JP2006220616A - Internal state detection system for charge accumulating device for vehicle - Google Patents

Internal state detection system for charge accumulating device for vehicle Download PDF

Info

Publication number
JP2006220616A
JP2006220616A JP2005036437A JP2005036437A JP2006220616A JP 2006220616 A JP2006220616 A JP 2006220616A JP 2005036437 A JP2005036437 A JP 2005036437A JP 2005036437 A JP2005036437 A JP 2005036437A JP 2006220616 A JP2006220616 A JP 2006220616A
Authority
JP
Japan
Prior art keywords
neural network
battery
current
history
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005036437A
Other languages
Japanese (ja)
Other versions
JP4609882B2 (en
Inventor
Satoru Mizuno
覚 水野
Atsushi Hashikawa
淳 橋川
Shoji Sakai
昭治 堺
Atsushi Ichikawa
淳 市川
Naoki Mizuno
直樹 水野
Yoshifumi Morita
良文 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Nagoya Institute of Technology NUC
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc, Nagoya Institute of Technology NUC filed Critical Denso Corp
Priority to JP2005036437A priority Critical patent/JP4609882B2/en
Priority to KR1020060014362A priority patent/KR100880717B1/en
Priority to US11/353,220 priority patent/US7554296B2/en
Priority to DE602006002896T priority patent/DE602006002896D1/en
Priority to EP06002917A priority patent/EP1691209B1/en
Publication of JP2006220616A publication Critical patent/JP2006220616A/en
Application granted granted Critical
Publication of JP4609882B2 publication Critical patent/JP4609882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal state detector for a charge accumulating device for a vehicle of a neural network type, capable of measuring precisely electric energy as to a battery deterioration condition. <P>SOLUTION: An SOC and an SOH are computed using an open circuit voltage and an internal resistance in prescribed capacity of discharge from determination of full charge, in addition to a voltage history and a current history, in order to find the battery deterioration condition by neural network computation, and a degree of battery deterioration is determined using the SOC and the SOH. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、ニューラルネットを用いた車両用蓄電装置の内部状態(特にその劣化状態)の検出技術の改良に関する。   The present invention relates to an improvement in a technique for detecting an internal state (particularly a deteriorated state) of a power storage device for a vehicle using a neural network.

たとえば鉛蓄電池のような二次電池では劣化の程度によりそのSOCや残存容量(SOH)と電池の内部状態量(電圧、開路電圧、内部抵抗など)との相関関係ばらつくために劣化の進行とともにSOCやSOHの検出精度が悪化するという問題や電池ごとのSOCやSOHのばらつきなどがあり、大量生産される二次電池のSOCやSOHを個別に高精度に検出することは困難とされていた。このため、安全性の観点からこれらばらつきを含んで二次電池の使用可能充放電範囲を狭く設定せざるを得ないという問題もあった。   For example, in a secondary battery such as a lead-acid battery, the SOC and the remaining capacity (SOH) and the internal state quantity (voltage, open circuit voltage, internal resistance, etc.) of the battery vary depending on the degree of deterioration. In other words, there is a problem that the detection accuracy of SOH and SOH deteriorates and variations in SOC and SOH for each battery, and it has been difficult to individually detect SOC and SOH of secondary batteries that are mass-produced. For this reason, from the viewpoint of safety, there is also a problem that the usable charge / discharge range of the secondary battery must be set narrow including these variations.

この問題を改善するため、被測定対象の特性ばらつきに柔軟に対応可能なニューラルネットワークを用いて寿命を検出する方法(以下、ニューラルネット式電池状態検出技術)が提案されている(特許文献1、2)。
特開2003-24971号公報 特開平9-243716号公報
In order to improve this problem, a method of detecting a lifetime using a neural network that can flexibly cope with variations in characteristics of an object to be measured (hereinafter referred to as a neural network battery state detection technique) has been proposed (Patent Document 1, 2).
Japanese Patent Laid-Open No. 2003-24971 JP-A-9-243716

しかしながら、上記した特許文献1、2によるニューラルネット式電池状態検出技術を用いた寿命すなわち電池劣化の判定は、個々の電池の劣化進行による電池特性の演算関数を柔軟に変更し得るニューラルネット演算を用いるにもかかわらず、実用上まだ十分ではなかった。これは、新品の蓄電装置と劣化した蓄電装置とでは、ニューラルネットに入力される入力パラメータとしての電流履歴及び電圧履歴と、出力パラメータとしての劣化関連パラメータとの相関関係が様々であるため、ニューラルネット演算を用いてもこれらのばらつきを十分に吸収できないためである。   However, the determination of the life, that is, the battery deterioration using the neural network type battery state detection technology according to Patent Documents 1 and 2 described above, is a neural network calculation that can flexibly change the battery function calculation function due to the progress of deterioration of each battery. Despite its use, it was still not practical enough. This is because a new power storage device and a deteriorated power storage device have various correlations between current history and voltage history as input parameters input to the neural network and deterioration related parameters as output parameters. This is because these variations cannot be sufficiently absorbed even by using a net operation.

この問題を改善するべく、本出願人は、最小自乗法により求めた電流と電圧との間の近似式の関数値、特に上記近似式の切片(開路電圧)の今回値や傾き(内部抵抗)の今回値を、電圧履歴及び電流履歴に加えて入力パラメータとして用いてニューラルネット演算を行うことにより電池劣化状態の検出精度を改善できることを発見し、出願している。   In order to remedy this problem, the present applicant has determined that the function value of an approximate expression between current and voltage obtained by the method of least squares, particularly the current value or slope (internal resistance) of the intercept (open circuit voltage) of the above approximate expression. It has been discovered and filed that it is possible to improve the detection accuracy of the battery deterioration state by performing a neural network operation using the present value of the current value as an input parameter in addition to the voltage history and the current history.

しかしながら、この出願人による電圧履歴及び電流履歴にこれら近似式関連値を加えたニューラルネット演算でも電池劣化状態の高精度の検出は十分ではなかった。   However, even in the neural network operation in which the approximate expression-related values are added to the voltage history and current history by the applicant, the battery deterioration state is not sufficiently detected.

本発明は上記問題点に鑑みなされたものであり、電池劣化の経時進行に柔軟に対応可能なニューラルネット演算方式の一層の改善を実現した車両用蓄電装置の劣化状態検出方式を提供することをその目的としている。   The present invention has been made in view of the above problems, and provides a deterioration state detection method for a power storage device for a vehicle that realizes further improvement of a neural network calculation method that can flexibly cope with the progress of battery deterioration over time. That is the purpose.

本発明の車両用蓄電装置のニューラルネット演算方式は、充放電可能な電池の直前の所定時間の電圧履歴及び電流履歴を検出して出力する電圧・電流履歴検出手段、及び、前記電圧履歴及び電流履歴を入力パラメータとして前記電池の現在の劣化状態に関する電気量をニューラルネット演算する演算手段とを備える車両用蓄電装置のニューラルネット演算方式において、前記演算手段が、前記電池の満充電状態からの所定放電量放電時における前記電池の劣化状態に関する所定の電気量である所定容量放電時劣化状態量を演算し、前記電圧履歴及び電流履歴に加えて、前記所定容量放電時劣化状態量を入力パラメータとして、出力パラメータとしての前記電池の現在の劣化状態をニューラルネット演算することを特徴としている。   The neural network calculation method for a power storage device for a vehicle according to the present invention includes a voltage / current history detecting means for detecting and outputting a voltage history and a current history for a predetermined time immediately before a chargeable / dischargeable battery, and the voltage history and current In a neural network calculation method for a power storage device for a vehicle, which includes a calculation unit for performing a neural network calculation on an amount of electricity related to a current deterioration state of the battery using a history as an input parameter, the calculation unit includes a predetermined value from a fully charged state of the battery. A predetermined capacity discharge deterioration state amount that is a predetermined amount of electricity related to the deterioration state of the battery during discharge amount discharge is calculated, and in addition to the voltage history and current history, the deterioration state amount during predetermined capacity discharge is used as an input parameter. The present invention is characterized by performing a neural network operation on the current deterioration state of the battery as an output parameter.

上記した電池の満充電状態からの所定放電量放電時における所定容量放電時劣化状態量としては、満充電から所定容量放電時の開路電圧や、満充電から所定容量放電時の電池の内部抵抗などが挙げられる。   Deterioration state amount during predetermined capacity discharge at the time of discharging from the full charge state of the battery as described above includes open circuit voltage from full charge to predetermined capacity discharge, internal resistance of the battery from full charge to predetermined capacity discharge, etc. Is mentioned.

すなわち、この発明では、従来の電池の電圧履歴及び電流履歴以外に新たに満充電から所定放電量を放電した時の電池の劣化状態関連電気量を加えた入力データセットをニューラルネット演算することにより電池の劣化状態を推定する。試験によれば、これにより、単に電池の電圧履歴及び電流履歴を用いてニューラルネット演算するのに比べて格段に演算精度を改善できることがわかった。   That is, in the present invention, by performing an neural network operation on an input data set in which the amount of electricity related to the deterioration state of the battery when a predetermined discharge amount is discharged from a full charge in addition to the voltage history and current history of the conventional battery is added. Estimate the deterioration state of the battery. According to the test, it has been found that this can greatly improve the calculation accuracy compared with the case where the neural network calculation is simply performed using the voltage history and current history of the battery.

好適な態様において、前記演算手段は、前記電圧履歴及び電流履歴から最小自乗法により求めた近似式に基づいて求めた開路電圧今回値を算出し、前記演算手段は、前記電圧履歴、電流履歴、開路電圧今回値及び前記所定容量放電時劣化状態量を入力パラメータとして前記電池の現在の劣化状態をニューラルネット演算することを特徴としている。このようにすれば、電池の経時劣化を、一層精度よく演算することができる。   In a preferred aspect, the calculation means calculates an open circuit voltage current value obtained based on an approximate expression obtained from the voltage history and current history by a least square method, and the calculation means includes the voltage history, current history, The present invention is characterized in that the current deterioration state of the battery is subjected to a neural network calculation using the current value of the open circuit voltage and the deterioration state amount during the predetermined capacity discharge as input parameters. In this way, deterioration with time of the battery can be calculated with higher accuracy.

好適な態様において、前記所定容量放電時劣化状態量は、前記電池の満充電状態からの所定放電量放電時における前記電池の開路電圧と、前記電池の満充電状態からの所定容量放電時における前記電池の内部抵抗とにより構成される。このようにすれば、満充電状態からの所定容量放電時の電池の開路電圧及び内部抵抗を入力データとして用いない従来のニューラルネット演算に比べて格段に高精度に、電池の経時劣化(サイクル劣化)を判定することができることがわかった。これは、この満充電状態から所定放電量放電時における開路電圧及び内部抵抗が電池劣化によるSOCの変化に相関を有するためであると考えられる。   In a preferred aspect, the deterioration state quantity at the time of predetermined capacity discharge includes the open circuit voltage of the battery at the time of discharge of a predetermined discharge amount from the full charge state of the battery, and the capacity at the time of discharge of the predetermined capacity from the full charge state of the battery. It consists of the internal resistance of the battery. In this way, battery degradation over time (cycle degradation) is much more accurate than conventional neural network operations that do not use the open circuit voltage and internal resistance of the battery when discharging a predetermined capacity from a fully charged state as input data. ) Can be determined. This is considered to be because the open circuit voltage and the internal resistance at the time of discharging a predetermined discharge amount from this fully charged state have a correlation with the change in SOC due to battery deterioration.

好適な態様において、前記出力パラメータとしての前記電池の現在の劣化状態は、SOC(充電率)とSOH(残存容量)との両方の信号、又はそれらを変数として含む関数である。このようにすれば、良好に電池の劣化状態を検出することがわかった。このようにすれば、従来に比べて高精度に電池劣化程度を検出することができることがわかった。これは、この満充電状態から所定放電量放電時における開路電圧と内部抵抗が電池劣化に相関を有するためである。   In a preferred embodiment, the current deterioration state of the battery as the output parameter is a signal including both SOC (charging rate) and SOH (remaining capacity), or a function including them as variables. In this way, it was found that the deterioration state of the battery was detected satisfactorily. In this way, it was found that the degree of battery deterioration can be detected with higher accuracy than in the past. This is because the open circuit voltage and the internal resistance at the time of discharging a predetermined discharge amount from this fully charged state have a correlation with the battery deterioration.

好適な態様において、前記関数は、劣化度=残存容量(SOH)/(初期の満充電容量×充電率(SOC))で示される。   In a preferred embodiment, the function is expressed as: Degradation = Remaining capacity (SOH) / (Initial full charge capacity × Charge rate (SOC)).

好適な態様に置いて、前記SOHは、前記SOCと所定容量放電時の開路電圧と所定容量放電時の内部抵抗とをニューラルネット演算して演算される。このようにすれば、ニューラルネット演算量を削減することができる。   In a preferred embodiment, the SOH is calculated by performing a neural network operation on the SOC, an open circuit voltage at a predetermined capacity discharge, and an internal resistance at a predetermined capacity discharge. In this way, the amount of neural network calculation can be reduced.

本発明の車両用蓄電装置のニューラルネット演算方式を実施例を参照して図面に沿って具体的に説明する。   A neural network calculation method for a power storage device for a vehicle according to the present invention will be specifically described with reference to the accompanying drawings.

(回路構成)
実施例1の車両用蓄電装置のニューラルネット演算方式について以下に説明する。まず、装置の回路構成を図1に示すブロック図を参照して説明する。
(Circuit configuration)
A neural network calculation method for the power storage device for a vehicle according to the first embodiment will be described below. First, the circuit configuration of the apparatus will be described with reference to the block diagram shown in FIG.

101は車載蓄電装置(以下、バッテリとも呼ぶ)、102はこの車載蓄電装置を充電する車載発電機、103は車載蓄電装置101から給電される車載電気負荷をなす電気装置、104は車載蓄電装置101の充放電電流を検出する電流センサ、105は車載蓄電装置101の状態を検出する電子回路装置である蓄電池状態検知装置、106は入力される電池の電圧及び電流を電圧履歴及び電流履歴として記憶して出力するとともに開路電圧の今回値及び/又は内部抵抗の今回値を演算して出力するバッファ部、107はバッファ部106及び後述する補正信号発生部109から入力される各種の入力信号をニューラルネット演算して所定の蓄電状態量(この実施例ではSOC)を出力するニューラルネット部、108はニューラルネット部107などから読み込んだ信号に基づいて車載発電機102の発電量を制御する発電機制御装置、109は後述するキャリブレーションデータを演算してニューラルネット部107の入力データとして出力する補正信号発生部である。   101 is an in-vehicle power storage device (hereinafter also referred to as a battery), 102 is an in-vehicle generator that charges the in-vehicle power storage device, 103 is an electric device that forms an in-vehicle electric load fed from the in-vehicle power storage device 101, and 104 is an in-vehicle power storage device 101. A current sensor for detecting the charging / discharging current of the battery, 105 is a storage battery state detection device which is an electronic circuit device for detecting the state of the in-vehicle power storage device 101, and 106 stores the voltage and current of the input battery as a voltage history and a current history. And a buffer unit 107 that calculates and outputs the current value of the open circuit voltage and / or the current value of the internal resistance, and 107 outputs various input signals input from the buffer unit 106 and a correction signal generator 109 described later as a neural network. A neural network unit that calculates and outputs a predetermined storage state quantity (SOC in this embodiment), 108 is a neural network A generator control device 109 that controls the amount of power generated by the in-vehicle generator 102 based on a signal read from 107 or the like, 109 is a correction signal generation unit that calculates calibration data, which will be described later, and outputs it as input data to the neural network unit 107. is there.

すなわち、この実施例では、蓄電池状態検知装置105は、バッファ部106及びニューラルネット部107に加えて、所定容量放電時の開路電圧及び内部抵抗を演算してニューラルネット部107にキャリブレーション用の入力データとして出力する補正信号発生部109を有する点をその特徴としている。なお、バッファ部106、ニューラルネット部107及び補正信号発生部109は、この実施例ではマイコン装置によるソフトウエア演算により実現されるが、専用のハードウエア回路により構成されてよいことはもちろんである。   That is, in this embodiment, the storage battery state detection device 105 calculates the open circuit voltage and internal resistance at the time of predetermined capacity discharge, in addition to the buffer unit 106 and the neural network unit 107, and inputs the calibration input to the neural network unit 107. It has a feature that it has a correction signal generation unit 109 that outputs it as data. In this embodiment, the buffer unit 106, the neural network unit 107, and the correction signal generation unit 109 are realized by software calculation by a microcomputer device, but may be configured by a dedicated hardware circuit.

(バッファ部106)
バッファ部106は、ニューラルネット部107の前置信号処理回路であって、車載蓄電装置101の電圧と電流センサ104からの電流とを一定時間ごとに同時にサンプリングして電池の電圧履歴及び電流履歴として記憶し、各時点の電圧及び電流をニューラルネット部107に並列出力する。ニューラルネット部107の入力セルの数的限界や演算負担の軽減などのため、電池の電圧履歴及び電流履歴をなす電圧・電流のサンプリングデータは、現時点から遡行する所定時点までのデータにより構成される。
(Buffer 106)
The buffer unit 106 is a pre-signal processing circuit of the neural network unit 107, and simultaneously samples the voltage of the in-vehicle power storage device 101 and the current from the current sensor 104 at regular intervals to obtain a battery voltage history and a current history. The voltage and current at each time point are stored in parallel and output to the neural network unit 107 in parallel. In order to reduce the numerical limit of the input cell of the neural network unit 107 and the calculation burden, the voltage / current sampling data constituting the battery voltage history and current history is composed of data up to a predetermined time point retroactive from the present time. .

また、バッファ部106は、上記電池の電圧履歴及び電流履歴に加えて、これら電圧履歴及び電流履歴から最小自乗法により電圧と電流との関係を示す近似式を演算、創成し、この近似式により切片(開路電圧)を電圧及び電流のデータが入力されるごとに演算して電池の開路電圧今回値とし、この開路電圧今回値を電圧履歴と電流履歴との間の関連付けのためのデータとしてニューラルネット部107に出力する。なお、上記した近似式の創成及びそれから電池の開路電圧の今回値の演算の詳細は公知であるため、これ以上の詳細説明は省略する。   In addition to the voltage history and current history of the battery, the buffer unit 106 calculates and creates an approximate expression indicating the relationship between voltage and current from the voltage history and current history by the least square method. The intercept (open circuit voltage) is calculated every time voltage and current data is input to obtain the current value of the open circuit voltage of the battery, and this open circuit voltage current value is used as data for associating the voltage history with the current history. Output to the net unit 107. Note that the details of the creation of the approximate expression and the calculation of the current value of the open circuit voltage of the battery are well known, and further detailed description is omitted.

(補正信号発生部109)
補正信号発生部109は、満充電から所定容量放電時の開路電圧及び内部抵抗を演算し、この所定容量放電時の開路電圧及び内部抵抗をニューラルネット演算におけるキャリブレーションデータとしてニューラルネット部107に出力する。補正信号発生部109を図2のフローチャートに図示する。
(Correction signal generator 109)
The correction signal generation unit 109 calculates the open circuit voltage and internal resistance at the time of predetermined capacity discharge from full charge, and outputs the open circuit voltage and internal resistance at the time of predetermined capacity discharge to the neural network unit 107 as calibration data in the neural network calculation. To do. The correction signal generator 109 is illustrated in the flowchart of FIG.

補正信号発生部109は、走行を開始することにより開始され(ステップ601)、バッテリの電流・端子電圧を検出する(ステップ602) 。検出された電流・端子電圧に対して後述の満充電判定を行い(ステップ603)、満充電であれば、
その後の充放電電流の積算をスタートし(ステップ604)、積算電流値(Ah)が所定放電量に達したかどうかを判定し(ステップ605)、達したらこの時の開路電圧を演算し(ステップ606) 、それを所定容量放電時の開路電圧として書き換える(ステップ607)、その後、この時の電池の内部抵抗を演算し(ステップ608) 、それを所定容量放電時の内部抵抗として書き換える(ステップ609) 。
The correction signal generator 109 is started by starting running (step 601), and detects the battery current and terminal voltage (step 602). Perform full charge determination described later for the detected current / terminal voltage (step 603).
Thereafter, the integration of the charge / discharge current is started (step 604), it is determined whether the integrated current value (Ah) has reached the predetermined discharge amount (step 605), and when this is reached, the open circuit voltage at this time is calculated (step 605). 606), it is rewritten as an open circuit voltage at the time of predetermined capacity discharge (step 607), then, the internal resistance of the battery at this time is calculated (step 608), and it is rewritten as the internal resistance at the time of predetermined capacity discharge (step 609) )

ステップS603で説明した満充電判定について図3を参照して更に詳しく説明する。満充電判定は、電池の電圧・電流の二次元空間の所定領域としてあらかじめ記憶されており、入力される電流・電圧特性が、この所定領域(図3参照)に入ったら満充電と判定する。   The full charge determination described in step S603 will be described in more detail with reference to FIG. The full charge determination is stored in advance as a predetermined area in the two-dimensional space of the battery voltage and current. When the input current / voltage characteristics enter the predetermined area (see FIG. 3), it is determined that the battery is fully charged.

ステップ606、608で説明した満充電から所定容量放電時の開路電圧及び内部抵抗を求める演算を図4を参照して更に詳しく説明する。   The calculation for obtaining the open circuit voltage and the internal resistance at the time of discharging the predetermined capacity from the full charge described in Steps 606 and 608 will be described in more detail with reference to FIG.

満充電から所定容量放電した時点直前の所定期間に入力された所定個数の電圧・電流ペアから最小自乗法により電圧と電流との関係を示す近似式を求め、この近似式の切片として開路電圧(電流が0であるとみなした場合の電池の電圧であり、開放電圧とも呼ばれる)と、この近似式の傾きとして内部抵抗を求め、これらを上記した所定容量放電時の開路電圧及び内部抵抗とする。なお、上記直線近似の精度を向上するために、電池の分極状態を過去の電流情報などから求めて分極指数として表し、この分極指数が所定の範囲内であるデータを選別することが好ましい。この種の最小自乗法を用いた直線近似式の創成と、この直線近似式を用いた開路電圧や内部抵抗の抽出自体は公知事項であるため、更なる説明は省略する。   An approximate expression indicating the relationship between voltage and current is obtained by a least square method from a predetermined number of voltage / current pairs input during a predetermined period immediately before the discharge of a predetermined capacity from full charge, and the open circuit voltage ( Battery voltage when the current is considered to be 0, which is also referred to as open-circuit voltage), and the internal resistance is obtained as the slope of this approximate expression, and these are used as the open circuit voltage and internal resistance during the above-mentioned predetermined capacity discharge. . In order to improve the accuracy of the above linear approximation, it is preferable to obtain the polarization state of the battery from the past current information and express it as a polarization index, and to select data in which this polarization index is within a predetermined range. Since the creation of a linear approximation formula using this kind of least square method and the extraction of the open circuit voltage and internal resistance using this linear approximation formula are known matters, further explanation is omitted.

(ニューラルネット部107)
ニューラルネット部107は、図5に示すように、SOC(充電率)演算用のニューラルネット部1071と、図6に示すSOH(残存容量)演算用のニューラルネット部1072という二つの回路ブロックにより表示される。これら回路ブロックは、実際には所定の演算インタバルで順次実施される互いに異なるソフトウエア処理により構成される。つまり、ニューラルネット部107は、実際にはマイコン回路のソフトウエア演算により構成されるため、図5に示す回路構成は機能的なものにすぎない。
(Neural network unit 107)
As shown in FIG. 5, the neural network unit 107 is displayed by two circuit blocks: a neural network unit 1071 for SOC (charge rate) calculation and a neural network unit 1072 for SOH (remaining capacity) calculation shown in FIG. Is done. These circuit blocks are actually constituted by different software processes that are sequentially executed at a predetermined calculation interval. That is, since the neural network unit 107 is actually configured by software calculation of a microcomputer circuit, the circuit configuration shown in FIG. 5 is only functional.

(SOC(充電率)演算用のニューラルネット部1071)
SOC(充電率)演算用のニューラルネット部1071の機能構成を図6を参照して説明する。図7に示すSOH(残存容量)演算用のニューラルネット部1072は図6に示すSOC(充電率)演算用のニューラルネット部1071において、入力パラメータとしての所定容量放電時の内部抵抗を追加しただけであるため、これ以上の説明は省略する。
(Neural network unit 1071 for calculating SOC (charge rate))
A functional configuration of the neural network unit 1071 for calculating the SOC (charging rate) will be described with reference to FIG. The neural network unit 1072 for calculating the SOH (remaining capacity) shown in FIG. 7 is the same as the neural network unit 1071 for calculating the SOC (charge rate) shown in FIG. Therefore, further explanation is omitted.

図6に示すSOC(充電率)演算用のニューラルネット部1071は3階層のフィードフォワード型で誤差逆伝播方法により学習する形式であるが、この形式に限定されるものではない。入力層201は所定数の入力セルからなる。各入力セルはそれぞれ、バッファ部106からの電圧履歴データVi及び電流履歴データIi並びに開路電圧の今回値(現在値)と、補正信号発生部109から入力されるキャリブレーションデータとしての所定容量放電時の開路電圧Voとを中間層202の各演算セルすべてに出力する。この実施例では、電圧履歴データVi及び電流履歴データIiはそれぞれ、一定インタバルでサンプリングされた5点のデータからなるが、これに限定されるものではない。   The neural network unit 1071 for SOC (charge rate) calculation shown in FIG. 6 is a three-layer feedforward type that is learned by the error back propagation method, but is not limited to this type. The input layer 201 includes a predetermined number of input cells. Each input cell has voltage history data Vi and current history data Ii from the buffer unit 106 as well as the current value (current value) of the open circuit voltage and a predetermined capacity discharge as calibration data input from the correction signal generation unit 109. The open circuit voltage Vo is output to all the computation cells of the intermediate layer 202. In this embodiment, the voltage history data Vi and the current history data Ii are each composed of five points of data sampled at a constant interval, but are not limited thereto.

中間層202の各演算セルは、入力層201の各入力セルから入力される各入力データに後述するニューラルネット演算を行い、演算結果を出力層203の出力セルに出力する。出力層203の出力セルは充電率(SOC)を出力する。   Each computation cell in the intermediate layer 202 performs a neural network computation described later on each input data input from each input cell in the input layer 201, and outputs the computation result to an output cell in the output layer 203. The output cell of the output layer 203 outputs a charging rate (SOC).

ニューラルネット部107の入力層201のj番目のセルの入力データをINj、入力層201のj番目と中間層202のk番目のセルの結合係数をWjkとすると中間層のk番目のセルへの入力信号は、
INPUTk(t)=Σ( Wjk * INj ) ( j = 1 to 2m+3 )
となる。中間層のk番目のセルからの出力信号は、
OUTk(t)=f(x)=f( INPUTk(t) + b )
で表される。bは定数である。f( INPUTk(t) + b) は INPUTk(t) + bを入力変数とするいわゆるシグモイド関数と呼ばれる非線形関数であり、
f ( INPUTk(t) + b )=1/(1+exp(−( INPUTk(t) + b)))
で定義される関数である。中間層202のk番目のセルと出力層203のセルとの結合係数をWkとすれば、出力層への入力信号は同様に、
INPUTo(t)=Σ Wk * OUTk(t)
k=1 to Q
で表される。 Qは中間層202のセル数である。時刻tにおける出力信号は、
OUT(t)=L * INPUTo(t)
となる。Lは線形定数である。
If the input data of the jth cell of the input layer 201 of the neural network unit 107 is INj, and the coupling coefficient of the jth cell of the input layer 201 and the kth cell of the intermediate layer 202 is Wjk, the input data to the kth cell of the intermediate layer The input signal is
INPUTk (t) = Σ (Wjk * INj) (j = 1 to 2m + 3)
It becomes. The output signal from the kth cell of the intermediate layer is
OUTk (t) = f (x) = f (INPUTk (t) + b)
It is represented by b is a constant. f (INPUTk (t) + b) is a non-linear function called a sigmoid function with INPUTk (t) + b as an input variable.
f (INPUTk (t) + b) = 1 / (1 + exp (− (INPUTk (t) + b)))
Is a function defined by If the coupling coefficient between the kth cell of the intermediate layer 202 and the cell of the output layer 203 is Wk, the input signal to the output layer is
INPUTo (t) = Σ Wk * OUTk (t)
k = 1 to Q
It is represented by Q is the number of cells in the intermediate layer 202. The output signal at time t is
OUT (t) = L * INPUTo (t)
It becomes. L is a linear constant.

この明細書で言う学習過程とは、時刻tにおける最終出力OUT(t)と、あらかじめ測定した後述の教師信号(即ち真値tar(t))との間の誤差を最小にするように各セル間の結合係数を最適化することである。なお、出力OUT(t)は、出力層203が出力すべき出力パラメータであり、ここでは時点tにおけるSOCである。   In this specification, the learning process means that each cell has a minimum error between a final output OUT (t) at time t and a teacher signal (that is, a true value tar (t)) measured in advance. Is to optimize the coupling coefficient between. The output OUT (t) is an output parameter to be output by the output layer 203, and here is the SOC at time t.

次に各結合係数の更新方法について説明する。   Next, a method for updating each coupling coefficient will be described.

中間層のk番目のセルと出力層のセル間の結合係数Wkの更新は、
Wk = Wk + △Wk
で行われる。ここで△Wkは以下で定義される。
The update of the coupling coefficient Wk between the kth cell in the intermediate layer and the cell in the output layer is
Wk = Wk + △ Wk
Done in Here, ΔWk is defined as follows.

△Wk = −η*∂Ek/∂Wk η;定数
= η* [ OUT(t) − tar(t) ]* [ ∂OUT(t)/∂Wk ]
= η* [ OUT(t) − tar(t) ]* L *[ ∂INPUTo(t)/∂Wk ]
= η* L* [ OUT(t) − tar(t) ] * OUTk(t)
で表される。Ekは教師データとネットワーク出力の誤差を表す量で次の式で定義される
Ek=[ OUT(t) − tar(t) ]×[ OUT(t) − tar(t) ]/2
次に、中間層202のk番目のセルと入力層201のj番目のセルの結合係数Wjkの更新ルールを説明する。結合係数Wjkの更新は以下の式で実現される。
△ Wk = −η * ∂Ek / ∂Wk η; Constant
= η * [OUT (t) − tar (t)] * [∂OUT (t) / ∂Wk]
= η * [OUT (t) − tar (t)] * L * [∂INPUTo (t) / ∂Wk]
= η * L * [OUT (t) − tar (t)] * OUTk (t)
It is represented by Ek is an amount that represents the error between teacher data and network output, and is defined by the following equation
Ek = [OUT (t)-tar (t)] x [OUT (t)-tar (t)] / 2
Next, a rule for updating the coupling coefficient Wjk between the kth cell in the intermediate layer 202 and the jth cell in the input layer 201 will be described. The update of the coupling coefficient Wjk is realized by the following equation.

Wjk = Wjk + △Wjk
ここで△Wjkは以下で定義される。
Wjk = Wjk + △ Wjk
Here, ΔWjk is defined as follows.

△Wjk = −η*∂Ek/∂Wjk
= −η*[∂Ek/∂INPUTk(t) ] * [∂INPUTk(t)/∂Wjk ]
= −η*[∂Ek/∂OUTk(t) ] *[∂OUTk(t)/∂INPUTk(t) ] * INj
= −η*[∂Ek/∂OUT(t) ] * [∂OUT(t)/∂INPUTo] *
[∂INPUTo/OUTk(t) ] * f’(INPUTk(t)+b)* INj
= −η*( OUT(t)−tar(t)) *L* Wk *f’(INPUTk(t)+b)* INj
= −η* L * Wk * INj * ( OUTsoc(t)−tar(t))* f’(INPUTk(t)+b)
ここで、f’(INPUTk(t)+b)は伝達関数fの微分値である。
△ Wjk = -η * ∂Ek / ∂Wjk
= -Η * [∂Ek / ∂INPUTk (t)] * [∂INPUTk (t) / ∂Wjk]
= -Η * [∂Ek / ∂OUTk (t)] * [∂OUTk (t) / ∂INPUTk (t)] * INj
= -Η * [∂Ek / ∂OUT (t)] * [∂OUT (t) / ∂INPUTo] *
[∂INPUTo / OUTk (t)] * f '(INPUTk (t) + b) * INj
= −η * (OUT (t) −tar (t)) * L * Wk * f ′ (INPUTk (t) + b) * INj
= −η * L * Wk * INj * (OUTsoc (t) −tar (t)) * f ′ (INPUTk (t) + b)
Here, f ′ (INPUTk (t) + b) is a differential value of the transfer function f.

こうして更新された新たな結合係数 Wk、Wjk で再び出力OUT(t)すなわち時点tにおけるSOCを計算し、誤差関数Ekが所定の微小値以下になるまで結合係数を更新しつづける。このように誤差関数Ekを所定値以下になるよう結合係数を更新してゆく過程が学習過程である。   The output OUT (t), that is, the SOC at time t is calculated again with the new coupling coefficients Wk and Wjk updated in this manner, and the coupling coefficient is continuously updated until the error function Ek becomes a predetermined minute value or less. The process of updating the coupling coefficient so that the error function Ek becomes a predetermined value or less is the learning process.

上記学習過程のフローチャートを図8を参照して説明する。ただし、ニューラルネット部107が出力するべき蓄電装置の蓄電状態量はSOC(充電率)である。   A flowchart of the learning process will be described with reference to FIG. However, the state of charge of the power storage device to be output by the neural network unit 107 is SOC (charge rate).

まず、ニューラルネット部107の各結合係数の適当な初期値を設定する(ステップ302)。これは例えば乱数などにより適当に決定すればよい。次に、学習用の入力信号をニューラルネット部107の入力層201の各セルに個別に入力し(ステップ303)、この入力信号を上記した結合係数の初期値を用いてニューラルネット演算することにより出力パラメータとしてのSOCを算出する(ステップ304)。   First, an appropriate initial value of each coupling coefficient of the neural network unit 107 is set (step 302). This may be determined appropriately using, for example, a random number. Next, an input signal for learning is individually input to each cell of the input layer 201 of the neural network unit 107 (step 303), and this input signal is subjected to a neural network calculation using the initial value of the coupling coefficient described above. The SOC as an output parameter is calculated (step 304).

次に、上記した方法で誤差関数Ekを算出し(ステップ305)、この誤差関数が所定の微小値thより小さいか否か判定する(ステップ306)。誤差関数Ekが所定の微小値thより大きければ、前記学習過程で定義された各結合係数の更新量△Wを計算し(ステップ307)、各結合係数を更新する(ステップ308)。   Next, the error function Ek is calculated by the above method (step 305), and it is determined whether or not this error function is smaller than a predetermined minute value th (step 306). If the error function Ek is larger than a predetermined minute value th, the update amount ΔW of each coupling coefficient defined in the learning process is calculated (step 307), and each coupling coefficient is updated (step 308).

次に、再び学習用の入力信号を入力層201の各セルに入力して出力パラメータとしてのSOCを計算する。次に、誤算関数Ekを評価してそれが微小値thを下回れば学習を完了したと判定して(ステップ309)、この学習課程を終了する。誤差関数Ekが微小値を下回ってなければ、結合係数を再び更新してSOC計算し、誤差関数Ekの評価を実施し、誤差関数Ekがこの微小値を下回るまでこの課程を繰り返す。   Next, the learning input signal is input again to each cell of the input layer 201 to calculate the SOC as an output parameter. Next, the miscalculation function Ek is evaluated, and if it is below the minute value th, it is determined that the learning has been completed (step 309), and this learning process is terminated. If the error function Ek is not below the minute value, the coupling coefficient is updated again, SOC calculation is performed, the error function Ek is evaluated, and this process is repeated until the error function Ek falls below the minute value.

したがって、上記した学習課程を代表的な充放電パターンを幾つかの電池種類につき製品の出荷前にニューラルネット部107にあらかじめ学習させておけば市場走行中の車載蓄電池のSOCを逐次算定することが可能となる。   Therefore, if the neural network unit 107 learns in advance the learning process described above for the representative charge / discharge patterns for several battery types before the product is shipped, the SOC of the on-vehicle storage battery running on the market can be calculated sequentially. It becomes possible.

満充電が判定されない場合や満充電から所定容量放電時の開路電圧が検出されない場合には、所定容量放電時の開路電圧として以前に求めた値を保持する。このように、満充電時開路電圧の値を更新することにより、バッテリの使用中、劣化に応じて精度よくSOC検出が行える。   When the full charge is not determined or when the open circuit voltage at the predetermined capacity discharge is not detected from the full charge, the previously obtained value is held as the open circuit voltage at the predetermined capacity discharge. In this way, by updating the value of the full-charge open circuit voltage, it is possible to accurately detect the SOC according to the deterioration during use of the battery.

(SOH(残存容量)演算用のニューラルネット部1072)
SOH(残存容量)演算用のニューラルネット部1072の機能構成は上記したSOC(充電率)演算用のニューラルネット部1071の演算において、所定容量放電時の内部抵抗を追加しただけであるため説明は省略する。所定容量放電時の内部抵抗の算出についても既述したので更なる説明は省略する。
(Neural network unit 1072 for SOH (remaining capacity) calculation)
The functional configuration of the neural network unit 1072 for calculating the SOH (remaining capacity) is simply the addition of an internal resistance at the time of discharging a predetermined capacity in the calculation of the neural network unit 1071 for calculating the SOC (charge rate). Omitted. Since the calculation of the internal resistance during the predetermined capacity discharge has already been described, further explanation is omitted.

(試験結果)
劣化バッテリを含む幾つかのバッテリでの充放電パターン(10.15モード)を学習させたSOC(充電率)演算用のニューラルネット部1071に、別の新しい劣化バッテリでの充放電パターン(10.15モード)を入力してニューラルネット演算を行って充電率(SOC)を求めた結果を図7に示す。ただし、ニューラルネット部1071への入力信号は、電圧履歴及び電流履歴並びに開路電圧の今回値(最小自乗近似式より求めた切片の今回値)、及び、キャリブレーション信号としての満充電から所定容量(ここでは 0.5Ahとした)放電時の開路電圧Voとした。検出誤差は1.9%と言うきわめて優れたニューラルネット演算が可能となることがわかった。
(Test results)
A charge / discharge pattern (10.15 mode) of another new deteriorated battery is applied to the neural network unit 1071 for SOC (charge rate) calculation in which charge / discharge patterns (10.15 mode) of several batteries including the deteriorated battery are learned. FIG. 7 shows the result of calculating the charging rate (SOC) by inputting and performing neural network calculation. However, an input signal to the neural network unit 1071 includes a voltage history, a current history, and a current value of an open circuit voltage (a current value of an intercept obtained from a least square approximation), and a predetermined capacity (from a full charge as a calibration signal). Here, the open circuit voltage Vo was set to 0.5 Ah. It was found that a very good neural network calculation with a detection error of 1.9% becomes possible.

また、同じバッテリ群を用いた充放電パターン(10.15モード)を学習させたSOH(残存容量)演算用のニューラルネット部1072に、上記と同じ別の新しい劣化バッテリでの充放電パターン(10.15モード)を入力してニューラルネット演算を行って残存容量(SOH)を求めた結果を図10に示す。ただし、ニューラルネット部1072への入力信号は電圧履歴及び電流履歴並びに開路電圧今回値(最小自乗近似式より求めた切片の今回値)及び内部抵抗今回値(最小自乗近似式より求めた傾きの今回値)とし、所定容量放電時劣化状態量としての所定容量放電時(0.5Ah放電時)の開路電圧及び所定容量放電時(5Ah放電時)の内部抵抗を用いた。その結果、残存容量(SOH)検出誤差は1.1Ahときわめて小さかった。   Moreover, the charge / discharge pattern (10.15 mode) of another new deteriorated battery same as the above is added to the neural network unit 1072 for SOH (remaining capacity) calculation in which the charge / discharge pattern (10.15 mode) using the same battery group is learned. FIG. 10 shows the result of calculating the remaining capacity (SOH) by performing the neural network operation by inputting. However, the input signals to the neural network unit 1072 are the voltage history, current history, current value of open circuit voltage (current value of intercept obtained from the least square approximation equation), and internal resistance current value (current value of slope obtained from the least square approximation equation). Value), and the open circuit voltage at the time of predetermined capacity discharge (at the time of 0.5 Ah discharge) and the internal resistance at the time of predetermined capacity discharge (at the time of 5 Ah discharge) were used as the deterioration state quantity at the time of predetermined capacity discharge. As a result, the residual capacity (SOH) detection error was as extremely small as 1.1 Ah.

次に、上記で求めたSOCとSOHを、あらかじめ記憶する図11のマップに入力し、電池劣化度を図11に示されるマップの12の領域のどこかに当てはめる。これにより電池劣化度を12段階に分類検出することができる。   Next, the SOC and SOH obtained as described above are input to the map of FIG. 11 stored in advance, and the battery deterioration degree is applied to somewhere in 12 areas of the map shown in FIG. Thereby, the battery deterioration degree can be classified and detected in 12 stages.

(変形態様)
その他、あらかじめ調べて記憶している試験品のバッテリの初期時の満充電容量をSOCINIとするとき、電池劣化度を、SOHの今回値/(SOCの今回値×SOCINI)として算出した。これにより、電池劣化度を各SOC値ごとに又は各SOHごとに高精度に算出することができる。
(Modification)
In addition, when SOCINI is the initial full charge capacity of the test product battery that has been examined and stored in advance, the battery deterioration degree was calculated as SOH current value / (SOC current value × SOCINI). Thereby, the battery deterioration degree can be calculated with high accuracy for each SOC value or for each SOH.

他の実施例を図12を参照して説明する。この実施例は、ニューラルネット部107の回路構成言い換えるとニューラルネット演算処理を変更したものである。この実施例では、実施例1と同様に演算したSOCと、所定容量放電時の開路電圧と、所定容量放電時の内部抵抗とを入力パラメータとして、SOH(残存容量)演算用のニューラルネット部1072に入力データとして入力して、残存容量(SOH)を学習、演算する。このようにしても、実施例1とほぼ同様の検出精度でSOHを演算することができた。   Another embodiment will be described with reference to FIG. In this embodiment, the circuit configuration of the neural network unit 107, in other words, a neural network calculation process is changed. In this embodiment, the SOC calculated in the same manner as in the first embodiment, the open circuit voltage at the time of predetermined capacity discharge, and the internal resistance at the time of predetermined capacity discharge are input parameters, and the neural network unit 1072 for SOH (residual capacity) calculation. Is input as input data, and the remaining capacity (SOH) is learned and calculated. Even in this case, the SOH can be calculated with the detection accuracy almost the same as that of the first embodiment.

図5に示す実施例1のニューラルネット演算において、ニューラルネット部107への入力信号を電圧履歴及び電流履歴だけとしキャリブレーションデータとして所定容量放電時劣化状態量としての所定容量放電時の開路電圧及び所定容量放電時の内部抵抗を用いなかった場合と、ニューラルネット部107への入力信号を電圧履歴及び電流履歴だけとしキャリブレーションデータとして所定容量放電時劣化状態量としての所定容量放電時の開路電圧及び所定容量放電時の内部抵抗を用いた場合とにおける、新しい劣化バッテリのSOC検出誤差を求めた。その結果を図13、図14に示す。図13はキャリブレーションデータを用いなかった場合であり、SOC演算誤差は9.1%と大きかった。また、図14はキャリブレーションデータを用いた場合であり、SOC演算誤差は6.8%と大幅に減少した。   In the neural network calculation of the first embodiment shown in FIG. 5, the input signal to the neural network unit 107 is only the voltage history and current history, and the open circuit voltage at the predetermined capacity discharge as the predetermined capacity discharge deterioration state quantity is used as calibration data. When the internal resistance at the time of the predetermined capacity discharge is not used, and the input signal to the neural network unit 107 is only the voltage history and the current history, and the open circuit voltage at the time of the predetermined capacity discharge as the deterioration state quantity at the time of the predetermined capacity discharge as the calibration data And the SOC detection error of the new deteriorated battery in the case of using the internal resistance at the time of predetermined capacity discharge was obtained. The results are shown in FIGS. FIG. 13 shows the case where calibration data was not used, and the SOC calculation error was as large as 9.1%. FIG. 14 shows the case where calibration data is used, and the SOC calculation error is greatly reduced to 6.8%.

図5に示す実施例1のニューラルネット演算において、ニューラルネット部107への入力信号を電圧履歴だけとしキャリブレーションデータとして所定容量放電時劣化状態量としての所定容量放電時の開路電圧も用いなかった場合と、ニューラルネット部107への入力信号を電圧履歴だけとしキャリブレーションデータとして所定容量放電時劣化状態量としての所定容量放電時の開路電圧を用いた場合とにおける、新しい劣化バッテリのSOC検出誤差を求めた。その結果を図15、図16に示す。図15はキャリブレーションデータを用いなかった場合であり、図16はキャリブレーションデータを用いた場合である。この場合も実施例3と同様にキャリブレーションデータの使用によりSOC演算誤差を大幅に減少できることがわかった。   In the neural network calculation of the first embodiment shown in FIG. 5, the input signal to the neural network unit 107 is only the voltage history, and the open circuit voltage at the predetermined capacity discharge as the deterioration state quantity at the predetermined capacity discharge is not used as the calibration data. SOC detection error of a new deteriorated battery in the case where the input signal to the neural network unit 107 is only the voltage history and the open circuit voltage at the predetermined capacity discharge as the deterioration state quantity at the predetermined capacity is used as the calibration data. Asked. The results are shown in FIGS. FIG. 15 shows a case where calibration data is not used, and FIG. 16 shows a case where calibration data is used. Also in this case, it was found that the SOC calculation error can be greatly reduced by using the calibration data as in the third embodiment.

実施例1の装置の回路構成を示すブロック図である。1 is a block diagram illustrating a circuit configuration of a device according to Embodiment 1. FIG. 実施例1の走行中における満充電から所定容量放電時の開路電圧及び内部抵抗の演算方法を示すフローチャートである。3 is a flowchart illustrating a method of calculating an open circuit voltage and an internal resistance during a predetermined capacity discharge from a full charge during traveling according to the first embodiment. 実施例1の満充電判定のための満充電領域を示す図である。It is a figure which shows the full charge area | region for the full charge determination of Example 1. FIG. 実施例1の満充電から所定容量放電時の開路電圧及び内部抵抗を得るための近似式の例を示す図である。It is a figure which shows the example of the approximate expression for obtaining the open circuit voltage and internal resistance at the time of predetermined capacity discharge from the full charge of Example 1. FIG. 電池状態検知装置を構成するニューラルネットワーク部の構成を示すブロック図である。It is a block diagram which shows the structure of the neural network part which comprises a battery state detection apparatus. 図5のSOC(充電率)演算用のニューラルネット部の構成を示すブロック図である。It is a block diagram which shows the structure of the neural network part for SOC (charging rate) calculation of FIG. 図5のSOH(残存容量)演算用のニューラルネット部の構成を示すブロック図である。FIG. 6 is a block diagram showing a configuration of a neural network unit for SOH (remaining capacity) calculation of FIG. 5. 図5のSOC(充電率)演算用のニューラルネット部のフローチャートである。6 is a flowchart of a neural network unit for calculating the SOC (charge rate) in FIG. 5. 満充電から所定容量放電時の開路電圧を用いて上記と同じニューラルネット演算を行った場合のSOC検出結果を示す図である。It is a figure which shows a SOC detection result at the time of performing the same neural network calculation as the above using the open circuit voltage at the time of predetermined capacity discharge from full charge. 満充電から所定容量放電時の開路電圧及び内部抵抗を用いて上記と同じニューラルネット演算を行った場合のSOH検出結果を示す図である。It is a figure which shows the SOH detection result at the time of performing the same neural network calculation as the above using the open circuit voltage and internal resistance at the time of predetermined capacity discharge from full charge. 実施例1で求めたSOC及びSOHを用いて電池劣化状態を検出するためのマップを示す図である。It is a figure which shows the map for detecting a battery deterioration state using SOC and SOH calculated | required in Example 1. FIG. 実施例2のニューラルネット部の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a neural network unit according to a second embodiment. 実施例3のSOC演算結果を示す図である。It is a figure which shows the SOC calculation result of Example 3. 実施例3のSOC演算結果を示す図である。It is a figure which shows the SOC calculation result of Example 3. 実施例4のSOC演算結果を示す図である。It is a figure which shows the SOC calculation result of Example 4. 実施例4のSOC演算結果を示す図である。It is a figure which shows the SOC calculation result of Example 4.

符号の説明Explanation of symbols

101 車載蓄電装置
102 車載発電機
104 電流センサ
105 蓄電池状態検知装置(演算手段)
106 バッファ部
107 ニューラルネットワーク部(ニューラルネット部)
108 発電機制御装置
109 補正信号発生部
201 入力層
202 中間層
203 出力層
101 on-vehicle power storage device 102 on-vehicle generator 104 current sensor 105 storage battery state detection device (calculation means)
106 Buffer unit 107 Neural network unit (Neural network unit)
108 generator control device 109 correction signal generation unit 201 input layer 202 intermediate layer 203 output layer

Claims (6)

充放電可能な電池の直前の所定時間の電圧履歴及び電流履歴を検出して出力する電圧・電流履歴検出手段、及び、前記電圧履歴及び電流履歴を入力パラメータとして前記電池の現在の劣化状態に関する電気量をニューラルネット演算する演算手段とを備える車両用蓄電装置のニューラルネット演算方式において、
前記演算手段は、
前記電池の満充電状態からの所定放電量放電時における前記電池の劣化状態に関する所定の電気量である所定容量放電時劣化状態量を演算し、
前記電圧履歴及び電流履歴に加えて、前記所定容量放電時劣化状態量を入力パラメータとして、出力パラメータとしての前記電池の現在の劣化状態をニューラルネット演算することを特徴とする車両用蓄電装置のニューラルネット演算方式。
Voltage / current history detection means for detecting and outputting a voltage history and current history for a predetermined time immediately before a chargeable / dischargeable battery, and electricity relating to the current deterioration state of the battery using the voltage history and current history as input parameters In a neural network calculation method of a power storage device for a vehicle comprising a calculation means for calculating a quantity in a neural network,
The computing means is
Calculating a predetermined capacity discharge deterioration state amount, which is a predetermined amount of electricity related to the deterioration state of the battery at the time of discharging a predetermined discharge amount from the fully charged state of the battery;
In addition to the voltage history and current history, a neural network operation is performed for the current degradation state of the battery as an output parameter using the predetermined capacity discharge degradation state quantity as an input parameter, and the neural network of the vehicle power storage device Net operation method.
請求項1記載の車両用蓄電装置のニューラルネット演算方式において、
前記演算手段は、
前記電圧履歴及び電流履歴から最小自乗法により求めた近似式に基づいて求めた開路電圧今回値を算出し、
前記演算手段は、前記電圧履歴、電流履歴、開路電圧今回値及び前記所定容量放電時劣化状態量を入力パラメータとして前記電池の現在の劣化状態をニューラルネット演算することを特徴とする車両用蓄電装置のニューラルネット演算方式。
In the neural network calculation method for a power storage device for a vehicle according to claim 1,
The computing means is
Calculate the open circuit voltage current value obtained based on the approximate expression obtained by the least square method from the voltage history and current history,
The power storage device for a vehicle, wherein the calculation means performs a neural network calculation on a current deterioration state of the battery using the voltage history, current history, current value of the open circuit voltage, and the deterioration state amount during the predetermined capacity discharge as input parameters. Neural network operation method.
請求項2記載の車両用蓄電装置のニューラルネット演算方式において、
前記所定容量放電時劣化状態量は、
前記電池の満充電状態からの所定放電量放電時における前記電池の開路電圧と、
前記電池の満充電状態からの所定容量放電時における前記電池の内部抵抗と、
により構成されることを特徴とする車両用蓄電装置のニューラルネット演算方式。
In the neural network calculation method for a power storage device for a vehicle according to claim 2,
The deterioration amount during the predetermined capacity discharge is:
The open circuit voltage of the battery at the time of discharging a predetermined discharge amount from the fully charged state of the battery,
The internal resistance of the battery when discharging a predetermined capacity from the fully charged state of the battery;
A neural network calculation method for a power storage device for vehicles.
請求項3記載の車両用蓄電装置のニューラルネット演算方式において、
前記出力パラメータとしての前記電池の現在の劣化状態は、
SOC(充電率)とSOH(残存容量)との両方の信号、又はそれらを変数として含む関数であることを特徴とする車両用蓄電装置のニューラルネット演算方式。
In the neural network calculation method for a power storage device for a vehicle according to claim 3,
The current degradation state of the battery as the output parameter is
A neural network calculation method for a power storage device for a vehicle, which is a signal including both SOC (charge rate) and SOH (remaining capacity), or a function including them as a variable.
請求項4記載の車両用蓄電装置のニューラルネット演算方式において、
前記関数は、
劣化度=残存容量(SOH)/(初期の満充電容量×充電率(SOC))
で示されることを特徴とすることを特徴とする車両用蓄電装置のニューラルネット演算方式。
In the neural network calculation method for a vehicle power storage device according to claim 4,
The function is
Degree of degradation = remaining capacity (SOH) / (initial full charge capacity × charge rate (SOC))
A neural network calculation method for a power storage device for a vehicle, characterized in that
請求項4又は5記載の車両用蓄電装置のニューラルネット演算方式において、
前記演算手段は、前記SOCと所定容量放電時の開路電圧と所定容量放電時の内部抵抗とをニューラルネット演算して前記SOHを演算することを特徴とする車両用蓄電装置のニューラルネット演算方式。
In the neural network calculation method for a power storage device for a vehicle according to claim 4 or 5,
The neural network calculation method for a power storage device for a vehicle, wherein the calculation means calculates the SOH by performing a neural network calculation on the SOC, an open circuit voltage at a predetermined capacity discharge, and an internal resistance at a predetermined capacity discharge.
JP2005036437A 2005-02-14 2005-02-14 Internal state detection method for power storage device for vehicles Active JP4609882B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005036437A JP4609882B2 (en) 2005-02-14 2005-02-14 Internal state detection method for power storage device for vehicles
KR1020060014362A KR100880717B1 (en) 2005-02-14 2006-02-14 Method and apparatus for detecting charged state of secondary battery based on neural network calculation
US11/353,220 US7554296B2 (en) 2005-02-14 2006-02-14 Method and apparatus for detecting charged state of secondary battery based on neural network calculation
DE602006002896T DE602006002896D1 (en) 2005-02-14 2006-02-14 Method and device for detecting the charging status of a secondary battery based on neural network calculation
EP06002917A EP1691209B1 (en) 2005-02-14 2006-02-14 Method and apparatus for detecting charged state of secondary battery based on neural network calculation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005036437A JP4609882B2 (en) 2005-02-14 2005-02-14 Internal state detection method for power storage device for vehicles

Publications (2)

Publication Number Publication Date
JP2006220616A true JP2006220616A (en) 2006-08-24
JP4609882B2 JP4609882B2 (en) 2011-01-12

Family

ID=36983033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005036437A Active JP4609882B2 (en) 2005-02-14 2005-02-14 Internal state detection method for power storage device for vehicles

Country Status (1)

Country Link
JP (1) JP4609882B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039412A1 (en) * 2010-09-24 2012-03-29 古河電気工業株式会社 Charge acceptance limit determination device and charge acceptance limit determination method
WO2016002115A1 (en) * 2014-07-02 2016-01-07 パナソニックIpマネジメント株式会社 Battery state determining device
WO2018229597A1 (en) * 2017-06-16 2018-12-20 株式会社半導体エネルギー研究所 Charging control system, charging control method, and electronic equipment
WO2019021099A1 (en) * 2017-07-25 2019-01-31 株式会社半導体エネルギー研究所 Power storage system, electronic apparatus, vehicle, and estimation method
JP2019146302A (en) * 2018-02-16 2019-08-29 株式会社半導体エネルギー研究所 Charging state estimation device for secondary battery, abnormality detection device, and management system for secondary battery
WO2019181729A1 (en) * 2018-03-20 2019-09-26 株式会社Gsユアサ Deterioration estimation device, computer program and deterioration estimation method
WO2019181728A1 (en) * 2018-03-20 2019-09-26 株式会社Gsユアサ Degradation estimating device, computer program, and degradation estimating method
CN110702130A (en) * 2019-09-05 2020-01-17 临沂晶硕光电科技有限公司 New energy automobile remaining mileage estimation system
JP2021183927A (en) * 2020-05-21 2021-12-02 アクソンデータマシン株式会社 Secondary battery state estimation device using artificial intelligence technology
WO2021241115A1 (en) * 2020-05-25 2021-12-02 株式会社エンビジョンAescジャパン Deterioration estimation device, model generation device, deterioration estimation method, model generation method, and program
US11619674B2 (en) 2018-06-25 2023-04-04 Gs Yuasa International Ltd. State estimation method and state estimation apparatus
CN116581402A (en) * 2023-07-13 2023-08-11 北京索云科技股份有限公司 Intelligent operation maintenance method and system for universal storage battery
US11995919B2 (en) 2020-08-21 2024-05-28 Toyota Jidosha Kabushiki Kaisha Battery diagnostic device, battery diagnostic method, battery diagnostic program, and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243717A (en) * 1996-03-05 1997-09-19 Nissan Motor Co Ltd Method of detecting residual capacity of battery, and device therefor
JP2003153452A (en) * 2001-11-08 2003-05-23 Nissan Motor Co Ltd Arithmetic device for residual capacity of secondary battery
JP2004333472A (en) * 2003-04-15 2004-11-25 Nippon Soken Inc Internal condition detecting system for charge accumulating device for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243717A (en) * 1996-03-05 1997-09-19 Nissan Motor Co Ltd Method of detecting residual capacity of battery, and device therefor
JP2003153452A (en) * 2001-11-08 2003-05-23 Nissan Motor Co Ltd Arithmetic device for residual capacity of secondary battery
JP2004333472A (en) * 2003-04-15 2004-11-25 Nippon Soken Inc Internal condition detecting system for charge accumulating device for vehicle

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5863658B2 (en) * 2010-09-24 2016-02-16 古河電気工業株式会社 Charge acceptance limit determination device and charge acceptance limit determination method
WO2012039412A1 (en) * 2010-09-24 2012-03-29 古河電気工業株式会社 Charge acceptance limit determination device and charge acceptance limit determination method
CN103119458B (en) * 2010-09-24 2015-02-18 古河电气工业株式会社 Charge acceptance limit determination device and charge acceptance limit determination method
US9203253B2 (en) 2010-09-24 2015-12-01 Furukawa Electric Co., Ltd. Charge acceptance limit determination apparatus and charge acceptance limit determination method
CN103119458A (en) * 2010-09-24 2013-05-22 古河电气工业株式会社 Charge acceptance limit determination device and charge acceptance limit determination method
WO2016002115A1 (en) * 2014-07-02 2016-01-07 パナソニックIpマネジメント株式会社 Battery state determining device
JP2016014606A (en) * 2014-07-02 2016-01-28 パナソニックIpマネジメント株式会社 Battery state determination device
JP7235409B2 (en) 2017-06-16 2023-03-08 株式会社半導体エネルギー研究所 Charge control system and charge control method
JPWO2018229597A1 (en) * 2017-06-16 2020-04-16 株式会社半導体エネルギー研究所 Charge control system, charge control method, and electronic device
WO2018229597A1 (en) * 2017-06-16 2018-12-20 株式会社半導体エネルギー研究所 Charging control system, charging control method, and electronic equipment
WO2019021099A1 (en) * 2017-07-25 2019-01-31 株式会社半導体エネルギー研究所 Power storage system, electronic apparatus, vehicle, and estimation method
US11205912B2 (en) 2017-07-25 2021-12-21 Semiconductor Energy Laboratory Co., Ltd. Power storage system, electronic device, vehicle, and estimation method
JPWO2019021099A1 (en) * 2017-07-25 2020-08-06 株式会社半導体エネルギー研究所 Power storage system, electronic device and vehicle, and estimation method
CN111164822A (en) * 2017-07-25 2020-05-15 株式会社半导体能源研究所 Power storage system, electronic device, vehicle, and estimation method
JP2019146302A (en) * 2018-02-16 2019-08-29 株式会社半導体エネルギー研究所 Charging state estimation device for secondary battery, abnormality detection device, and management system for secondary battery
US11243262B2 (en) 2018-03-20 2022-02-08 Gs Yuasa International Ltd. Degradation estimation apparatus, computer program, and degradation estimation method
JP2019168452A (en) * 2018-03-20 2019-10-03 株式会社Gsユアサ Device, computer program, and method for estimating deterioration
JP2019168453A (en) * 2018-03-20 2019-10-03 株式会社Gsユアサ Device, computer program, and method for estimating deterioration
WO2019181728A1 (en) * 2018-03-20 2019-09-26 株式会社Gsユアサ Degradation estimating device, computer program, and degradation estimating method
WO2019181729A1 (en) * 2018-03-20 2019-09-26 株式会社Gsユアサ Deterioration estimation device, computer program and deterioration estimation method
US11619674B2 (en) 2018-06-25 2023-04-04 Gs Yuasa International Ltd. State estimation method and state estimation apparatus
CN110702130A (en) * 2019-09-05 2020-01-17 临沂晶硕光电科技有限公司 New energy automobile remaining mileage estimation system
JP7448201B2 (en) 2020-05-21 2024-03-12 アクソンデータマシン株式会社 Secondary battery condition estimation device using artificial intelligence technology
JP2021183927A (en) * 2020-05-21 2021-12-02 アクソンデータマシン株式会社 Secondary battery state estimation device using artificial intelligence technology
WO2021241115A1 (en) * 2020-05-25 2021-12-02 株式会社エンビジョンAescジャパン Deterioration estimation device, model generation device, deterioration estimation method, model generation method, and program
JP7457575B2 (en) 2020-05-25 2024-03-28 株式会社Aescジャパン Deterioration estimation device, model generation device, deterioration estimation method, model generation method, and program
US11995919B2 (en) 2020-08-21 2024-05-28 Toyota Jidosha Kabushiki Kaisha Battery diagnostic device, battery diagnostic method, battery diagnostic program, and vehicle
CN116581402B (en) * 2023-07-13 2023-11-17 北京索云科技股份有限公司 Intelligent operation maintenance method and system for universal storage battery
CN116581402A (en) * 2023-07-13 2023-08-11 北京索云科技股份有限公司 Intelligent operation maintenance method and system for universal storage battery

Also Published As

Publication number Publication date
JP4609882B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4609882B2 (en) Internal state detection method for power storage device for vehicles
JP4623448B2 (en) Secondary battery remaining capacity calculation method
Deng et al. Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery
Li et al. A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique
JP3935099B2 (en) Internal state detection system for power storage device for vehicle
Huang et al. A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature
Shen et al. Accurate state of charge estimation with model mismatch for li-ion batteries: A joint moving horizon estimation approach
Sun et al. A novel dual-scale cell state-of-charge estimation approach for series-connected battery pack used in electric vehicles
US6534954B1 (en) Method and apparatus for a battery state of charge estimator
US10295607B2 (en) Device for estimating parameters of battery, and estimation method
CN103020445B (en) A kind of SOC and SOH Forecasting Methodology of electric-vehicle-mounted ferric phosphate lithium cell
JP4587299B2 (en) Internal state detection method for power storage device for vehicles
US20060111870A1 (en) Method and system for joint battery state and parameter estimation
JP4609883B2 (en) Fully charged capacity calculation device for power storage device for vehicle
JP2008232758A (en) Detection device for internal state of secondary cell and neural network type estimation device for quantity of state
US20230358810A1 (en) Method for estimating state of charge of battery
JP5366166B2 (en) Secondary battery state quantity calculation method
KR20010043872A (en) Means for estimating charged state of battery and method for estimating degraded state of battery
EP1859523A1 (en) Apparatus and method for estimating battery state of charge
Park et al. Capacity estimation of Li-ion batteries using constant current charging voltage with multilayer perceptron
Bak et al. Accurate estimation of battery SOH and RUL based on a progressive lstm with a time compensated entropy index
JP4582584B2 (en) Secondary battery remaining capacity calculation method
JP2006300692A (en) Remaining capacity operation system of secondary battery
Narayan State and parametric estimation of li-ion batteries in electrified vehicles
JP4582583B2 (en) Secondary battery remaining capacity calculation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4609882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250