JP4609883B2 - Fully charged capacity calculation device for power storage device for vehicle - Google Patents

Fully charged capacity calculation device for power storage device for vehicle Download PDF

Info

Publication number
JP4609883B2
JP4609883B2 JP2005039614A JP2005039614A JP4609883B2 JP 4609883 B2 JP4609883 B2 JP 4609883B2 JP 2005039614 A JP2005039614 A JP 2005039614A JP 2005039614 A JP2005039614 A JP 2005039614A JP 4609883 B2 JP4609883 B2 JP 4609883B2
Authority
JP
Japan
Prior art keywords
full charge
charge capacity
neural network
voltage
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005039614A
Other languages
Japanese (ja)
Other versions
JP2006226789A (en
Inventor
覚 水野
淳 橋川
昭治 堺
淳 市川
直樹 水野
良文 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2005039614A priority Critical patent/JP4609883B2/en
Priority to KR1020060014362A priority patent/KR100880717B1/en
Priority to EP06002917A priority patent/EP1691209B1/en
Priority to US11/353,220 priority patent/US7554296B2/en
Priority to DE602006002896T priority patent/DE602006002896D1/en
Publication of JP2006226789A publication Critical patent/JP2006226789A/en
Application granted granted Critical
Publication of JP4609883B2 publication Critical patent/JP4609883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)

Description

この発明は、ニューラルネットを用いた車両用蓄電装置の満充電容量演算装置に関する。   The present invention relates to a full charge capacity calculation device for a vehicle power storage device using a neural network.

車両用の二次電池(蓄電装置とも言う)では、走行状態の変動などによりその充放電状態が非常に広い範囲でばらつくため、二次電池の満充電容量を正確に検出することが困難であった。このため、過充電や過放電を防止するため二次電池の使用可能充放電範囲を狭く設定せざるを得ず電池の有効使用という観点からその改善が強く要望されていた。   In a secondary battery for a vehicle (also referred to as a power storage device), the charging / discharging state varies in a very wide range due to fluctuations in the running state, and it is difficult to accurately detect the full charge capacity of the secondary battery. It was. For this reason, in order to prevent overcharge and overdischarge, the usable charge / discharge range of the secondary battery has to be set narrow, and there has been a strong demand for improvement from the viewpoint of effective use of the battery.

この問題の解決案として、下記の特許文献1、2は、二次電池の満充電容量や寿命をニューラルネットワーク(ニューラルネットとも言う)を用いて演算するニューラルネット式電池状態演算方式を提案している。
特開2003-24971号公報 特開平9-243716号公報
As a solution to this problem, Patent Documents 1 and 2 below propose a neural network type battery state calculation method for calculating the full charge capacity and life of a secondary battery using a neural network (also referred to as a neural network). Yes.
Japanese Patent Laid-Open No. 2003-24971 JP-A-9-243716

しかしながら、上記した特許文献1、2によるニューラルネット式電池状態検出技術を用いた寿命や満充電容量による判定精度は、個々の電池の劣化進行による電池特性の演算関数を柔軟に変更し得るニューラルネット演算を用いるにもかかわらず実用上十分ではなかった。   However, the determination accuracy based on the life and full charge capacity using the neural network type battery state detection technology according to Patent Documents 1 and 2 described above is a neural network that can flexibly change the calculation function of the battery characteristics due to the deterioration of each battery. Despite the use of arithmetic, it was not practical enough.

もちろん、二次電池のありとあらゆる電気的な状態量をすべてニューラルネットに投入して大規模なニューラルネット演算を行うことにより満充電容量の演算精度を向上できる可能性は大きい。けれども車載可能なニューラルネット演算装置の回路規模及び演算規模にはコスト、消費電力及び演算速度の点で強い制約があり、このような大規模なニューラルネット演算装置の車載はほとんど不可能であった。   Of course, it is highly possible that the calculation accuracy of the full charge capacity can be improved by performing a large-scale neural network calculation by putting all the electrical state quantities of the secondary battery into the neural network. However, the circuit scale and computation scale of a neural network computing device that can be mounted on the vehicle have strong restrictions in terms of cost, power consumption, and computation speed, and it is almost impossible to mount such a large-scale neural network computing device on the vehicle. .

つまり、二次電池の満充電容量はその電圧や電流といった電気的な電池状態量の履歴に相関を有するため、あらかじめこれら履歴と満充電容量との関係を学習させたニューラルネットに上記履歴を入力してニューラルネット演算することにより車両用蓄電装置の満充電容量を演算することは、電池状態量の変動が大きい車両用蓄電装置の満充電容量演算において非常に有効と考えられるが、その実用化のためにはニューラルネット演算の規模増大を抑止しつつその検出精度を図ることが不可避であった。   In other words, since the full charge capacity of the secondary battery has a correlation with the history of the electric battery state quantity such as voltage and current, the above history is input to a neural network that has learned the relationship between the history and the full charge capacity in advance. It is considered that calculating the full charge capacity of the power storage device for the vehicle by performing a neural network calculation is very effective in calculating the full charge capacity of the power storage device for the vehicle where the fluctuation of the battery state amount is large. Therefore, it is inevitable to improve the detection accuracy while suppressing the increase in the scale of the neural network operation.

本発明は上記問題点に鑑みなされたものであり、ニューラルネット演算の規模増大を抑止しつつ満充電容量検出精度の向上を実現した車両用蓄電装置の満充電容量演算装置を提供することをその目的としている。   The present invention has been made in view of the above problems, and provides a full charge capacity calculation device for a power storage device for a vehicle that realizes an improvement in full charge capacity detection accuracy while suppressing an increase in the scale of neural network calculation. It is aimed.

上記課題を解決する本発明の車両用蓄電装置の満充電容量演算装置は、充放電可能な電池の直前の所定時間の電圧履歴及び電流履歴を検出して出力する電圧・電流履歴検出手段と、前記電圧履歴及び電流履歴を入力パラメータとして前記電池の満充電容量をニューラルネット演算する演算手段とを備える車両用蓄電装置の満充電容量演算装置において、前記演算手段が、前記電圧履歴及び電流履歴から最小自乗法により求めた近似式に基づいて前記電池の満充電状態からの所定放電量放電時における開路電圧及び内部抵抗を演算し、前記電圧履歴及び電流履歴に加えて前記開路電圧及び内部抵抗を入力パラメータとして、出力パラメータとしての前記電池の満充電容量をニューラルネット演算することを特徴としている。 A full charge capacity calculation device for a power storage device for a vehicle according to the present invention that solves the above-mentioned problem is a voltage / current history detection means for detecting and outputting a voltage history and a current history of a predetermined time immediately before a chargeable / dischargeable battery , A full charge capacity calculation device for a power storage device for a vehicle, comprising: a calculation means for performing a neural network calculation of the full charge capacity of the battery using the voltage history and the current history as input parameters. Based on the approximate expression obtained by the method of least squares, the open circuit voltage and the internal resistance at the time of discharging a predetermined discharge amount from the fully charged state of the battery are calculated, and in addition to the voltage history and the current history, the open circuit voltage and the internal resistance are calculated. As an input parameter, a neural network calculation is performed on the full charge capacity of the battery as an output parameter.

すなわち、この発明は、直前の所定期間に所定タイミングでサンプリングした二次電池の電圧・電流ペアの群(すなわち電圧履歴及び電流履歴)に加えて、所定容量放電時の開路電圧及び内部抵抗という少ないデータにより、実用に耐える満充電容量検出精度が得られることを見い出したものである。すなわち、試験結果によれば、電池の電圧履歴及び電流履歴に所定容量放電時の開路電圧及び内部抵抗という少ないデータを追加するだけで満充電容量のニューラルネット演算精度を格段に向上できることが判明した。   That is, according to the present invention, in addition to a group of secondary battery voltage / current pairs (that is, voltage history and current history) sampled at a predetermined timing in the immediately preceding predetermined period, the open circuit voltage and the internal resistance during a predetermined capacity discharge are small. It has been found that the full charge capacity detection accuracy that can withstand practical use can be obtained from the data. That is, according to the test results, it was found that the neural network calculation accuracy of the full charge capacity can be remarkably improved only by adding a small amount of data such as the open circuit voltage and the internal resistance at the time of discharging the predetermined capacity to the voltage history and current history of the battery. .

したがって、本発明によれば、小規模のニューラルネット演算により実用上必要な演算時間内にて、ニューラルネット演算を用いない従来の満充電容量演算方式に比べて高精度に、しかも上記した従来のニューラルネット演算に比べても小演算規模でかつ高精度に満充電容量を検出することができる。これにより、車載電池の過充電や過放電を恐れることなく、その使用容量範囲を拡大することができ、その結果として従来より大幅に小容量の電池により必要な放電容量範囲を賄うことができ、車載電池スペースの縮小及び車体重量の軽減が可能となった。   Therefore, according to the present invention, the above-described conventional full charge capacity calculation method can be performed with high accuracy compared with the conventional full charge capacity calculation method that does not use the neural network calculation within a calculation time required for practical use by a small-scale neural network calculation. Compared to the neural network calculation, the full charge capacity can be detected with a small calculation scale and high accuracy. As a result, the usage capacity range can be expanded without fear of overcharge and overdischarge of the on-vehicle battery, and as a result, the required discharge capacity range can be covered by a battery with a much smaller capacity than before, The on-board battery space can be reduced and the vehicle weight can be reduced.

なお、電圧履歴を構成する電圧(すなわち端子電圧)及び電流履歴(充放電電流)は、上述したように同一時点でサンプリングされた電圧・電流ペアとされる。満充電状態から所定容量放電時の開路電圧とは、満充電状態から初期時の満充電容量の0〜30%放電した状態、更に好適には2〜20%放電した状態、更に好適には3〜10%放電した状態とされることができる。   Note that the voltage (that is, the terminal voltage) and the current history (charging / discharging current) constituting the voltage history are voltage / current pairs sampled at the same time as described above. The open circuit voltage at the time of discharging from the fully charged state to the predetermined capacity is a state in which 0 to 30% of the initial fully charged capacity is discharged from the fully charged state, more preferably 2 to 20%, more preferably 3 It can be in a state of being discharged by 10%.

ただし、この発明では、電圧履歴及び電流履歴と所定容量放電時の開路電圧及び内部抵抗とを少なくとも用いるが、更に別の状態量をニューラルネット演算のための入力パラメータとしてもよい。しかし、本発明の趣旨から言えば、この入力パラメータ追加によるニューラルネット演算量の増大の防止は実用上重要であり、追加は演算規模の増大が50%を超えない範囲でなされるべきである。   However, in the present invention, at least the voltage history and current history, the open circuit voltage at the time of predetermined capacity discharge, and the internal resistance are used, but another state quantity may be used as an input parameter for the neural network calculation. However, in terms of the gist of the present invention, it is practically important to prevent an increase in the amount of operation of the neural network by adding this input parameter, and the addition should be made within a range where the increase in the operation scale does not exceed 50%.

更に、本発明では、直前の所定期間における電圧履歴及び電流履歴すなわちサンプリングされた電圧・電流のペアの群がニューラルネット演算のために記憶されるが、所定容量放電時の開路電圧及び内部抵抗は、この記憶している電圧・電流のペアの群を最小自乗法で処理するだけで求めることができ、回路規模特にデータ記憶量を節約することができるという利点を有している。   Furthermore, in the present invention, a voltage history and current history in a predetermined period immediately before, that is, a group of sampled voltage / current pairs are stored for neural network calculation. The group of stored voltage / current pairs can be obtained only by processing by the least square method, and the circuit scale, particularly the data storage amount, can be saved.

好適な態様において、前記演算手段は、今回ニューラルネット演算して得た前記満充電容量と、あらかじめ記憶する前記電池の満充電容量の初期値との比率として電池劣化度(=前記満充電容量/(初期の満充電容量))を演算する。これにより、たとえばこの電池劣化度に基づいて電池寿命やその交換時期を判定することができる。   In a preferred aspect, the calculating means calculates a battery deterioration level (= the full charge capacity / the full charge capacity as a ratio between the full charge capacity obtained by the current neural network calculation and an initial value of the full charge capacity of the battery stored in advance. (Initial full charge capacity)) is calculated. Thereby, for example, the battery life and the replacement time can be determined based on the degree of battery deterioration.

本発明の車両用蓄電装置のニューラルネット演算方式を実施例を参照して図面に沿って具体的に説明する。   A neural network calculation method for a power storage device for a vehicle according to the present invention will be specifically described with reference to the accompanying drawings.

(全体構成)
実施例1の車両用蓄電装置のニューラルネット演算方式について以下に説明する。まず、装置の回路構成を図1に示すブロック図を参照して説明する。
(overall structure)
A neural network calculation method for the power storage device for a vehicle according to the first embodiment will be described below. First, the circuit configuration of the apparatus will be described with reference to the block diagram shown in FIG.

101は車載蓄電装置(以下、バッテリとも呼ぶ)、102はこの車載蓄電装置を充電する車載発電機、103は車載蓄電装置101から給電される車載電気負荷をなす電気装置、104は車載蓄電装置101の充放電電流を検出する電流センサ、105は車載蓄電装置101の状態を検出する電子回路装置である蓄電池状態検知装置、106は入力される電池の電圧及び電流を電圧履歴及び電流履歴として記憶して出力するとともに開路電圧の今回値及び/又は内部抵抗の今回値を演算して出力するバッファ部、107はバッファ部106及び後述する補正信号発生部109から入力される各種の入力信号をニューラルネット演算して満充電容量を演算して入力するニューラルネット部、108はニューラルネット部107などから読み込んだ信号に基づいて車載発電機102の発電量を制御する発電機制御装置、109は後述するキャリブレーションデータとしての所定容量放電時の開路電圧及び内部抵抗を演算してニューラルネット部107の入力データとして出力する補正信号発生部である。   101 is an in-vehicle power storage device (hereinafter also referred to as a battery), 102 is an in-vehicle generator that charges the in-vehicle power storage device, 103 is an electric device that forms an in-vehicle electric load fed from the in-vehicle power storage device 101, and 104 is an in-vehicle power storage device 101 A current sensor for detecting the charging / discharging current of the battery, 105 is a storage battery state detection device which is an electronic circuit device for detecting the state of the in-vehicle power storage device 101, and 106 stores the voltage and current of the input battery as a voltage history and a current history. And a buffer unit 107 that calculates and outputs the current value of the open circuit voltage and / or the current value of the internal resistance, and 107 outputs various input signals input from the buffer unit 106 and a correction signal generator 109 described later as a neural network. The neural network unit that calculates and inputs the full charge capacity by calculation, 108 is read from the neural network unit 107, etc. A generator control device 109 for controlling the amount of power generated by the in-vehicle generator 102 based on the signal, 109 calculates an open circuit voltage and internal resistance at the time of predetermined capacity discharge as calibration data, which will be described later, and inputs data to the neural network unit 107 Is a correction signal generation unit that outputs as

すなわち、この実施例では、蓄電池状態検知装置105は、バッファ部106及びニューラルネット部107に加えて、所定容量放電時の開路電圧及び内部抵抗を演算してニューラルネット部107にキャリブレーション用の入力データとして出力する補正信号発生部109を有する点をその特徴としている。なお、バッファ部106、ニューラルネット部107及び補正信号発生部109は、この実施例ではマイコン装置によるソフトウエア演算により実現されるが、専用のハードウエア回路により構成されてよいことはもちろんである。   That is, in this embodiment, the storage battery state detection device 105 calculates the open circuit voltage and internal resistance at the time of predetermined capacity discharge, in addition to the buffer unit 106 and the neural network unit 107, and inputs the calibration input to the neural network unit 107. It has a feature that it has a correction signal generator 109 that outputs data. In this embodiment, the buffer unit 106, the neural network unit 107, and the correction signal generation unit 109 are realized by software calculation by a microcomputer device, but may be configured by a dedicated hardware circuit.

ただし、図1では、補正信号発生部109には、車載蓄電装置101の電圧と電流センサの電流が入力される回路として記載されているが、実際にはこの補正信号発生部109はバッファ部106及びニューラルネット部107と同じくマイコンソフトウエアにより構成されており、マイコンのRAM又はレジスタに保持される電圧・電流ペアの群を演算して所定容量放電時の開路電圧及び内部抵抗を演算する。   However, in FIG. 1, the correction signal generation unit 109 is described as a circuit to which the voltage of the in-vehicle power storage device 101 and the current of the current sensor are input, but actually, the correction signal generation unit 109 is the buffer unit 106. Similarly to the neural network unit 107, it is constituted by microcomputer software, and calculates a group of voltage / current pairs held in the RAM or register of the microcomputer to calculate an open circuit voltage and an internal resistance at a predetermined capacity discharge.

(バッファ部106)
バッファ部106は、ニューラルネット部107の前置信号処理回路であって、車載蓄電装置101の電圧と電流センサ104からの電流とを一定時間ごとに同時にサンプリングして電池の電圧履歴及び電流履歴として記憶し、各時点の電圧及び電流をニューラルネット部107に並列出力する。ニューラルネット部107の入力セルの数的限界や演算負担の軽減などのため、電池の電圧履歴及び電流履歴をなす電圧・電流のサンプリングデータは、現時点から遡行する所定時点までのデータにより構成される。
(Buffer 106)
The buffer unit 106 is a pre-signal processing circuit of the neural network unit 107, and simultaneously samples the voltage of the in-vehicle power storage device 101 and the current from the current sensor 104 at regular intervals to obtain a battery voltage history and a current history. The voltage and current at each time point are stored in parallel and output to the neural network unit 107 in parallel. In order to reduce the numerical limit of the input cell of the neural network unit 107 and the calculation burden, the voltage / current sampling data constituting the battery voltage history and current history is composed of data up to a predetermined time point retroactive from the present time. .

(補正信号発生部109)
補正信号発生部109は、満充電から所定容量放電時の開路電圧及び内部抵抗を演算し、この所定容量放電時の開路電圧及び内部抵抗をニューラルネット演算におけるキャリブレーションデータとしてニューラルネット部107に出力する。補正信号発生部109を図2のフローチャートに図示する。
(Correction signal generator 109)
The correction signal generation unit 109 calculates the open circuit voltage and internal resistance at the time of predetermined capacity discharge from full charge, and outputs the open circuit voltage and internal resistance at the time of predetermined capacity discharge to the neural network unit 107 as calibration data in the neural network calculation. To do. The correction signal generator 109 is illustrated in the flowchart of FIG.

補正信号発生部109は、走行を開始することにより開始され(ステップ601)、バッテリの電流・端子電圧を検出する(ステップ602) 。検出された電流・端子電圧に対して後述の満充電判定を行い(ステップ603)、満充電であれば、その後の充放電電流の積算をスタートし(ステップ604)、積算電流値(Ah)が所定放電量に達したかどうかを判定し(ステップ605)、達したらこの時の開路電圧を演算し(ステップ606) 、それを所定容量放電時の開路電圧として書き換える(ステップ607)、その後、この時の電池の内部抵抗を演算し(ステップ608) 、それを所定容量放電時の内部抵抗として書き換える(ステップ609) 。   The correction signal generator 109 is started by starting running (step 601), and detects the battery current and terminal voltage (step 602). A full charge determination (described later) is performed for the detected current / terminal voltage (step 603), and if it is full charge, the subsequent charge / discharge current integration is started (step 604), and the integrated current value (Ah) is It is determined whether or not the predetermined discharge amount has been reached (step 605), and when it is reached, the open circuit voltage at this time is calculated (step 606) and rewritten as the open circuit voltage at the time of predetermined capacity discharge (step 607). The internal resistance of the battery at the time is calculated (step 608), and this is rewritten as the internal resistance at the time of discharging a predetermined capacity (step 609).

ステップ603で説明した満充電判定について図3を参照して更に詳しく説明する。満充電判定は、電池の電圧・電流の二次元空間の所定領域としてあらかじめ記憶されており、入力される電流・電圧特性が、この所定領域(図3参照)に入ったら満充電と判定する。 The full charge determination described in step 603 will be described in more detail with reference to FIG. The full charge determination is stored in advance as a predetermined area in the two-dimensional space of the battery voltage and current. When the input current / voltage characteristics enter the predetermined area (see FIG. 3), it is determined that the battery is fully charged.

ステップ606、608で説明した満充電から所定容量放電時の開路電圧及び内部抵抗を求める演算を図4を参照して更に詳しく説明する。   The calculation for obtaining the open circuit voltage and the internal resistance at the time of discharging the predetermined capacity from the full charge described in Steps 606 and 608 will be described in more detail with reference to FIG.

満充電から所定容量放電した時点直前の所定期間に入力された所定個数の電圧・電流ペアから最小自乗法により電圧と電流との関係を示す近似式を求め、この近似式の切片として開路電圧(電流が0であるとみなした場合の電池の電圧であり、開放電圧とも呼ばれる)と、この近似式の傾きとして内部抵抗を求め、これらを上記した所定容量放電時の開路電圧及び内部抵抗とする。なお、上記直線近似の精度を向上するために、電池の分極状態を過去の電流情報などから求めて分極指数として表し、この分極指数が所定の範囲内であるデータを選別することが好ましい。この種の最小自乗法を用いた直線近似式の創成と、この直線近似式を用いた開路電圧や内部抵抗の抽出自体は公知事項であるため、更なる説明は省略する。   An approximate expression indicating the relationship between voltage and current is obtained by a least square method from a predetermined number of voltage / current pairs input during a predetermined period immediately before the discharge of a predetermined capacity from full charge, and the open circuit voltage ( Battery voltage when the current is considered to be 0, which is also referred to as open-circuit voltage), and the internal resistance is obtained as the slope of this approximate expression, and these are used as the open circuit voltage and internal resistance during the above-mentioned predetermined capacity discharge. . In order to improve the accuracy of the above linear approximation, it is preferable to obtain the polarization state of the battery from the past current information and express it as a polarization index, and to select data in which this polarization index is within a predetermined range. Since the creation of a linear approximation formula using this kind of least square method and the extraction of the open circuit voltage and internal resistance using this linear approximation formula are known matters, further explanation is omitted.

(ニューラルネット部107)
ニューラルネット部107を図5に模式図示する。ただし、ニューラルネット部107は前述したように、実際には所定の演算インタバルで順次実施されるソフトウエア演算により構成されるため、図5に示す回路構成は機能的なものにすぎない。
(Neural network unit 107)
The neural network unit 107 is schematically shown in FIG. However, as described above, since the neural network unit 107 is actually configured by software operations sequentially performed at a predetermined operation interval, the circuit configuration illustrated in FIG. 5 is merely functional.

図5に示す満充電容量演算用のニューラルネット部107は3階層のフィードフォワード型の誤差逆伝播方法により学習する形式であるが、この形式に限定されるものではない。入力層201は所定数の入力セルからなる。各入力セルはそれぞれ、バッファ部106からの電圧履歴データVi及び電流履歴データIiと、補正信号発生部109から入力されるキャリブレーションデータとしての所定容量放電時の開路電圧Vo及び内部抵抗rとを中間層202の各演算セルすべてに出力する。この実施例では、電圧履歴データVi及び電流履歴データIiはそれぞれ、一定インタバルでサンプリングされた5点のデータからなるがこれに限定されるものではない。たとえば、他のデータに対して電圧又は電流が所定量以上離れたデータとしてもよい。   Although the neural network unit 107 for calculating the full charge capacity shown in FIG. 5 has a form of learning by a three-layer feedforward type error back propagation method, it is not limited to this form. The input layer 201 includes a predetermined number of input cells. Each input cell has voltage history data Vi and current history data Ii from the buffer unit 106, and an open circuit voltage Vo and internal resistance r at the time of predetermined capacity discharge as calibration data input from the correction signal generation unit 109. The data is output to all the calculation cells in the intermediate layer 202. In this embodiment, the voltage history data Vi and the current history data Ii are each composed of five points of data sampled at a constant interval, but are not limited thereto. For example, the voltage or current may be data that is more than a predetermined amount away from other data.

中間層202の各演算セルは、入力層201の各入力セルから入力される各入力データに後述するニューラルネット演算を行い、演算結果である満充電容量を出力層203の出力セルに出力し、出力層203は満充電容量を外部に出力する。   Each calculation cell of the intermediate layer 202 performs a neural network calculation described later on each input data input from each input cell of the input layer 201, and outputs a full charge capacity as a calculation result to the output cell of the output layer 203. The output layer 203 outputs the full charge capacity to the outside.

ニューラルネット部107の入力層201のj番目のセルの入力データをINj、入力層201のj番目と中間層202のk番目のセルの結合係数をWjkとすると中間層のk番目のセルへの入力信号は、
INPUTk(t)=Σ( Wjk * INj ) ( j = 1 to 2m+3 )
となる。中間層のk番目のセルからの出力信号は、
OUTk(t)=f(x)=f( INPUTk(t) + b )
で表される。bは定数である。f( INPUTk(t) + b) は INPUTk(t) + bを入力変数とするいわゆるシグモイド関数と呼ばれる非線形関数であり、
f ( INPUTk(t) + b )=1/(1+exp(−( INPUTk(t) + b)))
で定義される関数である。中間層202のk番目のセルと出力層203のセルとの結合係数をWkとすれば、出力層への入力信号は同様に、
INPUTo(t)=Σ Wk * OUTk(t)
k=1 to Q
で表される。 Qは中間層202のセル数である。時刻tにおける出力信号は、
OUT(t)=L * INPUTo(t)
となる。Lは線形定数である。
If the input data of the jth cell of the input layer 201 of the neural network unit 107 is INj, and the coupling coefficient of the jth cell of the input layer 201 and the kth cell of the intermediate layer 202 is Wjk, the input data to the kth cell of the intermediate layer The input signal is
INPUTk (t) = Σ (Wjk * INj) (j = 1 to 2m + 3)
It becomes. The output signal from the kth cell of the intermediate layer is
OUTk (t) = f (x) = f (INPUTk (t) + b)
It is represented by b is a constant. f (INPUTk (t) + b) is a non-linear function called a sigmoid function with INPUTk (t) + b as an input variable.
f (INPUTk (t) + b) = 1 / (1 + exp (− (INPUTk (t) + b)))
Is a function defined by If the coupling coefficient between the kth cell of the intermediate layer 202 and the cell of the output layer 203 is Wk, the input signal to the output layer is
INPUTo (t) = Σ Wk * OUTk (t)
k = 1 to Q
It is represented by Q is the number of cells in the intermediate layer 202. The output signal at time t is
OUT (t) = L * INPUTo (t)
It becomes. L is a linear constant.

この明細書で言う学習過程とは、時刻tにおける最終出力OUT(t)と、あらかじめ測定した後述の教師信号(即ち真値tar(t))との間の誤差を最小にするように各セル間の結合係数を最適化することである。なお、出力OUT(t)は、出力層203が出力すべき出力パラメータであり、ここでは時点tにおける満充電容量である。 In this specification, the learning process means that each cell has a minimum error between a final output OUT (t) at time t and a teacher signal (that is, a true value tar (t)) measured in advance. Is to optimize the coupling coefficient between. The output OUT (t) is an output parameter to be output by the output layer 203, and here is the full charge capacity at the time t.

次に各結合係数の更新方法について説明する。   Next, a method for updating each coupling coefficient will be described.

中間層のk番目のセルと出力層のセル間の結合係数Wkの更新は、
Wk = Wk + △Wk
で行われる。ここで△Wkは以下で定義される。
The update of the coupling coefficient Wk between the kth cell in the intermediate layer and the cell in the output layer is
Wk = Wk + △ Wk
Done in Here, ΔWk is defined as follows.

△Wk = −η*∂Ek/∂Wk η;定数
= η* [ OUT(t) − tar(t) ]* [ ∂OUT(t)/∂Wk ]
= η* [ OUT(t) − tar(t) ]* L *[ ∂INPUTo(t)/∂Wk ]
= η* L* [ OUT(t) − tar(t) ] * OUTk(t)
で表される。Ekは教師データとネットワーク出力の誤差を表す量で次の式で定義される。
△ Wk = −η * ∂Ek / ∂Wk η; Constant
= η * [OUT (t) − tar (t)] * [∂OUT (t) / ∂Wk]
= η * [OUT (t) − tar (t)] * L * [∂INPUTo (t) / ∂Wk]
= η * L * [OUT (t) − tar (t)] * OUTk (t)
It is represented by Ek is an amount representing an error between teacher data and network output, and is defined by the following equation.

Ek=[ OUT(t) − tar(t) ]×[ OUT(t) − tar(t) ]/2
次に、中間層202のk番目のセルと入力層201のj番目のセルの結合係数Wjkの更新ルールを説明する。結合係数Wjkの更新は以下の式で実現される。
Ek = [OUT (t)-tar (t)] x [OUT (t)-tar (t)] / 2
Next, a rule for updating the coupling coefficient Wjk between the kth cell in the intermediate layer 202 and the jth cell in the input layer 201 will be described. The update of the coupling coefficient Wjk is realized by the following equation.

Wjk = Wjk + △Wjk
ここで△Wjkは以下で定義される。
Wjk = Wjk + △ Wjk
Here, ΔWjk is defined as follows.

△Wjk = − η*∂Ek/∂Wjk
= − η*[∂Ek/∂INPUTk(t)] * [∂INPUTk(t)/∂Wjk]
= − η*[∂Ek/∂OUTk(t)] * [∂OUTk(t)/∂INPUTk(t)]* INj
= − η*[∂Ek/∂OUT(t)] * [∂OUT(t)/∂INPUTo] *
[∂INPUTo /OUTk(t)] * f’(INPUTk(t)+b)* INj
= − η*(OUT(t)−tar(t)) * L * Wk * f’(INPUTk(t)+b)* INj
= − η* L * Wk * INj * (OUT(t)−tar(t)) * f’(INPUTk(t)+b)
ここで、f’(INPUTk(t)+b)は伝達関数fの微分値である。
△ Wjk =-η * ∂Ek / ∂Wjk
=-Η * [∂Ek / ∂INPUTk (t)] * [∂INPUTk (t) / ∂Wjk]
=-Η * [∂Ek / ∂OUTk (t)] * [∂OUTk (t) / ∂INPUTk (t)] * INj
=-Η * [∂Ek / ∂OUT (t)] * [∂OUT (t) / ∂INPUTo] *
[∂INPUTo / OUTk (t)] * f '(INPUTk (t) + b) * INj
= −η * (OUT (t) −tar (t)) * L * Wk * f ′ (INPUTk (t) + b) * INj
= −η * L * Wk * INj * ( OUT (t) −tar (t)) * f ′ (INPUTk (t) + b)
Here, f ′ (INPUTk (t) + b) is a differential value of the transfer function f.

こうして更新された新たな結合係数Wk、Wjkで再び出力OUT(t)すなわち時点tにおける満充電容量を計算し、誤差関数Ekが所定の微小値以下になるまで結合係数を更新しつづける。このように誤差関数Ekを所定値以下になるよう結合係数を更新してゆく過程が学習過程である。 The output OUT (t), that is, the full charge capacity at time t is calculated again with the new coupling coefficients Wk and Wjk updated in this way, and the coupling coefficient is continuously updated until the error function Ek becomes a predetermined minute value or less. The process of updating the coupling coefficient so that the error function Ek becomes a predetermined value or less is the learning process.

上記学習過程のフローチャートを図6を参照して説明する。ただし、ニューラルネット部107は現在の満充電容量を出力するものとする。   A flowchart of the learning process will be described with reference to FIG. However, the neural network unit 107 outputs the current full charge capacity.

まず、ニューラルネット部107の各結合係数の適当な初期値を設定する(ステップ302)。これは例えば乱数などにより適当に決定すればよい。次に、学習用の所定の入力信号をニューラルネット部107の入力層201の各セルに個別に入力し(ステップ303)、この入力信号を上記した結合係数の初期値を用いてニューラルネット演算することにより出力パラメータとしての満充電容量を算出する(ステップ304)。 First, an appropriate initial value of each coupling coefficient of the neural network unit 107 is set (step 302). This may be determined appropriately using, for example, a random number. Next, a predetermined input signal for learning is individually input to each cell of the input layer 201 of the neural network unit 107 (step 303), and this input signal is subjected to neural network calculation using the initial value of the coupling coefficient described above. Thus, the full charge capacity as an output parameter is calculated (step 304).

次に、上記した方法で誤差関数Ekを算出し(ステップ305)、この誤差関数が所定の微小値thより小さいか否か判定する(ステップ306)。誤差関数Ekが所定の微小値thより大きければ、前記学習過程で定義された各結合係数の更新量△Wを計算し(ステップ307)、各結合係数を更新する(ステップ308)。   Next, the error function Ek is calculated by the above method (step 305), and it is determined whether or not this error function is smaller than a predetermined minute value th (step 306). If the error function Ek is larger than a predetermined minute value th, the update amount ΔW of each coupling coefficient defined in the learning process is calculated (step 307), and each coupling coefficient is updated (step 308).

次に、再び上記した学習用の入力信号を入力層201の各セルに入力して出力パラメータとしての満充電容量を計算する。次に、誤算関数Ekを評価してそれが微小値thを下回れば学習を完了したと判定して(ステップ309)、この学習課程を終了する。誤差関数Ekが微小値を下回ってなければ、結合係数を再び更新して満充電容量を計算し、誤差関数Ekの評価を実施し、誤差関数Ekがこの微小値を下回るまでこの課程を繰り返す。 Next, the learning input signal described above is input again to each cell of the input layer 201 to calculate the full charge capacity as an output parameter. Next, the miscalculation function Ek is evaluated, and if it is below the minute value th, it is determined that the learning has been completed (step 309), and this learning process is terminated. If the error function Ek is not below the minute value, the coupling coefficient is updated again to calculate the full charge capacity , the error function Ek is evaluated, and this process is repeated until the error function Ek falls below the minute value.

したがって、上記した学習課程として代表的な充放電パターンを幾つかの電池種類について製品の出荷前にニューラルネット部107にあらかじめ学習させておけば、あるいは学習結果をこのニューラルネット部107に書き込んでおけば、走行中の車載蓄電池の満充電容量を逐次算定することが可能となる。   Therefore, if a typical charge / discharge pattern as described above is learned for some battery types in the neural network unit 107 before shipment of the product, the learning result can be written in the neural network unit 107. Thus, it is possible to sequentially calculate the full charge capacity of the on-vehicle storage battery that is running.

満充電が判定されない場合や満充電から所定容量放電時の開路電圧が検出されない場合には、所定容量放電時の開路電圧として以前に求めた値が保持される。また、所定容量放電時の開路電圧及び内部抵抗が変化すればそれを更新して保持することにより、バッテリの劣化に応じて精度よく満充電容量の検出を行うことができる。   When the full charge is not determined or when the open circuit voltage at the predetermined capacity discharge is not detected from the full charge, the value obtained previously as the open circuit voltage at the predetermined capacity discharge is held. Further, if the open circuit voltage and the internal resistance at the time of discharging the predetermined capacity change, the full charge capacity can be accurately detected according to the deterioration of the battery by updating and holding it.

(試験結果)
上記学習済みのニューラルネット部107にて試験品のバッテリの満充電容量を測定した試験結果について以下に説明する。
(Test results)
Test results obtained by measuring the full charge capacity of the test battery in the learned neural network unit 107 will be described below.

種々の劣化状態をもつ初期満充電容量が27Ahの9個の車両用鉛蓄電池を試験品として用いた。各バッテリの現時点の満充電容量は0.2Cの放電条件で満充電状態から端子電圧が10.5Vとなるまで放電させてその電流積算値で求めた。これらの試験電池を車載の上記ニューラルネット部107に接続し、車両を10.15モード走行条件で走行させてニューラルネット演算を行って、満充電容量をニューラルネット演算した。ただし、上記した所定容量放電時の開路電圧及び内部抵抗は、満充電状態から5.0Ah放電した時点の開路電圧及び内部抵抗とした。電圧履歴及び電流履歴は、上記したように直前に所定のインタバルにてサンプリングした5点の電圧・電流ペアにより構成した。走行中、満充電判定を得た後、5Ah放電した時点から走行終了までにおいて得た各試験バッテリの満充電容量の検出誤差の平均値を以下に示す。   Nine vehicle lead-acid batteries with various degradation states and an initial full charge capacity of 27 Ah were used as test products. The current full charge capacity of each battery was calculated from the accumulated current value after discharging from the fully charged state until the terminal voltage became 10.5V under the discharge condition of 0.2C. These test batteries were connected to the above-described neural network unit 107 mounted on the vehicle, and the vehicle was run under the 10.15 mode driving condition to perform a neural network operation, and the full charge capacity was calculated through the neural network operation. However, the open circuit voltage and the internal resistance at the time of discharging the predetermined capacity described above were the open circuit voltage and the internal resistance at the time when 5.0 Ah was discharged from the fully charged state. As described above, the voltage history and the current history are constituted by five voltage / current pairs sampled immediately before at a predetermined interval. The average value of the detection error of the full charge capacity of each test battery obtained from the time of 5 Ah discharge to the end of travel after obtaining full charge determination during travel is shown below.

試験品1 満充電容量 18.2Ah
検出誤差 2.3Ah
試験品2 満充電容量 21.8Ah
検出誤差 0.6Ah
試験品3 満充電容量 10.5Ah
検出誤差 0.6Ah
試験品4 満充電容量 10.0Ah
検出誤差 0.1Ah
試験品5 満充電容量 18.3Ah
検出誤差 2.1Ah
試験品6 満充電容量 21.2Ah
検出誤差 1.2Ah
試験品7 満充電容量 24.3Ah
検出誤差 3.4Ah
試験品8 満充電容量 27.6Ah
検出誤差 0.2Ah
試験品9 満充電容量 25.1Ah
検出誤差 3.3Ah
次に、上記したニューラルネット部107において、入力パラメータとして電圧履歴及び電流履歴は用いるものの、キャリブレーションデータとしての所定容量放電時の開路電圧及び内部抵抗を用いない場合の満充電容量演算結果を以下に記載する。試験条件は上記と同じである。
Test item 1 Full charge capacity 18.2Ah
Detection error 2.3Ah
Test product 2 Fully charged capacity 21.8Ah
Detection error 0.6Ah
Test item 3 Fully charged capacity 10.5Ah
Detection error 0.6Ah
Test item 4 Full charge capacity 10.0Ah
Detection error 0.1Ah
Test product 5 Fully charged capacity 18.3 Ah
Detection error 2.1Ah
Test item 6 Fully charged capacity 21.2Ah
Detection error 1.2Ah
Test item 7 Full charge capacity 24.3Ah
Detection error 3.4Ah
Test article 8 Full charge capacity 27.6Ah
Detection error 0.2Ah
Test item 9 Fully charged capacity 25.1Ah
Detection error 3.3Ah
Next, in the above-described neural network unit 107, although the voltage history and current history are used as input parameters, the full charge capacity calculation result when the open circuit voltage and internal resistance at the time of predetermined capacity discharge as calibration data are not used is as follows: It describes. The test conditions are the same as above.

試験品1 満充電容量 18.2Ah
検出誤差 3.9Ah
試験品2 満充電容量 21.8Ah
検出誤差 2.8Ah
試験品3 満充電容量 10.5Ah
検出誤差 5.4Ah
試験品4 満充電容量 10.0Ah
検出誤差 5.7Ah
試験品5 満充電容量 18.3Ah
検出誤差 4.4Ah
試験品6 満充電容量 21.2Ah
検出誤差 3.4Ah
試験品7 満充電容量 24.3Ah
検出誤差 1.7Ah
試験品8 満充電容量 27.6Ah
検出誤差 2.8Ah
試験品9 満充電容量 25.1Ah
検出誤差 2.7Ah
図7に所定容量放電時の開路電圧及び内部抵抗をキャリブレーションデータとして用いた場合と用いない場合とで、実際の満充電容量に対する検出誤差を図示する。入力データを10点から12点と僅か増加するのみで、格段に劣化バッテリの満充電容量演算精度を向上できることがわかった。その他、上記ニューラルネット演算により得た満充電容量が、あらかじめ記憶する初期の満充電容量に対して所定比率未満となった場合にバッテリが寿命となり、交換時期となると判定することができる。
Test item 1 Full charge capacity 18.2Ah
Detection error 3.9Ah
Test product 2 Fully charged capacity 21.8Ah
Detection error 2.8Ah
Test item 3 Fully charged capacity 10.5Ah
Detection error 5.4Ah
Test item 4 Full charge capacity 10.0Ah
Detection error 5.7Ah
Test product 5 Fully charged capacity 18.3 Ah
Detection error 4.4Ah
Test item 6 Fully charged capacity 21.2Ah
Detection error 3.4Ah
Test item 7 Full charge capacity 24.3Ah
Detection error 1.7Ah
Test article 8 Full charge capacity 27.6Ah
Detection error 2.8Ah
Test item 9 Fully charged capacity 25.1Ah
Detection error 2.7Ah
FIG. 7 illustrates detection errors with respect to the actual full charge capacity, depending on whether or not the open circuit voltage and the internal resistance at the time of discharging the predetermined capacity are used as calibration data. It has been found that the calculation accuracy of the fully charged capacity of a deteriorated battery can be significantly improved by only slightly increasing the input data from 10 to 12 points. In addition, when the full charge capacity obtained by the above-described neural network calculation becomes less than a predetermined ratio with respect to the initial full charge capacity stored in advance, it can be determined that the battery has reached the end of its life and is ready for replacement.

実施例の装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the apparatus of an Example. 実施例の走行中における満充電から所定容量放電時の開路電圧及び内部抵抗の演算方法を示すフローチャートである。It is a flowchart which shows the calculation method of the open circuit voltage and internal resistance at the time of predetermined capacity discharge from full charge in driving | running | working of an Example. 実施例の満充電判定のための満充電領域を示す図である。It is a figure which shows the full charge area | region for the full charge determination of an Example. 実施例の満充電から所定容量放電時の開路電圧及び内部抵抗を得るための近似式の例を示す図である。It is a figure which shows the example of the approximate expression for obtaining the open circuit voltage and internal resistance at the time of predetermined capacity | capacitance discharge from the full charge of an Example. 満充電容量検出用のニューラルネットワーク部の構成を示すブロック図である。It is a block diagram which shows the structure of the neural network part for full charge capacity | capacitance detection. 図5のニューラルネット部のフローチャートである。It is a flowchart of the neural network part of FIG. 所定容量放電時の開路電圧及び内部抵抗を用いた場合と用いない場合とで満充電容量の検出誤差の比較結果を示す図である。It is a figure which shows the comparison result of the detection error of a full charge capacity by the case where the open circuit voltage and internal resistance at the time of predetermined capacity discharge are used, and the case where it does not use.

符号の説明Explanation of symbols

101 車載蓄電装置
102 車載発電機
104 電流センサ
105 蓄電池状態検知装置(演算手段)
106 バッファ部
107 ニューラルネットワーク部(ニューラルネット部)
108 発電機制御装置
109 補正信号発生部
201 入力層
202 中間層
203 出力層
101 on-vehicle power storage device 102 on-vehicle generator 104 current sensor 105 storage battery state detection device (calculation means)
106 Buffer unit 107 Neural network unit (Neural network unit)
108 generator control device 109 correction signal generation unit 201 input layer 202 intermediate layer 203 output layer

Claims (2)

充放電可能な電池の直前の所定時間の電圧履歴及び電流履歴を検出して出力する電圧・電流履歴検出手段と、前記電圧履歴及び電流履歴を入力パラメータとして前記電池の満充電容量をニューラルネット演算する演算手段とを備える車両用蓄電装置の満充電容量演算装置において、
前記演算手段は、
前記電圧履歴及び電流履歴から最小自乗法により求めた近似式に基づいて前記電池の満充電状態からの所定放電量放電時における開路電圧及び内部抵抗を演算し、
前記電圧履歴及び電流履歴に加えて前記開路電圧及び内部抵抗を入力パラメータとして、出力パラメータとしての前記電池の満充電容量をニューラルネット演算することを特徴とする車両用蓄電装置の満充電容量演算装置。
Voltage / current history detection means for detecting and outputting voltage history and current history for a predetermined time immediately before a chargeable / dischargeable battery, and neural network calculation of the full charge capacity of the battery using the voltage history and current history as input parameters A full charge capacity computing device for a power storage device for a vehicle comprising computing means for
The computing means is
Based on an approximate expression obtained by the least square method from the voltage history and the current history, the open circuit voltage and the internal resistance at the time of discharging a predetermined discharge amount from the fully charged state of the battery are calculated,
A full charge capacity calculation device for a power storage device for a vehicle, wherein the open circuit voltage and internal resistance are used as input parameters in addition to the voltage history and current history, and a full charge capacity of the battery as an output parameter is calculated by a neural network .
請求項1記載の車両用蓄電装置の満充電容量演算装置において、
前記演算手段は、
今回ニューラルネット演算して得た前記満充電容量と、あらかじめ記憶する前記電池の満充電容量の初期値との比率として電池劣化度(=前記満充電容量/(初期の満充電容量))を演算することを特徴とする車両用蓄電装置の満充電容量演算装置。
The full charge capacity computing device for a power storage device for a vehicle according to claim 1,
The computing means is
Calculate the battery deterioration level (= full charge capacity / (initial full charge capacity)) as a ratio between the full charge capacity obtained by the neural network calculation this time and the initial value of the full charge capacity of the battery stored in advance. A full charge capacity computing device for a power storage device for a vehicle.
JP2005039614A 2005-02-14 2005-02-16 Fully charged capacity calculation device for power storage device for vehicle Active JP4609883B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005039614A JP4609883B2 (en) 2005-02-16 2005-02-16 Fully charged capacity calculation device for power storage device for vehicle
KR1020060014362A KR100880717B1 (en) 2005-02-14 2006-02-14 Method and apparatus for detecting charged state of secondary battery based on neural network calculation
EP06002917A EP1691209B1 (en) 2005-02-14 2006-02-14 Method and apparatus for detecting charged state of secondary battery based on neural network calculation
US11/353,220 US7554296B2 (en) 2005-02-14 2006-02-14 Method and apparatus for detecting charged state of secondary battery based on neural network calculation
DE602006002896T DE602006002896D1 (en) 2005-02-14 2006-02-14 Method and device for detecting the charging status of a secondary battery based on neural network calculation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005039614A JP4609883B2 (en) 2005-02-16 2005-02-16 Fully charged capacity calculation device for power storage device for vehicle

Publications (2)

Publication Number Publication Date
JP2006226789A JP2006226789A (en) 2006-08-31
JP4609883B2 true JP4609883B2 (en) 2011-01-12

Family

ID=36988302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005039614A Active JP4609883B2 (en) 2005-02-14 2005-02-16 Fully charged capacity calculation device for power storage device for vehicle

Country Status (1)

Country Link
JP (1) JP4609883B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813754B (en) * 2010-04-19 2012-09-05 清华大学 State estimating method for automobile start illumination type lead-acid storage battery
CN102680907B (en) * 2012-05-31 2015-02-11 浙江大学 Battery charging stress optical coefficient (SOC) detection method in photovoltaic system
CN111201444A (en) * 2017-11-02 2020-05-26 株式会社半导体能源研究所 Capacitance estimation method and capacitance estimation system for power storage device
JP6978339B2 (en) * 2018-02-16 2021-12-08 株式会社半導体エネルギー研究所 Secondary battery charge status estimation device and abnormality detection device, and secondary battery management system
US20210181256A1 (en) * 2018-07-31 2021-06-17 Honda Motor Co., Ltd. Estimation system, estimation device, estimation method, program, and storage medium
US20220179007A1 (en) * 2019-04-02 2022-06-09 Semiconductor Energy Laboratory Co., Ltd. Method of estimating state of charge of secondary battery, system for estimating state of charge of secondary battery, and method of detecting anomaly of secondary battery
JP7151689B2 (en) * 2019-11-05 2022-10-12 トヨタ自動車株式会社 BATTERY MANAGEMENT SYSTEM, BATTERY MANAGEMENT METHOD, AND BATTERY MANUFACTURING METHOD
KR20210080068A (en) * 2019-12-20 2021-06-30 주식회사 엘지에너지솔루션 Apparatus and method for diagnosing battery
KR102387780B1 (en) * 2020-03-30 2022-04-18 주식회사 아르고스다인 Method and apparatus for estimating battery capacity based on neural network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243717A (en) * 1996-03-05 1997-09-19 Nissan Motor Co Ltd Method of detecting residual capacity of battery, and device therefor
JP2003153452A (en) * 2001-11-08 2003-05-23 Nissan Motor Co Ltd Arithmetic device for residual capacity of secondary battery
JP2004333472A (en) * 2003-04-15 2004-11-25 Nippon Soken Inc Internal condition detecting system for charge accumulating device for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243717A (en) * 1996-03-05 1997-09-19 Nissan Motor Co Ltd Method of detecting residual capacity of battery, and device therefor
JP2003153452A (en) * 2001-11-08 2003-05-23 Nissan Motor Co Ltd Arithmetic device for residual capacity of secondary battery
JP2004333472A (en) * 2003-04-15 2004-11-25 Nippon Soken Inc Internal condition detecting system for charge accumulating device for vehicle

Also Published As

Publication number Publication date
JP2006226789A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP4623448B2 (en) Secondary battery remaining capacity calculation method
JP4609882B2 (en) Internal state detection method for power storage device for vehicles
JP4609883B2 (en) Fully charged capacity calculation device for power storage device for vehicle
CN101116003B (en) Secondary cell charge/discharge electricity amount, polarization voltage and SOC estimation method and device
JP3935099B2 (en) Internal state detection system for power storage device for vehicle
CN110632528B (en) Lithium battery SOH estimation method based on internal resistance detection
He et al. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles
KR100880717B1 (en) Method and apparatus for detecting charged state of secondary battery based on neural network calculation
CN100547427C (en) The voltage modification method of secondary cell and the remaining capacity evaluation method and the device of device and secondary cell
KR101195515B1 (en) Status detector for power supply, power supply, and initial characteristic extracting device for use with power supply
JP4587299B2 (en) Internal state detection method for power storage device for vehicles
CN103941195A (en) Method for battery SOC estimation based on small model error criterion expanding Kalman filter
WO2006098541A1 (en) Apparatus and method for estimating battery state of charge
US20230358810A1 (en) Method for estimating state of charge of battery
KR20010043872A (en) Means for estimating charged state of battery and method for estimating degraded state of battery
CN101535827A (en) Apparatus and method for determination of the state-of-charge of a battery when the battery is not in equilibrium
CN103630843A (en) Battery state estimation system, battery control system,and battery system
JP5366166B2 (en) Secondary battery state quantity calculation method
CN105899395B (en) Energy in assessment motor vehicle battery
JP4668015B2 (en) Secondary battery state detection method and secondary battery state detection device
JP2022524827A (en) Battery health estimation method
CN109061497A (en) A kind of battery dump energy metering system and method
JP2006300692A (en) Remaining capacity operation system of secondary battery
JP4582584B2 (en) Secondary battery remaining capacity calculation method
Narayan State and parametric estimation of li-ion batteries in electrified vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4609883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250