NMref [2] return to the potential between the time T06 and the time T07, respectively.
  • each V X [1] and V X [2] are applied, but the potential applied to the wiring CL [1] and the wiring CL [2] may be lower than the reference potential REFP.
  • a potential lower than the reference potential REFP is applied to the wiring CL [1] and / or the wiring CL [2]
  • the memory cell connected to the wiring CL [1] and / or the wiring CL [2] The potential of the holding node can be lowered by capacitive coupling.
  • the product of the first data and one of the second data having a negative value can be performed.
  • the wiring CL [2] the case of applying -V X [2] rather than V X [2]
  • the differential current [Delta] I alpha expressed as the following formula be able to.
  • the memory cell array CA having the memory cells arranged in a matrix of 2 rows and 2 columns has been dealt with.
  • the memory cell array CA having 1 row and 2 columns or more, or 3 rows and 3 columns and 3 columns.
  • the product-sum operation can be performed for the above memory cell array.
  • the product-sum operation circuit uses one of the plurality of columns as a memory cell that holds the reference data (potential V PR ), and simultaneously performs the product-sum operation processing on the remaining columns of the plurality of columns. be able to. That is, by increasing the number of columns of the memory cell array, an arithmetic circuit that realizes high-speed product-sum arithmetic processing can be provided. Further, by increasing the number of rows, the number of terms to be added in the product-sum operation can be increased.
  • the differential current ⁇ I ⁇ when the number of rows is increased can be expressed by the following equation.
  • the number of rows of memory cells AM is the number of neurons in the previous layer. In other words, the number of rows of the memory cells AM corresponds to the number of output signals of the neurons in the previous layer that are input to the next layer.
  • the number of columns of the memory cells AM is the number of neurons in the next layer. In other words, the number of columns of the memory cells AM corresponds to the number of neuron output signals output from the next layer. That is, the number of rows and columns of the memory cell array of the product-sum operation circuit is determined by the number of neurons in the previous layer and the next layer, so the number of rows and columns of the memory cell array depends on the neural network to be configured. Can be determined.
  • a neural network is configured using a product-sum operation circuit in the present embodiment
  • the present invention is not particularly limited, and a neural network may be configured using parallel computation and GPU computing.
  • This embodiment mode can be combined with any of the other embodiment modes as appropriate.
  • the cylindrical secondary battery 600 has a positive electrode cap (battery cover) 601 on the top surface and a battery can (outer can) 602 on the side surface and the bottom surface.
  • the positive electrode cap 601 and the battery can (outer can) 602 are insulated by a gasket (insulating packing) 610.
  • FIG. 12B is a diagram schematically showing a cross section of a cylindrical secondary battery.
  • a battery element in which a strip-like positive electrode 604 and a negative electrode 606 are wound with a separator 605 interposed therebetween is provided inside the hollow cylindrical battery can 602.
  • the battery element is wound around a center pin.
  • the battery can 602 has one end closed and the other end open.
  • a metal such as nickel, aluminum, titanium, or the like having corrosion resistance to the electrolytic solution, or an alloy thereof or an alloy of these with another metal (for example, stainless steel) can be used. .
  • the battery element in which the positive electrode, the negative electrode, and the separator are wound is sandwiched between a pair of opposing insulating plates 608 and 609. Further, a non-aqueous electrolyte (not shown) is injected into the inside of the battery can 602 provided with the battery element.
  • a non-aqueous electrolyte the same non-aqueous electrolyte as that of a coin-type secondary battery can be used.
  • a positive electrode terminal (positive electrode current collecting lead) 603 is connected to the positive electrode 604, and a negative electrode terminal (negative electrode current collecting lead) 607 is connected to the negative electrode 606. Both the positive electrode terminal 603 and the negative electrode terminal 607 can use a metal material such as aluminum.
  • the positive terminal 603 is resistance-welded to the safety valve mechanism 612, and the negative terminal 607 is resistance-welded to the bottom of the battery can 602.
  • the safety valve mechanism 612 is electrically connected to the positive electrode cap 601 via a PTC element (Positive Temperature Coefficient) 611.
  • the safety valve mechanism 612 disconnects the electrical connection between the positive electrode cap 601 and the positive electrode 604 when the increase in the internal pressure of the battery exceeds a predetermined threshold value.
  • the PTC element 611 is a heat-sensitive resistance element that increases in resistance when the temperature rises, and prevents abnormal heat generation by limiting the amount of current by increasing the resistance.
  • barium titanate (BaTiO 3 ) -based semiconductor ceramics or the like can be used.
  • FIG. 13A is an external view of a coin-type (single-layer flat type) secondary battery
  • FIG. 13B is a cross-sectional view thereof.
  • a positive electrode can 401 also serving as a positive electrode terminal and a negative electrode can 402 also serving as a negative electrode terminal are insulated and sealed with a gasket 403 formed of polypropylene or the like.
  • the positive electrode 404 is formed by a positive electrode current collector 405 and a positive electrode active material layer 406 provided so as to be in contact therewith.
  • the negative electrode 407 is formed of a negative electrode current collector 408 and a negative electrode active material layer 409 provided so as to be in contact therewith.
  • the active material layer may be formed only on one side.
  • the positive electrode can 401 and the negative electrode can 402 a metal such as nickel, aluminum, or titanium that is corrosion resistant to an electrolytic solution, or an alloy thereof or an alloy of these with another metal (for example, stainless steel) is used. it can. In order to prevent corrosion due to the electrolytic solution, it is preferable to coat nickel, aluminum, or the like.
  • the positive electrode can 401 and the negative electrode can 402 are electrically connected to the positive electrode 404 and the negative electrode 407, respectively.
  • the negative electrode 407, the positive electrode 404, and the separator 410 are impregnated in the electrolyte, and the positive electrode 404, the separator 410, the negative electrode 407, and the negative electrode can 402 are laminated in this order with the positive electrode can 401 facing down, as shown in FIG. Then, the positive electrode can 401 and the negative electrode can 402 are pressure-bonded via a gasket 403 to manufacture a CR2032-type (diameter 20 mm, height 3.2 mm) coin-type secondary battery 400.
  • FIG. 14A is an example showing a plurality of secondary batteries having a wound body inside.
  • one secondary battery is provided with one switch for control.
  • FIG. 14 shows an IC chip 999 including a switch mounted on a circuit board.
  • the terminal 911 includes a control signal input terminal, a power supply terminal, and the like.
  • the IC chip 999 may be provided on the back surface of the circuit board 900.
  • one secondary battery 913 is provided with a terminal 951 and a terminal 952 inside the housing 930.
  • a housing 930a and a housing 930b are bonded to each other, and a wound body is provided in a region surrounded by the housing 930a and the housing 930b.
  • a secondary battery 913 illustrated in FIG. 15A includes a wound body 950 in which a terminal 951 and a terminal 952 are provided inside a housing 930.
  • the wound body 950 is impregnated with the electrolytic solution inside the housing 930.
  • the terminal 952 is in contact with the housing 930, and the terminal 951 is not in contact with the housing 930 by using an insulating material or the like.
  • the housing 930 is illustrated separately for convenience, but in actuality, the wound body 950 is covered with the housing 930, and the terminals 951 and 952 are included in the housing 930. Extends outside.
  • a metal material eg, aluminum
  • a resin material can be used as the housing 930.
  • the housing 930 illustrated in FIG. 15A may be formed using a plurality of materials.
  • a housing 930a and a housing 930b are attached to each other, and a winding body 950 is provided in a region surrounded by the housing 930a and the housing 930b. .
  • an insulating material such as an organic resin can be used.
  • a material such as an organic resin on the surface where the antenna is formed electric field shielding by the secondary battery 913 can be suppressed.
  • an antenna may be provided inside the housing 930a if the shielding of the electric field by the housing 930a is small.
  • a metal material can be used as the housing 930b.
  • the wound body 950 includes a negative electrode 931, a positive electrode 932, and a separator 933.
  • the wound body 950 is a wound body in which the negative electrode 931 and the positive electrode 932 are stacked with the separator 933 interposed therebetween, and the laminated sheet is wound. Note that a stack of a plurality of negative electrodes 931, a positive electrode 932, and a separator 933 may be stacked.
  • the negative electrode 931 is connected to a terminal 911 illustrated in FIG. 14A through one of a terminal 951 and a terminal 952.
  • the positive electrode 932 is connected to the terminal 911 illustrated in FIG. 14A through the other of the terminal 951 and the terminal 952.
  • a television device also referred to as a television or a television receiver
  • a monitor for a computer a digital camera, a digital video camera, a digital photo frame
  • a mobile phone Also referred to as a mobile phone or a mobile phone device
  • a portable game machine a portable information terminal
  • a sound reproduction device a large game machine such as a pachinko machine, and the like.
  • FIG. 17A and FIG. 17B show an example of a tablet terminal that can be folded in half.
  • a tablet terminal 9600 illustrated in FIGS. 17A and 17B includes a housing 9630a, a housing 9630b, a movable portion 9640 that connects the housing 9630a and the housing 9630b, a display portion 9631, and a display mode switching switch 9626.
  • FIG. 17A shows a state where the tablet terminal 9600 is opened
  • FIG. 17B shows a state where the tablet terminal 9600 is closed.
  • the tablet terminal 9600 includes a plurality of power storage units 9635 inside the housing 9630a and the housing 9630b.
  • the power storage unit 9635 is provided across the housing 9630a and the housing 9630b through the movable portion 9640.
  • the display portion 9631 can partly be a touch panel area, and data can be input by touching the displayed operation keys. Further, a keyboard button can be displayed on the display portion 9631 by touching a position where the keyboard display switching button on the touch panel is displayed with a finger or a stylus.
  • the display mode change-over switch 9626 can select a landscape mode and a portrait mode, a monochrome mode and a color mode.
  • the power saving mode change-over switch 9625 can optimize the display luminance in accordance with the amount of external light in use detected by an optical sensor incorporated in the tablet terminal 9600.
  • the tablet terminal may include not only an optical sensor but also other detection devices such as a gyroscope, an acceleration sensor, and other sensors that detect inclination.
  • FIG. 17B shows a closed state
  • the tablet terminal includes a charge / discharge control circuit 9634 including a housing 9630, a solar cell 9633, and a DCDC converter 9636. Further, as the power storage unit 9635, a plurality of secondary batteries according to one embodiment of the present invention is used.
  • the tablet terminal 9600 can be folded in two, the housing 9630a and the housing 9630b can be folded so as to overlap when not in use. By folding, the display portion 9631 can be protected, so that durability of the tablet terminal 9600 can be improved. Further, according to the control system of one embodiment of the present invention, since the plurality of power storage bodies 9635 have a long lifetime, the tablet terminal 9600 that can be used for a long time can be provided.
  • the tablet terminal shown in FIGS. 17A and 17B has a function for displaying various information (still images, moving images, text images, etc.), a calendar, date or time, and the like.
  • a touch input function for touch input operation or editing of information displayed on the display unit a function for controlling processing by various software (programs), and the like.
  • Power can be supplied to a touch panel, a display unit, a video signal processing unit, or the like by a solar cell 9633 mounted on the surface of the tablet terminal.
  • the solar battery 9633 can be provided on one or both surfaces of the housing 9630 and the plurality of power storage bodies 9635 can be charged efficiently.
  • FIG. 17C illustrates the solar battery 9633, the power storage unit 9635, the DCDC converter 9636, the converter 9637, the switches SW1 to SW3, and the display portion 9631.
  • the power storage unit 9635, the DCDC converter 9636, the converter 9637, and the switches SW1 to SW3 are shown. Is a portion corresponding to the charge / discharge control circuit 9634 shown in FIG.
  • the power generated by the solar battery is boosted or lowered by the DCDC converter 9636 so as to be a voltage for charging the power storage unit 9635.
  • the switch SW1 is turned on, and the converter 9637 increases or decreases the voltage required for the display portion 9631.
  • the power storage unit 9635 may be charged by turning off the switch SW1 and turning on the switch SW2.
  • the solar battery 9633 is shown as an example of a power generation unit
  • the power storage unit 9635 is charged by another power generation unit such as a piezoelectric element (piezo element) or a thermoelectric conversion element (Peltier element).
  • a non-contact power transmission module that wirelessly (contactlessly) transmits and receives power for charging and other charging means may be combined.
  • FIG. 18 shows an example of another electronic device.
  • a display device 8000 is an example of an electronic device that controls charging of a plurality of secondary batteries 8004 using a microprocessor (including APS).
  • the display device 8000 corresponds to a display device for receiving TV broadcasts, and includes a housing 8001, a display portion 8002, a speaker portion 8003, a secondary battery 8004, and the like.
  • a plurality of secondary batteries 8004 according to one embodiment of the present invention are provided in the housing 8001.
  • the display device 8000 can receive power from a commercial power supply. Alternatively, the display device 8000 can use power stored in the secondary battery 8004.
  • the display portion 8002 includes a liquid crystal display device, a light emitting device including a light emitting element such as an organic EL element, an electrophoretic display device, a DMD (Digital Micromirror Device), a PDP (Plasma Display Panel), and an FED (Field Emission Display).
  • a semiconductor display device such as can be used.
  • the display device includes all information display devices such as a personal computer and an advertisement display in addition to a TV broadcast reception.
  • the voice input device 8005 uses a plurality of secondary batteries whose charging is controlled by a switch.
  • the voice input device 8005 includes a wireless communication element, a microphone, a speaker 8007, and a plurality of sensors (such as an optical sensor, a temperature sensor, a humidity sensor, an atmospheric pressure sensor, an illuminance sensor, and a motion sensor).
  • sensors such as an optical sensor, a temperature sensor, a humidity sensor, an atmospheric pressure sensor, an illuminance sensor, and a motion sensor.
  • other devices can be operated, for example, the power operation of the display device 8000, the light amount adjustment of the stationary illumination device 8100, and the like.
  • the voice input device 8005 can operate peripheral devices by voice and can be used instead of a manual remote controller.
  • the voice input device 8005 is provided on a base 8006 that rotates around an axis indicated by a dotted line, rotates in a direction in which the user's voice can be heard, listens to a command accurately with a built-in microphone, and displays the contents of the display unit 8008. Or a touch input operation of the display portion 8008 can be performed.
  • FIG. 18 shows an example in which the base 8006 is used.
  • the voice input device 8005 may be provided with wheels or mechanical movement means and moved to a desired position. You may fix without providing.
  • a lighting device 8100 is an example of an electronic device using a plurality of secondary batteries 8103 whose charging is controlled by a switch.
  • the lighting device 8100 includes a housing 8101, a light source 8102, a secondary battery 8103, and the like.
  • FIG. 18 illustrates the case where the secondary battery 8103 is provided inside the ceiling 8104 where the housing 8101 and the light source 8102 are installed, but the plurality of secondary batteries 8103 are provided inside the housing 8101. May be provided.
  • the lighting device 8100 can receive power from a commercial power supply. Alternatively, the lighting device 8100 can use power stored in the secondary battery 8103.
  • FIG. 18 illustrates the lighting device 8100 provided on the ceiling 8104.
  • a plurality of secondary batteries whose charging is controlled by switches are provided on the side wall 8105, the floor 8106, the window 8107, and the like other than the ceiling 8104. It can also be used for a stationary lighting device, or a desktop lighting device.
  • an artificial light source that artificially obtains light using electric power can be used.
  • discharge lamps such as incandescent bulbs and fluorescent lamps, and light emitting elements such as LEDs and organic EL elements are examples of the artificial light source.
  • an air conditioner having an indoor unit 8200 and an outdoor unit 8204 is an example of an electronic device using a plurality of secondary batteries 8203 whose charging is controlled by a switch.
  • the indoor unit 8200 includes a housing 8201, an air outlet 8202, a secondary battery 8203, and the like.
  • FIG. 18 illustrates the case where the secondary battery 8203 is provided in the indoor unit 8200, but the secondary battery 8203 may be provided in the outdoor unit 8204. Alternatively, the secondary battery 8203 may be provided in both the indoor unit 8200 and the outdoor unit 8204.
  • the air conditioner can receive power from a commercial power supply. Alternatively, the air conditioner can use power stored in the secondary battery 8203.
  • FIG. 18 illustrates a separate type air conditioner including an indoor unit and an outdoor unit.
  • an integrated air conditioner having the functions of the indoor unit and the outdoor unit in one housing is illustrated.
  • a plurality of secondary batteries whose charging is controlled by a switch can also be used.
  • an electric refrigerator-freezer 8300 is an example of an electronic apparatus using a plurality of secondary batteries 8304 whose charging is controlled by a switch.
  • the electric refrigerator-freezer 8300 includes a housing 8301, a refrigerator door 8302, a refrigerator door 8303, a secondary battery 8304, and the like.
  • a plurality of secondary batteries 8304 are provided inside the housing 8301.
  • the electric refrigerator-freezer 8300 can receive power from a commercial power supply. Alternatively, the electric refrigerator-freezer 8300 can use power stored in the secondary battery 8304.
  • the power usage rate in a time zone when the electronic device is not used, particularly in a time zone where the ratio of the actually used power amount (referred to as the power usage rate) is low in the total power amount that can be supplied by the commercial power supply source.
  • the secondary battery 8304 By storing electric power in the secondary battery, it is possible to suppress an increase in the power usage rate outside the above time period.
  • the secondary battery 8304 In the daytime when the temperature rises and the refrigerator door 8302 and the freezer door 8303 are opened and closed, the secondary battery 8304 is used as an auxiliary power source, so that the daytime power usage rate can be kept low.
  • a plurality of secondary batteries whose charging is controlled by a switch can be mounted on any electronic device.
  • This embodiment can be implemented in appropriate combination with any of the other embodiments.
  • a next-generation clean energy vehicle such as a hybrid vehicle (HEV), an electric vehicle (EV), or a plug-in hybrid vehicle (PHEV) can be realized.
  • HEV hybrid vehicle
  • EV electric vehicle
  • PHEV plug-in hybrid vehicle
  • the weight is biased by the arrangement of the secondary batteries, the position of the center of gravity of the vehicle as a whole may change. Therefore, it is desirable to arrange a plurality of secondary batteries at optimal positions so that the center of gravity of the vehicle is as designed. If a plurality of secondary batteries are arranged at various locations, the secondary battery may be affected by the heat generated by the devices arranged around a certain secondary battery, and may be deteriorated more than other secondary batteries.
  • the present invention is effective when a plurality of secondary batteries having different progress of deterioration are arranged.
  • FIG. 19 illustrates a vehicle using a plurality of secondary batteries whose charge is controlled by a switch which is one embodiment of the present invention.
  • a car 8400 illustrated in FIG. 19A is an electric car that uses an electric motor as a power source for traveling. Or it is a hybrid vehicle which can select and use an electric motor and an engine suitably as a motive power source for driving
  • the automobile 8400 has a battery pack 8402.
  • the battery pack 8402 may use a large number of small cylindrical secondary batteries shown in FIG. 12 side by side with respect to the floor portion in the vehicle. Further, a battery pack in which a plurality of secondary batteries shown in FIG.
  • the battery pack 8402 can not only drive the electric motor 8406 but also supply power to a light-emitting device such as a headlight 8401 and a room light (not shown).
  • the ceiling portion of the automobile 8400 includes a photoelectric conversion element 8405, and the irradiated light can be photoelectrically converted and stored in the battery pack 8402.
  • the battery pack 8402 can supply power to a display device such as a speedometer or a tachometer that the automobile 8400 has.
  • the battery pack 8402 can supply power to a display device such as a navigation system included in the automobile 8400.
  • a sensor 8403 may be provided instead of the side mirror, and an image obtained by the sensor 8403 may be projected and displayed on a part of the windshield 8404. Further, an image obtained by the sensor 8403 may be displayed on a display device in the vehicle.
  • FIG. 19B An automobile 8500 shown in FIG. 19B can charge a plurality of secondary batteries of the automobile 8500 by receiving power supply from an external charging facility by a plug-in method, a non-contact power supply method, or the like.
  • FIG. 19B illustrates a state where the secondary battery 8024 mounted on the automobile 8500 is charged through the cable 8022 from the ground-installed charging device 8021.
  • the charging method, connector standard, and the like may be appropriately performed by a predetermined method such as CHAdeMO (registered trademark) or a combo.
  • the charging device 8021 may be a charging station provided in a commercial facility, or may be a household power source.
  • the secondary battery 8024 mounted on the automobile 8500 can be charged by power supply from the outside by plug-in technology.
  • Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter included in the charging device 8021.
  • a conversion device such as an ACDC converter included in the charging device 8021.
  • charging can be performed even if an AC power supply is connected.
  • the power receiving device can be mounted on the vehicle and charged by supplying power from the ground power transmitting device in a non-contact manner.
  • charging can be performed not only when the vehicle is stopped but also during traveling by incorporating a power transmission device on a road or an outer wall.
  • this non-contact power feeding method may be used to transmit and receive power between vehicles.
  • a solar battery may be provided in the exterior part of the vehicle, and the secondary battery may be charged when the vehicle is stopped or traveling.
  • An electromagnetic induction method or a magnetic field resonance method can be used for such non-contact power supply.
  • FIG. 19C is an example of a motorcycle using a plurality of secondary batteries whose charging is controlled by a switch.
  • a scooter 8600 illustrated in FIG. 19C includes a secondary battery 8602, a side mirror 8601, and a direction indicator lamp 8603.
  • the secondary battery 8602 can supply electricity to the direction indicator lamp 8603.
  • the scooter 8600 shown in FIG. 19C can store a plurality of secondary batteries 8602 in the under-seat storage 8604.
  • the secondary battery 8602 can be stored in the under-seat storage 8604 even if the under-seat storage 8604 is small.
  • the secondary battery 8602 can be removed.
  • the secondary battery 8602 can be carried indoors, charged, and stored before traveling.
  • FIG. 20 (A) is an example of an electric bicycle using a plurality of secondary batteries whose charging is controlled by a switch as a battery pack.
  • An electric bicycle 8700 illustrated in FIG. 20A includes a battery pack 8702.
  • the battery pack 8702 can supply electricity to a motor that assists the driver. Further, the battery pack 8702 can be carried, and FIG. 20B shows a state where the battery pack 8702 is detached from the electric bicycle.
  • the battery pack 8702 includes a plurality of laminated secondary batteries 8701 so that the remaining capacity of the secondary battery can be displayed on the display portion 8703. Note that when a plurality of secondary batteries are incorporated, each has a switch, a charge control device, and a protection circuit.
  • the electronic device can be used as a head mounted display (HMD).
  • HMD head mounted display
  • FIG. 21A is an example of the appearance of an electronic device viewed from the top of the user wearing the electronic device (here, the HMD), and FIG. 21B is a block diagram.
  • the electronic device includes at least imaging devices 120a and 120b, detection devices 130a and 130b, integrated circuits 140a and 140b, secondary batteries 141a and 141b, and display devices 150a and 150b.
  • the imaging devices 120a and 120b, the detection devices 130a and 130b, the integrated circuits 140a and 140b, the secondary batteries 141a and 141b, and the display devices 150a and 150b can be provided in the housing 110, for example, and are electrically connected to each other. ing.
  • display devices 150a and 150b and imaging devices 120a and 120b are provided so as to face the respective eyeballs of the wearing users.
  • power from the secondary battery 141a is supplied to the integrated circuit 140a, the imaging device 120a, the detection device 130a, and the display device 150a via the switch 142a.
  • the power from the secondary battery 141b is supplied to the integrated circuit 140b, the imaging device 120b, the detection device 130b, and the display device 150b via the switch 142b.
  • the integrated circuit 140a collects information on the secondary battery 141a, analyzes the degree of deterioration using the first neural network, and charges the secondary battery 141a under optimum charging conditions.
  • the integrated circuit 140b collects information on the secondary battery 141b, analyzes the degree of deterioration using the second neural network, and charges the secondary battery 141b under optimum charging conditions.
  • the integrated circuits 140a and 140b have a memory for storing charge / discharge characteristic data correlated with the SOC.
  • the imaging device 120a, 120b can use a camera having an imaging device capable of imaging the shape of the pupil.
  • the shape of the portion where the black and white eyes are exposed from the eyelid has a clear outline, so that the shape can be detected without using a high-performance image sensor.
  • the detection devices 130a and 130b detect a change in the shape of the pupil based on the shape of the pupil imaged by the imaging devices 120a and 120b. For example, a change in the shape of the pupil is detected from information on the boundary between the eye lid and the sclera (white eye) or the boundary between the eye lid and the cornea (for example, black eye). Note that detection of changes in the shape of the pupil in the detection devices 130a and 130b involves image processing and calculation processing, and thus may be referred to as calculation of change in the shape of the pupil.
  • the integrated circuits 140a and 140b may generate display data based on a setting change according to a change in the shape of the pupil.
  • the integrated circuits 140a and 140b generate display data based on a change in setting according to the movement of the head and the change in the shape of the pupil.
  • Display data may be generated by a circuit such as a processor.
  • the integrated circuits 140a and 140b may generate display data of an image displayed on the display devices 150a and 150b, which is difficult for a user to get sick.
  • FIG. 21 shows an example of an image sensor that can image the shape of the pupil, but other sensor elements such as a triaxial acceleration sensor may be used.
  • the display devices 150a and 150b As the display devices 150a and 150b, EL display devices, liquid crystal display devices, and micro LED display devices can be used. A display device that has a spherical display surface and can be arranged so as to cover the eyeball is preferable. Further, an optical system may be provided between the display devices 150a and 150b and the eyeball.
  • FIG. 21 in addition to the housing 110, the user's eyeball 160, the speaker unit 161, and the fixtures 162 and 163 are illustrated. The speaker unit 161 and the fixtures 162 and 163 are for fixing the housing 110 to the head. Therefore, the configuration is not limited to the band-shaped fixture, and another configuration may be used.
  • the integrated circuit can reduce the difference in performance deterioration between the plurality of secondary batteries, and can reduce the unbalance between the secondary batteries.
  • the brightness can be adjusted by the integrated circuit so as to obtain an optimum display for each display device.
  • the eyeglass-type device 7110 has a secondary battery 7101 in each of the left and right temple parts (the part arranged along the user's temporal region when worn).
  • the weight balance may be deteriorated.
  • the secondary battery 7101 in the temple portion, a weight-balanced spectacle-type device 7110 that can be used comfortably can be obtained.
  • the smartphone and its battery are heavy and the smartphone is placed away from the head, so if you turn your neck you will feel more weight due to centrifugal force .
  • the two secondary batteries are dispersed in two places and further installed at a position close to the head, it is possible to adopt a configuration in which the weight is not felt so much.
  • the eyeglass device 7110 may have a terminal portion 7104.
  • the secondary battery 7101 can be charged from the terminal portion 7104.
  • the eyeglass-type device 7110 may have a display portion 7112.
  • a control unit 7103 including a microprocessor capable of performing a neural network operation may be provided.
  • the controller 7103 can control charging / discharging of the secondary battery 7101 and can generate image data to be displayed on the display portion 7112.
  • a chip having a wireless communication function on the controller 7103, data can be transmitted / received to / from the outside.
  • an external display unit 7112 may be attached to form a multi-display.
  • the present invention is not limited to an electronic device worn on the user's head.
  • FIG. 22B shows an example of an unmanned aerial vehicle.
  • the unmanned aerial vehicle 7300 includes a plurality of rotors 7302, a plurality of secondary batteries 7301, a control auto 7304 including a microprocessor capable of performing a neural network operation, a camera 7303, and an antenna (not shown). Unmanned aerial vehicle 7300 can be remotely operated via an antenna.
  • a plurality of secondary batteries 7301 are arranged in a well-balanced manner, and the control unit 7304 can perform control for inspecting the degree of deterioration of the batteries and adjusting charge / discharge conditions according to the deterioration. It can be used often for long life. Since there are four propellers, four secondary batteries are also arranged in consideration of balance. In FIG. 22B, only two of the four secondary batteries are indicated by dotted lines.
  • the position of the center of gravity of the vehicle as a whole may change if the weight is biased due to the arrangement of the secondary battery.
  • a plurality of secondary batteries are arranged at various locations, there is a risk of deterioration due to heat generated by peripheral devices arranged in a certain secondary battery, and deterioration may proceed more than other secondary batteries.
  • the present invention is effective when a plurality of secondary batteries having different progress of deterioration are arranged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

[Abstract] Because the internal resistance of a secondary cell increases when the secondary cell deteriorates, a deteriorated secondary cell has high terminal voltage during charging and low terminal voltage during discharging, and thus a difference arises from the terminal voltage of an undeteriorated secondary cell. According to the present invention, the level of deterioration and estimated value of a plurality of secondary cells are calculated using a first neural network, and variation in the level of deterioration is reduced by slowing the charging rate for secondary cells having high deterioration so as not to enter a fully charged state, and speeding up the charging rate for secondary cells having low deterioration so as to enter a fully charged state. The secondary cells having a high level of deterioration are set to a low charging termination voltage so as not to enter a fully charged state, and the charging conditions are selected on the basis of a calculation in which a second neural network is used.

Description

充電制御システム、及び充電制御方法、及び電子機器CHARGE CONTROL SYSTEM, CHARGE CONTROL METHOD, AND ELECTRONIC DEVICE
 本発明の一態様は、物、方法、又は、製造方法に関する。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、照明装置、電子機器、またはそれらの製造方法に関する。特に、充電制御システム、充電制御方法、及び二次電池を有する電子機器に関する。本発明の一態様は、車両、または車両に設けられる車両用電子機器に関する。 One embodiment of the present invention relates to an object, a method, or a manufacturing method. Alternatively, one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). One embodiment of the present invention relates to a semiconductor device, a display device, a light-emitting device, a power storage device, a lighting device, an electronic device, or a manufacturing method thereof. In particular, the present invention relates to a charge control system, a charge control method, and an electronic device having a secondary battery. One embodiment of the present invention relates to a vehicle or a vehicle electronic device provided in the vehicle.
 なお、本明細書中において、蓄電装置とは、蓄電機能を有する素子及び装置全般を指すものである。例えば、リチウムイオン二次電池などの蓄電池(二次電池ともいう)、リチウムイオンキャパシタ、全固体電池、及び電気二重層キャパシタなどを含む。 Note that in this specification, a power storage device refers to all elements and devices having a power storage function. For example, a storage battery (also referred to as a secondary battery) such as a lithium ion secondary battery, a lithium ion capacitor, an all-solid battery, and an electric double layer capacitor are included.
 本発明の一態様は、ニューラルネットワーク、及びそれを用いた充電制御システムに関する。また、本発明の一態様は、ニューラルネットワークを用いた車両に関する。また、本発明の一態様は、ニューラルネットワークを用いた電子機器に関する。また、本発明の一態様は、車両に限定されず、構造体などに設置された太陽光発電パネルなどの発電設備から得られた電力を貯蔵するための蓄電装置の充電制御システムにも適用できる。 One embodiment of the present invention relates to a neural network and a charge control system using the same. Another embodiment of the present invention relates to a vehicle using a neural network. Another embodiment of the present invention relates to an electronic device using a neural network. One embodiment of the present invention is not limited to a vehicle, and can also be applied to a charge control system for a power storage device for storing power obtained from power generation equipment such as a solar power generation panel installed in a structure or the like. .
 近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池等、種々の蓄電装置の開発が盛んに行われている。特に高出力、高エネルギー密度であるリチウムイオン二次電池は、携帯電話、スマートフォン、タブレット、もしくはノート型コンピュータ等の携帯情報端末、携帯音楽プレーヤ、デジタルカメラ、医療機器、又は、ハイブリッド車(HEV)、電気自動車(EV)、もしくはプラグインハイブリッド車(PHEV)等の次世代クリーンエネルギー自動車など、半導体産業の発展と併せて急速にその需要が拡大し、充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。 In recent years, various power storage devices such as lithium ion secondary batteries, lithium ion capacitors, and air batteries have been actively developed. In particular, lithium ion secondary batteries with high output and high energy density are portable information terminals such as mobile phones, smartphones, tablets, or notebook computers, portable music players, digital cameras, medical devices, or hybrid vehicles (HEV). Demand for electric vehicles (EVs), next-generation clean energy vehicles such as plug-in hybrid vehicles (PHEVs), etc., is growing rapidly with the development of the semiconductor industry. It has become indispensable to the society.
 携帯情報端末や電気自動車などにおいては、複数の二次電池を直列接続または並列接続して保護回路を設け、電池パック(組電池ともよぶ)として使用される。電池パックとは、二次電池の取り扱いを容易にするため、複数の二次電池を、所定の回路と共に容器(金属缶、フィルム外装体)内部に収納したものを指す。電池パックは、動作状態を管理するために、ECU(Electronic Control Unit)が設けられる。電池パックを構成する複数の二次電池はそれぞれ特性にバラツキがあると、アンバランスが生じてしまう。アンバランスが生じると充電時に過充電になる二次電池や、満充電まで充電されない二次電池が生じ、電池パック全体のみかけの容量が減少する。しかしながら、ある電圧に到達した段階で充電は終了するため、実際の容量と、演算で出力される容量との間にずれが生じる。 In personal digital assistants and electric vehicles, a plurality of secondary batteries are connected in series or in parallel to provide a protection circuit and used as a battery pack (also referred to as an assembled battery). The battery pack refers to a battery in which a plurality of secondary batteries are stored together with a predetermined circuit in a container (metal can, film outer package) in order to facilitate handling of the secondary battery. The battery pack is provided with an ECU (Electronic Control Unit) in order to manage the operation state. If the characteristics of each of the secondary batteries constituting the battery pack vary, an imbalance will occur. When an imbalance occurs, a secondary battery that is overcharged during charging or a secondary battery that is not fully charged is generated, and the apparent capacity of the entire battery pack is reduced. However, since charging ends when a certain voltage is reached, there is a difference between the actual capacity and the capacity output by the calculation.
 一つの電池パック、即ち複数の二次電池をまとめて充電、または放電を行っているため、一つの電池パック内部ではアンバランスが増大する。劣化の大きな一部の電池のみに対してストレスが加わり劣化を加速させるため、充放電を繰り返し行えば、結果として電池パックとしての寿命がどんどん短くなるという悪循環になっている。 Since one battery pack, that is, a plurality of secondary batteries are charged or discharged together, imbalance increases inside one battery pack. In order to accelerate the deterioration by applying stress to only a part of the batteries having a large deterioration, a repeated cycle of charging / discharging results in a vicious cycle in which the life of the battery pack becomes shorter.
 電気自動車は電動モータのみを駆動部とする車両であるが、エンジンなどの内燃機関と電動モータの両方を備えたハイブリッド自動車もある。二次電池を用いる自動車の下部には、複数の二次電池を一つの電池パックとした複数セットの電池パックが配置されている。 An electric vehicle is a vehicle that uses only an electric motor as a drive unit, but there is also a hybrid vehicle that includes both an internal combustion engine such as an engine and an electric motor. A plurality of sets of battery packs each including a plurality of secondary batteries as one battery pack are arranged in a lower part of an automobile using the secondary batteries.
 電気自動車やハイブリッド自動車を充電する場合、充電用施設または家庭用電源を用いて充電を行う。充電用施設の仕様、即ち充電電圧などの充電条件によって満充電に到達するまでの時間が異なるため、充電終了時刻を予測することは困難である。 When charging an electric vehicle or a hybrid vehicle, charging is performed using a charging facility or a household power source. Since the time to reach full charge differs depending on the charging facility specifications, that is, the charging conditions such as the charging voltage, it is difficult to predict the charging end time.
 電気自動車やハイブリッド自動車に用いる二次電池は、充放電回数、放電深度、充電電流、充電する環境(温度変化)などによって劣化が生じる。使用者の使い方にも依存し、充電時の温度や、急速充電する頻度や、回生ブレーキによる充電量や、回生ブレーキによる充電タイミングなども電池の劣化度合いを左右する可能性がある。 Secondary batteries used in electric vehicles and hybrid vehicles are deteriorated depending on the number of times of charge / discharge, depth of discharge, charging current, charging environment (temperature change), and the like. Depending on how the user uses the battery, the temperature at the time of charging, the frequency of quick charging, the amount of charge by the regenerative brake, the charging timing by the regenerative brake, etc. may affect the degree of deterioration of the battery.
 また、電気自動車やハイブリッド自動車に用いる二次電池は、長期間使用することが前提であるため、十分な信頼性を有することが望まれている。特許文献1は、電池セルの容量に従って、トランジスタを制御して、放電する電池セルから充電する電池セルへの充放電を制御する方法が記載されている。 In addition, since secondary batteries used in electric vehicles and hybrid vehicles are premised on long-term use, it is desired to have sufficient reliability. Patent Document 1 describes a method of controlling charging / discharging from a discharging battery cell to a charging battery cell by controlling a transistor according to the capacity of the battery cell.
 また、人間の頭部に設置するデバイス、例えば、ヘッドマウントディスプレイ(HMDとも呼ぶ)や、眼鏡型デバイスなどにおいてはバッテリーの重量またはバッテリーの配置による重量バランスなども重視される。複数のバッテリーを内蔵している眼鏡型デバイスは特許文献2に開示されている。 In addition, in a device installed on a human head, for example, a head mounted display (also referred to as HMD) or a spectacle type device, the weight of the battery or the weight balance due to the arrangement of the battery is emphasized. A spectacle-type device incorporating a plurality of batteries is disclosed in Patent Document 2.
 また、特許文献3には、映像をHMDで観察しながら視野のズームアップを行うデバイスが開示されている。 Also, Patent Document 3 discloses a device that zooms in the field of view while observing an image with an HMD.
特開2017−022928号公報JP 2017-022928 A 特開2016−076475号公報JP 2006-076475 A 特開2017−130190号公報JP 2017-130190 A
 二次電池の実際の正確な残容量は、その二次電池を放電させて検出することで得ることができるが、実際に放電させてしまってはデバイスを使用することができないため、残容量と相関をもつパラメータ(電池電圧や積算電流)から残容量を推定している。また、二次電池は化学反応を利用しているため、少ないデータに基づいて残容量を瞬時に推定すると誤りとなる場合もある。 The actual remaining capacity of a secondary battery can be obtained by discharging and detecting the secondary battery, but the device cannot be used if it is actually discharged. The remaining capacity is estimated from correlated parameters (battery voltage and integrated current). In addition, since the secondary battery uses a chemical reaction, it may be erroneous if the remaining capacity is instantaneously estimated based on a small amount of data.
 また、二次電池は劣化すると内部抵抗が増大するため、劣化した二次電池は、充電時は端子電圧が大きく、放電時は端子電圧が小さくなり、劣化していない二次電池の端子電圧と差が生じる。従って、複数の二次電池間で劣化の程度を揃えるようにすることを課題の一つとする。また、電子機器に用いられている複数の二次電池間における端子電圧の差を低減し、二次電池間のアンバランスを低減することも課題の一つとする。 In addition, since the internal resistance increases when the secondary battery deteriorates, the deteriorated secondary battery has a large terminal voltage during charging and a small terminal voltage during discharging. There is a difference. Therefore, it is an object to make the degree of deterioration uniform among a plurality of secondary batteries. Another object is to reduce a difference in terminal voltage between a plurality of secondary batteries used in an electronic device and reduce an unbalance between the secondary batteries.
 本発明の一態様は、新規な電池管理回路、蓄電装置、及び電子機器等を提供することを課題の一とする。 An object of one embodiment of the present invention is to provide a novel battery management circuit, a power storage device, an electronic device, and the like.
 なお、本発明の一態様の課題は、上記列挙した課題に限定されない。上記列挙した課題は、他の課題の存在を妨げるものではない。なお、他の課題は、以下の記載で述べる、本項目で言及していない課題である。本項目で言及していない課題は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した課題、及び/又は他の課題のうち、少なくとも一つの課題を解決するものである。 Note that the problems of one embodiment of the present invention are not limited to the problems listed above. The problems listed above do not disturb the existence of other problems. Other issues are issues that are not mentioned in this section, as described in the following description. Problems not mentioned in this item can be derived from descriptions of the specification or drawings by those skilled in the art, and can be appropriately extracted from these descriptions. Note that one embodiment of the present invention solves at least one of the above-described problems and / or other problems.
 組電池全体の充電ではなく、二次電池を選別し、個別に二次電池の充電を行い、二次電池間のアンバランスを低減する。従来では複数の二次電池をまとめて制御していたが、本発明においては、複数の二次電池、好ましくは2個以上の二次電池を個別に制御することで、二次電池間のアンバランスを低減する。特に電気自動車などで回生エネルギーなどを利用する場合、繰り返し充電が多くなるため、優先的に劣化の少ない電池に充電を行う、または充電回数を増やす。また、劣化の大きい電池には充電条件を変えて劣化を抑え、満充電状態にならない範囲内で充電を停止する。繰り返し充電が多くなる太陽電池を搭載した電気自動車や、発電用のエンジンを搭載した電気自動車においても有効である。 ¡Rather than charging the entire battery pack, the secondary batteries are selected and the secondary batteries are individually charged to reduce the unbalance between the secondary batteries. Conventionally, a plurality of secondary batteries have been controlled together. However, in the present invention, a plurality of secondary batteries, preferably two or more secondary batteries are individually controlled, so Reduce balance. In particular, when regenerative energy or the like is used in an electric vehicle or the like, repetitive charging increases. Therefore, a battery with little deterioration is preferentially charged, or the number of charging is increased. In addition, for a battery with great deterioration, the charging condition is changed to suppress the deterioration, and charging is stopped within a range where the battery is not fully charged. It is also effective in an electric vehicle equipped with a solar cell that repeatedly charges and an electric vehicle equipped with a power generation engine.
 二次電池の電流、電圧、温度などを検出素子やセンサなどで検出し、充電状態(State of Charge(SOC))を演算する。なお、SOCは充電率とも呼ばれ、二次電池の最大容量に対する残容量の割合で定義する。理想的には時間の進行に合わせて全ての二次電池のSOCが同じであることが望ましいが、実際には異なり、使用すればするほど1つの組電池の内における個体差に基づくアンバランスが拡大してしまう。そこで、個別の二次電池に関する情報を収集し、第1のニューラルネットワークを用いて劣化の程度を分析(診断、または今後、劣化が大きくなり、個体間の差が大きくなることを推測)し、個別の二次電池に対して最適な充電条件で充電を行う。最適な充電条件は第2のニューラルネットワークを用いて決定してもよい。第1のニューラルネットワークと第2のニューラルネットワークは別々のマイクロコンピュータに構成することが好ましい。 The current, voltage, temperature, etc. of the secondary battery are detected by a detecting element or sensor, and the state of charge (SOC) is calculated. Note that the SOC is also called a charging rate, and is defined by the ratio of the remaining capacity to the maximum capacity of the secondary battery. Ideally, it is desirable that the SOC of all the secondary batteries is the same as time progresses, but in reality, the more used, the more the imbalance based on individual differences within one assembled battery becomes It will expand. Therefore, information on individual secondary batteries is collected, and the degree of deterioration is analyzed using the first neural network (diagnosis, or in the future, the deterioration will increase and the difference between individuals will increase), Charge individual secondary batteries under optimal charging conditions. The optimal charging condition may be determined using the second neural network. The first neural network and the second neural network are preferably configured in separate microcomputers.
 本明細書で開示する発明は、集積回路と、第1の二次電池と、第2の二次電池と、を有し、一方の二次電池に対してSOC(充電率)が1%以上100%以下のうち、任意の一定範囲(放電下限電圧以上充電上限電圧以下)内で充放電を行い、ニューラルネットワークを用いて、集積回路が第1の二次電池及び第2の二次電池の劣化程度診断を行い、劣化程度の大きいほうの二次電池を集積回路が検出し、劣化程度が大きいほうの二次電池に対して、劣化程度が小さいほうの二次電池よりも狭い範囲内に収まる充電率となる充電条件で充電を行う充電制御システムである。例えば、劣化程度が大きいほうの二次電池の充電上限電圧を低く選択的に設定し、低い充電レートで充電を行うことで劣化の進行を抑える。 The invention disclosed in this specification includes an integrated circuit, a first secondary battery, and a second secondary battery, and the SOC (charge rate) of the secondary battery is 1% or more. Within 100% or less, charge / discharge is performed within an arbitrary fixed range (discharge lower limit voltage or more and charge upper limit voltage or less), and the integrated circuit is connected to the first secondary battery and the second secondary battery using a neural network. Diagnose the deterioration level, the integrated circuit detects the secondary battery with the higher level of deterioration, and the secondary battery with the higher level of deterioration is within a narrower range than the secondary battery with the lower level of deterioration. It is a charge control system that performs charging under a charging condition that provides a charging rate that fits. For example, the progress of deterioration is suppressed by selectively setting a lower charging upper limit voltage of a secondary battery having a higher degree of deterioration and charging at a lower charge rate.
 上記構成において、劣化程度が小さいほうの二次電池よりも狭い範囲内に収まる充電率となる充電条件は、第2のニューラルネットワークを用いて決定してもよい。 In the above configuration, a charging condition that provides a charging rate that falls within a narrower range than the secondary battery having a smaller degree of deterioration may be determined using the second neural network.
 上記構成において、第1の二次電池は、第1のスイッチと電気的に接続され、第2の二次電池は、第2のスイッチと電気的に接続され、第1及び第2のスイッチは、集積回路により制御される。集積回路は、SOC(充電率)と相関のある充放電特性データを記憶するメモリを有する。集積回路は、CPU(Central Processing Unit)を含み、電気自動車全体などのデバイスを管理する。必要とされる演算ができるのであれば特にCPUに限定されず、GPU(Graphics Processing Unit)、またはAPU(Accelerated Processing Unit)を用いてもよい。なお、APUは、CPUとGPUを一つに統合したチップを指している。 In the above structure, the first secondary battery is electrically connected to the first switch, the second secondary battery is electrically connected to the second switch, and the first and second switches are Controlled by an integrated circuit. The integrated circuit has a memory for storing charge / discharge characteristic data correlated with SOC (charge rate). The integrated circuit includes a CPU (Central Processing Unit) and manages devices such as the entire electric vehicle. The CPU is not particularly limited as long as it can perform the necessary computation, and a GPU (Graphics Processing Unit) or an APU (Accelerated Processing Unit) may be used. Note that APU refers to a chip in which a CPU and a GPU are integrated.
 上記構成においては、2個の二次電池を用いる例を示しているが特に限定されず、二次電池の数は3以上、または100以上、または7000以上1万以下とする。車載の二次電池において、複数の二次電池からの電力を遮断するため、工具を使わずに高電圧を遮断できるサービスプラグまたはサーキットブレーカが設けられている。例えば、2個から10個のセルを有する電池モジュールを48個直列に接続する場合には、24個目の電池モジュールと25個目の電池モジュールの間にサービスプラグまたはサーキットブレーカが設けられている。個別の二次電池を制御するため、個別にスイッチを設ける。例えば、二次電池と同じ個数のICチップ(スイッチを含む)を用意し、一つの二次電池に対して一つのICチップを電気的に接続する。 The above configuration shows an example in which two secondary batteries are used, but there is no particular limitation, and the number of secondary batteries is 3 or more, or 100 or more, or 7000 or more and 10,000 or less. In an in-vehicle secondary battery, a service plug or a circuit breaker that can cut off a high voltage without using a tool is provided to cut off power from a plurality of secondary batteries. For example, when 48 battery modules having 2 to 10 cells are connected in series, a service plug or a circuit breaker is provided between the 24th battery module and the 25th battery module. . In order to control an individual secondary battery, an individual switch is provided. For example, the same number of IC chips (including switches) as the secondary battery are prepared, and one IC chip is electrically connected to one secondary battery.
 また、人間の頭部に設置するデバイスにおいて、複数の二次電池を設け、ニューラルネットワークを用いて好ましくは2個以上を個別に制御することで、二次電池間のアンバランスを低減する。 Also, in a device installed on the human head, a plurality of secondary batteries are provided, and preferably two or more are individually controlled using a neural network, thereby reducing imbalance between the secondary batteries.
 本明細書で開示する発明は、第1の表示領域と、第2の表示領域と、集積回路と、第1の二次電池と、第2の二次電池と、を有し、ニューラルネットワークを用いて集積回路が第1の二次電池、或いは第2の二次電池の劣化分析を行い、劣化程度が大きいほうの二次電池に対してSOCが劣化程度が小さいほうの二次電池よりも狭い範囲で充電を行う電子機器である。 The invention disclosed in this specification includes a first display area, a second display area, an integrated circuit, a first secondary battery, and a second secondary battery, and includes a neural network. The integrated circuit uses the first secondary battery or the second secondary battery for deterioration analysis, and the secondary battery having the larger deterioration degree has a lower SOC than the secondary battery having the lower deterioration degree. It is an electronic device that charges in a narrow range.
 上記構成において、第1の二次電池は、第1のスイッチと電気的に接続され、第2の二次電池は、第2のスイッチと電気的に接続され、第1及び第2のスイッチは、集積回路により制御される。集積回路は、SOCと相関のある充放電特性データを記憶するメモリを有する。 In the above structure, the first secondary battery is electrically connected to the first switch, the second secondary battery is electrically connected to the second switch, and the first and second switches are Controlled by an integrated circuit. The integrated circuit has a memory for storing charge / discharge characteristic data correlated with the SOC.
 上記構成において第1の表示領域は、第1の表示装置であり、第2の表示領域は、第2の表示装置である。それぞれ独立した表示装置を用いることで右目用の表示装置と、左目用の表示装置との間隔を目の位置に合わせて調節することができる。眼鏡型デバイスの場合、人間の目の間隔、即ち瞳孔間間隔は、約50mmから約80mmと幅がある。また、それぞれ独立した二次電池を用いることで個別の二次電池に関する情報を収集し、最適な充電条件で充電を個別に行うことができる。 In the above configuration, the first display area is the first display device, and the second display area is the second display device. By using independent display devices, the distance between the display device for the right eye and the display device for the left eye can be adjusted according to the eye position. In the case of an eyeglass-type device, the distance between human eyes, that is, the distance between pupils, has a width of about 50 mm to about 80 mm. Moreover, the information regarding an individual secondary battery can be collected by using an independent secondary battery, and it can charge separately by optimal charging conditions.
 上記構成においては、2個の二次電池を用いる例を示しているが特に限定されず、二次電池の数は3以上、または100以上とする。個別の二次電池を制御するため、個別にスイッチを設ける。例えば、二次電池と同じ個数のICチップ(スイッチを含む)を用意し、一つの二次電池に対して一つのICチップを電気的に接続する。 The above configuration shows an example in which two secondary batteries are used, but there is no particular limitation, and the number of secondary batteries is 3 or more, or 100 or more. In order to control an individual secondary battery, an individual switch is provided. For example, the same number of IC chips (including switches) as the secondary battery are prepared, and one IC chip is electrically connected to one secondary battery.
 本明細書で開示する発明は、第1の表示領域と、第2の表示領域と、第1の集積回路と、第2の集積回路と、第1の二次電池と、第2の二次電池と、を有し、第1の二次電池は、第1のスイッチと電気的に接続され、第2の二次電池は、第2のスイッチと電気的に接続され、第1のスイッチは、第1の集積回路により制御され、第2のスイッチは、第2の集積回路により制御される電子機器である。 The invention disclosed in this specification includes a first display region, a second display region, a first integrated circuit, a second integrated circuit, a first secondary battery, and a second secondary battery. A first secondary battery is electrically connected to the first switch, a second secondary battery is electrically connected to the second switch, and the first switch is The second switch is an electronic device controlled by the second integrated circuit, and is controlled by the first integrated circuit.
 また、上記構成において、電子機器は、瞳を撮像する機能を有する撮像装置を有する電子機器としてもよい。撮像した瞳の形状をもとに、瞳の形状の変化を検出することができる。集積回路は、瞳の形状の変化に応じた設定の変更に基づく表示データを生成してもよい。あるいは集積回路は、頭部の動きと、瞳の形状の変化と、に応じた設定の変更に基づく表示データを生成する。なお集積回路における表示データの生成はプロセッサ等の回路での処理を伴うため、表示データを演算して生成してもよい。集積回路は、表示装置の表示映像を見ることによって使用者が酔うことを低減する表示データを生成し、表示装置の表示映像を補正してもよい。 In the above configuration, the electronic device may be an electronic device having an imaging device having a function of imaging a pupil. A change in the shape of the pupil can be detected based on the captured pupil shape. The integrated circuit may generate display data based on a change in setting according to a change in the shape of the pupil. Or an integrated circuit produces | generates the display data based on the change of the setting according to the motion of the head and the change of the shape of a pupil. Note that generation of display data in an integrated circuit involves processing in a circuit such as a processor, and therefore display data may be calculated and generated. The integrated circuit may generate display data that reduces drunkness of the user by viewing the display image of the display device, and may correct the display image of the display device.
 上記構成において、ニューラルネットワークを用いて第1の集積回路が前記第1の二次電池の劣化分析を行い、ニューラルネットワークを用いて第2の集積回路が第2の二次電池の劣化分析を行い、劣化程度が大きいほうの二次電池に対して劣化程度が小さいほうの二次電池よりもSOCが狭い範囲で充電を行う。 In the above configuration, the first integrated circuit performs a deterioration analysis of the first secondary battery using a neural network, and the second integrated circuit performs a deterioration analysis of the second secondary battery using a neural network. Then, charging is performed in a range in which the SOC is narrower than that of the secondary battery having the smaller deterioration degree than the secondary battery having the larger deterioration degree.
 上記構成において、集積回路は、酸化物半導体を有するトランジスタを含んでもよい。また、本明細書等において、チャネル形成領域に酸化物半導体または金属酸化物を用いたトランジスタをOxide Semiconductorトランジスタ、あるいはOSトランジスタと呼ぶ。OSトランジスタのチャネル形成領域は、金属酸化物を有することが好ましい。 In the above structure, the integrated circuit may include a transistor including an oxide semiconductor. In this specification and the like, a transistor in which an oxide semiconductor or a metal oxide is used for a channel formation region is referred to as an oxide semiconductor transistor or an OS transistor. The channel formation region of the OS transistor preferably includes a metal oxide.
 また、本明細書等において、金属酸化物(metal oxide)とは、広い表現での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう)などに分類される。例えば、トランジスタの半導体層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、金属酸化物が増幅作用、整流作用、及びスイッチング作用の少なくとも1つを有する場合、当該金属酸化物を、金属酸化物半導体(metal oxide semiconductor)、略してOSと呼ぶことができる。 In addition, in this specification and the like, a metal oxide is a metal oxide in a broad expression. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as oxide semiconductors or simply OS), and the like. For example, in the case where a metal oxide is used for a semiconductor layer of a transistor, the metal oxide may be referred to as an oxide semiconductor. That is, when a metal oxide has at least one of an amplifying function, a rectifying function, and a switching function, the metal oxide can be referred to as a metal oxide semiconductor, or OS for short.
 チャネル形成領域が有する金属酸化物はインジウム(In)を含むことが好ましい。チャネル形成領域が有する金属酸化物がインジウムを含む金属酸化物の場合、OSトランジスタのキャリア移動度(電子移動度)が高くなる。また、チャネル形成領域が有する金属酸化物は、元素Mを含む酸化物半導体であると好ましい。元素Mは、好ましくは、アルミニウム(Al)、ガリウム(Ga)またはスズ(Sn)などとする。そのほかの元素Mに適用可能な元素としては、ホウ素(B)、シリコン(Si)、チタン(Ti)、鉄(Fe)、ニッケル(Ni)、ゲルマニウム(Ge)、イットリウム(Y)、ジルコニウム(Zr)、モリブデン(Mo)、ランタン(La)、セリウム(Ce)、ネオジム(Nd)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)などがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。元素Mは、例えば、酸素との結合エネルギーが高い元素である。例えば、酸素との結合エネルギーがインジウムよりも高い元素である。また、チャネル形成領域が有する金属酸化物は、亜鉛(Zn)を含む金属酸化物であると好ましい。亜鉛を含む金属酸化物は結晶化しやすくなる場合がある。 The metal oxide included in the channel formation region preferably contains indium (In). In the case where the metal oxide included in the channel formation region is a metal oxide containing indium, carrier mobility (electron mobility) of the OS transistor is increased. In addition, the metal oxide included in the channel formation region is preferably an oxide semiconductor containing the element M. The element M is preferably aluminum (Al), gallium (Ga), tin (Sn), or the like. Other elements applicable to the element M include boron (B), silicon (Si), titanium (Ti), iron (Fe), nickel (Ni), germanium (Ge), yttrium (Y), zirconium (Zr ), Molybdenum (Mo), lanthanum (La), cerium (Ce), neodymium (Nd), hafnium (Hf), tantalum (Ta), tungsten (W), and the like. However, the element M may be a combination of a plurality of the aforementioned elements. The element M is an element having a high binding energy with oxygen, for example. For example, it is an element whose binding energy with oxygen is higher than that of indium. The metal oxide included in the channel formation region is preferably a metal oxide containing zinc (Zn). A metal oxide containing zinc may be easily crystallized.
 チャネル形成領域に含まれる金属酸化物は、インジウムを含む金属酸化物に限定されない。チャネル形成領域に含まれる金属酸化物は、例えば、亜鉛スズ酸化物、ガリウムスズ酸化物などの、インジウムを含まず、亜鉛を含む金属酸化物、ガリウムを含む金属酸化物、スズを含む金属酸化物などであっても構わない。 The metal oxide contained in the channel formation region is not limited to a metal oxide containing indium. The metal oxide contained in the channel formation region is, for example, zinc-tin oxide, gallium tin oxide, or the like, which does not contain indium, zinc-containing metal oxide, gallium-containing metal oxide, tin-containing metal oxide, etc. It does not matter.
 また、上記構成において、劣化程度が大きいほうの二次電池は、充電時において満充電状態にならないように充電を停止し、劣化程度が小さいほうの二次電池は、前記充電時において満充電状態を維持する。満充電状態とは、充電を開始した二次電池の電圧が充電終止電圧の範囲となるまで充電した状態を意味する。充電状態は、二次電池の容量に対して充電量を比率で表したSOCによって示される。 Further, in the above configuration, the secondary battery having a higher degree of deterioration stops charging so as not to be fully charged at the time of charging, and the secondary battery having a lower degree of deterioration is fully charged at the time of charging. To maintain. The fully charged state means a state in which charging is performed until the voltage of the secondary battery that has started charging falls within the range of the charge end voltage. The state of charge is indicated by an SOC in which the charge amount is expressed as a ratio with respect to the capacity of the secondary battery.
 劣化の少ない二次電池を優先的に充電または放電させることで、劣化の大きい二次電池と充電回数や、満充電状態の維持期間などに差をつける。充電回数が多ければ多いほど、または満充電状態の維持期間が長ければ長いほど劣化が促進されるため、劣化の小さい二次電池を優先的に利用することで、劣化の大きい二次電池との差が縮小され、二次電池間の劣化の程度の差が縮小される。 Priority is given to charging or discharging a secondary battery with little deterioration, thereby making a difference between the secondary battery with high deterioration and the number of times it has been charged or the maintenance period of a fully charged state. As the number of times of charging increases, or the longer the fully charged state is maintained, the longer the deterioration, the more accelerated the deterioration. The difference is reduced, and the difference in the degree of deterioration between the secondary batteries is reduced.
 また、上記構成において、劣化程度が大きいほうの二次電池は、放電時にSOC(充電率)が30%未満とならないように放電下限電圧の設定を上げて放電を停止し、前記劣化程度が小さいほうの二次電池は、SOC(充電率)が30%未満に達するまで放電させる。これらの放電の制御は1つのスイッチまたは複数のスイッチで行う。 Further, in the above configuration, the secondary battery having a higher degree of deterioration stops the discharge by increasing the discharge lower limit voltage so that the SOC (charge rate) does not become less than 30% at the time of discharging, and the degree of deterioration is small. The secondary battery is discharged until the SOC (charge rate) reaches less than 30%. These discharges are controlled by one switch or a plurality of switches.
 また、充電制御方法も本明細書で開示する発明の一つである。第1の二次電池及び第2の二次電池の劣化程度診断を行い、第1の二次電池と第2の二次電池のうち、劣化が小さい一方の電池に接続されたスイッチをオン状態として第1の充電条件で満充電状態とし、劣化が大きいもう一方の電池に接続されたスイッチをオン状態として第1の充電条件とは異なる第2の充電条件で充電を開始してSOC(充電率)50%以上80%以下の範囲で充電停止し、充電履歴を記録する。 The charge control method is also one of the inventions disclosed in this specification. Diagnose the degree of deterioration of the first secondary battery and the second secondary battery, and turn on the switch connected to one of the first secondary battery and the second secondary battery that is less deteriorated The first charging condition is fully charged, the switch connected to the other battery having a large deterioration is turned on, and charging is started under a second charging condition different from the first charging condition. Rate) Stop charging in the range of 50% to 80% and record the charging history.
 上記構成において、第2の充電条件はニューラルネットワーク処理により決定される。ニューラルネットワーク処理とは複数のデータを用いて学習するシステムである。また、予め学習させたニューラルネットワークを用いて得られた学習結果を利用していくつかの決められた充電条件のなかから一つを選択し、第2の充電条件を決定してもよい。 In the above configuration, the second charging condition is determined by neural network processing. Neural network processing is a system that learns using a plurality of data. Alternatively, the second charging condition may be determined by selecting one of several predetermined charging conditions using a learning result obtained by using a neural network learned in advance.
 組電池において一部の二次電池は満充電状態にしないため、残容量の異なる二次電池を利用することとなり、低い電圧の二次電池の電圧を個別に昇圧回路によって上昇させる。また、個別の二次電池に関する情報を収集し、第2のニューラルネットワークを用いて個別の二次電池に対して最適な条件を選び放電を行う。例えば、劣化の小さい二次電池を優先的に使用し、劣化の大きい二次電池は、ほとんど使用(放電または充電)せず、容量を維持する。組電池を電池間の劣化の程度が同じになるように使用することで、二次電池間のアンバランスを低減する。 Since some of the secondary batteries are not fully charged in the assembled battery, secondary batteries having different remaining capacities are used, and the voltage of the secondary battery having a low voltage is individually increased by the booster circuit. Also, information on individual secondary batteries is collected, and discharge is performed by selecting optimum conditions for the individual secondary batteries using the second neural network. For example, a secondary battery with low deterioration is used preferentially, and a secondary battery with high deterioration hardly uses (discharges or charges), and maintains capacity. By using the assembled battery so that the degree of deterioration between the batteries is the same, the imbalance between the secondary batteries is reduced.
 検出された二次電池の温度が高ければ、送風装置、液体循環装置などの冷却手段を制御する。また、外気の気温が低く、検出された二次電池の温度が低ければ、ヒータなどの加熱手段を制御して温度を上げてもよい。 If the temperature of the detected secondary battery is high, the cooling means such as the blower and the liquid circulation device is controlled. Further, if the temperature of the outside air is low and the temperature of the detected secondary battery is low, the temperature may be increased by controlling heating means such as a heater.
 二次電池を有する車両に充電プラグを接続して充電設備から二次電池の充電を行う。充電方式は、CHAdeMO方式とCombo方式などがある。また、非接触式の充電装置を用いてもよい。送信側のコイルから受電側コイルで電力のやりとりを行う。非接触式としては共鳴方式や電磁誘導方式がある。 Connect the charging plug to the vehicle with the secondary battery and charge the secondary battery from the charging facility. The charging method includes a CHAdeMO method and a Combo method. Moreover, you may use a non-contact-type charging device. Power is exchanged from the transmitting coil to the receiving coil. Non-contact methods include a resonance method and an electromagnetic induction method.
 また、充電制御装置も本発明の一つである。充電制御装置は、第1の二次電池に電気的に接続された第1のスイッチと、第2の二次電池に電気的に接続された第2のスイッチと、第1の二次電池及び第2の二次電池の劣化分析または劣化診断または劣化推測を行う集積回路と、二次電池の劣化状態に適した充電条件を決定するニューラルネットワーク部と、一方の二次電池と第2の二次電池の出力電圧が同じになるように、小さい方の出力電圧を昇圧するコンバータとを有する。 Also, a charging control device is one aspect of the present invention. The charge control device includes: a first switch electrically connected to the first secondary battery; a second switch electrically connected to the second secondary battery; the first secondary battery; An integrated circuit for performing deterioration analysis or deterioration diagnosis or deterioration estimation of the second secondary battery, a neural network unit for determining a charging condition suitable for the deterioration state of the secondary battery, one secondary battery and the second second battery And a converter that boosts the smaller output voltage so that the output voltages of the secondary batteries are the same.
 電子機器に用いられている複数の二次電池間における性能劣化の差を低減し、二次電池間のアンバランスを低減することができる。複数の二次電池を直列または並列に接続しながら、二次電池のアンバランスを低減することで効率よく二次電池を使用し、長期間の組電池の使用を可能とする。 The difference in performance deterioration among a plurality of secondary batteries used in electronic devices can be reduced, and the unbalance between secondary batteries can be reduced. By connecting a plurality of secondary batteries in series or in parallel, the secondary battery can be efficiently used by reducing the unbalance of the secondary batteries, and the assembled battery can be used for a long time.
 また軽量の複数の二次電池を配置することでHMDや眼鏡型デバイスに二次電池を内蔵することができる。また、複数の二次電池を適宜配置することで、電子デバイスの重量バランスを調整しやすくなる。 Also, by arranging a plurality of lightweight secondary batteries, the secondary battery can be built into the HMD or glasses-type device. Moreover, it becomes easy to adjust the weight balance of an electronic device by arrange | positioning a some secondary battery suitably.
 電子機器に用いる複数の二次電池のうち、寿命が短いものがあった場合、短い寿命の二次電池の交換のタイミングで全ての二次電池を交換することが従来必要であったが、本発明により、1つだけ交換しても、充電条件を個別にニューラルネットワーク演算を行うことのできるマイクロプロセッサで調節するため、二次電池の使用期間に差があってもトータルで長い寿命を達成することができる。 In the case where some of the secondary batteries used in electronic devices have a short life, it was conventionally necessary to replace all the secondary batteries at the timing of replacement of the secondary battery with a short life. According to the invention, even if only one is replaced, the charging condition is adjusted by a microprocessor capable of performing neural network calculation individually, so that a long life is achieved even if there is a difference in the usage period of the secondary battery. be able to.
 また、新規な電池管理回路を実現することができる。 Also, a new battery management circuit can be realized.
 また、新規な充電制御システムを実現することができる。 Also, a new charge control system can be realized.
本発明の一態様を示すブロック図の一例。1 is an example of a block diagram illustrating one embodiment of the present invention. 本発明の一態様を示すフローチャートの一例。6 is an example of a flowchart illustrating one embodiment of the present invention. 本発明の一態様を示すフローチャートの一例。6 is an example of a flowchart illustrating one embodiment of the present invention. 本発明の一態様を示すフローチャートの一例。6 is an example of a flowchart illustrating one embodiment of the present invention. SOCの一例を示すグラフ及び、容量とサイクルを示すグラフ。The graph which shows an example of SOC, and the graph which shows a capacity | capacitance and a cycle. ニューラルネットワークの構成の一例を示す図。The figure which shows an example of a structure of a neural network. ニューラルネットワークの構成の一例を示す図。The figure which shows an example of a structure of a neural network. ニューラルネットワークの構成の一例を示す図。The figure which shows an example of a structure of a neural network. 積和演算回路の構成例を示すブロック図。The block diagram which shows the structural example of a product-sum operation circuit. 回路の構成例を示す回路図。The circuit diagram which shows the structural example of a circuit. 積和演算回路の動作例を示すタイミングチャート。The timing chart which shows the operation example of a product-sum operation circuit. 円筒型二次電池を示す図。The figure which shows a cylindrical secondary battery. コイン型二次電池を説明する図。The figure explaining a coin-type secondary battery. 二次電池を説明する図。The figure explaining a secondary battery. 二次電池を説明する図。The figure explaining a secondary battery. 二次電池を説明する図。The figure explaining a secondary battery. 電子機器の例を説明する図。10A and 10B each illustrate an example of an electronic device. 電子機器の例を説明する図。10A and 10B each illustrate an example of an electronic device. 電子機器の例を説明する図。10A and 10B each illustrate an example of an electronic device. 電子機器の例を説明する図。10A and 10B each illustrate an example of an electronic device. 本発明の一態様を示す上面図および模式図。4A and 4B are a top view and a schematic view illustrating one embodiment of the present invention. 電子機器を説明する図。10A and 10B each illustrate an electronic device. 容量とサイクルを示すグラフ(比較例)。A graph showing capacity and cycle (comparative example).
 以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it will be easily understood by those skilled in the art that modes and details can be variously changed. In addition, the present invention is not construed as being limited to the description of the embodiments below.
(実施の形態1)
 図1(A)に複数の二次電池、ここでは2個の二次電池を搭載した乗用車のブロック図の一例を示す。なお、図1(A)では簡略化のため、座席や、ドアや、剛性をたかめるフレームなどは図示していない。
(Embodiment 1)
FIG. 1A shows an example of a block diagram of a passenger car equipped with a plurality of secondary batteries, here two secondary batteries. Note that in FIG. 1A, for simplification, a seat, a door, a frame for increasing rigidity, and the like are not illustrated.
 図1(A)に示す乗用車は、二次電池301a、二次電池301b、昇圧コンバータ302、インバータ303、モータ305、回生ブレーキ強調制御バルブ304、タイヤ306などを有する。 1A includes a secondary battery 301a, a secondary battery 301b, a boost converter 302, an inverter 303, a motor 305, a regenerative brake emphasis control valve 304, a tire 306, and the like.
 二次電池301a、二次電池301bはリチウムイオン二次電池であり、それぞれにスイッチ311a、311bが設けられ、充電または放電を複数のスイッチを用いて制御できる。スイッチの制御は、第1ECUで行われる。 The secondary battery 301a and the secondary battery 301b are lithium ion secondary batteries, and are provided with switches 311a and 311b, respectively, and charging or discharging can be controlled using a plurality of switches. The switch is controlled by the first ECU.
 回生ブレーキ強調制御バルブ304と二次電池301a(或いは、二次電池301b)の間の電力のやりとりはECU(第1ECUまたは第2ECU)で制御が行われる。図1(A)中において、ECUで制御する範囲を点線で囲っている。ECUは電子制御ユニットを指しており、マイクロコンピュータなどの集積回路の一種である。第1ECUは、1つのチップ上に集積して製造されたLSI(Large Scale Integrated Circuit)から構成されているとしてもよい。また、集積化の手法はLSIに限らず、専用回路または汎用プロセッサで実現してもよい。また、LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、或いはLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブルプロセッサを用いてもよい。 The exchange of electric power between the regenerative brake emphasis control valve 304 and the secondary battery 301a (or the secondary battery 301b) is controlled by an ECU (first ECU or second ECU). In FIG. 1A, a range controlled by the ECU is surrounded by a dotted line. The ECU indicates an electronic control unit and is a kind of integrated circuit such as a microcomputer. The first ECU may be composed of an LSI (Large Scale Integrated Circuit) manufactured by being integrated on one chip. Further, the integration method is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, an FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of the circuit cells inside the LSI may be used.
 乗用車の走行中においては、二次電池から供給される電力が、昇圧コンバータ302やインバータ303を介してモータ305に供給される。モータ305は、タイヤ306を回転させて乗用車を動かす。ブレーキ使用時においては、回生エネルギーを回収し、第2ECU及び第1ECUを介して二次電池に充電される。充電の際には、劣化の度合いを考慮してスイッチ311a、311bを切り替えることで充電先を決定することができる。 During the traveling of the passenger car, the power supplied from the secondary battery is supplied to the motor 305 via the boost converter 302 and the inverter 303. The motor 305 rotates the tire 306 to move the passenger car. When the brake is used, regenerative energy is collected and the secondary battery is charged via the second ECU and the first ECU. In charging, the charging destination can be determined by switching the switches 311a and 311b in consideration of the degree of deterioration.
 本実施の形態では、ニューラルネットワークを用いて乗用車の走行中に複数の二次電池の劣化状態を分析(または診断または推測)し、SOCが30%以上であれば、スイッチをオン状態として電力の供給を行う。SOCが30%未満に放電されている二次電池に関しては、スイッチをオフ状態としてモータへの電力供給を停止する。またはSOCが30%未満に放電されている二次電池に対してスイッチをオン状態として優先的に回生ブレーキからの充電を開始する。また、劣化の程度が小さい二次電池に対してスイッチをオン状態として優先的に回生ブレーキからの充電を開始する。 In this embodiment, the deterioration state of a plurality of secondary batteries is analyzed (or diagnosed or estimated) while the passenger car is running using a neural network. If the SOC is 30% or more, the switch is turned on and the power consumption is reduced. Supply. For the secondary battery in which the SOC is discharged to less than 30%, the power supply to the motor is stopped by turning off the switch. Alternatively, the secondary battery in which the SOC is discharged to less than 30% is switched on to preferentially start charging from the regenerative brake. Further, the secondary battery having a small degree of deterioration is switched on to preferentially start charging from the regenerative brake.
 ニューラルネットワークを用いて二次電池の劣化状態を分析(または診断または推測)し、最も劣化の小さい二次電池を基準とし、相対的に劣化が大きい二次電池に充電する際、満充電状態にならないように制御する。例えば、図1(A)において二次電池301aに比べて二次電池301bのほうが劣化が大きい場合、充電の途中に、二次電池301aのスイッチ311aをオン状態として引き続き充電を行い、満充電状態とし、二次電池301bのスイッチ311bをオフ状態とすることで充電を停止し、満充電状態にならないようにすることができる。 Analyzing (or diagnosing or inferring) the secondary battery's deterioration state using a neural network, and when charging a secondary battery with relatively high deterioration based on the secondary battery with the lowest deterioration, Control so as not to become. For example, in FIG. 1A, when the secondary battery 301b is more deteriorated than the secondary battery 301a in the middle of charging, the switch 311a of the secondary battery 301a is turned on to continue charging, and the fully charged state Then, by turning off the switch 311b of the secondary battery 301b, the charging can be stopped and the fully charged state can be prevented.
 ここで、本実施の形態における充電制御システムの充電動作の一例について、図面を用いて説明する。図2は、停車中における充電動作を示すフローチャートである。なお、ここでは、ニューラルネットワーク処理を行うことのできるマイクロプロセッサをECUに搭載している例を示す。乗用車のECUに内蔵されているマイクロプロセッサは、アナログ積和演算回路を有してもよい。アナログ積和演算回路の詳細は後の実施の形態に示す。なお、ニューラルネットワーク処理を行うことのできるマイクロプロセッサはアナログ積和演算回路を用いなくとも構成することもできる。 Here, an example of the charging operation of the charging control system in the present embodiment will be described with reference to the drawings. FIG. 2 is a flowchart showing a charging operation while the vehicle is stopped. Here, an example in which a microprocessor capable of performing neural network processing is mounted on the ECU is shown. The microprocessor built in the ECU of the passenger car may have an analog product-sum operation circuit. Details of the analog product-sum operation circuit will be described in a later embodiment. Note that a microprocessor capable of performing neural network processing can be configured without using an analog product-sum operation circuit.
 まず、充電用のケーブルを用いて外部電源(単相AC200Vまたは三相AC200Vなど)とプラグとを電気的に接続し、二次電池の残容量(SOC)などの情報を第1ECUのマイクロプロセッサが自動的に取得する(S1)。二次電池の残容量を測定する方法として、電圧法による検出方法や、積算法による検出方法などがある。物理的モデルに基づくSOCの検出は電流、電圧、内部温度、無負荷電圧、外部温度、インピーダンスなどといったような変数に依拠するモデルが関与する。SOCを検出する方法は、クーロメトリである。 First, an external power source (single-phase AC200V or three-phase AC200V, etc.) and a plug are electrically connected using a charging cable, and the microprocessor of the first ECU provides information such as the remaining capacity (SOC) of the secondary battery. Obtained automatically (S1). As a method for measuring the remaining capacity of the secondary battery, there are a detection method by a voltage method, a detection method by an integration method, and the like. The detection of SOC based on a physical model involves a model that relies on variables such as current, voltage, internal temperature, no-load voltage, external temperature, impedance, and the like. The method for detecting the SOC is coulometry.
 次いで、第1ECUのマイクロプロセッサがニューラルネットワーク処理を行って第1、第2の二次電池の劣化程度診断を行う(S2)。二次電池の劣化程度診断とは、基準となる二次電池のSOC(例えば出荷時のSOC)の時系列データと二次電池使用後のSOCの時系列データを比較して劣化の度合いを判断することである。本実施の形態では、結果として劣化の程度が算出される(S4)。なお、二次電池の劣化の程度診断においては、充電開始後に充電電圧の推移から、充電プロファイルを推論し、推論された充電容量から劣化程度を診断してもよい。予め、リファレンスとなる二次電池の充電率とパラメータ(電流値や電圧値や内部インピーダンスや温度など)との相関関係を事前学習したニューラルネットワーク処理に対して、パラメータを入力することによって対象の二次電池のSOCを推定し、対象の二次電池の出荷時のSOCと比較することで劣化程度を診断することができる。また、出荷時のSOCと比較でなくとも他の二次電池との比較によって劣化程度を診断してもよい。ニューラルネットワーク処理は公知の様々なニューラルネット演算方式を用いることができる。 Next, the microprocessor of the first ECU performs neural network processing to diagnose the degree of deterioration of the first and second secondary batteries (S2). The secondary battery deterioration degree diagnosis refers to the time series data of the reference secondary battery SOC (for example, SOC at the time of shipment) and the time series data of the SOC after using the secondary battery to determine the degree of deterioration. It is to be. In the present embodiment, as a result, the degree of deterioration is calculated (S4). In the diagnosis of the degree of deterioration of the secondary battery, a charging profile may be inferred from the transition of the charging voltage after the start of charging, and the degree of deterioration may be diagnosed from the inferred charging capacity. For neural network processing that pre-learns the correlation between the charging rate of the secondary battery as a reference and parameters (current value, voltage value, internal impedance, temperature, etc.) in advance, input the parameters to input The degree of deterioration can be diagnosed by estimating the SOC of the secondary battery and comparing it with the SOC at the time of shipment of the target secondary battery. Further, the deterioration degree may be diagnosed not by comparing with the SOC at the time of shipment but by comparing with other secondary batteries. For the neural network processing, various known neural network calculation methods can be used.
 同一回数充電された第1の二次電池と第2の二次電池とを比較する場合、どちらか一方の劣化が進行している。二次電池の劣化の程度を判断するためにしきい値を設けてもよい。 When comparing the first secondary battery and the second secondary battery that have been charged the same number of times, the deterioration of either one has progressed. A threshold value may be provided to determine the degree of deterioration of the secondary battery.
 劣化が大きい二次電池は、第1の充電スイッチをON状態とする(S5)。そして、充電を開始(S6)し、満充電状態となる前に充電を停止する。第1の充電スイッチをOFF状態として充電の停止を行う(S7)。劣化が大きい二次電池は、SOCが50%以上80%以下の範囲内になるように充電を終了させる(S8)。劣化の程度や充電の履歴をメモリなどに保存(S10)し、そのデータは、劣化程度(劣化度合いとも呼ぶ)の算出の際に、過去の充電履歴として参照(S3)できるようにする。劣化が大きい二次電池の充電は、このような一連の流れで行われる。 A secondary battery with great deterioration turns on the first charge switch (S5). Then, charging is started (S6), and charging is stopped before the fully charged state is reached. The first charging switch is turned off to stop charging (S7). The secondary battery having a large deterioration is charged so that the SOC is in the range of 50% to 80% (S8). The degree of deterioration and the charge history are stored in a memory or the like (S10), and the data can be referred to as a past charge history (S3) when calculating the degree of deterioration (also called the degree of deterioration). The rechargeable secondary battery is charged in such a series of flows.
 一方、劣化が小さい二次電池は、通常の充電を行う。図2においては、第2の充電スイッチをON状態(S5)とし、充電を開始(S6)し、満充電状態となった時点で終了(S9)する。そして第2の充電スイッチをOFF状態とする(S11)。劣化が小さい二次電池の充電は、このような一連の流れで行われる。なお、第1の充電スイッチ及び第2の充電スイッチは、図1(A)におけるスイッチ311a、311bに相当する。 On the other hand, a secondary battery with little deterioration is charged normally. In FIG. 2, the second charging switch is turned on (S5), charging is started (S6), and the process is terminated (S9) when the fully charged state is reached. Then, the second charging switch is turned off (S11). Charging of the secondary battery with small deterioration is performed in such a series of flows. Note that the first charging switch and the second charging switch correspond to the switches 311a and 311b in FIG.
 ここで、本実施の形態における充電制御システムの放電動作及び充電動作の一例について、図面を用いて説明する。図3及び図4は、複数の二次電池を搭載した乗用車の走行開始および走行中における放電動作及び充電動作を示すフローチャートの一例である。なお乗用車の走行中の充電動作時の二次電池への給電源は回生エネルギーや、発電用エンジンが用いられる。 Here, an example of the discharge operation and the charge operation of the charge control system in the present embodiment will be described with reference to the drawings. FIG. 3 and FIG. 4 are examples of flowcharts showing a discharge operation and a charge operation during the start of travel and travel of a passenger car equipped with a plurality of secondary batteries. Note that regenerative energy or a power generation engine is used as a power supply to the secondary battery during the charging operation while the passenger car is running.
 まず、電源回路と二次電池との間に設置されているスイッチをON状態とする(S1)。二次電池から電力を電源回路に供給する(S2)。 First, a switch installed between the power supply circuit and the secondary battery is turned on (S1). Power is supplied from the secondary battery to the power supply circuit (S2).
 次いで、二次電池の電圧チェック(S3)を行い、複数の二次電池のSOCをそれぞれ判定(S4)し、複数の二次電池のSOCがしきい値以上であれば、二次電池の電圧差を検出する(S5)。なお、二次電池の電圧がしきい値未満であれば、充電動作とする。例えば、SOCの判定(S4)は、予めしきい値を決めておき、そのデータをメモリで記憶させて比較回路で行う。 Next, the secondary battery voltage check (S3) is performed, and the SOCs of the plurality of secondary batteries are respectively determined (S4). If the SOCs of the plurality of secondary batteries are equal to or greater than the threshold value, the voltage of the secondary battery is determined. A difference is detected (S5). In addition, if the voltage of a secondary battery is less than a threshold value, it will be set as charge operation. For example, the determination of the SOC (S4) is performed by a comparison circuit in which a threshold value is determined in advance and the data is stored in a memory.
 次いで、複数の二次電池のうち、最大の電圧を有する二次電池を検出し、最大電圧の二次電池と他の一つの二次電池の電圧差を検出する(S5)。ただし、使用する複数の二次電池は電圧が異なっているものとする。本実施の形態においては、満充電状態にさせた二次電池と、劣化を抑えるために満充電状態にしない二次電池との2種類を少なくとも有するため、電圧の異なる二次電池を用いる放電動作となる。そのため、放電時には各二次電池の電圧に応じた昇圧率で使用目的電圧にDCDCコンバータなどを用いて昇圧して二次電池を使用する。 Next, the secondary battery having the maximum voltage among the plurality of secondary batteries is detected, and the voltage difference between the secondary battery having the maximum voltage and the other secondary battery is detected (S5). However, a plurality of secondary batteries to be used have different voltages. In this embodiment, since there are at least two types of secondary batteries that are in a fully charged state and secondary batteries that are not in a fully charged state in order to suppress deterioration, a discharge operation using secondary batteries having different voltages It becomes. Therefore, at the time of discharging, the secondary battery is used by boosting to the intended voltage using a DCDC converter or the like at a boosting rate corresponding to the voltage of each secondary battery.
 最大の電圧を有する二次電池との電圧差が小さい二次電池(即ち電圧が大きい二次電池)の場合は、通常の二次電池の使用となる。昇圧レートを算出(S6)し、昇圧回路との接続をON状態(S7)として昇圧を開始(S8)する。そして電源供給を制御するスイッチをオン(S9)とし回路への電源供給を開始(S10)し、乗用車を走行させた後、停車して回路への電力供給を停止する。昇圧レートなどの算出はニューラルネットワーク処理を用いてもよい。 In the case of a secondary battery having a small voltage difference from the secondary battery having the maximum voltage (that is, a secondary battery having a large voltage), a normal secondary battery is used. The boosting rate is calculated (S6), the connection with the booster circuit is turned on (S7), and boosting is started (S8). Then, the switch for controlling the power supply is turned on (S9), the power supply to the circuit is started (S10), the passenger car is run, the vehicle is stopped, and the power supply to the circuit is stopped. Neural network processing may be used to calculate the boosting rate and the like.
 そして、2回目の二次電池の電圧チェック(S11)を行い、2回目のSOCを判定(S12)し、十分に残容量がある場合、回路への電源供給停止指示(S13)を出さずに回路への電源供給継続(S14)を行い、一定時間経た後、再び電圧チェックが行われ、放電可能でなくなるまで繰り返す。二次電池の残容量がなくなれば回路への電力供給を停止(S15)し、必要であれば充電を行う。 Then, the secondary battery voltage check (S11) is performed for the second time, the second SOC is determined (S12), and if there is sufficient remaining capacity, the power supply stop instruction (S13) to the circuit is not issued. The power supply to the circuit is continued (S14), and after a predetermined time, the voltage check is performed again, and the process is repeated until the discharge is no longer possible. When the remaining capacity of the secondary battery runs out, power supply to the circuit is stopped (S15), and charging is performed if necessary.
 最大の電圧を有する二次電池との電圧差が中程度である二次電池の場合は、残容量が異なる点以外は、電圧差が小さい二次電池の場合とほぼ同一であるため、図3に示すが、ここでは詳細な説明を省略する。 A secondary battery having a medium voltage difference from the secondary battery having the maximum voltage is substantially the same as the secondary battery having a small voltage difference except that the remaining capacity is different. However, detailed description is omitted here.
 また、最大の電圧を有する二次電池との電圧差が大きい、即ち、残容量が小さい二次電池の場合もフローチャートは、電圧差が小さい二次電池とほぼ同一であるため、図4に示すが、ここでは詳細な説明を省略する。このように、それぞれの二次電池の電圧が異なる状態のまま使用し、昇圧レートもそれぞれ異なることとなる。 Also, in the case of a secondary battery having a large voltage difference from the secondary battery having the maximum voltage, that is, a small remaining capacity, the flowchart is almost the same as that of the secondary battery having a small voltage difference. However, detailed description is omitted here. In this way, the secondary batteries are used with different voltages, and the boosting rates are also different.
 いずれの二次電池もSOC算出結果で放電許可範囲外となれば、充電動作(充電モード)に切り替わるものとする。 Any secondary battery is switched to a charging operation (charging mode) if the SOC calculation result is out of a discharge permission range.
 充電モードに切り替わると、過去の充電履歴を参照し、充電終止電圧の読み込み(S16)を行う。充電終止電圧の数値もそれぞれの二次電池の充電履歴が異なるため、異なる数値とする。ニューラルネットワーク処理を用いて、それぞれの二次電池の充電終止電圧の決定を行ってもよい。 When switching to the charging mode, the charging end voltage is read with reference to the past charging history (S16). Since the charging history of each secondary battery is different, the numerical value of the end-of-charge voltage is also different. The end-of-charge voltage of each secondary battery may be determined using neural network processing.
 そして充電開始(S18)して、充電プロファイルを得る。この充電プロファイルを比較することで電池の劣化程度が診断できる。そして充電履歴にフィードバック(S19)を行い、個々の二次電池の劣化程度をメモリなどに記録する。 Then, start charging (S18) to obtain a charging profile. The degree of deterioration of the battery can be diagnosed by comparing the charging profiles. Then, feedback (S19) is performed on the charging history, and the deterioration degree of each secondary battery is recorded in a memory or the like.
 そして、充電を続けて予め設定されていた充電終止電圧になった段階で充電スイッチをOFF状態(S20)とする。 Then, the charging switch is turned off (S20) at the stage where the charging end voltage that has been set in advance is reached by continuing charging.
 そして、複数の電池の劣化バラツキの平準化の推論を実施し、全電池の充電上限電圧(上限SOC)を再設定(S21)する。平準化の推論は、ニューラルネットワーク処理を用いればよい。 Then, the inference of leveling the deterioration variation of the plurality of batteries is performed, and the charging upper limit voltage (upper limit SOC) of all the batteries is reset (S21). For the reasoning of leveling, neural network processing may be used.
 例えば、劣化の度合いの大きい二次電池が発生し、そのまま使用することは走行動作の停止が早まる、或いは劣化を促進することになるため、その二次電池のみを充電モードに切り替える。そして、充電スイッチをON状態(S17)とし、回生ブレーキによる充電を開始(S18)する。また、回生ブレーキによる充電は、急速充電ではなく、劣化しにくい充電条件とすることが好ましい。劣化しにくい充電条件としては、ニューラルネットワーク処理を用いて充放電レートや充電終止電圧や温度や充電方式(定電圧充電方式、定電流充電方式、定電圧定電流充電方式)などを決定してもよい。また、劣化の度合いの大きい二次電池は、満充電状態にならないように充電終止電圧を低めに設定することが好ましい。例えば、劣化の度合いの大きい二次電池は、SOCが50%以上80%以下の範囲内になるように充電終止電圧を設定する。 For example, if a secondary battery with a high degree of deterioration is generated and used as it is, the stop of the running operation is accelerated or the deterioration is accelerated, so that only the secondary battery is switched to the charging mode. Then, the charging switch is turned on (S17), and charging by the regenerative brake is started (S18). In addition, it is preferable that the charging by the regenerative brake is not a rapid charging but a charging condition that hardly deteriorates. As charging conditions that are difficult to deteriorate, the charge / discharge rate, end-of-charge voltage, temperature, and charging method (constant voltage charging method, constant current charging method, constant voltage constant current charging method), etc., are determined using neural network processing. Good. Moreover, it is preferable that the secondary battery having a large degree of deterioration is set to have a low end-of-charge voltage so as not to be fully charged. For example, for a secondary battery with a high degree of deterioration, the end-of-charge voltage is set so that the SOC is in the range of 50% to 80%.
 このように動作をさせた場合、早期に劣化した二次電池の使用回数などが限られ、一定の使用期間経過後には、早期に劣化した二次電池の劣化の程度が他の二次電池と同程度になるよう平準化できる。 When operated in this way, the number of times of use of a secondary battery that has deteriorated early is limited, and after a certain period of use, the degree of deterioration of a secondary battery that has deteriorated early is different from that of other secondary batteries. It can be leveled to the same extent.
 また、図1(A)ではブレーキまたは減速により回生エネルギーを得ている例であるが、図1(B)は、変形例の一つである。ガソリンを用いた発電用エンジン307と発電用モータ308が設けられており、適宜、発電してエネルギーを得ることができるため、SOCが30%未満に放電されている二次電池が検出されれば、その二次電池を優先して充電でき、劣化を低減することができる。 1A is an example in which regenerative energy is obtained by braking or deceleration, but FIG. 1B is one of the modifications. Since a power generation engine 307 using gasoline and a power generation motor 308 are provided, and energy can be obtained by appropriately generating power, if a secondary battery in which SOC is discharged to less than 30% is detected. The secondary battery can be charged with priority, and deterioration can be reduced.
 また、図1(B)に示す乗用車は二次電池が3つあり、モータ駆動するためのスイッチ311a、311b、311cと、発電用スイッチ311d、311e、311fを有している。 Further, the passenger car shown in FIG. 1B has three secondary batteries, and has switches 311a, 311b, and 311c for driving the motor, and power generation switches 311d, 311e, and 311f.
 また、動作させる回路の負荷に対して最適な二次電池を用いて、劣化の程度を同程度にするよう平準化してもよい。 Also, a secondary battery that is optimal for the load of the circuit to be operated may be used and leveled so that the degree of deterioration is the same.
 例えば、図1(B)において、二次電池301aが最も劣化の少ないAランク品であり、二次電池301cが最も劣化が大きいCランク品であり、二次電池301bが中程度に劣化しているBランク品である場合を仮定する。 For example, in FIG. 1B, the secondary battery 301a is the A-rank product with the least deterioration, the secondary battery 301c is the C-rank product with the greatest deterioration, and the secondary battery 301b is moderately deteriorated. It is assumed that the product is a B rank product.
 この3つの二次電池のサイクル特性を図に示したものが図23である。図23に示すように二次電池301cが最も劣化が大きく、アンバランスが増加してしまう。 FIG. 23 shows the cycle characteristics of these three secondary batteries. As shown in FIG. 23, the secondary battery 301c is the most deteriorated and the unbalance increases.
 そこで、二次電池301aを図5(A)に示すようなSOCの範囲内で動作させ、二次電池301bを図5(B)に示すようなSOCの範囲内で動作させ、二次電池301cを図5(C)に示すようなSOCの範囲内で動作させると、二次電池301aの劣化が促進され、二次電池301cの劣化が鈍化することで図5(D)に示すように劣化の程度を揃えることもできる。なお、図5(A)、図5(B)、図5(C)、図5(D)は一例を示しており、実際のデバイスにおいては、設計者がSOCの使用許可範囲を決定しており、例えばSOC20%以上80%以下とし、SOC20%未満となった場合には二次電池からの電力供給を遮断し、80%以上となった場合には充電停止するデバイス仕様とする場合がある。 Therefore, the secondary battery 301a is operated within the SOC range as shown in FIG. 5A, the secondary battery 301b is operated within the SOC range as shown in FIG. 5B, and the secondary battery 301c is operated. 5 is operated within the SOC range as shown in FIG. 5C, the deterioration of the secondary battery 301a is promoted, and the deterioration of the secondary battery 301c is slowed down as shown in FIG. 5D. It is also possible to arrange the degree of. 5A, FIG. 5B, FIG. 5C, and FIG. 5D show an example. In an actual device, the designer determines the allowable use range of the SOC. For example, when the SOC is 20% or more and 80% or less and the SOC is less than 20%, the power supply from the secondary battery is cut off. .
 このような二次電池の使用方法(放電または充電)は、複雑であるため、ECUのマイクロプロセッサが第2のニューラルネットワーク処理を行って、二次電池毎に最適な充電条件や最適な放電条件を選択し、二次電池間の劣化の程度を揃えるようにすることが望ましい。 Since the use method (discharge or charge) of such a secondary battery is complicated, the microprocessor of the ECU performs the second neural network process, and the optimum charging condition and the optimum discharging condition for each secondary battery. It is desirable to select the so that the degree of deterioration between the secondary batteries is uniform.
 また、二次電池の劣化の程度を計算するだけでなく、異常な挙動を示す二次電池が発生した場合、その二次電池を検出し、用いないようにスイッチを切ることで、その二次電池には充電および放電などを行わない。こうすることによって安全な制御システムを実現できる。また、さまざまなデータを利用することで、異常な挙動を示す二次電池の発生を推論できるニューラルネットワーク処理を構築し、事前に対処する、或いは警告することもできる。 In addition to calculating the degree of deterioration of a secondary battery, if a secondary battery that exhibits abnormal behavior occurs, the secondary battery is detected and turned off so that it is not used. Do not charge or discharge the battery. By doing so, a safe control system can be realized. In addition, by using various data, it is possible to construct a neural network process capable of inferring the occurrence of a secondary battery exhibiting abnormal behavior, and to cope with or warn in advance.
(実施の形態2)
 本実施の形態は、ニューラルネットワークNNの構成の一例、及びニューラルネットワークに適用可能なアナログ積和演算回路の具体例について説明を行う。
(Embodiment 2)
In the present embodiment, an example of the configuration of the neural network NN and a specific example of an analog product-sum operation circuit applicable to the neural network will be described.
 以下に説明される実施形態は、種々のコンピュータハードウェア、若しくはソフトウェアを含む、専用コンピュータまたは汎用コンピュータの使用を含む。また、本明細書で以下に説明される実施形態は、コンピュータが読み取り可能な記録媒体を使用して実装することができる。また、記録媒体は、RAM、ROM、または光ディスク、磁気ディスク、またはコンピュータによってアクセスされうる任意の他のストレージ媒体を含んでもよい。また、本明細書で以下に説明される実施形態に一例として示されているアルゴリズム、構成要素、フロー、プログラムなどはソフトウェアにおける実行、或いはハードウェア及びソフトウェアの組み合わせにおける実行が可能である。 Embodiments described below include the use of dedicated or general purpose computers, including various computer hardware or software. Also, the embodiments described below in this specification can be implemented using a computer-readable recording medium. The recording medium may also include RAM, ROM, or optical disks, magnetic disks, or any other storage medium that can be accessed by a computer. Further, algorithms, components, flows, programs, and the like shown as examples in the embodiments described below in this specification can be executed in software or a combination of hardware and software.
 図6には、本発明の一態様のニューラルネットワークの一例を示す。図6に示すニューラルネットワークNNは、入力層IL、出力層OL、及び隠れ層(中間層)HLを有する。ニューラルネットワークNNは、隠れ層HLを複数有するニューラルネットワーク、すなわち、ディープニューラルネットワークによって構成することができる。なお、ディープニューラルネットワークにおける学習を、ディープラーニングと呼ぶことがある。出力層OL、入力層IL、隠れ層HLはそれぞれ複数のニューロン回路を有し、異なる層に設けられたニューロン回路同士は、シナプス回路を介して接続されている。 FIG. 6 shows an example of a neural network according to one embodiment of the present invention. The neural network NN shown in FIG. 6 has an input layer IL, an output layer OL, and a hidden layer (intermediate layer) HL. The neural network NN can be configured by a neural network having a plurality of hidden layers HL, that is, a deep neural network. Note that learning in a deep neural network is sometimes called deep learning. The output layer OL, the input layer IL, and the hidden layer HL each have a plurality of neuron circuits, and neuron circuits provided in different layers are connected via a synapse circuit.
 ニューラルネットワークNNには、蓄電池の動作を解析する機能が、学習によって付加されている。そして、ニューラルネットワークNNに測定された蓄電池のパラメータが入力されると、各層において演算処理が行われる。各層における演算処理は、前層が有するニューロン回路の出力データと重み係数との積和演算などにより実行される。なお、層と層との結合は、全てのニューロン回路同士が結合する全結合としてもよいし、一部のニューロン回路同士が結合する部分結合としてもよい。 In the neural network NN, a function of analyzing the operation of the storage battery is added by learning. When the measured storage battery parameters are input to the neural network NN, arithmetic processing is performed in each layer. Arithmetic processing in each layer is executed by a sum-of-products operation between the output data of the neuron circuit included in the previous layer and the weighting coefficient. The coupling between layers may be a total coupling in which all the neuron circuits are coupled, or a partial coupling in which some neuron circuits are coupled.
 例えば、隣接層間において、特定のニューロン回路のみが結合を持ち、畳み込み層とプーリング層を有する、畳み込みニューラルネットワーク(CNN)を用いてもよい。 For example, a convolutional neural network (CNN) in which only a specific neuron circuit has a connection between adjacent layers and has a convolutional layer and a pooling layer may be used.
 畳み込みが施されたデータは、活性化関数によって変換された後、プーリング層に出力される。活性化関数としては、ReLU(Rectified Linear Unit)等を用いることができる。ReLUは、入力値が負である場合は“0”を出力し、入力値が“0”以上である場合は入力値をそのまま出力する関数である。また、活性化関数として、シグモイド関数、tanh関数等を用いることもできる。 The convolved data is converted by the activation function and then output to the pooling layer. As the activation function, ReLU (Rectified Linear Unit) or the like can be used. ReLU is a function that outputs “0” when the input value is negative, and outputs the input value as it is when the input value is “0” or more. Moreover, a sigmoid function, a tanh function, etc. can also be used as an activation function.
 CNNは、上記の畳み込み処理およびプーリング処理により特徴抽出を行う。なお、CNNは、複数の畳み込み層および複数のプーリング層によって構成することができる。 CNN performs feature extraction by the above convolution processing and pooling processing. The CNN can be composed of a plurality of convolution layers and a plurality of pooling layers.
 畳み込み層とプーリング層を例えば交互に数層ずつ配置された後には、全結合層が配置されることが好ましい。 For example, after several layers of convolution layers and pooling layers are alternately arranged, it is preferable that the entire bonding layer is arranged.
 図7(A)に示すニューラルネットワークNNの構成例は、再帰型ニューラルネットワーク(recurrent neural network:RNN)と呼ばれる場合がある。図7(A)に示すニューラルネットワークは、隠れ層HLが帰還路を有することにより、隠れ層HLの出力が自分自身に入力される(帰還する)。RNNを用いることにより、時系列のデータを解析し、今後取得されるデータの推測を行うことができる。時系列のデータとしては、二次電池のサイクル特性や、充放電特性を用いる。例えば、本発明の一態様のニューラルネットワーク処理において、二次電池の劣化の程度を高精度に推測できる場合がある。 The configuration example of the neural network NN illustrated in FIG. 7A may be referred to as a recurrent neural network (RNN). In the neural network shown in FIG. 7A, the output of the hidden layer HL is input (returned) to itself by the hidden layer HL having a feedback path. By using RNN, it is possible to analyze time-series data and estimate data to be acquired in the future. As time-series data, the cycle characteristics and charge / discharge characteristics of the secondary battery are used. For example, in the neural network processing of one embodiment of the present invention, the degree of deterioration of the secondary battery may be estimated with high accuracy.
 図7(B)は、時間T=T(x)におけるRNNを簡略化して表した図である。入力層ILから隠れ層HLへの重み係数をWin、隠れ層HLから出力層OLへの重み係数をWout、隠れ層HLからの帰還の重み係数をWrと表す。 FIG. 7B is a simplified representation of RNN at time T = T (x). The weighting factor from the input layer IL to the hidden layer HL is expressed as Win, the weighting factor from the hidden layer HL to the output layer OL is expressed as Wout, and the weighting factor of feedback from the hidden layer HL is expressed as Wr.
 RNNは、図7(C)に示すように、時間展開することにより、時間毎(図7では時間T(1)乃至時間T(x))に異なる層(入力層IL(1)乃至入力層IL(x)、隠れ層HL(1)乃至隠れ層HL(x)、及び出力層OL(1)乃至出力層OL(x))とみなすことができる。RNNを時間展開することにより、図7(C)に示すような、帰還路のない、順伝播型ネットワークとみなすことができる。 As shown in FIG. 7C, the RNN expands with time so that different layers (input layer IL (1) to input layer in time T (1) to time T (x) in FIG. 7) are obtained. IL (x), hidden layer HL (1) to hidden layer HL (x), and output layer OL (1) to output layer OL (x)). By expanding the RNN over time, it can be regarded as a forward propagation network having no feedback path as shown in FIG.
 なお、ニューラルネットワークとして、Long Short‐Term Memory(LSTM:長・短期記憶)と呼ばれる構成を用いることができる。LSTMは、RNNにおいて隠れ層がメモリセルを有することにより状態を記憶し、より長い時間について解析、例えば推測などを行うことができる。 In addition, as a neural network, a configuration called a Long Short-Term Memory (LSTM: long / short-term memory) can be used. The LSTM can store a state when the hidden layer has memory cells in the RNN, and can perform analysis, for example, estimation for a longer time.
 学習機能を有するニューラルネットワークNNの構成例について説明する。ニューラルネットワークNNの構成例を、図8に示す。ニューラルネットワークNNは、ニューロン回路NCと、ニューロン回路間に設けられたシナプス回路SCによって構成されている。 A configuration example of the neural network NN having a learning function will be described. A configuration example of the neural network NN is shown in FIG. The neural network NN includes a neuron circuit NC and a synapse circuit SC provided between the neuron circuits.
 図8(A)に、ニューラルネットワークNNを構成するニューロン回路NCとシナプス回路SCの構成例を示す。シナプス回路SCには、入力データx乃至x(Lは自然数)が入力される。また、シナプス回路SCは、重み係数w(kは1以上L以下の整数)を記憶する機能を有する。重み係数wは、ニューロン回路NC間の結合の強さに対応する。 FIG. 8A shows a configuration example of the neuron circuit NC and the synapse circuit SC constituting the neural network NN. Input data x 1 to x L (L is a natural number) is input to the synapse circuit SC. The synapse circuit SC has a function of storing a weight coefficient w k (k is an integer of 1 or more and L or less). The weighting factor w k corresponds to the strength of the connection between the neuron circuits NC.
 シナプス回路SCに入力データx乃至xが入力されると、ニューロン回路NCには、シナプス回路SCに入力された入力データxと、シナプス回路SCに記憶された重み係数wとの積(x)を、k=1乃至Lについて足し合わせた値(x+x+…+x)、すなわち、xとwを用いた積和演算によって得られた値が供給される。この値がニューロン回路NCの閾値θを超えた場合、ニューロン回路NCはハイレベルの信号yを出力する。この現象を、ニューロン回路NCの発火と呼ぶ。 When the input data x 1 to x L are input to the synapse circuit SC, the neuron circuit NC has a product of the input data x k input to the synapse circuit SC and the weight coefficient w k stored in the synapse circuit SC. (X k w k ) is obtained by adding the values of k = 1 to L (x 1 w 1 + x 2 w 2 +... + X L w L ), that is, by product-sum operation using x k and w k. The supplied value is supplied. When this value exceeds the threshold value θ of the neuron circuit NC, the neuron circuit NC outputs a high level signal y. This phenomenon is called firing of the neuron circuit NC.
 ニューロン回路NCとシナプス回路SCを用いて、階層型パーセブトロンを構成するニューラルネットワークNNのモデルを、図8(B)に示す。ニューラルネットワークNNは、入力層IL、隠れ層(中間層)HL、出力層OLを有する。 FIG. 8B shows a model of a neural network NN that forms a hierarchical persetron using the neuron circuit NC and the synapse circuit SC. The neural network NN has an input layer IL, a hidden layer (intermediate layer) HL, and an output layer OL.
 入力層ILから、入力データx乃至xが出力される。隠れ層HLは、隠れシナプス回路HS、隠れニューロン回路HNを有する。出力層OLは、出力シナプス回路OS、出力ニューロン回路ONを有する。 Input data x 1 to x L are output from the input layer IL. The hidden layer HL has a hidden synapse circuit HS and a hidden neuron circuit HN. The output layer OL has an output synapse circuit OS and an output neuron circuit ON.
 隠れニューロン回路HNには、入力データxと、隠れシナプス回路HSに保持された重み係数wと、を用いた積和演算によって得られた値が供給される。そして、出力ニューロン回路ONには、隠れニューロン回路HNの出力と、出力シナプス回路OSに保持された重み係数wを用いた積和演算によって得られた値が供給される。そして、出力ニューロン回路ONから、出力データy乃至yが出力される。 The hidden neuron circuit HN is supplied with a value obtained by a product-sum operation using the input data x k and the weighting coefficient w k held in the hidden synapse circuit HS. The output neuron circuit ON is supplied with the value obtained by the product-sum operation using the output of the hidden neuron circuit HN and the weighting coefficient w k held in the output synapse circuit OS. Then, output data y 1 to y L are output from the output neuron circuit ON.
 このように、所定の入力データが与えられたニューラルネットワークNNは、シナプス回路SCに保持された重み係数と、ニューロン回路の閾値θ(θ、θ)に応じた値を、出力データとして出力する機能を有する。 As described above, the neural network NN given the predetermined input data outputs, as output data, values corresponding to the weighting coefficient held in the synapse circuit SC and the threshold value θ (θ H , θ O ) of the neuron circuit. Has the function of
 また、ニューラルネットワークNNは、教師データの入力によって教師あり学習を行うことができる。図8(C)に、誤差逆伝播法を利用して教師あり学習を行うニューラルネットワークNNのモデルを示す。 Also, the neural network NN can perform supervised learning by inputting teacher data. FIG. 8C shows a model of the neural network NN that performs supervised learning using the error back propagation method.
 誤差逆伝播法は、ニューラルネットワークの出力データと教師信号の誤差が小さくなるように、シナプス回路の重み係数を変更する方式である。具体的には、出力データy乃至yと教師データt乃至tに基づいて決定される誤差δに応じて、隠れシナプス回路HSの重み係数wが変更される。また、隠れシナプス回路HSの重み係数wの変更量に応じて、さらに前段のシナプス回路SCの重み係数wが変更される。このように、教師データt乃至tに基づいて、シナプス回路SCの重み係数を順次変更することにより、ニューラルネットワークNNの学習を行うことができる。 The error back propagation method is a method of changing the weight coefficient of the synapse circuit so that the error between the output data of the neural network and the teacher signal becomes small. Specifically, the weighting factor w k of the hidden synapse circuit HS is changed according to the error δ O determined based on the output data y 1 to y L and the teacher data t 1 to t L. Further, in accordance with the change amount of the weighting coefficient w k of the hidden synapse circuit HS, further weighting factor w k of the preceding stage of the synapse circuit SC is changed. As described above, the neural network NN can be learned by sequentially changing the weighting coefficient of the synapse circuit SC based on the teacher data t 1 to t L.
 なお、図8(B)、図8(C)には1層の隠れ層HLを示しているが、隠れ層HLの層数は2以上とすることができる。隠れ層HLを2層以上有するニューラルネットワーク(ディープニューラルネットワーク(DNN))を用いることにより、深層学習を行うことができる。これにより、二次電池の劣化程度の算出の精度を高めることができる。また、深層学習と強化学習(Q学習)を組み合わせたアルゴリズムにより、二次電池の劣化程度の算出の精度を高めてもよい。 8B and 8C show one hidden layer HL, the number of hidden layers HL can be two or more. Deep learning can be performed by using a neural network having two or more hidden layers HL (deep neural network (DNN)). Thereby, the precision of calculation of the deterioration degree of a secondary battery can be improved. Further, the accuracy of calculation of the degree of deterioration of the secondary battery may be increased by an algorithm combining deep learning and reinforcement learning (Q learning).
 図7(C)において述べたように、RNNを時間展開することにより、帰還路のない、順伝播型ネットワークとみなすことができる。順伝播型ネットワークにおいて、前述の誤差逆伝播法等を用いて、教師データに基づき、重み係数を変更することができる。 As described in FIG. 7C, the RNN can be regarded as a forward-propagation network without a feedback path by time-expanding. In the forward propagation network, the weighting coefficient can be changed based on the teacher data using the error back propagation method described above.
 図6乃至図8に示すようなニューラルネットワーク演算は、膨大な数の積和演算によって実行される。積和演算はアナログ積和演算回路(以下、APS(Analog Product‐Sum circuit)と呼ぶ)で行うことが好ましい。また、APSはアナログメモリを有することが好ましい。学習で得られた重み係数を上記アナログメモリに格納することで、APSは、アナログデータのまま積和演算を実行することができる。その結果、APSは少ないトランジスタで効率的にニューラルネットワークを構築することができる。 6 to 8 are executed by a huge number of product-sum operations. The product-sum operation is preferably performed by an analog product-sum operation circuit (hereinafter referred to as APS (Analog Product-Sum circuit)). The APS preferably has an analog memory. By storing the weighting coefficient obtained by learning in the analog memory, the APS can execute a product-sum operation with analog data. As a result, an APS can efficiently construct a neural network with a small number of transistors.
 図9は、積和演算回路の構成例を示している。図9に示す積和演算回路MACは、後述するメモリセルに保持された第1データと、入力された第2データと、の積和演算を行う回路である。なお、第1データ、及び第2データは、アナログデータ、又は多値のデータ(離散的なデータ)とすることができる。 FIG. 9 shows a configuration example of the product-sum operation circuit. The product-sum operation circuit MAC shown in FIG. 9 is a circuit that performs a product-sum operation on first data held in a memory cell to be described later and input second data. The first data and the second data can be analog data or multi-value data (discrete data).
 積和演算回路MACは、電流源回路CSと、カレントミラー回路CMと、回路WDDと、回路WLDと、回路CLDと、オフセット回路OFSTと、活性化関数回路ACTVと、メモリセルアレイCAを有する。 The product-sum operation circuit MAC includes a current source circuit CS, a current mirror circuit CM, a circuit WDD, a circuit WLD, a circuit CLD, an offset circuit OFST, an activation function circuit ACTV, and a memory cell array CA.
 メモリセルアレイCAは、メモリセルAM[1]と、メモリセルAM[2]と、メモリセルAMref[1]と、メモリセルAMref[2]と、を有する。メモリセルAM[1]、及びメモリセルAM[2]は、第1データを保持する役割を有し、メモリセルAMref[1]、及びメモリセルAMref[2]は、積和演算を行うために必要になる参照データを保持する機能を有する。なお、参照データも、第1データ、及び第2データと同様に、アナログデータ、又は多値のデータ(離散的なデータ)とすることができる。 The memory cell array CA includes a memory cell AM [1], a memory cell AM [2], a memory cell AMref [1], and a memory cell AMref [2]. The memory cell AM [1] and the memory cell AM [2] have a role of holding the first data, and the memory cell AMref [1] and the memory cell AMref [2] are for performing a product-sum operation. It has a function to hold necessary reference data. The reference data can also be analog data or multi-valued data (discrete data), like the first data and the second data.
 なお、図9のメモリセルアレイCAは、メモリセルが行方向に2個、列方向に2個、マトリクス状に配置されているが、メモリセルアレイCAは、メモリセルが行方向に3個以上、列方向に3個以上、マトリクス状に配置されている構成としてもよい。また、積和演算でなく乗算を行う場合、メモリセルアレイCAは、メモリセルが行方向に1個、列方向に2個以上、マトリクス状に配置されている構成としてもよい。 The memory cell array CA of FIG. 9 has two memory cells in the row direction and two in the column direction, which are arranged in a matrix. However, the memory cell array CA has three or more memory cells in the row direction. It is good also as a structure arrange | positioned at 3 or more in the direction of a matrix. Further, when performing multiplication instead of product-sum operation, the memory cell array CA may have a configuration in which one memory cell is arranged in a matrix in the row direction and two or more in the column direction.
 メモリセルAM[1]と、メモリセルAM[2]と、メモリセルAMref[1]と、メモリセルAMref[2]と、は、それぞれトランジスタTr11と、トランジスタTr12と、容量素子C1と、を有する。 The memory cell AM [1], the memory cell AM [2], the memory cell AMref [1], and the memory cell AMref [2] each include a transistor Tr11, a transistor Tr12, and a capacitor C1. .
 なお、トランジスタTr11は、OSトランジスタであることが好ましい。 Note that the transistor Tr11 is preferably an OS transistor.
 また、トランジスタTr12にOSトランジスタを用いることで、トランジスタTr11と同時に作製することができるため、積和演算回路の作製工程を短縮することができる場合がある。また、トランジスタTr12のチャネル形成領域を、酸化物でなく、非晶質シリコン、多結晶シリコンなどとしてもよい。 In addition, by using an OS transistor as the transistor Tr12, the transistor Tr11 can be manufactured at the same time, and thus the product-sum operation circuit manufacturing process may be shortened. Further, the channel formation region of the transistor Tr12 may be made of amorphous silicon, polycrystalline silicon, or the like instead of oxide.
 メモリセルAM[1]と、メモリセルAM[2]と、メモリセルAMref[1]と、メモリセルAMref[2]と、のそれぞれにおいて、トランジスタTr11の第1端子は、トランジスタTr12のゲートと電気的に接続されている。トランジスタTr12の第1端子は、配線VRと電気的に接続されている。容量素子C1の第1端子は、トランジスタTr12のゲートと電気的に接続されている。 In each of the memory cell AM [1], the memory cell AM [2], the memory cell AMref [1], and the memory cell AMref [2], the first terminal of the transistor Tr11 is electrically connected to the gate of the transistor Tr12. Connected. A first terminal of the transistor Tr12 is electrically connected to the wiring VR. The first terminal of the capacitor C1 is electrically connected to the gate of the transistor Tr12.
 メモリセルAM[1]において、トランジスタTr11の第2端子は、配線WDと電気的に接続され、トランジスタTr11のゲートは、配線WL[1]と電気的に接続されている。トランジスタTr12の第2端子は、配線BLと電気的に接続され、容量素子C1の第2端子は、配線CL[1]と電気的に接続されている。なお、図9では、メモリセルAM[1]において、トランジスタTr11の第1端子と、トランジスタTr12のゲートと、容量素子C1の第1端子と、の接続箇所をノードNM[1]としている。加えて、配線BLからトランジスタTr12の第2端子に流れる電流をIAM[1]とする。 In the memory cell AM [1], the second terminal of the transistor Tr11 is electrically connected to the wiring WD, and the gate of the transistor Tr11 is electrically connected to the wiring WL [1]. A second terminal of the transistor Tr12 is electrically connected to the wiring BL, and a second terminal of the capacitor C1 is electrically connected to the wiring CL [1]. In FIG. 9, in the memory cell AM [1], the connection point between the first terminal of the transistor Tr11, the gate of the transistor Tr12, and the first terminal of the capacitor C1 is a node NM [1]. In addition, the current flowing from the wiring BL to the second terminal of the transistor Tr12 and I AM [1].
 メモリセルAM[2]において、トランジスタTr11の第2端子は、配線WDと電気的に接続され、トランジスタTr11のゲートは、配線WL[2]と電気的に接続されている。トランジスタTr12の第2端子は、配線BLと電気的に接続され、容量素子C1の第2端子は、配線CL[2]と電気的に接続されている。なお、図9では、メモリセルAM[2]において、トランジスタTr11の第1端子と、トランジスタTr12のゲートと、容量素子C1の第1端子と、の接続箇所をノードNM[2]としている。加えて、配線BLからトランジスタTr12の第2端子に流れる電流をIAM[2]とする。 In the memory cell AM [2], the second terminal of the transistor Tr11 is electrically connected to the wiring WD, and the gate of the transistor Tr11 is electrically connected to the wiring WL [2]. A second terminal of the transistor Tr12 is electrically connected to the wiring BL, and a second terminal of the capacitor C1 is electrically connected to the wiring CL [2]. In FIG. 9, in the memory cell AM [2], a connection point between the first terminal of the transistor Tr11, the gate of the transistor Tr12, and the first terminal of the capacitor C1 is a node NM [2]. In addition, a current flowing from the wiring BL to the second terminal of the transistor Tr12 is denoted as IAM [2] .
 メモリセルAMref[1]において、トランジスタTr11の第2端子は、配線WDrefと電気的に接続され、トランジスタTr11のゲートは、配線WL[1]と電気的に接続されている。トランジスタTr12の第2端子は、配線BLrefと電気的に接続され、容量素子C1の第2端子は、配線CL[1]と電気的に接続されている。なお、図9では、メモリセルAMref[1]において、トランジスタTr11の第1端子と、トランジスタTr12のゲートと、容量素子C1の第1端子と、の接続箇所をノードNMref[1]としている。加えて、配線BLrefからトランジスタTr12の第2端子に流れる電流をIAMref[1]とする。 In the memory cell AMref [1], the second terminal of the transistor Tr11 is electrically connected to the wiring WDref, and the gate of the transistor Tr11 is electrically connected to the wiring WL [1]. A second terminal of the transistor Tr12 is electrically connected to the wiring BLref, and a second terminal of the capacitor C1 is electrically connected to the wiring CL [1]. In FIG. 9, in the memory cell AMref [1], a connection point between the first terminal of the transistor Tr11, the gate of the transistor Tr12, and the first terminal of the capacitor C1 is a node NMref [1]. In addition, a current flowing from the wiring BLref to the second terminal of the transistor Tr12 is denoted as I AMref [1] .
 メモリセルAMref[2]において、トランジスタTr11の第2端子は、配線WDrefと電気的に接続され、トランジスタTr11のゲートは、配線WL[2]と電気的に接続されている。トランジスタTr12の第2端子は、配線BLrefと電気的に接続され、容量素子C1の第2端子は、配線CL[2]と電気的に接続されている。なお、図9では、メモリセルAMref[2]において、トランジスタTr11の第1端子と、トランジスタTr12のゲートと、容量素子C1の第1端子と、の接続箇所をノードNMref[2]としている。加えて、配線BLrefからトランジスタTr12の第2端子に流れる電流をIAMref[2]とする。 In the memory cell AMref [2], the second terminal of the transistor Tr11 is electrically connected to the wiring WDref, and the gate of the transistor Tr11 is electrically connected to the wiring WL [2]. A second terminal of the transistor Tr12 is electrically connected to the wiring BLref, and a second terminal of the capacitor C1 is electrically connected to the wiring CL [2]. In FIG. 9, in the memory cell AMref [2], a connection point between the first terminal of the transistor Tr11, the gate of the transistor Tr12, and the first terminal of the capacitor C1 is a node NMref [2]. In addition, a current flowing from the wiring BLref to the second terminal of the transistor Tr12 is denoted as I AMref [2] .
 上述したノードNM[1]、ノードNM[2]、ノードNMref[1]、及びノードNMref[2]は、それぞれのメモリセルの保持ノードとして機能する。 The node NM [1], the node NM [2], the node NMref [1], and the node NMref [2] described above function as holding nodes for the respective memory cells.
 配線VRは、メモリセルAM[1]、メモリセルAM[2]、メモリセルAMref[1]、及びメモリセルAMref[2]のそれぞれのトランジスタTr12の第1端子‐第2端子間に電流を流すための配線である。そのため、配線VRは、所定の電位を与えるための配線として機能する。なお、本実施の形態では、配線VRが与える電位は、基準電位、又は基準電位よりも低い電位とする。 The wiring VR allows a current to flow between the first terminal and the second terminal of each of the transistors Tr12 of the memory cell AM [1], the memory cell AM [2], the memory cell AMref [1], and the memory cell AMref [2]. Wiring. Therefore, the wiring VR functions as a wiring for applying a predetermined potential. Note that in this embodiment, the potential provided by the wiring VR is a reference potential or a potential lower than the reference potential.
 電流源回路CSは、配線BLと、配線BLrefと、に電気的に接続されている。電流源回路CSは、配線BL及び配線BLrefに対して電流を供給する機能を有する。なお、配線BL、配線BLrefのそれぞれに対して供給する電流量は、互いに異なっていてもよい。本構成例では、電流源回路CSから配線BLに流れる電流をIとし、電流源回路CSから配線BLrefに流れる電流をICrefとする。 The current source circuit CS is electrically connected to the wiring BL and the wiring BLref. The current source circuit CS has a function of supplying current to the wiring BL and the wiring BLref. Note that the amount of current supplied to each of the wiring BL and the wiring BLref may be different from each other. In this configuration example, the current flowing from the current source circuit CS to the wiring BL is I C , and the current flowing from the current source circuit CS to the wiring BLref is I Cref .
 カレントミラー回路CMは、配線IEと、配線IErefと、を有する。配線IEは、配線BLと電気的に接続され、図9では、配線IEと配線BLの接続箇所をノードNPとして図示している。配線IErefは、配線BLrefと電気的に接続され、図9では、配線IErefと配線BLrefの接続箇所をノードNPrefとしている。カレントミラー回路CMは、ノードNPrefの電位に応じた電流を、配線BLrefのノードNPrefから配線IErefに排出し、且つ当該電流と同じ量の電流を配線BLのノードNPから配線IEに排出する機能を有する。なお、図9では、ノードNPから配線IEに排出する電流、及びノードNPrefから配線IErefに排出する電流をICMと記している。加えて、配線BLにおいて、カレントミラー回路CMからメモリセルアレイCAに流れる電流をIと記し、配線BLrefにおいて、カレントミラー回路CMからメモリセルアレイCAに流れる電流をIBrefと記す。 The current mirror circuit CM includes a wiring IE and a wiring IEref. The wiring IE is electrically connected to the wiring BL. In FIG. 9, the connection portion between the wiring IE and the wiring BL is illustrated as a node NP. The wiring IEref is electrically connected to the wiring BLref. In FIG. 9, a connection point between the wiring IEref and the wiring BLref is a node NPref. The current mirror circuit CM has a function of discharging a current corresponding to the potential of the node NPref from the node NPref of the wiring BLref to the wiring IEref and discharging the same amount of current as the current from the node NP of the wiring BL to the wiring IE. Have. In FIG. 9, the current discharged from the node NP to the wiring IE and the current discharged from the node NPref to the wiring IEref are denoted as I CM . In addition, the wiring BL, the current flowing from the current mirror circuit CM in the memory cell array CA marked I B, in the wiring BLref, mark the current flowing from the current mirror circuit CM in the memory cell array CA and I Bref.
 回路WDDは、配線WDと、配線WDrefと、に電気的に接続されている。回路WDDは、メモリセルアレイCAが有するそれぞれのメモリセルに格納するためのデータを送信する機能を有する。 The circuit WDD is electrically connected to the wiring WD and the wiring WDref. The circuit WDD has a function of transmitting data to be stored in each memory cell included in the memory cell array CA.
 回路WLDは、配線WL[1]と、配線WL[2]と、に電気的に接続されている。回路WLDは、メモリセルアレイCAが有するメモリセルにデータを書き込む際に、データの書き込み先となるメモリセルを選択する機能を有する。 The circuit WLD is electrically connected to the wiring WL [1] and the wiring WL [2]. The circuit WLD has a function of selecting a memory cell to which data is written when data is written to a memory cell included in the memory cell array CA.
 回路CLDは、配線CL[1]と、配線CL[2]とに電気的に接続されている。回路CLDは、メモリセルアレイCAが有するそれぞれのメモリセルの容量素子C1の第2端子に対して、電位を印加する機能を有する。 The circuit CLD is electrically connected to the wiring CL [1] and the wiring CL [2]. The circuit CLD has a function of applying a potential to the second terminal of the capacitor C1 of each memory cell included in the memory cell array CA.
 回路OFSTは、配線BLと、配線OEと、に電気的に接続されている。回路OFSTは、配線BLから回路OFSTに流れる電流量、及び/又は配線BLから回路OFSTに流れる電流の変化量を計測する機能を有する。加えて、回路OFSTは、当該計測の結果を配線OEに出力する機能を有する。なお、回路OFSTは、当該計測の結果をそのまま電流として配線OEに出力する構成としてもよいし、当該計測の結果を電圧に変換して、配線OEに出力する構成としてもよい。なお、図9では、配線BLから回路OFSTに流れる電流をIαと記している。 The circuit OFST is electrically connected to the wiring BL and the wiring OE. The circuit OFST has a function of measuring the amount of current flowing from the wiring BL to the circuit OFST and / or the amount of change in current flowing from the wiring BL to the circuit OFST. In addition, the circuit OFST has a function of outputting the measurement result to the wiring OE. Note that the circuit OFST may have a configuration in which the measurement result is directly output as a current to the wiring OE, or may be converted into a voltage and output to the wiring OE. In FIG. 9, a current flowing from the wiring BL to the circuit OFST is denoted as I α .
 例えば、回路OFSTは、図10に示す構成とすることができる。図10において、回路OFSTは、トランジスタTr21と、トランジスタTr22と、トランジスタTr23と、容量素子C2と、抵抗素子Rと、を有する。 For example, the circuit OFST can be configured as shown in FIG. In FIG. 10, the circuit OFST includes a transistor Tr21, a transistor Tr22, a transistor Tr23, a capacitor C2, and a resistor R.
 容量素子C2の第1端子は、配線BLと電気的に接続され、抵抗素子Rの第1端子は、配線BLと電気的に接続されている。容量素子C2の第2端子は、トランジスタTr21の第1端子と電気的に接続され、トランジスタTr21の第1端子は、トランジスタTr22のゲートと電気的に接続されている。トランジスタTr22の第1端子は、トランジスタTr23の第1端子と電気的に接続され、トランジスタTr23の第1端子は、配線OEと電気的に接続されている。なお、容量素子C2の第1端子と、抵抗素子Rの第1端子と、の電気的接続点をノードNaとし、容量素子C2の第2端子と、トランジスタTr21の第1端子と、トランジスタTr22のゲートと、の電気的接続点をノードNbとする。 The first terminal of the capacitive element C2 is electrically connected to the wiring BL, and the first terminal of the resistance element R is electrically connected to the wiring BL. The second terminal of the capacitor C2 is electrically connected to the first terminal of the transistor Tr21, and the first terminal of the transistor Tr21 is electrically connected to the gate of the transistor Tr22. The first terminal of the transistor Tr22 is electrically connected to the first terminal of the transistor Tr23, and the first terminal of the transistor Tr23 is electrically connected to the wiring OE. Note that an electrical connection point between the first terminal of the capacitor element C2 and the first terminal of the resistor element R is a node Na, the second terminal of the capacitor element C2, the first terminal of the transistor Tr21, and the transistor Tr22. An electrical connection point with the gate is a node Nb.
 抵抗素子Rの第2端子は、配線VrefLと電気的に接続されている。トランジスタTr21の第2端子は、配線VaLと電気的に接続され、トランジスタTr21のゲートは、配線RSTと電気的に接続されている。トランジスタTr22の第2端子は、配線VDDLと電気的に接続されている。トランジスタTr23の第2端子は、配線VSSLと電気的に接続され、トランジスタTr23のゲートは、配線VbLと電気的に接続されている。 The second terminal of the resistance element R is electrically connected to the wiring VrefL. The second terminal of the transistor Tr21 is electrically connected to the wiring VaL, and the gate of the transistor Tr21 is electrically connected to the wiring RST. A second terminal of the transistor Tr22 is electrically connected to the wiring VDDL. A second terminal of the transistor Tr23 is electrically connected to the wiring VSSL, and a gate of the transistor Tr23 is electrically connected to the wiring VbL.
 配線VrefLは、電位Vrefを与える配線であり、配線VaLは、電位Vaを与える配線であり、配線VbLは、電位Vbを与える配線である。配線VDDLは、電位VDDを与える配線であり、配線VSSLは、電位VSSを与える配線である。特に、ここでの回路OFSTの構成例では、電位VDDを高レベル電位とし、電位VSSを低レベル電位としている。配線RSTは、トランジスタTr21の導通状態、非導通状態を切り替えるための電位を与える配線である。 The wiring VrefL is a wiring that applies a potential Vref, the wiring VaL is a wiring that applies a potential Va, and the wiring VbL is a wiring that applies a potential Vb. The wiring VDDL is a wiring that applies the potential VDD, and the wiring VSSL is a wiring that supplies the potential VSS. In particular, in the configuration example of the circuit OFST here, the potential VDD is a high level potential and the potential VSS is a low level potential. The wiring RST is a wiring that applies a potential for switching between the conductive state and the non-conductive state of the transistor Tr21.
 図10に示す回路OFSTにおいて、トランジスタTr22と、トランジスタTr23と、配線VDDLと、配線VSSLと、配線VbLと、によって、ソースフォロワ回路が構成されている。 In the circuit OFST shown in FIG. 10, the transistor Tr22, the transistor Tr23, the wiring VDDL, the wiring VSSL, and the wiring VbL constitute a source follower circuit.
 図10に示す回路OFSTにおいて、抵抗素子Rと、配線VrefLと、によって、ノードNaには、配線BLから流れてくる電流、及び抵抗素子Rの抵抗に応じた電位が与えられる。 In the circuit OFST shown in FIG. 10, a potential corresponding to the current flowing from the wiring BL and the resistance of the resistance element R is applied to the node Na by the resistance element R and the wiring VrefL.
 図10に示す回路OFSTの動作例について説明する。配線BLから1回目の電流(以後、第1電流と呼称する。)が流れたとき、抵抗素子Rと、配線VrefLと、により、ノードNaに第1電流と抵抗素子Rの抵抗とに応じた電位が与えられる。また、このとき、トランジスタTr21を導通状態として、ノードNbに電位Vaを与える。その後、トランジスタTr21を非導通状態とする。 An example of operation of the circuit OFST shown in FIG. 10 will be described. When a first current (hereinafter referred to as a first current) flows from the wiring BL, the resistance element R and the wiring VrefL cause the first current and the resistance of the resistance element R to correspond to the node Na. A potential is applied. At this time, the transistor Tr21 is turned on to apply the potential Va to the node Nb. Thereafter, the transistor Tr21 is turned off.
 次に、配線BLから2回目の電流(以後、第2電流と呼称する。)が流れたとき、第1電流が流れたときと同様に、抵抗素子Rと、配線VrefLと、により、ノードNaに第2電流と抵抗素子Rの抵抗とに応じた電位が与えられる。このとき、ノードNbはフローティング状態となっているので、ノードNaの電位が変化したことで、容量結合によって、ノードNbの電位も変化する。ノードNaの電位の変化をΔVNaとし、容量結合係数を1としたとき、ノードNbの電位はVa+ΔVNaとなる。トランジスタTr22のしきい値電圧をVthとしたとき、配線OEから電位Va+ΔNa−Vthが出力される。ここで、電位Vaをしきい値電圧Vthとすることで、配線OEから電位ΔVNaを出力することができる。 Next, when a second current (hereinafter referred to as a second current) flows from the wiring BL, similarly to when the first current flows, the resistance element R and the wiring VrefL cause the node Na to flow. In addition, a potential corresponding to the second current and the resistance of the resistance element R is applied. At this time, since the node Nb is in a floating state, the potential of the node Nb also changes due to capacitive coupling when the potential of the node Na changes. When the change in the potential of the node Na is ΔV Na and the capacitive coupling coefficient is 1, the potential of the node Nb is Va + ΔV Na . When the threshold voltage of the transistor Tr22 and the V th, the potential Va + Δ Na -V th is output from the wiring OE. Here, the potential Va and the threshold voltage V th, it is possible from the wiring OE outputs a potential [Delta] V Na.
 電位ΔVNaは、第1電流から第2電流への変化量と、抵抗素子Rと、電位Vrefと、に応じて定まる。抵抗素子Rと、電位Vrefと、は既知とすることができるため、図10に示す回路OFSTを用いることにより、電位ΔVNaから、配線BLに流れる電流の変化量を求めることができる。 The potential ΔV Na is determined according to the amount of change from the first current to the second current, the resistance element R, and the potential Vref. A resistive element R, and the potential Vref, is because it can be known, by using a circuit OFST shown in FIG. 10, it is possible to determine the amount of change current flowing from the potential [Delta] V Na, the wiring BL.
 活性化関数回路ACTVは、配線OEと、配線NILと、に電気的に接続されている。活性化関数回路ACTVには、配線OEを介して、回路OFSTで計測した電流の変化量が入力される。活性化関数回路ACTVは、当該電流の変化量に対して、あらかじめ定義された関数系に従った演算を行う回路である。当該関数系としては、例えば、シグモイド関数、tanh関数、softmax関数、ReLU関数、しきい値関数などを用いることができ、これらの関数は、ニューラルネットワークにおける活性化関数として適用される。 The activation function circuit ACTV is electrically connected to the wiring OE and the wiring NIL. The activation function circuit ACTV receives the amount of change in current measured by the circuit OFST via the wiring OE. The activation function circuit ACTV is a circuit that performs an operation according to a predefined function system for the amount of change in the current. As the function system, for example, a sigmoid function, a tanh function, a softmax function, a ReLU function, a threshold function, and the like can be used, and these functions are applied as activation functions in the neural network.
<積和演算回路の動作例>
 次に、積和演算回路MACの動作例について説明する。
<Operation example of product-sum operation circuit>
Next, an operation example of the product-sum operation circuit MAC will be described.
 図11に積和演算回路MACの動作例のタイミングチャートを示す、図11のタイミングチャートは、時間T01乃至時間T09における、配線WL[1]、配線WL[2]、配線WD、配線WDref、ノードNM[1]、ノードNM[2]、ノードNMref[1]、ノードNMref[2]、配線CL[1]、及び配線CL[2]の電位の変動を示し、電流I−Iα、及び電流IBrefの大きさの変動を示している。特に、電流I−Iαは、配線BLから、メモリセルアレイCAのメモリセルAM[1]、メモリセルAM[2]に流れる電流の総和を示している。 FIG. 11 shows a timing chart of an operation example of the product-sum operation circuit MAC. The timing chart of FIG. 11 includes the wiring WL [1], the wiring WL [2], the wiring WD, the wiring WDref, and the node from time T01 to time T09. NM [1], a node NM [2], a node NMref [1], a node NMref [2], a wiring CL [1], and a wiring CL [2], which show potential fluctuations, a current I B −I α , and It shows the variation of the magnitude of the current I Bref. In particular, the current I B -I α indicates the sum of currents flowing from the wiring BL to the memory cells AM [1] and AM [2] of the memory cell array CA.
<<時間T01から時間T02まで>>
 時間T01から時間T02までの間において、配線WL[1]に高レベル電位(図11ではHighと表記している。)が印加され、配線WL[2]に低レベル電位(図11ではLowと表記している。)が印加されている。加えて、配線WDには接地電位(図11ではGNDと表記している。)よりもVPR−VW[1]大きい電位が印加され、配線WDrefには接地電位よりもVPR大きい電位が印加されている。更に、配線CL[1]、及び配線CL[2]にはそれぞれ基準電位(図11ではREFPと表記している。)が印加されている。
<< From time T01 to time T02 >>
Between time T01 and time T02, a high-level potential (indicated as High in FIG. 11) is applied to the wiring WL [1], and a low-level potential (Low in FIG. 11) is applied to the wiring WL [2]. Is applied). In addition, a potential V PR −V W [1] larger than the ground potential (indicated as GND in FIG. 11) is applied to the wiring WD, and a potential V PR larger than the ground potential is applied to the wiring WDref. Applied. Further, a reference potential (indicated as REFP in FIG. 11) is applied to each of the wiring CL [1] and the wiring CL [2].
 なお、電位VW[1]は、第1データの一に対応する電位である。また、電位VPRは、参照データに対応する電位である。 Note that the potential V W [1] is a potential corresponding to one of the first data. The potential VPR is a potential corresponding to the reference data.
 このとき、メモリセルAM[1]、及びメモリセルAMref[1]のそれぞれのトランジスタTr11のゲートに高レベル電位が印加され、メモリセルAM[1]、及びメモリセルAMref[1]のそれぞれのトランジスタTr11は、導通状態となり、ノードNM[1]の電位は、VPR−VW[1]となり、ノードNMref[1]の電位は、VPRとなる。 At this time, a high level potential is applied to the gates of the transistors Tr11 of the memory cells AM [1] and AMref [1], and the transistors of the memory cells AM [1] and AMref [1]. Tr11 becomes conductive, the potential of the node NM [1] becomes V PR −V W [1] , and the potential of the node NMref [1] becomes V PR .
 配線BLからメモリセルAM[1]のトランジスタTr12の第2端子を介して第1端子に流れる電流をIAM[1],0としたとき、IAM[1],0は次の式で表すことができる。 When the current flowing from the wiring BL to the first terminal through the second terminal of the transistor Tr12 of the memory cell AM [1] is IAM [1], 0 , IAM [1], 0 is expressed by the following equation. be able to.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、kは、トランジスタTr12のチャネル長、チャネル幅、移動度、及びゲート絶縁膜の容量などで決まる定数である。また、Vthは、トランジスタTr12のしきい値電圧である。 Note that k is a constant determined by the channel length, the channel width, the mobility, the capacitance of the gate insulating film, and the like of the transistor Tr12. V th is the threshold voltage of the transistor Tr12.
 配線BLrefからメモリセルAMref[1]のトランジスタTr12の第2端子を介して第1端子に流れる電流をIAMref[1],0としたとき、同様に、IAMref[1],0は次の式で表すことができる。 When the current flowing from the wiring BLref to the first terminal through the second terminal of the transistor Tr12 of the memory cell AMref [1] is IAMref [1], 0 , IAMref [1], 0 is It can be expressed by a formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、メモリセルAM[2]、及びメモリセルAMref[2]のそれぞれのトランジスタTr11のゲートに低レベル電位が印加されるため、メモリセルAM[2]、及びメモリセルAMref[2]のそれぞれのトランジスタTr11は、非導通状態となる。このため、ノードNM[2]、及びノードNMref[2]への電位の書き込みは行われない。 Note that since a low-level potential is applied to the gates of the transistors Tr11 of the memory cells AM [2] and AMref [2], the memory cells AM [2] and AMref [2] The transistor Tr11 is turned off. Therefore, no potential is written to the node NM [2] and the node NMref [2].
<<時間T02から時間T03まで>>
 時間T02から時間T03までの間において、配線WL[1]に低レベル電位が印加される。このとき、メモリセルAM[1]、及びメモリセルAMref[1]のそれぞれのトランジスタTr11のゲートに低レベル電位が印加されるため、メモリセルAM[1]、及びメモリセルAMref[1]のそれぞれのトランジスタTr11は非導通状態となる。
<< From time T02 to time T03 >>
Between the time T02 and the time T03, the low-level potential is applied to the wiring WL [1]. At this time, since a low level potential is applied to the gates of the transistors Tr11 of the memory cells AM [1] and AMref [1], each of the memory cells AM [1] and AMref [1] The transistor Tr11 is turned off.
 また、配線WL[2]には、時間T02以前から引き続き、低レベル電位が印加されている。このため、メモリセルAM[2]、及びメモリセルAMref[2]のそれぞれのトランジスタTr11は、時間T02以前から非導通状態となっている。よって、時間T02から時間T03までの間では、ノードNM[1]、ノードNM[2]、ノードNMref[1]、及びノードNMref[2]のそれぞれの電位が保持される。トランジスタTr11にOSトランジスタを適用することによって、トランジスタTr11の第1端子‐第2端子間に流れるリーク電流を小さくすることができるため、それぞれのノードの電位を長時間保持することができる。配線WD、及び配線WDrefには接地電位が印加されており、トランジスタTr11は、非導通状態となっているため、配線WD、及び配線WDrefからの電位の印加によって、ノードに保持されている電位が書き換えられることは無い。 Further, the low-level potential is continuously applied to the wiring WL [2] from before time T02. For this reason, each transistor Tr11 of the memory cell AM [2] and the memory cell AMref [2] is in a non-conducting state before the time T02. Accordingly, the potentials of the node NM [1], the node NM [2], the node NMref [1], and the node NMref [2] are held between the time T02 and the time T03. By applying an OS transistor to the transistor Tr11, leakage current flowing between the first terminal and the second terminal of the transistor Tr11 can be reduced, so that the potential of each node can be held for a long time. Since the ground potential is applied to the wiring WD and the wiring WDref and the transistor Tr11 is in a non-conductive state, the potential held in the node is applied by the application of the potential from the wiring WD and the wiring WDref. It will not be rewritten.
<<時間T03から時間T04まで>>
 時間T03から時間T04までの間において、配線WL[1]に低レベル電位が印加され、配線WL[2]に高レベル電位が印加されている。加えて、配線WDには接地電位よりもVPR−VW[2]大きい電位が印加され、配線WDrefには接地電位よりもVPR大きい電位が印加されている。更に、時間T02以前から引き続き、配線CL[1]、及び配線CL[2]には、それぞれ基準電位が印加されている。
<< From time T03 to time T04 >>
Between time T03 and time T04, the low-level potential is applied to the wiring WL [1], and the high-level potential is applied to the wiring WL [2]. In addition, a potential V PR −V W [2] larger than the ground potential is applied to the wiring WD, and a potential V PR larger than the ground potential is applied to the wiring WDref. Further, the reference potential is applied to the wiring CL [1] and the wiring CL [2] continuously from the time T02.
 なお、電位VW[2]は、第1データの一に対応する電位である。 Note that the potential V W [2] is a potential corresponding to one of the first data.
 このとき、メモリセルAM[2]、及びメモリセルAMref[2]のそれぞれのトランジスタTr11のゲートに高レベル電位が印加されるため、メモリセルAM[2]、及びメモリセルAMref[2]のそれぞれのトランジスタTr11は、導通状態となり、ノードNM[2]の電位は、VPR−VW[2]、ノードNMref[2]の電位は、VPRとなる。 At this time, since a high level potential is applied to the gates of the transistors Tr11 of the memory cells AM [2] and AMref [2], the memory cells AM [2] and AMref [2] The transistor Tr11 becomes conductive, the potential of the node NM [2] is V PR −V W [2] , and the potential of the node NMref [2] is V PR .
 配線BLからメモリセルAM[2]のトランジスタTr12の第2端子を介して第1端子に流れる電流をIAM[2],0としたとき、IAM[2],0は次の式で表すことができる。 When the current flowing from the wiring BL to the first terminal through the second terminal of the transistor Tr12 of the memory cell AM [2] is IAM [2], 0 , IAM [2], 0 is expressed by the following equation. be able to.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 配線BLrefからメモリセルAMref[2]のトランジスタTr12の第2端子を介して第1端子に流れる電流をIAMref[2],0としたとき、同様に、IAMref[2],0は次の式で表すことができる。 When the current flowing from the wiring BLref to the first terminal through the second terminal of the transistor Tr12 of the memory cell AMref [2] is I AMref [2], 0 , similarly, I AMref [2], 0 It can be expressed by a formula.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
<<時間T04から時間T05まで>>
 ここで、時間T04から時間T05までの間における、配線BL及び配線BLrefに流れる電流について説明する。
<< From time T04 to time T05 >>
Here, a current flowing through the wiring BL and the wiring BLref from time T04 to time T05 is described.
 配線BLrefには、電流源回路CSからの電流が供給される。加えて、配線BLrefには、カレントミラー回路CM、メモリセルAMref[1]、及びメモリセルAMref[2]によって電流が排出される。配線BLrefにおいて、電流源回路CSから供給される電流をICrefとし、カレントミラー回路CMによって排出される電流をICM,0としたとき、キルヒホッフの法則により次の式が成り立つ。 A current from the current source circuit CS is supplied to the wiring BLref. In addition, current is discharged to the wiring BLref by the current mirror circuit CM, the memory cell AMref [1], and the memory cell AMref [2]. In the wiring BLref, when the current supplied from the current source circuit CS is I Cref and the current discharged by the current mirror circuit CM is I CM, 0 , the following equation is established according to Kirchhoff's law.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 配線BLにおいて、電流源回路CSから供給される電流をIC,0とし、配線BLから回路OFSTに流れる電流をIα,0としたとき、キルヒホッフの法則により次の式が成り立つ。 In the wiring BL, when the current supplied from the current source circuit CS is I C, 0 and the current flowing from the wiring BL to the circuit OFST is I α, 0 , the following equation is established according to Kirchhoff's law.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
<<時間T05から時間T06まで>>
 時間T05から時間T06までの間において、配線CL[1]に基準電位よりもVX[1]高い電位が印加される。このとき、メモリセルAM[1]、及びメモリセルAMref[1]のそれぞれの容量素子C1の第2端子に、電位VX[1]が印加されるため、トランジスタTr12のゲートの電位が上昇する。
<< From time T05 to time T06 >>
In the period from time T05 to time T06, V X [1] high potential is applied than the reference potential to the wiring CL [1]. At this time, since the potential V X [1] is applied to the second terminal of each capacitor C1 of the memory cell AM [1] and the memory cell AMref [1], the gate potential of the transistor Tr12 increases. .
 なお、電位VX[1]は、第2データの一に対応する電位である。 Note that the potential V X [1] is a potential corresponding to one of the second data.
 なお、トランジスタTr12のゲートの電位の増加分は、配線CL[1]の電位変化に、メモリセルの構成によって決まる容量結合係数を乗じた電位となる。該容量結合係数は、容量素子C1の容量、トランジスタTr12のゲート容量、及び寄生容量によって算出される。本動作例では、説明の煩雑さを避けるため、配線CL[1]の電位の増加分もトランジスタTr12のゲートの電位の増加分も同じ値として説明する。これは、メモリセルAM[1]、及びメモリセルAMref[1]におけるそれぞれの容量結合係数を1としている場合に相当する。 Note that an increase in the gate potential of the transistor Tr12 is a potential obtained by multiplying the potential change of the wiring CL [1] by a capacitive coupling coefficient determined by the configuration of the memory cell. The capacitive coupling coefficient is calculated from the capacitance of the capacitive element C1, the gate capacitance of the transistor Tr12, and the parasitic capacitance. In this operation example, in order to avoid complicated explanation, the increase in the potential of the wiring CL [1] and the increase in the potential of the gate of the transistor Tr12 are described as the same value. This corresponds to the case where the respective capacitive coupling coefficients in the memory cell AM [1] and the memory cell AMref [1] are 1.
 容量結合係数を1としているため、メモリセルAM[1]、及びメモリセルAMref[1]のそれぞれの容量素子C1の第2端子に、電位VX[1]が印加されることによって、ノードNM[1]、及びノードNMref[1]の電位は、それぞれVX[1]上昇する。 Since the capacitive coupling coefficient is 1, the potential V X [1] is applied to the second terminal of each of the capacitive elements C1 of the memory cell AM [1] and the memory cell AMref [1], whereby the node NM [1] and the potential of the node NMref [1] rise by V X [1] , respectively.
 ここで、メモリセルAM[1]、及びメモリセルAMref[1]のそれぞれのトランジスタTr12の第2端子から第1端子に流れる電流を考える。配線BLからメモリセルAM[1]のトランジスタTr12の第2端子を介して第1端子に流れる電流をIAM[1],1としたとき、IAM[1],1は次の式で表すことができる。 Here, a current flowing from the second terminal to the first terminal of the transistor Tr12 of each of the memory cell AM [1] and the memory cell AMref [1] is considered. When the current flowing from the wiring BL to the first terminal through the second terminal of the transistor Tr12 of the memory cell AM [1] is IAM [1], 1 , IAM [1], 1 is expressed by the following equation. be able to.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 つまり、配線CL[1]に電位VX[1]を印加することによって、配線BLからメモリセルAM[1]のトランジスタTr12の第2端子を介して第1端子に流れる電流は、IAM[1],1−IAM[1],0(図11では、ΔIAM[1]と表記する。)増加する。 That is, when the potential V X [1] is applied to the wiring CL [1], the current flowing from the wiring BL to the first terminal through the second terminal of the transistor Tr12 of the memory cell AM [1] is I AM [ 1], 1− I AM [1], 0 (indicated as ΔI AM [1] in FIG. 11).
 同様に、配線BLrefからメモリセルAMref[1]のトランジスタTr12の第2端子を介して第1端子に流れる電流をIAMref[1],1としたとき、IAMref[1],1は次の式で表すことができる。 Similarly, when the current flowing from the wiring BLref to the first terminal via the second terminal of the transistor Tr12 of the memory cell AMref [1] is IAMref [1], 1 , IAMref [1], 1 is It can be expressed by a formula.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 つまり、配線CL[1]に電位VX[1]を印加することによって、配線BLrefからメモリセルAMref[1]のトランジスタTr12の第2端子を介して第1端子に流れる電流は、IAMref[1],1−IAMref[1],0(図11では、ΔIAMref[1]と表記する。)増加する。 That is, by applying the potential V X [1] to the wiring CL [1], the current flowing from the wiring BLref to the first terminal through the second terminal of the transistor Tr12 of the memory cell AMref [1] is I AMref [ 1], 1 −I AMref [1], 0 ( indicated as ΔI AMref [1] in FIG. 11).
 配線BLrefにおいて、カレントミラー回路CMによって排出される電流をICM,1としたとき、キルヒホッフの法則により次の式が成り立つ。 In the wiring BLref, when the current discharged by the current mirror circuit CM is I CM, 1 , the following equation is established according to Kirchhoff's law.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 配線BLにおいて、配線BLから回路OFSTに流れる電流をIα,1としたとき、キルヒホッフの法則により次の式が成り立つ。 In the wiring BL, when the current flowing from the wiring BL to the circuit OFST is I α, 1 , the following equation is established according to Kirchhoff's law.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 なお、時間T04から時間T05までの間における、配線BLから配線OFSTに流れる電流Iα,0と、時間T05から時間T06までの間における、配線BLから配線OFSTに流れる電流Iα,1と、の差をΔIαとする。以後、ΔIαを、積和演算回路MACにおける、差分電流と呼称する。差分電流ΔIαは、式(E1)乃至式(E10)用いて、次の式のとおりに表すことができる。 Note that the current I α, 0 flowing from the wiring BL to the wiring OFST from time T04 to time T05 , and the current I α, 1 flowing from the wiring BL to the wiring OFST from time T05 to time T06, Is the difference ΔI α . Hereinafter, ΔI α is referred to as a differential current in the product-sum operation circuit MAC. The differential current ΔI α can be expressed as the following equation using the equations (E1) to (E10).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
<<時間T06から時間T07まで>>
 時間T06から時間T07までの間において、配線CL[1]には基準電位が印加されている。このとき、メモリセルAM[1]、及びメモリセルAMref[1]のそれぞれの容量素子C1の第2端子に、基準電位が印加されるため、ノードNM[1]、及びノードNMref[1]の電位は、それぞれ時間T04から時間T05までの間の電位に戻る。
<< From time T06 to time T07 >>
Between time T06 and time T07, the reference potential is applied to the wiring CL [1]. At this time, since the reference potential is applied to the second terminal of each capacitor C1 of the memory cell AM [1] and the memory cell AMref [1], the nodes NM [1] and NMref [1] The potential returns to the potential between time T04 and time T05, respectively.
<<時間T07から時間T08まで>>
 時間T07から時間T08までの間において、配線CL[1]に基準電位よりもVX[1]高い電位が印加され、配線CL[2]に基準電位よりもVX[2]高い電位が印加される。このとき、メモリセルAM[1]、及びメモリセルAMref[1]のそれぞれの容量素子C1の第2端子に電位VX[1]が印加され、メモリセルAM[2]、及びメモリセルAMref[2]のそれぞれの容量素子C1の第2端子に電位VX[2]が印加される。このため、メモリセルAM[1]、メモリセルAM[2]、メモリセルAMref[1]、及びメモリセルAMref[2]のそれぞれのトランジスタTr12のゲートの電位が上昇する。
<< From time T07 to time T08 >>
Between time T07 and time T08, a potential V X [1] higher than the reference potential is applied to the wiring CL [1], and a potential V X [2] higher than the reference potential is applied to the wiring CL [2]. Is done. At this time, the potential V X [1] is applied to the second terminal of each capacitor C1 of the memory cell AM [1] and the memory cell AMref [1], and the memory cell AM [2] and the memory cell AMref [ potential V X [2] is applied to each of the second terminal of the capacitor C1 of 2]. Therefore, the gate potentials of the transistors Tr12 of the memory cell AM [1], the memory cell AM [2], the memory cell AMref [1], and the memory cell AMref [2] are increased.
 配線BLからメモリセルAM[2]のトランジスタTr12の第2端子を介して第1端子に流れる電流をIAM[2],1としたとき、IAM[2],1は次の式で表すことができる。 When the current flowing from the wiring BL to the first terminal through the second terminal of the transistor Tr12 of the memory cell AM [2] is IAM [2], 1 , IAM [2], 1 is expressed by the following equation. be able to.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 同様に、配線BLrefからメモリセルAMref[2]のトランジスタTr12の第2端子を介して第1端子に流れる電流をIAMref[2],1としたとき、IAMref[2],1は次の式で表すことができる。 Similarly, when the current flowing from the wiring BLref to the first terminal via the second terminal of the transistor Tr12 of the memory cell AMref [2] is I AMref [2], 1 , I AMref [2], 1 It can be expressed by a formula.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 配線BLrefにおいて、カレントミラー回路CMによって排出される電流をICM,2としたとき、キルヒホッフの法則により次の式が成り立つ。 In the wiring BLref, when the current discharged by the current mirror circuit CM is I CM, 2 , the following equation is established according to Kirchhoff's law.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 配線BLにおいて、配線BLから回路OFSTに流れる電流をIα,3としたとき、キルヒホッフの法則により次の式が成り立つ。 In the wiring BL, when the current flowing from the wiring BL to the circuit OFST is I α, 3 , the following expression is established according to Kirchhoff's law.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 時間T04から時間T05までの間における、配線BLから配線OFSTに流れる電流Iα,0と、時間T07から時間T08までの間における、配線BLから配線OFSTに流れる電流Iα,3と、の差となる差分電流ΔIαは、式(E1)乃至式(E8)、式(E12)乃至式(E15)用いて、次の式のとおりに表すことができる。 The difference between the current I α, 0 flowing from the wiring BL to the wiring OFST from the time T04 to the time T05 and the current I α, 3 flowing from the wiring BL to the wiring OFST from the time T07 to the time T08. The differential current ΔI α can be expressed as the following equation using the equations (E1) to (E8) and (E12) to (E15).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 式(E16)に示すとおり、回路OFSTに入力される差分電流ΔIαは、複数の第1データである電位Vと、複数の第2データである電位Vと、の積の和に応じた値となる。つまり、差分電流ΔIαを回路OFSTで計測することによって、第1データと第2データとの積和の値を求めることができる。 As shown in the equation (E16), the differential current ΔI α input to the circuit OFST corresponds to the sum of the products of the plurality of first data potentials V W and the plurality of second data potentials V X. Value. That is, the sum of products of the first data and the second data can be obtained by measuring the differential current ΔI α with the circuit OFST.
<<時間T08から時間T09まで>>
 時間T08から時間T09までの間において、配線CL[1]、及び配線CL[2]には基準電位が印加されている。このとき、メモリセルAM[1]、メモリセルAM[2]、メモリセルAMref[1]、及びメモリセルAMref[2]のそれぞれの容量素子C1の第2端子に、基準電位が印加されるため、ノードNM[1]、ノードNM[2]、ノードNMref[1]、及びノードNMref[2]の電位は、それぞれ時間T06から時間T07までの間の電位に戻る。
<< From time T08 to time T09 >>
A reference potential is applied to the wiring CL [1] and the wiring CL [2] from time T08 to time T09. At this time, the reference potential is applied to the second terminals of the respective capacitor elements C1 of the memory cell AM [1], the memory cell AM [2], the memory cell AMref [1], and the memory cell AMref [2]. , The potentials of the node NM [1], the node NM [2], the node NMref [1], and the node NMref [2] return to the potential between the time T06 and the time T07, respectively.
 時間T05から時間T06までの間において、配線CL[1]にVX[1]を印加し、時間T07から時間T08までの間において、配線CL[1]及び配線CL[2]にそれぞれVX[1]、VX[2]を印加したが、配線CL[1]及び配線CL[2]に印加する電位は、基準電位REFPよりも低くてもよい。配線CL[1]、及び/又は配線CL[2]に、基準電位REFPよりも低い電位を印加した場合、配線CL[1]、及び/又は配線CL[2]に接続されているメモリセルの保持ノードの電位を、容量結合によって低くすることができる。これにより、積和演算において、第1データと、負の値である第2データの一との積を行うことができる。例えば、時間T07から時間T08までの間において、配線CL[2]に、VX[2]でなく−VX[2]を印加した場合、差分電流ΔIαは、次の式の通りに表すことができる。 In the period from time T05 to time T06, and applying V X [1] to the wiring CL [1], during the period from time T07 to time T08, the wiring CL [1] and the wiring CL [2], each V X [1] and V X [2] are applied, but the potential applied to the wiring CL [1] and the wiring CL [2] may be lower than the reference potential REFP. When a potential lower than the reference potential REFP is applied to the wiring CL [1] and / or the wiring CL [2], the memory cell connected to the wiring CL [1] and / or the wiring CL [2] The potential of the holding node can be lowered by capacitive coupling. Thereby, in the product-sum operation, the product of the first data and one of the second data having a negative value can be performed. For example, during the period from time T07 to time T08, the wiring CL [2], the case of applying -V X [2] rather than V X [2], the differential current [Delta] I alpha, expressed as the following formula be able to.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 なお、本動作例では、2行2列のマトリクス状に配置されているメモリセルを有するメモリセルアレイCAについて扱ったが、1行、且つ2列以上のメモリセルアレイ、又は3行以上、且つ3列以上のメモリセルアレイについても同様に、積和演算を行うことができる。この場合の積和演算回路は、複数列のうち1列を、参照データ(電位VPR)を保持するメモリセルとすることで、複数列のうち残りの列では積和演算処理を同時に実行することができる。つまり、メモリセルアレイの列の数を増やすことで、高速な積和演算処理を実現する演算回路を提供することができる。また、行数を増やすことによって、積和演算における、足し合わせる項数を増やすことができる。行数を増やした場合の、差分電流ΔIαは、次の式で表すことができる。 In this operation example, the memory cell array CA having the memory cells arranged in a matrix of 2 rows and 2 columns has been dealt with. However, the memory cell array CA having 1 row and 2 columns or more, or 3 rows and 3 columns and 3 columns. Similarly, the product-sum operation can be performed for the above memory cell array. In this case, the product-sum operation circuit uses one of the plurality of columns as a memory cell that holds the reference data (potential V PR ), and simultaneously performs the product-sum operation processing on the remaining columns of the plurality of columns. be able to. That is, by increasing the number of columns of the memory cell array, an arithmetic circuit that realizes high-speed product-sum arithmetic processing can be provided. Further, by increasing the number of rows, the number of terms to be added in the product-sum operation can be increased. The differential current ΔIα when the number of rows is increased can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 ところで、本実施の形態で述べた積和演算回路では、メモリセルAMの行数が前層のニューロンの数となる。換言すると、メモリセルAMの行数は、次層へ入力される前層のニューロンの出力信号の数に対応する。そして、メモリセルAMの列数が、次層のニューロンの数となる。換言すると、メモリセルAMの列数は、次層から出力されるニューロンの出力信号の数に対応する。つまり、前層、次層のそれぞれのニューロンの個数によって、積和演算回路のメモリセルアレイの行数、及び列数が定まるため、構成したいニューラルネットワークに応じて、メモリセルアレイの行数、及び列数を定めればよい。 By the way, in the product-sum operation circuit described in this embodiment, the number of rows of memory cells AM is the number of neurons in the previous layer. In other words, the number of rows of the memory cells AM corresponds to the number of output signals of the neurons in the previous layer that are input to the next layer. The number of columns of the memory cells AM is the number of neurons in the next layer. In other words, the number of columns of the memory cells AM corresponds to the number of neuron output signals output from the next layer. That is, the number of rows and columns of the memory cell array of the product-sum operation circuit is determined by the number of neurons in the previous layer and the next layer, so the number of rows and columns of the memory cell array depends on the neural network to be configured. Can be determined.
 また、本実施の形態で積和演算回路を用いてニューラルネットワークを構成する例を示したが特に限定されず、並列計算およびGPUコンピューティングを用いてニューラルネットワークを構成してもよい。 Further, although an example in which a neural network is configured using a product-sum operation circuit in the present embodiment has been shown, the present invention is not particularly limited, and a neural network may be configured using parallel computation and GPU computing.
 本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。 This embodiment mode can be combined with any of the other embodiment modes as appropriate.
(実施の形態3)
 本実施の形態では、円筒型の二次電池の例について図12を参照して説明する。円筒型の二次電池600は、図12(A)に示すように、上面に正極キャップ(電池蓋)601を有し、側面および底面に電池缶(外装缶)602を有している。これら正極キャップ601と電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
(Embodiment 3)
In this embodiment, an example of a cylindrical secondary battery is described with reference to FIGS. As shown in FIG. 12A, the cylindrical secondary battery 600 has a positive electrode cap (battery cover) 601 on the top surface and a battery can (outer can) 602 on the side surface and the bottom surface. The positive electrode cap 601 and the battery can (outer can) 602 are insulated by a gasket (insulating packing) 610.
 図12(B)は、円筒型の二次電池の断面を模式的に示した図である。中空円柱状の電池缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子はセンターピンを中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を被覆することが好ましい。電池缶602の内側において、正極、負極およびセパレータが捲回された電池素子は、対向する一対の絶縁板608、609により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の二次電池の非水電解液と同様のものを用いることができる。 FIG. 12B is a diagram schematically showing a cross section of a cylindrical secondary battery. Inside the hollow cylindrical battery can 602, a battery element in which a strip-like positive electrode 604 and a negative electrode 606 are wound with a separator 605 interposed therebetween is provided. Although not shown, the battery element is wound around a center pin. The battery can 602 has one end closed and the other end open. For the battery can 602, a metal such as nickel, aluminum, titanium, or the like having corrosion resistance to the electrolytic solution, or an alloy thereof or an alloy of these with another metal (for example, stainless steel) can be used. . In order to prevent corrosion due to the electrolytic solution, it is preferable to coat nickel, aluminum, or the like. Inside the battery can 602, the battery element in which the positive electrode, the negative electrode, and the separator are wound is sandwiched between a pair of opposing insulating plates 608 and 609. Further, a non-aqueous electrolyte (not shown) is injected into the inside of the battery can 602 provided with the battery element. As the non-aqueous electrolyte, the same non-aqueous electrolyte as that of a coin-type secondary battery can be used.
 円筒型の蓄電池に用いる正極および負極は捲回するため、集電体の両面に活物質を形成することが好ましい。正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603および負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構612に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構612は、PTC素子(Positive Temperature Coefficient)611を介して正極キャップ601と電気的に接続されている。安全弁機構612は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。 Since the positive electrode and the negative electrode used for the cylindrical storage battery are wound, it is preferable to form an active material on both surfaces of the current collector. A positive electrode terminal (positive electrode current collecting lead) 603 is connected to the positive electrode 604, and a negative electrode terminal (negative electrode current collecting lead) 607 is connected to the negative electrode 606. Both the positive electrode terminal 603 and the negative electrode terminal 607 can use a metal material such as aluminum. The positive terminal 603 is resistance-welded to the safety valve mechanism 612, and the negative terminal 607 is resistance-welded to the bottom of the battery can 602. The safety valve mechanism 612 is electrically connected to the positive electrode cap 601 via a PTC element (Positive Temperature Coefficient) 611. The safety valve mechanism 612 disconnects the electrical connection between the positive electrode cap 601 and the positive electrode 604 when the increase in the internal pressure of the battery exceeds a predetermined threshold value. The PTC element 611 is a heat-sensitive resistance element that increases in resistance when the temperature rises, and prevents abnormal heat generation by limiting the amount of current by increasing the resistance. For the PTC element, barium titanate (BaTiO 3 ) -based semiconductor ceramics or the like can be used.
[二次電池の構造例]
 二次電池の別の構造例について、図13乃至図16を用いて説明する。
[Example of secondary battery structure]
Another structural example of the secondary battery will be described with reference to FIGS.
 図13(A)はコイン型(単層偏平型)の二次電池の外観図であり、図13(B)は、その断面図である。 FIG. 13A is an external view of a coin-type (single-layer flat type) secondary battery, and FIG. 13B is a cross-sectional view thereof.
 コイン型の二次電池400は、正極端子を兼ねた正極缶401と負極端子を兼ねた負極缶402とが、ポリプロピレン等で形成されたガスケット403で絶縁シールされている。正極404は、正極集電体405と、これと接するように設けられた正極活物質層406により形成される。また、負極407は、負極集電体408と、これに接するように設けられた負極活物質層409により形成される。 In the coin-type secondary battery 400, a positive electrode can 401 also serving as a positive electrode terminal and a negative electrode can 402 also serving as a negative electrode terminal are insulated and sealed with a gasket 403 formed of polypropylene or the like. The positive electrode 404 is formed by a positive electrode current collector 405 and a positive electrode active material layer 406 provided so as to be in contact therewith. The negative electrode 407 is formed of a negative electrode current collector 408 and a negative electrode active material layer 409 provided so as to be in contact therewith.
 なお、コイン型の二次電池400に用いる正極404および負極407において、それぞれ活物質層は片面のみに形成すればよい。 Note that in each of the positive electrode 404 and the negative electrode 407 used in the coin-type secondary battery 400, the active material layer may be formed only on one side.
 正極缶401、負極缶402には、電解液に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えばステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を被覆することが好ましい。正極缶401は正極404と、負極缶402は負極407とそれぞれ電気的に接続する。 For the positive electrode can 401 and the negative electrode can 402, a metal such as nickel, aluminum, or titanium that is corrosion resistant to an electrolytic solution, or an alloy thereof or an alloy of these with another metal (for example, stainless steel) is used. it can. In order to prevent corrosion due to the electrolytic solution, it is preferable to coat nickel, aluminum, or the like. The positive electrode can 401 and the negative electrode can 402 are electrically connected to the positive electrode 404 and the negative electrode 407, respectively.
 これら負極407、正極404およびセパレータ410を電解質に含浸させ、図13(B)に示すように、正極缶401を下にして正極404、セパレータ410、負極407、負極缶402をこの順で積層し、正極缶401と負極缶402とをガスケット403を介して圧着してCR2032タイプ(直径20mm高さ3.2mm)のコイン形の二次電池400を製造する。 The negative electrode 407, the positive electrode 404, and the separator 410 are impregnated in the electrolyte, and the positive electrode 404, the separator 410, the negative electrode 407, and the negative electrode can 402 are laminated in this order with the positive electrode can 401 facing down, as shown in FIG. Then, the positive electrode can 401 and the negative electrode can 402 are pressure-bonded via a gasket 403 to manufacture a CR2032-type (diameter 20 mm, height 3.2 mm) coin-type secondary battery 400.
 図14(A)は、内部に捲回体を有する二次電池を複数示した例である。本実施の形態では1つの二次電池に一つのスイッチを設け、制御する。図14には、回路基板に実装したスイッチを含むICチップ999を示している。端子911には、制御信号入力端子、電源端子などを含む。ICチップ999は、回路基板900の裏面に設けられていてもよい。 FIG. 14A is an example showing a plurality of secondary batteries having a wound body inside. In this embodiment, one secondary battery is provided with one switch for control. FIG. 14 shows an IC chip 999 including a switch mounted on a circuit board. The terminal 911 includes a control signal input terminal, a power supply terminal, and the like. The IC chip 999 may be provided on the back surface of the circuit board 900.
 なお、一つの二次電池913は、図14(B)に示したように、筐体930の内部に端子951と端子952が設けられている。二次電池913は、筐体930aと筐体930bが貼り合わされており、筐体930a及び筐体930bで囲まれた領域に捲回体が設けられている。 Note that as shown in FIG. 14B, one secondary battery 913 is provided with a terminal 951 and a terminal 952 inside the housing 930. In the secondary battery 913, a housing 930a and a housing 930b are bonded to each other, and a wound body is provided in a region surrounded by the housing 930a and the housing 930b.
 さらに、二次電池913の構造例について図15及び図16を用いて説明する。 Furthermore, a structural example of the secondary battery 913 will be described with reference to FIGS.
 図15(A)に示す二次電池913は、筐体930の内部に端子951と端子952が設けられた捲回体950を有する。捲回体950は、筐体930の内部で電解液に含浸される。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体930に接していない。なお、図15(A)では、便宜のため、筐体930を分離して図示しているが、実際は、捲回体950が筐体930に覆われ、端子951及び端子952が筐体930の外に延在している。筐体930としては、金属材料(例えばアルミニウムなど)又は樹脂材料を用いることができる。 A secondary battery 913 illustrated in FIG. 15A includes a wound body 950 in which a terminal 951 and a terminal 952 are provided inside a housing 930. The wound body 950 is impregnated with the electrolytic solution inside the housing 930. The terminal 952 is in contact with the housing 930, and the terminal 951 is not in contact with the housing 930 by using an insulating material or the like. Note that in FIG. 15A, the housing 930 is illustrated separately for convenience, but in actuality, the wound body 950 is covered with the housing 930, and the terminals 951 and 952 are included in the housing 930. Extends outside. As the housing 930, a metal material (eg, aluminum) or a resin material can be used.
 なお、図15(B)に示すように、図15(A)に示す筐体930を複数の材料によって形成してもよい。例えば、図15(B)に示す二次電池913は、筐体930aと筐体930bが貼り合わされており、筐体930a及び筐体930bで囲まれた領域に捲回体950が設けられている。 Note that as illustrated in FIG. 15B, the housing 930 illustrated in FIG. 15A may be formed using a plurality of materials. For example, in the secondary battery 913 illustrated in FIG. 15B, a housing 930a and a housing 930b are attached to each other, and a winding body 950 is provided in a region surrounded by the housing 930a and the housing 930b. .
 筐体930aとしては、有機樹脂など、絶縁材料を用いることができる。特に、アンテナが形成される面に有機樹脂などの材料を用いることにより、二次電池913による電界の遮蔽を抑制できる。なお、筐体930aによる電界の遮蔽が小さければ、筐体930aの内部にアンテナを設けてもよい。筐体930bとしては、例えば金属材料を用いることができる。 As the housing 930a, an insulating material such as an organic resin can be used. In particular, by using a material such as an organic resin on the surface where the antenna is formed, electric field shielding by the secondary battery 913 can be suppressed. Note that an antenna may be provided inside the housing 930a if the shielding of the electric field by the housing 930a is small. As the housing 930b, for example, a metal material can be used.
 さらに、捲回体950の構造について図16に示す。捲回体950は、負極931と、正極932と、セパレータ933と、を有する。捲回体950は、セパレータ933を挟んで負極931と、正極932が重なり合って積層され、該積層シートを捲回させた捲回体である。なお、複数の負極931と、正極932と、セパレータ933との積層を重ねてもよい。 Furthermore, the structure of the wound body 950 is shown in FIG. The wound body 950 includes a negative electrode 931, a positive electrode 932, and a separator 933. The wound body 950 is a wound body in which the negative electrode 931 and the positive electrode 932 are stacked with the separator 933 interposed therebetween, and the laminated sheet is wound. Note that a stack of a plurality of negative electrodes 931, a positive electrode 932, and a separator 933 may be stacked.
 負極931は、端子951及び端子952の一方を介して図14(A)に示す端子911に接続される。正極932は、端子951及び端子952の他方を介して図14(A)に示す端子911に接続される。 The negative electrode 931 is connected to a terminal 911 illustrated in FIG. 14A through one of a terminal 951 and a terminal 952. The positive electrode 932 is connected to the terminal 911 illustrated in FIG. 14A through the other of the terminal 951 and the terminal 952.
 スイッチで充電を制御する複数の二次電池を用いることで、ニューラルネットワークを用いて最適な充電を行い、寿命の長い二次電池913とすることができる。 By using a plurality of secondary batteries whose charging is controlled by a switch, optimal charging can be performed using a neural network, and a long-life secondary battery 913 can be obtained.
(実施の形態4)
 本実施の形態では、スイッチで充電を制御する複数の二次電池を電子機器に実装する例について説明する。
(Embodiment 4)
In this embodiment, an example in which a plurality of secondary batteries whose charging is controlled by a switch is mounted on an electronic device will be described.
 まず、複数の二次電池を適用した電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。 First, as an electronic device to which a plurality of secondary batteries are applied, for example, a television device (also referred to as a television or a television receiver), a monitor for a computer, a digital camera, a digital video camera, a digital photo frame, a mobile phone (Also referred to as a mobile phone or a mobile phone device), a portable game machine, a portable information terminal, a sound reproduction device, a large game machine such as a pachinko machine, and the like.
 次に、図17(A)および図17(B)に、2つ折り可能なタブレット型端末の一例を示す。図17(A)および図17(B)に示すタブレット型端末9600は、筐体9630a、筐体9630b、筐体9630aと筐体9630bを接続する可動部9640、表示部9631、表示モード切り替えスイッチ9626、電源スイッチ9627、省電力モード切り替えスイッチ9625、留め具9629、操作スイッチ9628、を有する。表示部9631には、可撓性を有するパネルを用いることで、より広い表示部を有するタブレット端末とすることができる。図17(A)は、タブレット型端末9600を開いた状態を示し、図17(B)は、タブレット型端末9600を閉じた状態を示している。 Next, FIG. 17A and FIG. 17B show an example of a tablet terminal that can be folded in half. A tablet terminal 9600 illustrated in FIGS. 17A and 17B includes a housing 9630a, a housing 9630b, a movable portion 9640 that connects the housing 9630a and the housing 9630b, a display portion 9631, and a display mode switching switch 9626. , A power switch 9627, a power saving mode switching switch 9625, a fastener 9629, and an operation switch 9628. By using a flexible panel for the display portion 9631, a tablet terminal having a wider display portion can be obtained. FIG. 17A shows a state where the tablet terminal 9600 is opened, and FIG. 17B shows a state where the tablet terminal 9600 is closed.
 また、タブレット型端末9600は、筐体9630aおよび筐体9630bの内部に蓄電体9635を複数有する。蓄電体9635は、可動部9640を通り、筐体9630aと筐体9630bに渡って設けられている。 Further, the tablet terminal 9600 includes a plurality of power storage units 9635 inside the housing 9630a and the housing 9630b. The power storage unit 9635 is provided across the housing 9630a and the housing 9630b through the movable portion 9640.
 表示部9631は、一部をタッチパネルの領域とすることができ、表示された操作キーにふれることでデータ入力をすることができる。また、タッチパネルのキーボード表示切り替えボタンが表示されている位置を指やスタイラスなどでふれることで表示部9631にキーボードボタンを表示することができる。 The display portion 9631 can partly be a touch panel area, and data can be input by touching the displayed operation keys. Further, a keyboard button can be displayed on the display portion 9631 by touching a position where the keyboard display switching button on the touch panel is displayed with a finger or a stylus.
 また、表示モード切り替えスイッチ9626は、ランドスケープモードとポートレートモードの切り替え、白黒モードやカラーモードの切り替えなどを選択できる。省電力モード切り替えスイッチ9625は、タブレット型端末9600に内蔵している光センサで検出される使用時の外光の光量に応じて表示の輝度を最適なものとすることができる。タブレット型端末は光センサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置を内蔵させてもよい。 Further, the display mode change-over switch 9626 can select a landscape mode and a portrait mode, a monochrome mode and a color mode. The power saving mode change-over switch 9625 can optimize the display luminance in accordance with the amount of external light in use detected by an optical sensor incorporated in the tablet terminal 9600. The tablet terminal may include not only an optical sensor but also other detection devices such as a gyroscope, an acceleration sensor, and other sensors that detect inclination.
 図17(B)は、閉じた状態であり、タブレット型端末は、筐体9630、太陽電池9633、DCDCコンバータ9636を含む充放電制御回路9634有する。また、蓄電体9635として、本発明の一態様に係る複数の二次電池を用いる。 FIG. 17B shows a closed state, and the tablet terminal includes a charge / discharge control circuit 9634 including a housing 9630, a solar cell 9633, and a DCDC converter 9636. Further, as the power storage unit 9635, a plurality of secondary batteries according to one embodiment of the present invention is used.
 なお、タブレット型端末9600は2つ折り可能なため、未使用時に筐体9630aおよび筐体9630bを重ね合せるように折りたたむことができる。折りたたむことにより、表示部9631を保護できるため、タブレット型端末9600の耐久性を高めることができる。また、本発明の一態様の制御システムにより、複数の蓄電体9635は長い寿命を有するため、長期間に渡って長時間の使用ができるタブレット型端末9600を提供できる。 Note that since the tablet terminal 9600 can be folded in two, the housing 9630a and the housing 9630b can be folded so as to overlap when not in use. By folding, the display portion 9631 can be protected, so that durability of the tablet terminal 9600 can be improved. Further, according to the control system of one embodiment of the present invention, since the plurality of power storage bodies 9635 have a long lifetime, the tablet terminal 9600 that can be used for a long time can be provided.
 この他にも図17(A)および図17(B)に示したタブレット型端末は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。 In addition, the tablet terminal shown in FIGS. 17A and 17B has a function for displaying various information (still images, moving images, text images, etc.), a calendar, date or time, and the like. A touch input function for touch input operation or editing of information displayed on the display unit, a function for controlling processing by various software (programs), and the like.
 タブレット型端末の表面に装着された太陽電池9633によって、電力をタッチパネル、表示部、又は映像信号処理部等に供給することができる。なお、太陽電池9633は、筐体9630の片面又は両面に設けることができ、複数の蓄電体9635の充電を効率的に行う構成とすることができる。 Power can be supplied to a touch panel, a display unit, a video signal processing unit, or the like by a solar cell 9633 mounted on the surface of the tablet terminal. Note that the solar battery 9633 can be provided on one or both surfaces of the housing 9630 and the plurality of power storage bodies 9635 can be charged efficiently.
 図17(B)に示す充放電制御回路9634の構成、および動作について図17(C)にブロック図を示し説明する。図17(C)は、太陽電池9633、蓄電体9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3、表示部9631について示しており、蓄電体9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3が、図17(B)に示す充放電制御回路9634に対応する箇所となる。 The structure and operation of the charge / discharge control circuit 9634 illustrated in FIG. 17B will be described with reference to a block diagram in FIG. FIG. 17C illustrates the solar battery 9633, the power storage unit 9635, the DCDC converter 9636, the converter 9637, the switches SW1 to SW3, and the display portion 9631. The power storage unit 9635, the DCDC converter 9636, the converter 9637, and the switches SW1 to SW3 are shown. Is a portion corresponding to the charge / discharge control circuit 9634 shown in FIG.
 まず、外光により太陽電池9633により発電がされる場合の動作の例について説明する。太陽電池で発電した電力は、蓄電体9635を充電するための電圧となるようDCDCコンバータ9636で昇圧又は降圧がなされる。そして、表示部9631の動作に太陽電池9633からの電力が用いられる際にはスイッチSW1をオンにし、コンバータ9637で表示部9631に必要な電圧に昇圧又は降圧をすることとなる。表示部9631での表示を行わない際には、スイッチSW1をオフにし、スイッチSW2をオンにして蓄電体9635の充電を行う構成とすればよい。 First, an example of operation in the case where power is generated by the solar battery 9633 using external light will be described. The power generated by the solar battery is boosted or lowered by the DCDC converter 9636 so as to be a voltage for charging the power storage unit 9635. When power from the solar cell 9633 is used for the operation of the display portion 9631, the switch SW1 is turned on, and the converter 9637 increases or decreases the voltage required for the display portion 9631. When display on the display portion 9631 is not performed, the power storage unit 9635 may be charged by turning off the switch SW1 and turning on the switch SW2.
 なお、太陽電池9633を発電手段の一例として示したが、特に限定されず、圧電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電手段による蓄電体9635の充電を行う構成であってもよい。例えば、無線(非接触)で電力を送受信して充電する無接点電力伝送モジュールや、また、他の充電手段を組み合わせて行う構成としてもよい。 Note that although the solar battery 9633 is shown as an example of a power generation unit, the power storage unit 9635 is charged by another power generation unit such as a piezoelectric element (piezo element) or a thermoelectric conversion element (Peltier element). There may be. For example, a non-contact power transmission module that wirelessly (contactlessly) transmits and receives power for charging and other charging means may be combined.
 図18に、他の電子機器の例を示す。図18において、表示装置8000は、マイクロプロセッサ(APSを含む)で複数の二次電池8004の充電制御をする電子機器の一例である。具体的に、表示装置8000は、TV放送受信用の表示装置に相当し、筐体8001、表示部8002、スピーカ部8003、二次電池8004等を有する。本発明の一態様に係る複数の二次電池8004は、筐体8001の内部に設けられている。表示装置8000は、商用電源から電力の供給を受けることもできるし、二次電池8004に蓄積された電力を用いることもできる。 FIG. 18 shows an example of another electronic device. In FIG. 18, a display device 8000 is an example of an electronic device that controls charging of a plurality of secondary batteries 8004 using a microprocessor (including APS). Specifically, the display device 8000 corresponds to a display device for receiving TV broadcasts, and includes a housing 8001, a display portion 8002, a speaker portion 8003, a secondary battery 8004, and the like. A plurality of secondary batteries 8004 according to one embodiment of the present invention are provided in the housing 8001. The display device 8000 can receive power from a commercial power supply. Alternatively, the display device 8000 can use power stored in the secondary battery 8004.
 表示部8002には、液晶表示装置、有機EL素子などの発光素子を各画素に備えた発光装置、電気泳動表示装置、DMD(Digital Micromirror Device)、PDP(Plasma Display Panel)、FED(Field Emission Display)などの、半導体表示装置を用いることができる。 The display portion 8002 includes a liquid crystal display device, a light emitting device including a light emitting element such as an organic EL element, an electrophoretic display device, a DMD (Digital Micromirror Device), a PDP (Plasma Display Panel), and an FED (Field Emission Display). A semiconductor display device such as) can be used.
 なお、表示装置には、TV放送受信用の他、パーソナルコンピュータ用、広告表示用など、全ての情報表示用表示装置が含まれる。 The display device includes all information display devices such as a personal computer and an advertisement display in addition to a TV broadcast reception.
 また、音声入力デバイス8005もスイッチで充電を制御する複数の二次電池を用いる。音声入力デバイス8005は、無線通信素子の他、マイク、スピーカ8007、複数のセンサ(光学センサ、温度センサ、湿度センサ、気圧センサ、照度センサ、モーションセンサなど)を有し、使用者の命令する言葉によって他のデバイスの操作、例えば表示装置8000の電源操作、据え付け型の照明装置8100の光量調節などを行うことができる。音声入力デバイス8005は音声で周辺機器の操作が行え、手動リモコンの代わりとなる。音声入力デバイス8005は点線で示す軸を中心に回転する台8006に設けられ、使用者の声が聞こえる方向に回転し、内蔵されているマイクで正確に命令を聞き取るとともに、その内容を表示部8008に表示する、または表示部8008のタッチ入力操作が行える構成としている。また、図18においては台8006を用いる例を示したが、特に限定されず、音声入力デバイス8005に車輪や機械式移動手段を設けて所望の位置に移動させてもよく、或いは台や車輪を設けず固定してもよい。 Also, the voice input device 8005 uses a plurality of secondary batteries whose charging is controlled by a switch. The voice input device 8005 includes a wireless communication element, a microphone, a speaker 8007, and a plurality of sensors (such as an optical sensor, a temperature sensor, a humidity sensor, an atmospheric pressure sensor, an illuminance sensor, and a motion sensor). Thus, other devices can be operated, for example, the power operation of the display device 8000, the light amount adjustment of the stationary illumination device 8100, and the like. The voice input device 8005 can operate peripheral devices by voice and can be used instead of a manual remote controller. The voice input device 8005 is provided on a base 8006 that rotates around an axis indicated by a dotted line, rotates in a direction in which the user's voice can be heard, listens to a command accurately with a built-in microphone, and displays the contents of the display unit 8008. Or a touch input operation of the display portion 8008 can be performed. FIG. 18 shows an example in which the base 8006 is used. However, the present invention is not particularly limited, and the voice input device 8005 may be provided with wheels or mechanical movement means and moved to a desired position. You may fix without providing.
 図18において、照明装置8100は、スイッチで充電を制御する複数の二次電池8103を用いた電子機器の一例である。具体的には、照明装置8100は、筐体8101、光源8102、二次電池8103等を有する。図18では、二次電池8103が、筐体8101及び光源8102が据え付けられた天井8104の内部に設けられている場合を例示しているが、複数の二次電池8103は、筐体8101の内部に設けられていても良い。照明装置8100は、商用電源から電力の供給を受けることもできるし、二次電池8103に蓄積された電力を用いることもできる。 In FIG. 18, a lighting device 8100 is an example of an electronic device using a plurality of secondary batteries 8103 whose charging is controlled by a switch. Specifically, the lighting device 8100 includes a housing 8101, a light source 8102, a secondary battery 8103, and the like. FIG. 18 illustrates the case where the secondary battery 8103 is provided inside the ceiling 8104 where the housing 8101 and the light source 8102 are installed, but the plurality of secondary batteries 8103 are provided inside the housing 8101. May be provided. The lighting device 8100 can receive power from a commercial power supply. Alternatively, the lighting device 8100 can use power stored in the secondary battery 8103.
 なお、図18では天井8104に設けられた照明装置8100を例示しているが、スイッチで充電を制御する複数の二次電池は、天井8104以外、例えば側壁8105、床8106、窓8107等に設けられた据え付け型の照明装置に用いることもできるし、卓上型の照明装置などに用いることもできる。 Note that FIG. 18 illustrates the lighting device 8100 provided on the ceiling 8104. However, a plurality of secondary batteries whose charging is controlled by switches are provided on the side wall 8105, the floor 8106, the window 8107, and the like other than the ceiling 8104. It can also be used for a stationary lighting device, or a desktop lighting device.
 光源8102には、電力を利用して人工的に光を得る人工光源を用いることができる。具体的には、白熱電球、蛍光灯などの放電ランプ、LEDや有機EL素子などの発光素子が、上記人工光源の一例として挙げられる。 As the light source 8102, an artificial light source that artificially obtains light using electric power can be used. Specifically, discharge lamps such as incandescent bulbs and fluorescent lamps, and light emitting elements such as LEDs and organic EL elements are examples of the artificial light source.
 図18において、室内機8200及び室外機8204を有するエアコンディショナーは、スイッチで充電を制御する複数の二次電池8203を用いた電子機器の一例である。具体的に、室内機8200は、筐体8201、送風口8202、二次電池8203等を有する。図18では、二次電池8203が、室内機8200に設けられている場合を例示しているが、二次電池8203は室外機8204に設けられていても良い。或いは、室内機8200と室外機8204の両方に、二次電池8203が設けられていても良い。エアコンディショナーは、商用電源から電力の供給を受けることもできるし、二次電池8203に蓄積された電力を用いることもできる。 18, an air conditioner having an indoor unit 8200 and an outdoor unit 8204 is an example of an electronic device using a plurality of secondary batteries 8203 whose charging is controlled by a switch. Specifically, the indoor unit 8200 includes a housing 8201, an air outlet 8202, a secondary battery 8203, and the like. FIG. 18 illustrates the case where the secondary battery 8203 is provided in the indoor unit 8200, but the secondary battery 8203 may be provided in the outdoor unit 8204. Alternatively, the secondary battery 8203 may be provided in both the indoor unit 8200 and the outdoor unit 8204. The air conditioner can receive power from a commercial power supply. Alternatively, the air conditioner can use power stored in the secondary battery 8203.
 なお、図18では、室内機と室外機で構成されるセパレート型のエアコンディショナーを例示しているが、室内機の機能と室外機の機能とを1つの筐体に有する一体型のエアコンディショナーに、スイッチで充電を制御する複数の二次電池を用いることもできる。 Note that FIG. 18 illustrates a separate type air conditioner including an indoor unit and an outdoor unit. However, an integrated air conditioner having the functions of the indoor unit and the outdoor unit in one housing is illustrated. A plurality of secondary batteries whose charging is controlled by a switch can also be used.
 図18において、電気冷凍冷蔵庫8300は、スイッチで充電を制御する複数の二次電池8304を用いた電子機器の一例である。具体的に、電気冷凍冷蔵庫8300は、筐体8301、冷蔵室用扉8302、冷凍室用扉8303、二次電池8304等を有する。図18では、複数の二次電池8304が、筐体8301の内部に設けられている。電気冷凍冷蔵庫8300は、商用電源から電力の供給を受けることもできるし、二次電池8304に蓄積された電力を用いることもできる。 In FIG. 18, an electric refrigerator-freezer 8300 is an example of an electronic apparatus using a plurality of secondary batteries 8304 whose charging is controlled by a switch. Specifically, the electric refrigerator-freezer 8300 includes a housing 8301, a refrigerator door 8302, a refrigerator door 8303, a secondary battery 8304, and the like. In FIG. 18, a plurality of secondary batteries 8304 are provided inside the housing 8301. The electric refrigerator-freezer 8300 can receive power from a commercial power supply. Alternatively, the electric refrigerator-freezer 8300 can use power stored in the secondary battery 8304.
 また、電子機器が使用されない時間帯、特に、商用電源の供給元が供給可能な総電力量のうち、実際に使用される電力量の割合(電力使用率と呼ぶ)が低い時間帯において、二次電池に電力を蓄えておくことで、上記時間帯以外において電力使用率が高まるのを抑えることができる。例えば、電気冷凍冷蔵庫8300の場合、気温が低く、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われない夜間において、二次電池8304に電力を蓄える。そして、気温が高くなり、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われる昼間において、二次電池8304を補助電源として用いることで、昼間の電力使用率を低く抑えることができる。 In addition, in a time zone when the electronic device is not used, particularly in a time zone where the ratio of the actually used power amount (referred to as the power usage rate) is low in the total power amount that can be supplied by the commercial power supply source. By storing electric power in the secondary battery, it is possible to suppress an increase in the power usage rate outside the above time period. For example, in the case of the electric refrigerator-freezer 8300, electric power is stored in the secondary battery 8304 at night when the temperature is low and the refrigerator door 8302 and the refrigerator door 8303 are not opened and closed. In the daytime when the temperature rises and the refrigerator door 8302 and the freezer door 8303 are opened and closed, the secondary battery 8304 is used as an auxiliary power source, so that the daytime power usage rate can be kept low.
 上述の電子機器の他、スイッチで充電を制御する複数の二次電池はあらゆる電子機器に搭載することができる。本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。 In addition to the electronic devices described above, a plurality of secondary batteries whose charging is controlled by a switch can be mounted on any electronic device. This embodiment can be implemented in appropriate combination with any of the other embodiments.
(実施の形態5)
 本実施の形態では、車両に本発明の一態様であるスイッチで充電を制御する複数の二次電池を搭載する例を示す。
(Embodiment 5)
In this embodiment, an example in which a plurality of secondary batteries that control charging with a switch which is one embodiment of the present invention is mounted on a vehicle will be described.
 二次電池を車両に搭載すると、ハイブリッド車(HEV)、電気自動車(EV)、又はプラグインハイブリッド車(PHEV)等の次世代クリーンエネルギー自動車を実現できる。二次電池の配置により重量が偏ると車両全体としての重心の位置が変わるおそれがあるため、複数の二次電池を車両の重心を設計通りになるように最適な位置に配置することが望ましい。複数の二次電池をさまざまな箇所に配置すると、ある二次電池周辺に配置されている機器の発熱などによりその二次電池が影響を受け他の二次電池よりも劣化が進む恐れがある。このような劣化の進行が異なる複数の二次電池が配置される場合に、本発明は有効である。 When a secondary battery is mounted on a vehicle, a next-generation clean energy vehicle such as a hybrid vehicle (HEV), an electric vehicle (EV), or a plug-in hybrid vehicle (PHEV) can be realized. If the weight is biased by the arrangement of the secondary batteries, the position of the center of gravity of the vehicle as a whole may change. Therefore, it is desirable to arrange a plurality of secondary batteries at optimal positions so that the center of gravity of the vehicle is as designed. If a plurality of secondary batteries are arranged at various locations, the secondary battery may be affected by the heat generated by the devices arranged around a certain secondary battery, and may be deteriorated more than other secondary batteries. The present invention is effective when a plurality of secondary batteries having different progress of deterioration are arranged.
 図19において、本発明の一態様であるスイッチで充電を制御する複数の二次電池を用いた車両を例示する。図19(A)に示す自動車8400は、走行のための動力源として電気モータを用いる電気自動車である。または、走行のための動力源として電気モータとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。本発明の一態様を用いることで、車両に搭載された二次電池の長寿命化を実現することができる。また、自動車8400は電池パック8402を有する。電池パック8402は、車内の床部分に対して、図12に示した小型の円筒型の二次電池を多く並べて使用すればよい。また、図13に示す二次電池を複数組み合わせた電池パックを車内の床部分に対して設置してもよい。図19(A)において、電池パック8402は電気モータ8406を駆動するだけでなく、ヘッドライト8401やルームライト(図示せず)などの発光装置に電力を供給することができる。また、自動車8400の天井部分には光電変換素子8405を有しており、照射された光を光電変換して、電池パック8402に貯蔵できる。 FIG. 19 illustrates a vehicle using a plurality of secondary batteries whose charge is controlled by a switch which is one embodiment of the present invention. A car 8400 illustrated in FIG. 19A is an electric car that uses an electric motor as a power source for traveling. Or it is a hybrid vehicle which can select and use an electric motor and an engine suitably as a motive power source for driving | running | working. By using one embodiment of the present invention, it is possible to extend the life of a secondary battery mounted on a vehicle. The automobile 8400 has a battery pack 8402. The battery pack 8402 may use a large number of small cylindrical secondary batteries shown in FIG. 12 side by side with respect to the floor portion in the vehicle. Further, a battery pack in which a plurality of secondary batteries shown in FIG. 13 are combined may be installed on the floor portion in the vehicle. In FIG. 19A, the battery pack 8402 can not only drive the electric motor 8406 but also supply power to a light-emitting device such as a headlight 8401 and a room light (not shown). In addition, the ceiling portion of the automobile 8400 includes a photoelectric conversion element 8405, and the irradiated light can be photoelectrically converted and stored in the battery pack 8402.
 また、電池パック8402は、自動車8400が有するスピードメーター、タコメーターなどの表示装置に電力を供給することができる。また、電池パック8402は、自動車8400が有するナビゲーションシステムなどの表示装置に電力を供給することができる。また、サイドミラーに代えてセンサ8403を有しており、フロントガラス8404の一部にセンサ8403で得られる画像を投影して表示させてもよい。また、センサ8403で得られる画像は車内の表示装置に表示してもよい。 Further, the battery pack 8402 can supply power to a display device such as a speedometer or a tachometer that the automobile 8400 has. The battery pack 8402 can supply power to a display device such as a navigation system included in the automobile 8400. Further, a sensor 8403 may be provided instead of the side mirror, and an image obtained by the sensor 8403 may be projected and displayed on a part of the windshield 8404. Further, an image obtained by the sensor 8403 may be displayed on a display device in the vehicle.
 図19(B)に示す自動車8500は、自動車8500が有する複数の二次電池にプラグイン方式や非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。図19(B)に、地上設置型の充電装置8021から自動車8500に搭載された二次電池8024に、ケーブル8022を介して充電を行っている状態を示す。充電に際しては、充電方法やコネクターの規格等はCHAdeMO(登録商標)やコンボ等の所定の方式で適宜行えばよい。充電装置8021は、商用施設に設けられた充電ステーションでもよく、また、家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車8500に搭載された二次電池8024を充電することができる。充電は、充電装置8021が有するACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。また充電用ACDCコンバータ8025が搭載された自動車8500の場合は、交流電源を接続しても充電を行うことができる。 An automobile 8500 shown in FIG. 19B can charge a plurality of secondary batteries of the automobile 8500 by receiving power supply from an external charging facility by a plug-in method, a non-contact power supply method, or the like. FIG. 19B illustrates a state where the secondary battery 8024 mounted on the automobile 8500 is charged through the cable 8022 from the ground-installed charging device 8021. When charging, the charging method, connector standard, and the like may be appropriately performed by a predetermined method such as CHAdeMO (registered trademark) or a combo. The charging device 8021 may be a charging station provided in a commercial facility, or may be a household power source. For example, the secondary battery 8024 mounted on the automobile 8500 can be charged by power supply from the outside by plug-in technology. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter included in the charging device 8021. In the case of an automobile 8500 equipped with a charging ACDC converter 8025, charging can be performed even if an AC power supply is connected.
 また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路や外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、車両どうしで電力の送受信を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時や走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式や磁界共鳴方式を用いることができる。 Although not shown, the power receiving device can be mounted on the vehicle and charged by supplying power from the ground power transmitting device in a non-contact manner. In the case of this non-contact power supply method, charging can be performed not only when the vehicle is stopped but also during traveling by incorporating a power transmission device on a road or an outer wall. In addition, this non-contact power feeding method may be used to transmit and receive power between vehicles. Furthermore, a solar battery may be provided in the exterior part of the vehicle, and the secondary battery may be charged when the vehicle is stopped or traveling. An electromagnetic induction method or a magnetic field resonance method can be used for such non-contact power supply.
 図19(C)は、スイッチで充電を制御する複数の二次電池を用いた二輪車の一例である。図19(C)に示すスクータ8600は、二次電池8602、サイドミラー8601、方向指示灯8603を備える。二次電池8602は、方向指示灯8603に電気を供給することができる。 FIG. 19C is an example of a motorcycle using a plurality of secondary batteries whose charging is controlled by a switch. A scooter 8600 illustrated in FIG. 19C includes a secondary battery 8602, a side mirror 8601, and a direction indicator lamp 8603. The secondary battery 8602 can supply electricity to the direction indicator lamp 8603.
 また、図19(C)に示すスクータ8600は、座席下収納8604に、複数の二次電池8602を収納することができる。二次電池8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。二次電池8602は、取り外し可能となっており、充電時には二次電池8602を屋内に持って運び、充電し、走行する前に収納すればよい。 Further, the scooter 8600 shown in FIG. 19C can store a plurality of secondary batteries 8602 in the under-seat storage 8604. The secondary battery 8602 can be stored in the under-seat storage 8604 even if the under-seat storage 8604 is small. The secondary battery 8602 can be removed. When charging, the secondary battery 8602 can be carried indoors, charged, and stored before traveling.
 図20(A)は、スイッチで充電を制御する複数の二次電池を電池パックに用いた電動自転車の一例である。図20(A)に示す電動自転車8700は、電池パック8702を備える。電池パック8702は、運転者をアシストするモータに電気を供給することができる。また、電池パック8702は、持ち運びができ、図20(B)に電動自転車から取り外した状態を示している。また、電池パック8702は、ラミネート型の二次電池8701が複数内蔵されており、その二次電池の残容量などを表示部8703で表示できるようにしている。なお、二次電池を複数内蔵する場合、それぞれにスイッチや、充電制御装置や、保護回路を有している。 FIG. 20 (A) is an example of an electric bicycle using a plurality of secondary batteries whose charging is controlled by a switch as a battery pack. An electric bicycle 8700 illustrated in FIG. 20A includes a battery pack 8702. The battery pack 8702 can supply electricity to a motor that assists the driver. Further, the battery pack 8702 can be carried, and FIG. 20B shows a state where the battery pack 8702 is detached from the electric bicycle. The battery pack 8702 includes a plurality of laminated secondary batteries 8701 so that the remaining capacity of the secondary battery can be displayed on the display portion 8703. Note that when a plurality of secondary batteries are incorporated, each has a switch, a charge control device, and a protection circuit.
(実施の形態6)
 本発明の一態様の電子機器および入力システムについて、図面を用いて説明する。電子機器は、ヘッドマウントディスプレイ(HMD)として用いることができる。
(Embodiment 6)
An electronic device and an input system of one embodiment of the present invention are described with reference to drawings. The electronic device can be used as a head mounted display (HMD).
<外観>
 図21(A)は、電子機器(ここではHMD)を装着した使用者の頭上から見た電子機器の外観の一例であり、図21(B)はブロック図を示す。
<Appearance>
FIG. 21A is an example of the appearance of an electronic device viewed from the top of the user wearing the electronic device (here, the HMD), and FIG. 21B is a block diagram.
 電子機器(HMD)は、撮像装置120a、120b、検出装置130a、130b、集積回路140a、140b、二次電池141a、141b、および表示装置150a、150bを少なくとも有する。 The electronic device (HMD) includes at least imaging devices 120a and 120b, detection devices 130a and 130b, integrated circuits 140a and 140b, secondary batteries 141a and 141b, and display devices 150a and 150b.
 撮像装置120a、120b、検出装置130a、130b、集積回路140a、140b、二次電池141a、141b、および表示装置150a、150bは、例えば筐体110内に設けることができ、それぞれ電気的に接続されている。 The imaging devices 120a and 120b, the detection devices 130a and 130b, the integrated circuits 140a and 140b, the secondary batteries 141a and 141b, and the display devices 150a and 150b can be provided in the housing 110, for example, and are electrically connected to each other. ing.
 筐体110内では、装着する使用者のそれぞれの眼球と向き合うように、表示装置150a、150bおよび撮像装置120a、120bがそれぞれ設けられる。図21(B)では、二次電池141aからの電力は、スイッチ142aを介して集積回路140aや撮像装置120aや検出装置130aや表示装置150aに供給されている。また、二次電池141bからの電力は、スイッチ142bを介して集積回路140bや撮像装置120bや検出装置130bや表示装置150bに供給されている。 In the housing 110, display devices 150a and 150b and imaging devices 120a and 120b are provided so as to face the respective eyeballs of the wearing users. In FIG. 21B, power from the secondary battery 141a is supplied to the integrated circuit 140a, the imaging device 120a, the detection device 130a, and the display device 150a via the switch 142a. The power from the secondary battery 141b is supplied to the integrated circuit 140b, the imaging device 120b, the detection device 130b, and the display device 150b via the switch 142b.
 集積回路140aは、二次電池141aの情報を収集し、第1のニューラルネットワークを用いて劣化の程度を分析し、二次電池141aに対して最適な充電条件で充電を行う。また、同様に集積回路140bは、二次電池141bの情報を収集し、第2のニューラルネットワークを用いて劣化の程度を分析し、二次電池141bに対して最適な充電条件で充電を行う。集積回路140a、140bは、SOCと相関のある充放電特性データを記憶するメモリを有する。 The integrated circuit 140a collects information on the secondary battery 141a, analyzes the degree of deterioration using the first neural network, and charges the secondary battery 141a under optimum charging conditions. Similarly, the integrated circuit 140b collects information on the secondary battery 141b, analyzes the degree of deterioration using the second neural network, and charges the secondary battery 141b under optimum charging conditions. The integrated circuits 140a and 140b have a memory for storing charge / discharge characteristic data correlated with the SOC.
 撮像装置120a、120bは、瞳の形状を撮像可能な撮像素子を有するカメラを用いることができる。黒目、白目が目蓋から露出した部分の形状は、輪郭がはっきりしているため、高性能な撮像素子を用いなくても形状の検出が可能である。 The imaging device 120a, 120b can use a camera having an imaging device capable of imaging the shape of the pupil. The shape of the portion where the black and white eyes are exposed from the eyelid has a clear outline, so that the shape can be detected without using a high-performance image sensor.
 検出装置130a、130bは、撮像装置120a、120bで撮像した瞳の形状をもとに、瞳の形状の変化を検出する。例えば、目蓋と強膜(白目)の境界、または目蓋と角膜(例えば、黒目)の境界、の情報から瞳の形状の変化を検出する。なお検出装置130a、130bにおける瞳の形状の変化の検出は、画像処理や演算処理を伴うため、瞳の形状の変化の算出という場合がある。 The detection devices 130a and 130b detect a change in the shape of the pupil based on the shape of the pupil imaged by the imaging devices 120a and 120b. For example, a change in the shape of the pupil is detected from information on the boundary between the eye lid and the sclera (white eye) or the boundary between the eye lid and the cornea (for example, black eye). Note that detection of changes in the shape of the pupil in the detection devices 130a and 130b involves image processing and calculation processing, and thus may be referred to as calculation of change in the shape of the pupil.
 さらに、集積回路140a、140bは、瞳の形状の変化に応じた設定の変更に基づく表示データを生成してもよい。あるいは集積回路140a、140bは、頭部の動きと、瞳の形状の変化と、に応じた設定の変更に基づく表示データを生成する。なお表示データの生成はプロセッサ等の回路で行う場合がある。また、集積回路140a、140bは、使用者が酔いにくい、表示装置150a、150bに表示される画像の表示データを生成してもよい。 Furthermore, the integrated circuits 140a and 140b may generate display data based on a setting change according to a change in the shape of the pupil. Alternatively, the integrated circuits 140a and 140b generate display data based on a change in setting according to the movement of the head and the change in the shape of the pupil. Display data may be generated by a circuit such as a processor. Further, the integrated circuits 140a and 140b may generate display data of an image displayed on the display devices 150a and 150b, which is difficult for a user to get sick.
 図21では瞳の形状を撮像可能な撮像素子を例に示したが、3軸加速度センサなどの他のセンサ素子を用いてもよい。 FIG. 21 shows an example of an image sensor that can image the shape of the pupil, but other sensor elements such as a triaxial acceleration sensor may be used.
 表示装置150a、150bは、EL表示装置、液晶表示装置、マイクロLED表示装置を用いることができる。表示面を球面状とし、眼球を覆うように表示面が配置できる表示装置が好ましい。また、表示装置150a、150bと眼球の間に光学系を設けてもよい。図21では、筐体110の他、使用者の眼球160、スピーカ部161、および固定具162、163を図示している。スピーカ部161、固定具162、163は、頭部に筐体110を固定するためのものである。そのため、バンド型形状の固定具に限らず、別の構成としてもよい。 As the display devices 150a and 150b, EL display devices, liquid crystal display devices, and micro LED display devices can be used. A display device that has a spherical display surface and can be arranged so as to cover the eyeball is preferable. Further, an optical system may be provided between the display devices 150a and 150b and the eyeball. In FIG. 21, in addition to the housing 110, the user's eyeball 160, the speaker unit 161, and the fixtures 162 and 163 are illustrated. The speaker unit 161 and the fixtures 162 and 163 are for fixing the housing 110 to the head. Therefore, the configuration is not limited to the band-shaped fixture, and another configuration may be used.
 上記構成により、充電中においては、集積回路により複数の二次電池間における性能劣化の差を低減し、二次電池間のアンバランスを低減することができる。また、使用者の頭部に装着し、画像を表示させる場合には、それぞれの表示装置にとって最適な表示になるよう集積回路により輝度調節することもできる。 With the above configuration, during charging, the integrated circuit can reduce the difference in performance deterioration between the plurality of secondary batteries, and can reduce the unbalance between the secondary batteries. In addition, when the image is displayed on the user's head, the brightness can be adjusted by the integrated circuit so as to obtain an optimum display for each display device.
(実施の形態7)
 本実施の形態では、眼鏡型デバイスの一例を図22(A)に示す。
(Embodiment 7)
In this embodiment, an example of an eyeglass-type device is illustrated in FIG.
 眼鏡型デバイス7110は、左右のテンプル部(装着時に使用者の側頭部に沿って配置される部分)それぞれに二次電池7101を有する。 The eyeglass-type device 7110 has a secondary battery 7101 in each of the left and right temple parts (the part arranged along the user's temporal region when worn).
 例えば、眼鏡型デバイス7110のフロント部に二次電池を含めて多数の部品を配置すると、重量バランスが悪くなる恐れがある。そこでテンプル部に二次電池7101を配置することで、快適に使用できる重量バランスの眼鏡型デバイス7110とすることができる。また、スマートフォンを用いて枠に嵌め込んでHMDとする場合はスマートフォンとその電池の重量が重く、頭部から離れた場所にスマートフォンが配置されるため、首を回すと遠心力によりより重量を感じる。一方、本実施の形態であれば、2つの二次電池が2箇所に分散され、さらに頭部に近い位置に設置されるため、重さをあまり感じさせない構成とすることができる。 For example, if a large number of parts including a secondary battery are arranged in the front part of the eyeglass-type device 7110, the weight balance may be deteriorated. Thus, by arranging the secondary battery 7101 in the temple portion, a weight-balanced spectacle-type device 7110 that can be used comfortably can be obtained. In addition, when using a smartphone to fit into a frame to make an HMD, the smartphone and its battery are heavy and the smartphone is placed away from the head, so if you turn your neck you will feel more weight due to centrifugal force . On the other hand, according to the present embodiment, since the two secondary batteries are dispersed in two places and further installed at a position close to the head, it is possible to adopt a configuration in which the weight is not felt so much.
 眼鏡型デバイス7110は、端子部7104を有していてもよい。端子部7104から二次電池7101に充電をすることができる。また二次電池7101同士は電気的に接続されていることが好ましい。二次電池7101同士が電気的に接続されていることで、一つの端子部7104から二つの二次電池7101に充電をすることができる。 The eyeglass device 7110 may have a terminal portion 7104. The secondary battery 7101 can be charged from the terminal portion 7104. In addition, it is preferable that the secondary batteries 7101 are electrically connected to each other. Since the secondary batteries 7101 are electrically connected to each other, the two secondary batteries 7101 can be charged from one terminal portion 7104.
 また、眼鏡型デバイス7110は、表示部7112を有していてもよい。またニューラルネット演算を行うことのできるマイクロプロセッサを含む制御部7103を有していてもよい。制御部7103により、二次電池7101の充放電を制御し、また表示部7112に表示する画像データを生成することができる。また制御部7103に無線通信機能を有するチップを搭載することで、外部とデータの送受信が行える。さらに、外付けの表示部7112を取り付けてマルチディスプレイとしてもよい。 Further, the eyeglass-type device 7110 may have a display portion 7112. Further, a control unit 7103 including a microprocessor capable of performing a neural network operation may be provided. The controller 7103 can control charging / discharging of the secondary battery 7101 and can generate image data to be displayed on the display portion 7112. In addition, by mounting a chip having a wireless communication function on the controller 7103, data can be transmitted / received to / from the outside. Furthermore, an external display unit 7112 may be attached to form a multi-display.
 本発明は、使用者の頭部に装着する電子機器に限定されない。 The present invention is not limited to an electronic device worn on the user's head.
 重量バランスを重視し、複数の二次電池を利用する無人移動体(代表的には無人航空機、ドローンとも呼ぶ)、小型ロボット、人工衛星、宇宙探査機や惑星探査機に応用することができる。図22(B)に無人航空機の一例を示す。 Priority is placed on weight balance, and it can be applied to unmanned mobile objects (typically also called unmanned aerial vehicles and drones), small robots, artificial satellites, space probes, and planetary probes that use multiple secondary batteries. FIG. 22B shows an example of an unmanned aerial vehicle.
 無人航空機7300は、複数のローター7302と、複数の二次電池7301と、ニューラルネット演算を行うことのできるマイクロプロセッサを含む制御剖7304と、カメラ7303と、アンテナ(図示しない)を有する。無人航空機7300はアンテナを介して遠隔操作することができる。複数の二次電池7301がバランスよく配置され、それらの劣化度合いの検査や、劣化に合わせた充放電の条件を調節する制御を制御部7304で行うことができ、複数の二次電池7301を効率よく使用して長寿命とすることができる。プロペラが4つあるため、バランスを考慮して二次電池も4つ配置するが、図22(B)では4つの二次電池うち、2つのみを点線で示している。 The unmanned aerial vehicle 7300 includes a plurality of rotors 7302, a plurality of secondary batteries 7301, a control auto 7304 including a microprocessor capable of performing a neural network operation, a camera 7303, and an antenna (not shown). Unmanned aerial vehicle 7300 can be remotely operated via an antenna. A plurality of secondary batteries 7301 are arranged in a well-balanced manner, and the control unit 7304 can perform control for inspecting the degree of deterioration of the batteries and adjusting charge / discharge conditions according to the deterioration. It can be used often for long life. Since there are four propellers, four secondary batteries are also arranged in consideration of balance. In FIG. 22B, only two of the four secondary batteries are indicated by dotted lines.
 電気自動車(EV)、内燃機関と電動機を併せ持ったハイブリッド車(HEV)、プラグインハイブリッド車(PHEV)においても、二次電池の配置により重量が偏ると車両全体としての重心の位置が変わるおそれがあるため、複数の二次電池を車両の重心を設計通りになるように最適な位置に配置することが望ましい。複数の二次電池をさまざまな箇所に配置すると、ある二次電池に配置されている周辺の機器の発熱などにより影響を受け、他の二次電池よりも劣化が進む恐れがある。このような劣化の進行が異なる複数の二次電池が配置される場合に、本発明は有効である。 Even in an electric vehicle (EV), a hybrid vehicle (HEV) having both an internal combustion engine and an electric motor, and a plug-in hybrid vehicle (PHEV), the position of the center of gravity of the vehicle as a whole may change if the weight is biased due to the arrangement of the secondary battery. For this reason, it is desirable to arrange a plurality of secondary batteries at optimal positions so that the center of gravity of the vehicle is as designed. When a plurality of secondary batteries are arranged at various locations, there is a risk of deterioration due to heat generated by peripheral devices arranged in a certain secondary battery, and deterioration may proceed more than other secondary batteries. The present invention is effective when a plurality of secondary batteries having different progress of deterioration are arranged.
100:電子機器、110:筐体、120a:撮像装置、120b:撮像装置、130a:検出装置、130b:検出装置、140a:集積回路、140b:集積回路、141a:二次電池、141b:二次電池、142a:スイッチ、142b:スイッチ、150a:表示装置、150b:表示装置、160:眼球、161:スピーカ部、162:固定具、163:固定具301a 二次電池、301b 二次電池、302 昇圧コンバータ、303 インバータ、304:回生ブレーキ強調制御バルブ、305:モータ、306:タイヤ、307 発電用エンジン、308 発電用モータ、311a スイッチ、311b スイッチ、311c:スイッチ、311d:発電用スイッチ、311e:発電用スイッチ、311f:発電用スイッチ、400:二次電池、401:正極缶、402:負極缶、403:ガスケット、404:正極、405:正極集電体、406:正極活物質層、407:負極、408:負極集電体、409:負極活物質層、410:セパレータ、512:半導体層、600:二次電池、601:正極キャップ、602:電池缶、603:正極端子、604:正極、605:セパレータ、606:負極、607:負極端子、608:絶縁板、609:絶縁板、611:PTC素子、612:安全弁機構、900:回路基板、911:端子、913:二次電池、930:筐体、930a:筐体、930b:筐体、931:負極、932:正極、933:セパレータ、950:捲回体、951:端子、952:端子、999:ICチップ、7101:二次電池、7103:制御部、7104:端子部、7110:眼鏡型デバイス、7112:表示部、7300:無人航空機、7301:二次電池、7302:ローター、7303:カメラ8000:表示装置、8001:筐体、8002:表示部、8003:スピーカ部、8004:二次電池、8005:音声入力デバイス、8006:台、8007:スピーカ、8008:表示部、8021:充電装置、8022:ケーブル、8024:二次電池、8025:充電用ACDCコンバータ、8100:照明装置、8101:筐体、8102:光源、8103:二次電池、8104:天井、8105:側壁、8106:床、8107:窓、8200:室内機、8201:筐体、8202:送風口、8203:二次電池、8204:室外機、8300:電気冷凍冷蔵庫、8301:筐体、8302:冷蔵室用扉、8303:冷凍室用扉、8304:二次電池、8400:自動車、8401:ヘッドライト、8402:電池パック、8403:センサ、8404:フロントガラス、8405:光電変換素子、8406:電気モータ、8500:自動車、8600:スクータ、8601:サイドミラー、8602:二次電池、8603:方向指示灯、8604:座席下収納、8700:電動自転車、8701:二次電池、8702:電池パック、8703:表示部、9600:タブレット型端末、9625:スイッチ、9626:スイッチ、9627:電源スイッチ、9628:操作スイッチ、9629:留め具、9630:筐体、9630a:筐体、9630b:筐体、9631:表示部、9633:太陽電池、9634:充放電制御回路、9635:蓄電体、9636:DCDCコンバータ、9637:コンバータ、9640:可動部 100: Electronic equipment, 110: Housing, 120a: Imaging device, 120b: Imaging device, 130a: Detection device, 130b: Detection device, 140a: Integrated circuit, 140b: Integrated circuit, 141a: Secondary battery, 141b: Secondary Battery, 142a: switch, 142b: switch, 150a: display device, 150b: display device, 160: eyeball, 161: speaker unit, 162: fixture, 163: fixture 301a secondary battery, 301b secondary battery, 302 booster Converter, 303 Inverter, 304: Regenerative brake emphasis control valve, 305: Motor, 306: Tire, 307 Power generation engine, 308 Power generation motor, 311a switch, 311b switch, 311c: Switch, 311d: Power generation switch, 311e: Power generation Switch, 311f: Power generation switch H, 400: secondary battery, 401: positive electrode can, 402: negative electrode can, 403: gasket, 404: positive electrode, 405: positive electrode current collector, 406: positive electrode active material layer, 407: negative electrode, 408: negative electrode current collector 409: negative electrode active material layer, 410: separator, 512: semiconductor layer, 600: secondary battery, 601: positive electrode cap, 602: battery can, 603: positive electrode terminal, 604: positive electrode, 605: separator, 606: negative electrode, 607: Negative electrode terminal, 608: Insulating plate, 609: Insulating plate, 611: PTC element, 612: Safety valve mechanism, 900: Circuit board, 911: Terminal, 913: Secondary battery, 930: Housing, 930a: Housing, 930b: Housing, 931: Negative electrode, 932: Positive electrode, 933: Separator, 950: Winding body, 951: Terminal, 952: Terminal, 999: IC chip, 7101: Secondary battery, 103: control unit, 7104: terminal unit, 7110: glasses-type device, 7112: display unit, 7300: unmanned aircraft, 7301: secondary battery, 7302: rotor, 7303: camera 8000: display device, 8001: housing, 8002 : Display unit, 8003: Speaker unit, 8004: Secondary battery, 8005: Audio input device, 8006: Stand, 8007: Speaker, 8008: Display unit, 8021: Charging device, 8022: Cable, 8024: Secondary battery, 8025 : ACDC converter for charging, 8100: Lighting device, 8101: Housing, 8102: Light source, 8103: Secondary battery, 8104: Ceiling, 8105: Side wall, 8106: Floor, 8107: Window, 8200: Indoor unit, 8201: Housing Body, 8202: air outlet, 8203: secondary battery, 8204: outdoor unit, 8300: electric cooling Frozen refrigerator, 8301: housing, 8302: door for refrigerator, 8303: door for freezer, 8304: secondary battery, 8400: automobile, 8401: headlight, 8402: battery pack, 8403: sensor, 8404: windshield , 8405: photoelectric conversion element, 8406: electric motor, 8500: automobile, 8600: scooter, 8601: side mirror, 8602: secondary battery, 8603: direction indicator lamp, 8604: storage under seat, 8700: electric bicycle, 8701: Secondary battery, 8702: Battery pack, 8703: Display unit, 9600: Tablet-type terminal, 9625: Switch, 9626: Switch, 9627: Power switch, 9628: Operation switch, 9629: Fastener, 9630: Housing, 9630a: Housing, 9630b: Housing, 9631: Display portion, 9633: Solar cell, 9634: charging and discharging control circuit, 9635: power storage unit, 9636: DCDC converter 9637: Converters, 9640: movable portion

Claims (17)

  1.  集積回路と、
     第1の二次電池と、
     第2の二次電池と、を有し、
     一方の二次電池に対して充電率が1%以上100%以下となる範囲で充放電を行い、
     ニューラルネットワークを用いて前記集積回路が前記第1の二次電池及び前記第2の二次電池の劣化分析を行い、
     劣化程度の大きいほうの二次電池を前記集積回路が検出し、
     劣化程度が大きいほうの二次電池に対して、劣化程度が小さいほうの二次電池よりも狭い範囲内に収まる充電率となる充電条件で充電を行う充電制御システム。
    An integrated circuit;
    A first secondary battery;
    A second secondary battery,
    Charging / discharging the secondary battery in a range where the charging rate is 1% or more and 100% or less,
    The integrated circuit performs a deterioration analysis of the first secondary battery and the second secondary battery using a neural network,
    The integrated circuit detects the secondary battery having the greater deterioration level,
    A charge control system that charges a secondary battery having a higher degree of deterioration under a charging condition that provides a charging rate that falls within a narrower range than a secondary battery having a lower degree of deterioration.
  2.  請求項1において、
     前記第1の二次電池は、第1のスイッチと電気的に接続され、
     前記第2の二次電池は、第2のスイッチと電気的に接続され、
     前記第1のスイッチ及び前記第2のスイッチは、前記集積回路により制御される充電制御システム。
    In claim 1,
    The first secondary battery is electrically connected to a first switch;
    The second secondary battery is electrically connected to a second switch;
    The charge control system in which the first switch and the second switch are controlled by the integrated circuit.
  3.  請求項1または請求項2において、前記集積回路は、酸化物半導体を有するトランジスタを含む充電制御システム。 3. The charge control system according to claim 1, wherein the integrated circuit includes a transistor including an oxide semiconductor.
  4.  請求項1または請求項2において、前記劣化程度が大きいほうの二次電池は、満充電状態にならないように充電を停止し、前記劣化程度が小さいほうの二次電池は、満充電状態を維持する充電制御システム。 3. The secondary battery according to claim 1, wherein the secondary battery having a higher degree of deterioration stops charging so as not to be fully charged, and the secondary battery having a lower degree of deterioration maintains a fully charged state. To charge control system.
  5.  請求項1または請求項2において、前記劣化程度が大きいほうの二次電池は、放電時に充電率が30%未満とならないように放電を停止し、前記劣化程度が小さいほうの二次電池は、充電率が30%未満に達するまで放電させる充電制御システム。 In claim 1 or claim 2, the secondary battery having a larger degree of deterioration stops discharging so that the charging rate does not become less than 30% during discharging, and the secondary battery having a smaller degree of deterioration is A charge control system that discharges until the charge rate reaches less than 30%.
  6.  請求項1または請求項2において、前記充電条件は、第2のニューラルネットワークを用いて決定する充電制御システム。 3. The charging control system according to claim 1, wherein the charging condition is determined using a second neural network.
  7.  第1の二次電池及び第2の二次電池の劣化程度診断を行い、
     前記第1の二次電池と前記第2の二次電池のうち、劣化が小さい一方の電池に接続されたスイッチをオン状態として第1の充電条件で満充電状態とし、
     劣化が大きいもう一方の電池に接続されたスイッチをオン状態として前記第1の充電条件とは異なる第2の充電条件で充電を開始して充電率50%以上80%以下の範囲で充電停止し、充電履歴を記録する充電制御方法。
    Diagnose the deterioration degree of the first secondary battery and the second secondary battery,
    Of the first secondary battery and the second secondary battery, a switch connected to one of the batteries that is less deteriorated is turned on to be fully charged under the first charging condition,
    Turn on the switch connected to the other battery that is greatly deteriorated, start charging under a second charging condition different from the first charging condition, and stop charging within the range of 50% to 80% charging rate. A charge control method for recording a charge history.
  8.  請求項7において、前記劣化程度診断は第1のニューラルネットワーク処理により行われる充電制御方法。 8. The charge control method according to claim 7, wherein the deterioration degree diagnosis is performed by a first neural network process.
  9.  請求項7または請求項8において、前記第2の充電条件は第2のニューラルネットワーク処理により決定される充電制御方法。 9. The charging control method according to claim 7, wherein the second charging condition is determined by a second neural network process.
  10.  第1の表示領域と、第2の表示領域と、集積回路と、第1の二次電池と、第2の二次電池と、を有し、
     ニューラルネットワークを用いて前記集積回路が前記第1の二次電池、或いは前記第2の二次電池の劣化分析を行い、
     劣化程度が大きいほうの二次電池に対して劣化程度が小さいほうの二次電池よりも充電率が狭い範囲で充電を行う電子機器。
    A first display area, a second display area, an integrated circuit, a first secondary battery, and a second secondary battery;
    The integrated circuit performs deterioration analysis of the first secondary battery or the second secondary battery using a neural network,
    An electronic device that performs charging in a range where the charging rate is narrower than that of a secondary battery having a lower degree of deterioration than a secondary battery having a higher degree of deterioration.
  11.  請求項10において、前記第1の二次電池は、第1のスイッチと電気的に接続され、
     前記第2の二次電池は、第2のスイッチと電気的に接続され、
     前記第1のスイッチ及び前記第2のスイッチは、前記集積回路により制御される電子機器。
    The first secondary battery according to claim 10, wherein the first secondary battery is electrically connected to the first switch.
    The second secondary battery is electrically connected to a second switch;
    The electronic device in which the first switch and the second switch are controlled by the integrated circuit.
  12.  請求項10または請求項11において、前記集積回路は、メモリを有する電子機器。 12. The electronic device according to claim 10, wherein the integrated circuit includes a memory.
  13.  第1の表示領域と、第2の表示領域と、第1の集積回路と、第2の集積回路と、第1の二次電池と、第2の二次電池と、を有し、
     前記第1の二次電池は、第1のスイッチと電気的に接続され、前記第2の二次電池は、第2のスイッチと電気的に接続され、前記第1のスイッチは、前記第1の集積回路により制御され、前記第2のスイッチは、前記第2の集積回路により制御される電子機器。
    A first display area, a second display area, a first integrated circuit, a second integrated circuit, a first secondary battery, and a second secondary battery;
    The first secondary battery is electrically connected to a first switch, the second secondary battery is electrically connected to a second switch, and the first switch is connected to the first switch. The electronic device is controlled by the integrated circuit, and the second switch is controlled by the second integrated circuit.
  14.  請求項11または請求項13において、酸化物半導体を有するトランジスタを含む電子機器。 14. The electronic device according to claim 11 or 13, which includes a transistor including an oxide semiconductor.
  15.  請求項11または請求項13において、さらに瞳を撮像する機能を有する撮像装置を有する電子機器。 14. The electronic apparatus according to claim 11, further comprising an imaging device having a function of imaging a pupil.
  16.  請求項13において、前記第1の集積回路は、メモリを有する電子機器。 14. The electronic device according to claim 13, wherein the first integrated circuit includes a memory.
  17.  請求項13において、第1のニューラルネットワークを用いて前記第1の集積回路が前記第1の二次電池の劣化分析を行い、
     第2のニューラルネットワークを用いて前記第2の集積回路が前記第2の二次電池の劣化分析を行い、
     劣化程度が大きいほうの二次電池に対して劣化程度が小さいほうの二次電池よりも充電率が狭い範囲で充電を行う電子機器。
    The first integrated circuit according to claim 13, wherein the first integrated circuit performs deterioration analysis of the first secondary battery using a first neural network.
    The second integrated circuit performs a deterioration analysis of the second secondary battery using a second neural network;
    An electronic device that performs charging in a range where the charging rate is narrower than that of a secondary battery having a lower degree of deterioration than a secondary battery having a higher degree of deterioration.
PCT/IB2018/054029 2017-06-16 2018-06-06 Charging control system, charging control method, and electronic equipment WO2018229597A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019524540A JP7235409B2 (en) 2017-06-16 2018-06-06 Charge control system and charge control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017119055 2017-06-16
JP2017-119055 2017-06-16
JP2017-171062 2017-09-06
JP2017171062 2017-09-06

Publications (1)

Publication Number Publication Date
WO2018229597A1 true WO2018229597A1 (en) 2018-12-20

Family

ID=64660929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/054029 WO2018229597A1 (en) 2017-06-16 2018-06-06 Charging control system, charging control method, and electronic equipment

Country Status (2)

Country Link
JP (1) JP7235409B2 (en)
WO (1) WO2018229597A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021146704A (en) * 2020-03-23 2021-09-27 住友重機械工業株式会社 Injection molding machine and status determination device
US11205912B2 (en) 2017-07-25 2021-12-21 Semiconductor Energy Laboratory Co., Ltd. Power storage system, electronic device, vehicle, and estimation method
JP2022516236A (en) * 2019-01-04 2022-02-25 ビュージックス コーポレーション Wearable mobile electronic system
KR20220163736A (en) * 2021-06-03 2022-12-12 주식회사 네오윌 Method for detecting abnomal cells and estimating SOH in Lithium-Ion battery pack
US11964620B2 (en) 2020-09-16 2024-04-23 Subaru Corporation Vehicular power supply device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220616A (en) * 2005-02-14 2006-08-24 Denso Corp Internal state detection system for charge accumulating device for vehicle
JP2007259612A (en) * 2006-03-24 2007-10-04 Hitachi Ltd Power supply controller
JP2017026616A (en) * 2015-07-21 2017-02-02 三星電子株式会社Samsung Electronics Co.,Ltd. Method and apparatus for estimating state of battery
WO2017085598A1 (en) * 2015-11-18 2017-05-26 株式会社半導体エネルギー研究所 Semiconductor device and electronic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5730501B2 (en) 2010-05-20 2015-06-10 トヨタ自動車株式会社 Electric vehicle and control method thereof
JP2016076475A (en) 2014-08-06 2016-05-12 株式会社半導体エネルギー研究所 Electronic apparatus having secondary battery and spectacle type wearable device
JP6608638B2 (en) 2015-07-14 2019-11-20 株式会社半導体エネルギー研究所 Power storage device and electronic device
JP2017130190A (en) 2015-12-04 2017-07-27 株式会社半導体エネルギー研究所 Electronic apparatus and display system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220616A (en) * 2005-02-14 2006-08-24 Denso Corp Internal state detection system for charge accumulating device for vehicle
JP2007259612A (en) * 2006-03-24 2007-10-04 Hitachi Ltd Power supply controller
JP2017026616A (en) * 2015-07-21 2017-02-02 三星電子株式会社Samsung Electronics Co.,Ltd. Method and apparatus for estimating state of battery
WO2017085598A1 (en) * 2015-11-18 2017-05-26 株式会社半導体エネルギー研究所 Semiconductor device and electronic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11205912B2 (en) 2017-07-25 2021-12-21 Semiconductor Energy Laboratory Co., Ltd. Power storage system, electronic device, vehicle, and estimation method
JP2022516236A (en) * 2019-01-04 2022-02-25 ビュージックス コーポレーション Wearable mobile electronic system
JP2021146704A (en) * 2020-03-23 2021-09-27 住友重機械工業株式会社 Injection molding machine and status determination device
JP7483436B2 (en) 2020-03-23 2024-05-15 住友重機械工業株式会社 Injection molding machine and status determination device
US11964620B2 (en) 2020-09-16 2024-04-23 Subaru Corporation Vehicular power supply device
JP7522618B2 (en) 2020-09-16 2024-07-25 株式会社Subaru Vehicle power supply device
KR20220163736A (en) * 2021-06-03 2022-12-12 주식회사 네오윌 Method for detecting abnomal cells and estimating SOH in Lithium-Ion battery pack
KR102633335B1 (en) * 2021-06-03 2024-02-05 주식회사 네오윌 Method for detecting abnomal cells and estimating SOH in Lithium-Ion battery pack

Also Published As

Publication number Publication date
JPWO2018229597A1 (en) 2020-04-16
JP7235409B2 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
WO2018215864A1 (en) Charging control system and charging control device
JP7235409B2 (en) Charge control system and charge control method
JP2023099548A (en) Operation method of power storage system
JP7159195B2 (en) Secondary battery life estimation device
JP7064940B2 (en) Power storage devices, semiconductor devices, IC chips, electronic devices
WO2019175707A1 (en) Charge state estimation apparatus for secondary battery, abnormality detection apparatus for secondary battery, abnormality detection method for secondary battery, and management system for secondary battery
US11480621B2 (en) Capacity estimation method and capacity estimation system for power storage device
US11522234B2 (en) Semiconductor device, battery unit, and battery module
WO2019193471A1 (en) Method for estimating state of charge of power storage device and system for estimating state of charge of power storage device
US11870042B2 (en) Power storage system, vehicle, electronic device, and semiconductor device
WO2019021095A1 (en) System for controlling charging of secondary cell and method for detecting abnormality in secondary cell
JPWO2019116145A1 (en) Charge control device and electronic device with secondary battery
WO2016020795A2 (en) Electronic device equipped with capacitive device
JP7215657B2 (en) Parallel multipack system output control device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18816562

Country of ref document: EP

Kind code of ref document: A1