WO2018228472A1 - 上行多波束功率控制方法及终端 - Google Patents

上行多波束功率控制方法及终端 Download PDF

Info

Publication number
WO2018228472A1
WO2018228472A1 PCT/CN2018/091252 CN2018091252W WO2018228472A1 WO 2018228472 A1 WO2018228472 A1 WO 2018228472A1 CN 2018091252 W CN2018091252 W CN 2018091252W WO 2018228472 A1 WO2018228472 A1 WO 2018228472A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmit
target
beams
transmit power
power
Prior art date
Application number
PCT/CN2018/091252
Other languages
English (en)
French (fr)
Inventor
孙晓东
吴昱民
杨晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2018228472A1 publication Critical patent/WO2018228472A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to an uplink multi-beam power control method and a terminal.
  • the future 5th generation (5Generation, 5G) mobile communication system also known as the New Radio (NR) system, achieves a downlink transmission rate of 20 megabits per second (Gbps) and an uplink transmission rate of 10 Gbps.
  • the goal of high frequency communication and large-scale antenna technology will be introduced.
  • high-frequency communication can provide a wider system bandwidth, and the antenna size can also be smaller, which is more advantageous for large-scale antenna deployment in a base station and a user equipment (UE).
  • the transmission and reception of Multi-beam/Multi-Transmission Receive Point (Multi-beam/Multi-TRP) on the base station side, and the multi-beam transmission and reception on the UE side will be widely used. As shown in FIG.
  • the uplink radio multi-beam transmission scheme, the New Radio Physical Uplink Sharing Channel (NR-PUSCH) is transmitted by using multiple beams, that is, the UE passes multiple transceiver beam pair links ( The beam pair link (BPL) transmits information to the terminal.
  • the beam pair link (BPL) transmits information to the terminal.
  • BPL1 and BPL2 in the UE serve as transmission beams of the NR-PUSCH.
  • the embodiments of the present disclosure provide an uplink multi-beam power control method and a terminal.
  • an embodiment of the present disclosure provides an uplink multi-beam power control method, which is applied to a terminal, and includes:
  • the terminal If the total transmit power of the at least two transmit beams corresponding to the resource identifier information exceeds the maximum transmit power of the terminal, send an uplink signal to the base station by using a partial beam in the transmit beam, or adjust the total transmit power of the transmit beam to a maximum transmit power. Then, the uplink signal is sent to the base station, or the transmit beam is grouped, and the uplink signal is sent to the base station by the packetized transmit beam.
  • an embodiment of the present disclosure further provides a terminal, including:
  • An acquiring module configured to acquire resource identification information of at least two transmit beams corresponding to the target channel or the target signal
  • the first sending module is configured to: when the total transmit power of the at least two transmit beams corresponding to the resource identifier information exceeds the maximum transmit power of the terminal, send an uplink signal to the base station by using a partial beam in the transmit beam, or send the total transmit of the transmit beam After the power is adjusted to be less than the maximum transmit power, the uplink signal is sent to the base station, or the transmit beam is grouped, and the uplink signal is sent to the base station by the packetized transmit beam.
  • an embodiment of the present disclosure provides a terminal, including: a processor, a memory, and an uplink multi-beam power control program stored on the memory and operable on the processor, where the processor performs an uplink multi-beam power control program The steps in the uplink multi-beam power control method as described above are implemented.
  • an embodiment of the present disclosure provides a computer readable storage medium, where an uplink multi-beam power control program is stored, where an uplink multi-beam power control program is executed by a processor to implement the foregoing The steps of the uplink multi-beam power control method.
  • Figure 1 shows a schematic diagram of multi-beam transmission in the uplink
  • FIG. 2 is a schematic flow chart of an uplink multi-beam power control method according to an embodiment of the present disclosure
  • FIG. 3 is a block diagram 1 of a terminal according to an embodiment of the present disclosure.
  • FIG. 4 is a block diagram 2 showing a terminal of an embodiment of the present disclosure
  • Figure 5 shows a block diagram of a terminal of an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides an uplink multi-beam power control method, which is applied to a terminal. As shown in FIG. 2, the method specifically includes the following steps:
  • Step 21 Obtain resource identification information of at least two transmit beams corresponding to the target channel or the target signal.
  • the terminal receives the resource identifier information sent by the network device, where the resource identifier information is used to indicate that the target channel or the target signal corresponds to at least two (s) transmission beams.
  • the target channel includes: at least one of a physical uplink shared channel NR-PUSCH, a physical uplink control channel NR-PUCCH, and a physical random access channel NR-PRACH
  • the target signal includes: a channel sounding reference signal.
  • the network device may configure multiple different transmit beams (uplink beams) for the same target channel or target signal, for example, configure beams 0 to 3 for NR-PUCCH and configure beams for NR-PUSCH. 4-7, configure beam 8-9 for NR-PRACH.
  • the embodiment of the present disclosure may perform multiple beams by the following steps.
  • the total transmit power is limited to the maximum transmit power range of the terminal.
  • the communication signals in the NR system such as NR-PRACH and NR-PUSCH, are taken as an example for description. Those skilled in the art can understand that the signals in the NR system and the NR system are merely illustrative and not It constitutes a limitation on the scope of protection of the present invention.
  • Step 22 If the total transmit power of the at least two transmit beams corresponding to the resource identifier information exceeds the maximum transmit power of the terminal, send an uplink signal to the base station by using a partial beam in the transmit beam.
  • Step 22 refers to that the terminal actively selects some of the plurality of transmit beams corresponding to the NR-PUSCH or the NR-PUCCH or the NR-PRACH or the NR-SRS Multi-beam to perform uplink signal transmission to ensure the total transmit power limitation of the transmit beam.
  • the terminal actively selects some of the plurality of transmit beams corresponding to the NR-PUSCH or the NR-PUCCH or the NR-PRACH or the NR-SRS Multi-beam to perform uplink signal transmission to ensure the total transmit power limitation of the transmit beam.
  • Within the maximum transmit power range of the terminal normal transmission of each transmit beam is ensured, and the reliability of beam transmission of the target channel or the target signal is further ensured.
  • Step 23 If the total transmit power of the at least two transmit beams corresponding to the resource identifier information exceeds the maximum transmit power of the terminal, the total transmit power of the transmit beam is adjusted to be less than the maximum transmit power, and then the uplink signal is sent to the base station.
  • Step 23 refers to that the terminal actively adjusts the transmit power of some or all of the plurality of transmit beams corresponding to the NR-PUSCH or NR-PUCCH or NR-PRACH or NR-SRS Multi-beam to ensure the total transmit power limit of the transmit beam.
  • the terminal actively adjusts the transmit power of some or all of the plurality of transmit beams corresponding to the NR-PUSCH or NR-PUCCH or NR-PRACH or NR-SRS Multi-beam to ensure the total transmit power limit of the transmit beam.
  • the terminal actively adjusts the transmit power of some or all of the plurality of transmit beams corresponding to the NR-PUSCH or NR-PUCCH or NR-PRACH or NR-SRS Multi-beam to ensure the total transmit power limit of the transmit beam.
  • Within the maximum transmit power range of the terminal normal transmission of each transmit beam is ensured, and the reliability of beam transmission of the target channel or the target signal is further ensured.
  • Step 24 If the total transmit power of the at least two transmit beams corresponding to the resource identifier information exceeds the maximum transmit power of the terminal, the transmit beams are grouped, and the uplink signals are respectively sent to the base station by the grouped transmit beams.
  • Step 24 refers to that the terminal groups multiple generated beams corresponding to the NR-PUSCH or the NR-PUCCH or the NR-PRACH or the NR-SRS Multi-beam, and sends an uplink signal to the network device by using each packet to ensure that each group sends the uplink signal.
  • the total transmit power of the beam is limited to the maximum transmit power range of the terminal, ensuring normal transmission of each transmit beam, and further ensuring the reliability of beam transmission of the target channel or the target signal.
  • the method for controlling the uplink multi-beam power in the embodiment of the present disclosure is briefly described above. The following describes the method for further description based on the specific application scenarios. Since the same or different target signals may correspond to different transmit beams, different beams correspond to different scenarios and correspond to different power control modes. among them,
  • the first target channel or the target signal may correspond to at least two transmit beams, that is, the same target channel or the target signal corresponds to multiple different transmit beams. If at least two transmit beams correspond to the same target channel or target signal, step 22 is specifically And determining, according to the order of the transmission quality of the transmission beam, the remaining beams except the last M beams in the arrangement order as the first target transmission beam; and transmitting the uplink signal to the base station by using the first target transmission beam.
  • M is a positive integer
  • the total transmit power of the first target transmit beam is lower than or equal to the maximum transmit power.
  • the value of M is smaller than the maximum number of beams of the transmit beam corresponding to the target channel or the target signal.
  • the process of discarding the M beams may be performed by discarding one transmission beam at a time. Specifically, when detecting that the total transmission power of the plurality of transmission beams corresponding to the target channel or the target signal exceeds the maximum transmission power, the beam transmission quality is first The worst one of the beams is discarded, and the total transmit power of the remaining beams is detected to be lower than the maximum transmit power. If it is lower, the other transmit beams are discarded. If the total transmit power is still higher than the total transmit power, the beam transmit quality in the remaining beams is continuously discarded. Poor beam until the total transmit power of the remaining beams is below the maximum transmit power.
  • determining the remaining beams other than the last M beams in the arrangement order as the first target transmission beam according to the arrangement order of the transmission quality of the transmission beam includes: acquiring transmission quality of each transmission beam, and According to the order of the transmission quality from optimal to poor, an order is obtained; the last M beams are discarded in the order, and the total transmit power of the remaining beams is detected to be lower than or equal to the maximum transmit power; if less than or equal to, the remaining beams are It is determined that the beam is transmitted for the first target.
  • the transmission quality of the transmission beam can be determined by detecting the beam path loss or the beam reception power.
  • the step of determining the first target transmit beam is specifically: acquiring beam path loss of each transmit beam, and sorting each transmit beam according to the beam path loss from low to high, to obtain an arrangement order, and The M beams are discarded, and the total transmit power of the remaining beams is detected to be lower than or equal to the maximum transmit power. If it is lower than or equal to, the remaining beams are determined as the first target transmit beam.
  • the transmission quality may be determined by detecting the received power of the beam.
  • the step of determining the first target transmit beam is specifically: acquiring the beam receive power of the receive beam corresponding to each transmit beam, according to the beam receive power from high to low. Sorting corresponding transmission beams to obtain an arrangement order, discarding the last M beams in the arrangement order, and detecting whether the total transmission power of the remaining beams is lower than or equal to the maximum transmission power, and if it is lower than or equal to The remaining beam is determined to be the first target transmit beam.
  • the network side configuration terminal uses the multi-beam transmission mode to perform NR-PRACH transmission, and the terminal supports the maximum NR-PRACH 2-beam transmission.
  • the received power of the first beam reference signal is greater than the received power of the second beam reference signal, and the total transmit power of the two transmit beams exceeds the maximum transmit power of the terminal, and the transmit power of each transmit beam is lower than the maximum transmit power of the terminal.
  • the terminal will abandon the second beam transmission of NR-PRACH. In this way, by discarding the transmission beam with poor transmission quality to ensure that the total transmission power is limited to the maximum transmission power range of the terminal, normal transmission of each transmission beam is ensured, and the reliability of beam transmission of the target channel or the target signal is further ensured.
  • the second target channel or the target signal may correspond to at least two transmit beams, that is, the same target channel or the target signal corresponds to multiple different transmit beams, and if at least two transmit beams correspond to the same target channel or target signal, step 22 may also The following steps are implemented: determining N randomly selected beams in the transmit beam as the second target transmit beam; and transmitting the uplink signal to the base station by using the second target transmit beam. Where N is a positive integer, and the total transmit power of the second target transmit beam is lower than or equal to the maximum transmit power.
  • the terminal randomly selects a transmission beam of the NR-PUSCH or the NR-PUCCH or the NR-PRACH or the NR-SRS to ensure that the total transmit power of the transmit beam is limited to the maximum transmit power range of the terminal, thereby ensuring the normality of each transmit beam. Transmission, and further ensuring the reliability of beam transmission of the target channel or target signal.
  • a single target channel or a target signal may correspond to at least two transmit beams, that is, the same target channel or target signal corresponds to multiple different transmit beams. If at least two transmit beams correspond to the same target channel or target signal, step 23 specifically includes : separately adjusting the transmit power of each transmit beam until the total transmit power of the transmit beam is lower than or equal to the maximum transmit power; and transmitting the uplink signal to the base station by adjusting the transmit beam after the transmit power.
  • the terminal actively adjusts the transmit power of some or all of the plurality of transmit beams corresponding to the NR-PUSCH or the NR-PUCCH or the NR-PRACH or the NR-SRS, so as to ensure that the total transmit power of the transmit beam is limited to the maximum transmit of the terminal.
  • the power range normal transmission of each transmission beam is ensured, and the reliability of beam transmission of the target channel or the target signal is further ensured.
  • a single target channel or a target signal may correspond to at least two transmit beams, that is, the same target channel or target signal corresponds to multiple different transmit beams. If at least two transmit beams correspond to the same target channel or target signal, step 24 specifically includes : Dividing at least two transmit beams into multiple groups, and transmitting uplink signals to the base station by using multiple sets of transmit beams that are time division multiplexed. The total transmit power of each set of transmit beams is lower than or equal to the maximum transmit power.
  • the terminal sends multiple beams corresponding to the NR-PUSCH or the NR-PUCCH or the NR-PRACH or the NR-SRS in a time-division manner to ensure that the total transmit power of each set of transmit beams is limited to the maximum transmit power range of the terminal.
  • the normal transmission of each transmission beam is ensured, and the reliability of beam transmission of the target channel or the target signal is further ensured.
  • multiple target channels or target signals may correspond to at least two transmit beams, that is, different target channels or target signals correspond to multiple different transmit beams, and if at least two transmit beams correspond to different target channels or target signals, step 22 is specific.
  • the method includes: acquiring, according to a sequence of priorities of different target channels or target signals from high to low, acquiring P first target channels or first target signals in the sequence; and selecting a first target channel or a part of the first target signal The beam is discarded, and the remaining beams other than the dropped beam are determined as the third target transmission beam; the third target transmission beam is used to transmit the uplink signal to the base station.
  • the priority of the target channel or the target signal is pre-configured, or configured by the network device and notified to the terminal, where P is a positive integer, and the total transmit power of the third target transmit beam is lower than or equal to the maximum transmit power.
  • the process of discarding the partial target beams of the P target channels or the target signals may be performed by discarding a partial beam of the target channel or the target signal at a time, specifically, when detecting the total number of the plurality of transmit beams corresponding to the target channel or the target signal.
  • the transmit power exceeds the maximum transmit power, first discard the target channel of the lowest priority or part of the target signal, and detect whether the total transmit power of all target channels and the remaining beams of the target signal is lower than the maximum transmit power. Stop discarding other transmit beams. If it is still higher than the total transmit power, continue to discard the target channel of the target channel or the target signal with the lowest priority of the remaining target channel and the target signal until the total transmit power of all target channels and the remaining beams of the target signal. Below the maximum transmit power.
  • the network side configuration terminal uses the multi-beam transmission mode to transmit NR-PRACH and NR-PUSCH, and the terminal supports up to 3 beam transmission, the first beam is used for NR-PRACH transmission, and the second and third beams are used for NR.
  • - PUSCH transmission the total power of 3 beams exceeds the maximum transmission power of the UE and the transmission power of each transmission beam is lower than the maximum transmission power of the terminal.
  • the NR-PRACH has a higher priority than the NR-PUSCH, and the terminal will discard the SG-PUSCH corresponding beam with a poor beam quality, thereby ensuring the total transmit power limitation of the NR-PRACH and NR-PUSCH corresponding transmit beams.
  • the maximum transmit power range of the terminal normal transmission of each transmit beam is ensured, and the reliability of beam transmission of the target channel or the target signal is further ensured.
  • the total transmit power of each transmit beam can be limited by adjusting the transmit power of the target channel or the transmit beam corresponding to the target signal.
  • the maximum transmit power range of the terminal is configured to limit the transmit power of the target channel or the transmit beam corresponding to the target signal.
  • multiple target channels or target signals may correspond to at least two transmit beams, that is, different target channels or target signals correspond to multiple different transmit beams, and if at least two transmit beams correspond to different target channels or target signals, step 22
  • the method may be implemented as: determining, by using the target transmission channel, a randomly selected Q beams in the transmission beam corresponding to the target channel or the target signal as the fourth target transmission beam; and transmitting the uplink signal to the base station by using the fourth target transmission beam.
  • Q is a positive integer
  • the total transmit power of the fourth target transmit beam is lower than or equal to the maximum transmit power.
  • the terminal randomly selects the transmission beams of the NR-PUSCH, the NR-PUCCH, the NR-PRACH, and the NR-SRS to ensure that the total transmit power of the transmit beam is limited to the maximum transmit power range of the terminal, thereby ensuring the normality of each transmit beam. Transmission, and further ensuring the reliability of beam transmission of the target channel or target signal.
  • multiple target channels or target signals may correspond to at least two transmit beams, that is, different target channels or target signals correspond to multiple different transmit beams, and if at least two transmit beams correspond to different target channels or target signals, step 23 is specific.
  • the method includes: separately adjusting transmit power of each transmit beam corresponding to each target channel or target signal until the total transmit power of the transmit beam is lower than or equal to the maximum transmit power; and transmitting the uplink signal to the base station by adjusting the transmit beam after the transmit power.
  • the terminal actively adjusts the transmit power of some or all of the plurality of transmit beams corresponding to the NR-PUSCH, the NR-PUCCH, the NR-PRACH, and the NR-SRS, so as to ensure that the total transmit power of the transmit beam is limited to the maximum transmit of the terminal.
  • the power range normal transmission of each transmission beam is ensured, and the reliability of beam transmission of the target channel or the target signal is further ensured.
  • multiple target channels or target signals may correspond to at least two transmit beams, that is, different target channels or target signals correspond to multiple different transmit beams, and if at least two transmit beams correspond to different target channels or target signals, step 24 is specific.
  • the method includes: dividing the transmission beam into multiple groups according to the target channel or the target signal; and transmitting the uplink signal to the base station by using multiple groups of transmission beams that are time division multiplexed.
  • the total transmit power of each set of transmit beams is lower than or equal to the maximum transmit power.
  • the terminal sends the multiple beams corresponding to the NR-PUSCH, the NR-PUCCH, the NR-PRACH, and the NR-SRS in a time-division manner to ensure that the total transmit power of each set of transmit beams is limited to the maximum transmit power range of the terminal.
  • the normal transmission of each transmission beam is ensured, and the reliability of beam transmission of the target channel or the target signal is further ensured.
  • the terminal further transmits indication information indicating that the beam power climb is suspended to the base station.
  • the terminal abandons or adjusts one or more of the multiple transmission beams corresponding to the NR-PRACH, the terminal will send the power climb suspension indication information to the upper layer.
  • the terminal further transmits information carrying the beam power margin to the base station.
  • the terminal abandons or adjusts one or more of the multiple transmission beams corresponding to the NR-PUSCH, NR-PUCCH, and/or NR-SRS, the terminal will trigger the power headroom report and transmit the power headroom. To the top.
  • the partial transmit beam may be discarded, or each transmit beam may be adjusted.
  • the transmit power, or multi-beam time division multiplexing controls the total transmit power within the maximum transmit power range of the terminal, ensuring normal transmission of each transmit beam, and further ensuring beam transmission reliability of the target channel or target signal. .
  • the terminal 300 of the embodiment of the present disclosure can implement the resource identification information of the at least two transmit beams corresponding to the target channel or the target signal in the foregoing embodiment, where the resource identification information corresponds to at least two transmit beams.
  • the uplink signal is sent to the base station by using part of the beam in the transmit beam, or the total transmit power of the transmit beam is adjusted to be less than the maximum transmit power, and then the uplink signal is sent to the base station, or the transmit beam is sent.
  • the terminal 300 specifically includes the following functional modules:
  • the obtaining module 310 is configured to acquire resource identification information of at least two transmit beams corresponding to the target channel or the target signal;
  • the first sending module 320 is configured to: when the total transmit power of the at least two transmit beams corresponding to the resource identifier information exceeds the maximum transmit power of the terminal, send an uplink signal to the base station by using a partial beam in the transmit beam, or send the total of the transmit beam After the transmit power is adjusted to be less than the maximum transmit power, the uplink signal is sent to the base station, or the transmit beam is grouped, and the uplink signal is sent to the base station by the packetized transmit beam.
  • the first sending module 320 includes:
  • the first determining sub-module 321a is configured to: when the at least two transmit beams correspond to the same target channel or the target signal, according to the order of the transmission quality of the transmit beam from the best to the poor, the remaining of the M beams except the ranked order
  • the beam is determined to be a first target transmit beam; wherein, M is a positive integer, and a total transmit power of the first target transmit beam is lower than or equal to a maximum transmit power;
  • the first sending submodule 322a is configured to send an uplink signal to the base station by using the first target sending beam.
  • the first determining submodule 321a includes:
  • the obtaining unit 3211 is configured to obtain transmission quality of each of the transmit beams, and sort the best according to the transmission quality to obtain an arrangement order.
  • the detecting unit 3212 is configured to discard the last M beams in the arrangement order, and detect whether the total transmit power of the remaining beams is lower than or equal to the maximum transmit power;
  • the determining unit 3213 is configured to determine the remaining beam as the first target transmit beam when the total transmit power of the remaining beam is lower than or equal to the maximum transmit power.
  • the first sending module 320 includes:
  • a second determining submodule 321b configured to determine, when the at least two transmit beams correspond to the same target channel or target signal, the N beams randomly selected in the transmit beam as the second target transmit beam; where N is a positive integer, and second The total transmit power of the target transmit beam is lower than or equal to the maximum transmit power;
  • the second sending submodule 322b is configured to send an uplink signal to the base station by using the second target sending beam.
  • the first sending module 320 includes:
  • the first adjustment sub-module 321c is configured to adjust the transmit power of each transmit beam when the at least two transmit beams correspond to the same target channel or target signal, until the total transmit power of the transmit beam is lower than or equal to the maximum transmit power;
  • the third sending submodule 322c is configured to send an uplink signal to the base station by adjusting the transmit beam after the transmit power.
  • the first sending module 320 includes:
  • the first packet sub-module 321d is configured to divide at least two transmit beams into multiple groups when at least two transmit beams correspond to the same target channel or target signal, where a total transmit power of each set of transmit beams is lower than or equal to a maximum transmit power;
  • the fourth sending submodule 322d is configured to send an uplink signal to the base station by using multiple sets of transmit beams that are time division multiplexed.
  • the first sending module 320 includes:
  • the obtaining submodule 321e is configured to obtain, after the at least two transmit beams correspond to different target channels or target signals, the P first first target channels in the sequence according to the priority of the different target channels or target signals from high to low Or a first target signal; wherein P is a positive integer;
  • a third determining sub-module 322e configured to discard a partial beam in the first target channel or the first target signal, and determine a remaining beam other than the discarded beam as a third target transmit beam; wherein the third target transmit beam The total transmit power is lower than or equal to the maximum transmit power;
  • the fifth sending submodule 323e is configured to send an uplink signal to the base station by using the third target transmission beam.
  • the first sending module 320 includes:
  • a fourth determining sub-module 321f configured to determine, when the at least two transmit beams correspond to different target channels or target signals, the Q beams that are randomly selected among the transmit beams corresponding to the target channels or the target signals as the fourth target transmit beam; Where Q is a positive integer, and the total transmit power of the fourth target transmit beam is lower than or equal to the maximum transmit power;
  • the sixth sending sub-module 322f is configured to send an uplink signal to the base station by using the fourth target transmission beam.
  • the first sending module 320 includes:
  • the second adjustment sub-module 321g is configured to adjust, when the at least two transmit beams correspond to different target channels or target signals, the transmit power of each transmit beam corresponding to each target channel or the target signal, until the total transmit power of the transmit beam is low. At or equal to the maximum transmit power;
  • the seventh sending submodule 322g is configured to send an uplink signal to the base station by adjusting the transmit beam after the transmit power.
  • the first sending module 320 includes:
  • the second grouping sub-module 321h is configured to divide the transmission beams into groups according to the target channel or the target signal when the at least two transmitting beams correspond to different target channels or target signals; wherein, the total transmitting power of each group of transmitting beams is low. At or equal to the maximum transmit power;
  • the eighth sending submodule 322h is configured to send an uplink signal to the base station by using multiple sets of transmit beams that are time division multiplexed.
  • the target channel includes: at least one of a physical uplink shared channel, a physical uplink control channel, and a physical random access channel
  • the target signal includes: a channel sounding reference signal.
  • the terminal 300 further includes:
  • the second sending module 330 is configured to send, to the base station, indication information for indicating a suspension of the beam power climb when the target channel is a physical random access channel.
  • the terminal 300 further includes:
  • the third sending module 340 is configured to: when the target channel is a physical uplink shared channel and/or a physical uplink control channel, or the target signal is a channel sounding reference signal, send information carrying the beam power margin to the base station.
  • the terminal of the embodiment of the present disclosure may discard part of the transmit beam or adjust the transmit of each transmit beam when the total transmit power of the multiple transmit beams corresponding to the target channel or the target signal exceeds the maximum transmit power of the terminal.
  • the power, or multi-beam time division multiplexing controls the total transmit power within the maximum transmit power range of the terminal, ensures normal transmission of each transmit beam, and further ensures the reliability of beam transmission of the target channel or target signal.
  • each module of the foregoing terminal is only a division of a logical function. In actual implementation, it may be integrated into one physical entity in whole or in part, or may be physically separated. And these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above determination module.
  • the implementation of other modules is similar.
  • each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors ( Digital singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP Digital singnal processor
  • FPGA Field Programmable Gate Array
  • the processing component may be a general purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • CPU central processing unit
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • an embodiment of the present disclosure further provides a terminal, including a processor, a memory, and an uplink multi-beam power control program stored on the memory and operable on the processor, where the processor performs uplink multi-beam.
  • the power control procedure implements the steps in the uplink multi-beam power control method as described above.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where an uplink multi-beam power control program is stored, and an uplink multi-beam power control program is implemented by the processor to implement uplink multi-beam power as described above. The steps of the control method.
  • FIG. 5 is a block diagram of a terminal 500 according to another embodiment of the present disclosure.
  • the terminal shown in FIG. 5 includes at least one processor 501, a memory 502, a user interface 503, and a network interface 504.
  • the various components in terminal 500 are coupled together by a bus system 505.
  • bus system 505 is used to implement connection communication between these components.
  • the bus system 505 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 505 in FIG.
  • the user interface 503 can include a display or a pointing device (eg, a touchpad or touch screen, etc.).
  • the memory 502 in an embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • Volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • Synchronous DRAM synchronous dynamic random access memory
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • memory 502 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 5021 and application 5022.
  • the operating system 5021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 5022 includes various applications, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 5022.
  • the terminal 500 further includes: an uplink multi-beam power control program stored on the memory 502 and operable on the processor 501, and specifically, may be an uplink multi-beam power control program in the application 5022.
  • the uplink multi-beam power control program is executed by the processor 501, the following steps are performed: acquiring resource identification information of at least two transmit beams corresponding to the target channel or the target signal; and total transmit power of at least two transmit beams corresponding to the resource identifier information If the maximum transmit power of the terminal is exceeded, the uplink signal is sent to the base station by using part of the beam in the transmit beam, or the total transmit power of the transmit beam is adjusted to be less than the maximum transmit power, and then the uplink signal is sent to the base station, or the transmit beam is grouped, and The uplink signals are respectively sent to the base station by the transmitted beam.
  • Processor 501 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 501 or an instruction in a form of software.
  • the processor 501 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 502, and the processor 501 reads the information in the memory 502 and completes the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the uplink multi-beam power control program may be implemented by the processor 501 to perform the following steps: according to the order of the transmission quality of the transmit beam from optimal to poor, The remaining beams other than the last M beams in the ranking order are determined as the first target transmission beam; wherein M is a positive integer, and the total transmission power of the first target transmission beam is lower than or equal to the maximum transmission power;
  • the uplink signal is sent to the base station by the first target transmission beam.
  • the following steps may be implemented: acquiring transmission quality of each transmission beam, and sorting the transmission quality from optimal to poor to obtain an arrangement order;
  • the remaining beam is determined as the first target transmission beam.
  • the uplink multi-beam power control program is executed by the processor 501, and the following steps may be implemented: determining the randomly selected N beams in the transmit beam as the second target. a transmit beam; wherein N is a positive integer, and a total transmit power of the second target transmit beam is lower than or equal to a maximum transmit power;
  • the uplink signal is transmitted to the base station through the second target transmission beam.
  • the uplink multi-beam power control program may be implemented by the processor 501 to separately adjust the transmit power of each transmit beam to the total transmit of the transmit beam.
  • the power is lower than or equal to the maximum transmit power
  • the uplink signal is transmitted to the base station by adjusting the transmit beam after the transmit power.
  • the uplink multi-beam power control program is executed by the processor 501 to perform the following steps: dividing at least two transmit beams into multiple groups, where each group The total transmit power of the transmit beam is lower than or equal to the maximum transmit power;
  • the uplink signals are respectively sent to the base station by multiple sets of transmit beams that are time-division multiplexed.
  • the uplink multi-beam power control program when executed by the processor 501, the following steps may be implemented: according to priorities of different target channels or target signals from high to low a sequence of obtaining P first first target channels or first target signals in the sequence; wherein P is a positive integer;
  • the uplink signal is transmitted to the base station by transmitting the beam through the third target.
  • the following steps may be implemented: randomly selecting the target beams or the corresponding transmit beams of the target signals.
  • the Q beams are determined to be the fourth target transmit beam; wherein Q is a positive integer, and the total transmit power of the fourth target transmit beam is lower than or equal to the maximum transmit power;
  • the uplink signal is transmitted to the base station through the fourth target transmission beam.
  • the uplink multi-beam power control program may be implemented by the processor 501 to separately adjust each transmit beam corresponding to each target channel or target signal. Transmit power until the total transmit power of the transmit beam is less than or equal to the maximum transmit power;
  • the uplink signal is transmitted to the base station by adjusting the transmit beam after the transmit power.
  • the following steps may be further implemented: dividing the transmit beams into multiple groups according to the target channel or the target signal. Wherein the total transmit power of each set of transmit beams is less than or equal to the maximum transmit power;
  • the uplink signals are respectively sent to the base station by multiple sets of transmit beams that are time-division multiplexed.
  • the target channel includes: at least one of a physical uplink shared channel, a physical uplink control channel, and a physical random access channel
  • the target signal includes: a channel sounding reference signal.
  • the target channel is a physical random access channel
  • the uplink multi-beam power control program when executed by the processor 501, the following steps may be implemented: sending indication information indicating that the beam power climb is suspended to the base station.
  • the target channel is a physical uplink shared channel and/or a physical uplink control channel, or the target signal is a channel sounding reference signal
  • the following steps may be implemented: sending the bearer to the base station. There is information on the beam power margin.
  • the terminal may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with a wireless connection function, or other processing connected to the wireless modem. device.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a mobile terminal.
  • RAN Radio Access Network
  • the computer for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • the terminal of the embodiment of the present disclosure may discard part of the transmit beam or adjust the transmit power of each transmit beam when the total transmit power of the multiple transmit beams corresponding to the target channel or the target signal exceeds the maximum transmit power of the terminal, or
  • the method of beam time division multiplexing, etc. controls the total transmit power within the maximum transmit power range of the terminal, ensures normal transmission of each transmit beam, and further ensures the reliability of beam transmission of the target channel or the target signal.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the objects of the present disclosure can also be achieved by running a program or a set of programs on any computing device.
  • the computing device can be a well-known general purpose device.
  • the objects of the present disclosure may also be realized by merely providing a program product including program code for implementing the method or apparatus. That is to say, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future.
  • various components or steps may be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种上行多波束功率控制方法及终端。所述上行多波束功率控制方法包括:获取目标信道或目标信号对应的至少两个发送波束的资源标识信息;若资源标识信息对应的至少两个发送波束的总发射功率超过终端的最大发射功率,则通过发送波束中的部分波束向基站发送上行信号,或将发送波束的总发射功率调整至最大发射功率以下后再向基站发送上行信号,或对发送波束分组,并通过分组后的发送波束分别向基站发送上行信号。

Description

上行多波束功率控制方法及终端
相关申请的交叉引用
本申请主张在2017年6月14日在中国提交的中国专利申请号No.201710447558.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种上行多波束功率控制方法及终端。
背景技术
未来第五代(5Generation,5G)移动通信系统,亦可称为新空口(New Radio,NR)系统中,为达到下行链路传输速率20兆位/秒(Gbps),上行链路传输速率10Gbps的目标,高频通信和大规模天线技术将会被引入。具体地,高频通信可提供更宽的系统带宽,天线尺寸也可以更小,更加有利于大规模天线在基站和终端(User Equipment,UE)中部署。基站侧多波束/多收发节点(Multi-beam/Multi-TRP,Multi-beam/Multi-Transmit Receive Point)的发送和接收,UE侧多波束(Multi-beam)的发送和接收将会广泛应用。如图1所示的上行链路的多波束传输示意图,新空口物理上行共享信道(New Radio Physical Uplink Sharing Channel,NR-PUSCH)采用多波束进行传输,即UE通过多条收发波束对链路(Beam pair link,BPL)向终端传输信息,例如UE中BPL1和BPL2均作为NR-PUSCH的传输波束。
对于UE的多波束发送,需要支持波束特定的功率控制,但当UE多波束总的发送功率超过最大发送功率时,如何进行功率裁减是亟待解决的问题。
发明内容
本公开实施例提供了一种上行多波束功率控制方法及终端。
第一方面,本公开实施例提供了一种上行多波束功率控制方法,应用于终端,包括:
获取目标信道或目标信号对应的至少两个发送波束的资源标识信息;
若资源标识信息对应的至少两个发送波束的总发射功率超过终端的最大发射功率,则通过发送波束中的部分波束向基站发送上行信号,或将发送波束的总发射功率调整至最大发射功率以下后再向基站发送上行信号,或对发送波束分组,并通过分组后的发送波束分别向基站发送上行信号。
第二方面,本公开实施例还提供了一种终端,包括:
获取模块,用于获取目标信道或目标信号对应的至少两个发送波束的资源标识信息;
第一发送模块,用于当资源标识信息对应的至少两个发送波束的总发射功率超过终端的最大发射功率时,通过发送波束中的部分波束向基站发送上行信号,或将发送波束的总发射功率调整至最大发射功率以下后再向基站发送上行信号,或对发送波束分组,并通过分组后的发送波束分别向基站发送上行信号。
第三方面,本公开实施例提供了一种终端,包括:处理器、存储器以及存储于存储器上并可在处理器上运行的上行多波束功率控制程序,处理器执行上行多波束功率控制程序时实现如上所述的上行多波束功率控制方法中的步骤。
第四方面,本公开实施例提供了一种计算机可读存储介质,该计算机可读存储介质上存储有上行多波束功率控制程序,上行多波束功率控制程序被处理器执行时实现如上所述的上行多波束功率控制方法的步骤。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示上行链路的多波束传输示意图;
图2表示本公开实施例上行多波束功率控制方法的流程示意图;
图3表示本公开实施例的终端的模块示意图一;
图4表示本公开实施例的终端的模块示意图二;
图5表示本公开实施例的终端框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本公开实施例提供了一种上行多波束功率控制方法,应用于终端,如图2所示,该方法具体包括以下步骤:
步骤21:获取目标信道或目标信号对应的至少两个发送波束的资源标识信息。
终端接收网络设备发送的资源标识信息,该资源标识信息用于指示:目标信道或目标信号对应至少两个(多个)发送波束。具体地,目标信道包括:物理上行共享信道NR-PUSCH、物理上行控制信道NR-PUCCH和物理随机接入信道NR-PRACH中的至少一种信道,目标信号包括:信道探测参考信号。
具体地,由于终端支持多波束传输,网络设备可为同一目标信道或目标信号配置多个不同的发送波束(上行波束),例如,为NR-PUCCH配置波束0至3,为NR-PUSCH配置波束4-7,为NR-PRACH配置波束8-9。
由于终端支持多波束传输,多个波束同时发送时的总发射功率可能会超过终端的最大发射功率,从而导致传输失败,为了避免这种问题发生,本公 开实施例可通过以下步骤将多个波束的总发射功率限制在终端的最大发射功率范围内。本申请的实施例中以NR系统中的通信信号,例如NR-PRACH以及NR-PUSCH为例进行说明,所属领域技术人员可以了解,NR系统,以及NR系统中的信号仅为示例说明,并不构成对本发明保护范围的限定。
步骤22:若资源标识信息对应的至少两个发送波束的总发射功率超过终端的最大发射功率,则通过发送波束中的部分波束向基站发送上行信号。
步骤22指的是终端主动选择NR-PUSCH或NR-PUCCH或NR-PRACH或NR-SRS Multi-beam对应的多个发送波束中部分波束进行上行信号的发送,以保证发送波束的总发射功率限制在终端的最大发射功率范围内,保证了各个发送波束的正常传输,且进一步保证了目标信道或目标信号的波束传输的可靠性。
步骤23:若资源标识信息对应的至少两个发送波束的总发射功率超过终端的最大发射功率,则将发送波束的总发射功率调整至最大发射功率以下后再向基站发送上行信号。
步骤23指的是终端主动调整NR-PUSCH或NR-PUCCH或NR-PRACH或NR-SRS Multi-beam对应的多个发送波束中部分或全部波束的发射功率,以保证发送波束的总发射功率限制在终端的最大发射功率范围内,保证了各个发送波束的正常传输,且进一步保证了目标信道或目标信号的波束传输的可靠性。
步骤24:若资源标识信息对应的至少两个发送波束的总发射功率超过终端的最大发射功率,则对发送波束分组,并通过分组后的发送波束分别向基站发送上行信号。
步骤24指的是终端将NR-PUSCH或NR-PUCCH或NR-PRACH或NR-SRS Multi-beam对应的多个发生波束进行分组,并通过每分组向网络设备发送上行信号,以保证每组发送波束的总发射功率限制在终端的最大发射功率范围内,保证了各个发送波束的正常传输,且进一步保证了目标信道或目标信号的波束传输的可靠性。
以上简单介绍了本公开实施例上行多波束功率控制方法,下面将结合具体应用场景对其做进一步介绍说明。由于相同或不同的目标信号可能对应不同的发送波束,不同的波束对应场景,对应不同的功率控制方式。其中,
方式一、单个目标信道或目标信号可对应至少两个发送波束,即相同目 标信道或目标信号对应多个不同的发送波束,若至少两个发送波束对应相同目标信道或目标信号,步骤22具体为:根据发送波束的传输质量从优至差的排列次序,将除所述排列次序中后M个波束之外的剩余波束确定为第一目标发送波束;通过第一目标发送波束向基站发送上行信号。其中,M为正整数,第一目标发送波束的总发射功率低于或等于最大发射功率。其中,M的值小于目标信道或目标信号对应的发送波束的最大波束数。上述丢弃后M个波束的过程可以是一次丢弃一个发送波束进行的,具体地,当检测到目标信道或目标信号对应的多个发送波束的总发射功率超过最大发射功率时,先将波束传输质量最差的一个波束丢弃,并检测剩余波束的总发射功率是否低于最大发射功率,若低于则停止丢弃其他发送波束,若仍高于总发射功率,则继续丢弃剩余波束中波束传输质量最差的波束,直至剩余波束的总发射功率低于最大发射功率为止。
具体地,根据发送波束的传输质量从优至差的排列次序,将除所述排列次序中后M个波束之外的剩余波束确定为第一目标发送波束包括:获取各个发送波束的传输质量,并按照传输质量从优至差排序,得到一排列次序;将排列次序中后M个波束丢弃,并检测剩余波束的总发射功率是否低于或等于最大发射功率;若低于或等于,则将剩余波束确定为第一目标发送波束。
进一步地,发送波束的传输质量可通过检测波束路损或波束接收功率来确定。具体地,上述确定第一目标发送波束的步骤具体为:获取各个发送波束的波束路损,按照波束路损由低到高对各个发送波束进行排序,得到一排列次序,将该排列次序中后M个波束丢弃,并检测剩余波束的总发射功率是否低于或等于最大发射功率,若低于或等于,则将剩余波束确定为第一目标发送波束。
或者,传输质量还可通过检测波束接收功率来确定,具体地,上述确定第一目标发送波束的步骤具体为:获取各个发送波束对应的接收波束的波束接收功率,按照波束接收功率由高到低对相应的各个发送波束进行排序,得到一排列次序,将该排列次序中后M个波束丢弃,并检测剩余波束的总发射功率是否低于或等于最大发射功率,若低于或等于,则将剩余波束确定为第一目标发送波束。
假设网络侧配置终端采用多波束传输方式进行NR-PRACH的发送,终端最大支持NR-PRACH的2波束发送。其中,第1个波束参考信号接收功率大于第2个波束参考信号接收功率,2个发送波束的总发射功率超过终端的最大发射功率且每一发送波束的发射功率均低于终端的最大发射功率,这时终端将会放弃NR-PRACH的第2个波束发送。这样,通过丢弃传输质量差的发送波束以保证总发射功率限制在终端的最大发射功率范围内,保证了各个发送波束的正常传输,且进一步保证了目标信道或目标信号的波束传输的可靠性。
方式二、单个目标信道或目标信号可对应至少两个发送波束,即相同目标信道或目标信号对应多个不同的发送波束,若至少两个发送波束对应相同目标信道或目标信号,步骤22还可通过以下步骤实现:将发送波束中随机选择的N个波束确定为第二目标发送波束;通过第二目标发送波束向基站发送上行信号。其中,N为正整数,第二目标发送波束的总发射功率低于或等于最大发射功率。
该方式为终端随机选择NR-PUSCH或NR-PUCCH或NR-PRACH或NR-SRS的发送波束,以保证发送波束的总发射功率限制在终端的最大发射功率范围内,保证了各个发送波束的正常传输,且进一步保证了目标信道或目标信号的波束传输的可靠性。
方式三、单个目标信道或目标信号可对应至少两个发送波束,即相同目标信道或目标信号对应多个不同的发送波束,若至少两个发送波束对应相同目标信道或目标信号,步骤23具体包括:分别调整每个发送波束的发射功率直至发送波束的总发射功率低于或等于最大发射功率;通过调整发射功率后的发送波束,向基站发送上行信号。
该方式为终端主动调整NR-PUSCH或NR-PUCCH或NR-PRACH或NR-SRS对应的多个发送波束中部分或全部波束的发射功率,以保证发送波束的总发射功率限制在终端的最大发射功率范围内,保证了各个发送波束的正常传输,且进一步保证了目标信道或目标信号的波束传输的可靠性。
方式四、单个目标信道或目标信号可对应至少两个发送波束,即相同目标信道或目标信号对应多个不同的发送波束,若至少两个发送波束对应相同目标信道或目标信号,步骤24具体包括:将至少两个发送波束分为多组,通 过时分复用的多组发送波束,分别向基站发送上行信号。其中,每组发送波束的总发射功率低于或等于最大发射功率。
该方式为终端将NR-PUSCH或NR-PUCCH或NR-PRACH或NR-SRS对应的多个波束按照时分方式轮流发送,以保证每组发送波束的总发射功率限制在终端的最大发射功率范围内,保证了各个发送波束的正常传输,且进一步保证了目标信道或目标信号的波束传输的可靠性。
方式五、多个目标信道或目标信号可对应至少两个发送波束,即不同目标信道或目标信号对应多个不同的发送波束,若至少两个发送波束对应不同目标信道或目标信号,步骤22具体包括:根据不同目标信道或目标信号的优先级从高到低的序列,获取所述序列中后P个第一目标信道或第一目标信号;将第一目标信道或第一目标信号中的部分波束丢弃,并将除丢弃波束之外的剩余波束确定为第三目标发送波束;通过第三目标发送波束,向基站发送上行信号。其中,目标信道或目标信号的优先级是预配置的,或由网络设备配置并通知终端的,P为正整数,第三目标发送波束的总发射功率低于或等于最大发射功率。
上述丢弃后P个目标信道或目标信号的部分波束的过程可以是一次丢弃一个目标信道或目标信号的部分波束进行的,具体地,当检测到目标信道或目标信号对应的多个发送波束的总发射功率超过最大发射功率时,先将优先级最低的一个目标信道或目标信号的部分波束丢弃,并检测所有目标信道和目标信号剩余波束的总发射功率是否低于最大发射功率,若低于则停止丢弃其他发送波束,若仍高于总发射功率,则继续丢弃剩余目标信道和目标信号中优先级最低的目标信道或目标信号的部分波束,直至所有目标信道和目标信号剩余波束的总发射功率低于最大发射功率为止。
假设网络侧配置终端采用多波束传输方式进行NR-PRACH和NR-PUSCH的发送,终端最大支持3波束发送,第1个波束用于NR-PRACH发送,第2个和第3个波束用于NR-PUSCH发送,3个波束总功率超过UE最大发射功率且每一发送波束的发射功率均低于终端的最大发射功率。其中,NR-PRACH的优先级高于NR-PUSCH,那么终端将会丢弃NR-PUSCH对应的波束质量较差一个发送波束,从而保证NR-PRACH和NR-PUSCH对应的发送波束的总发射功率限制 在终端的最大发射功率范围内,保证了各个发送波束的正常传输,且进一步保证了目标信道或目标信号的波束传输的可靠性。其中,当每个目标信道或目标信号仅对应一个发送波束时,可通过调整优先级较低的目标信道或目标信号对应的发送波束的发射功率的方式,保证各发送波束的总发射功率限制在终端的最大发射功率范围内。
方式六、多个目标信道或目标信号可对应至少两个发送波束,即不同目标信道或目标信号对应多个不同的发送波束,若至少两个发送波束对应不同目标信道或目标信号,步骤22还可通过以下步骤实现:将各个目标信道或目标信号对应的发送波束中随机选择的Q个波束确定为第四目标发送波束;通过第四目标发送波束,向基站发送上行信号。其中,Q为正整数,第四目标发送波束的总发射功率低于或等于最大发射功率。
该方式为终端随机选择NR-PUSCH、NR-PUCCH、NR-PRACH和NR-SRS的发送波束,以保证发送波束的总发射功率限制在终端的最大发射功率范围内,保证了各个发送波束的正常传输,且进一步保证了目标信道或目标信号的波束传输的可靠性。
方式七、多个目标信道或目标信号可对应至少两个发送波束,即不同目标信道或目标信号对应多个不同的发送波束,若至少两个发送波束对应不同目标信道或目标信号,步骤23具体包括:分别调整各个目标信道或目标信号对应的每个发送波束的发射功率,直至发送波束的总发射功率低于或等于最大发射功率;通过调整发射功率后的发送波束,向基站发送上行信号。
该方式为终端主动调整NR-PUSCH、NR-PUCCH、NR-PRACH和NR-SRS对应的多个发送波束中部分或全部波束的发射功率,以保证发送波束的总发射功率限制在终端的最大发射功率范围内,保证了各个发送波束的正常传输,且进一步保证了目标信道或目标信号的波束传输的可靠性。
方式八、多个目标信道或目标信号可对应至少两个发送波束,即不同目标信道或目标信号对应多个不同的发送波束,若至少两个发送波束对应不同目标信道或目标信号,步骤24具体包括:按照目标信道或目标信号,将发送波束分为多组;通过时分复用的多组发送波束,分别向基站发送上行信号。其中,每组发送波束的总发射功率低于或等于最大发射功率。
该方式为终端将NR-PUSCH、NR-PUCCH、NR-PRACH和NR-SRS对应的多个波束按照时分方式轮流发送,以保证每组发送波束的总发射功率限制在终端的最大发射功率范围内,保证了各个发送波束的正常传输,且进一步保证了目标信道或目标信号的波束传输的可靠性。
若目标信道为物理随机接入信道,在步骤22、23或24之后,终端还进一步向基站发送用于指示波束功率爬升暂停的指示信息。这里指的是,当终端放弃或调整NR-PRACH对应的多个发送波束中的一个或多个时,终端将会发送功率爬升暂停指示信息至高层。
若目标信道为物理上行共享信道和/或物理上行控制信道,或者目标信号为信道探测参考信号,在步骤22、23或24之后,终端还进一步向基站发送携带有波束功率余量的信息。这里指的是,当终端放弃或调整NR-PUSCH、NR-PUCCH和/或NR-SRS对应的多个发送波束中的一个或多个时,终端将会触发功率余量上报并发送功率余量至高层。
本公开实施例的上行多波束功率控制方法中,当目标信道或目标信号对应的多个发送波束的总发射功率超过终端的最大发射功率时,可通过丢弃部分发送波束,或调整各个发送波束的发射功率,或通过多波束时分复用等方式,将总发射功率控制在终端最大发射功率范围内,保证了各个发送波束的正常传输,且进一步保证了目标信道或目标信号的波束传输的可靠性。
以上实施例介绍了不同场景下的上行多波束功率控制方法,下面将结合附图对与其对应的终端做进一步介绍。
如图3所示,本公开实施例的终端300,能实现上述实施例中获取目标信道或目标信号对应的至少两个发送波束的资源标识信息,当资源标识信息对应的至少两个发送波束的总发射功率超过终端的最大发射功率时,通过发送波束中的部分波束向基站发送上行信号,或将发送波束的总发射功率调整至最大发射功率以下后再向基站发送上行信号,或对发送波束分组,并通过分组后的发送波束分别向基站发送上行信号方法的细节,并达到相同的效果,该终端300具体包括以下功能模块:
获取模块310,用于获取目标信道或目标信号对应的至少两个发送波束的资源标识信息;
第一发送模块320,用于当资源标识信息对应的至少两个发送波束的总发射功率超过终端的最大发射功率时,通过发送波束中的部分波束向基站发送上行信号,或将发送波束的总发射功率调整至最大发射功率以下后再向基站发送上行信号,或对发送波束分组,并通过分组后的发送波束分别向基站发送上行信号。
其中,如图4所示,第一发送模块320包括:
第一确定子模块321a,用于当至少两个发送波束对应相同目标信道或目标信号时,根据发送波束的传输质量从优至差的排列次序,将除排列次序中后M个波束之外的剩余波束确定为第一目标发送波束;其中,M为正整数,第一目标发送波束的总发射功率低于或等于最大发射功率;
第一发送子模块322a,用于通过第一目标发送波束向基站发送上行信号。
其中,第一确定子模块321a包括:
获取单元3211,用于获取各个发送波束的传输质量,并按照传输质量从优至差排序,得到一排列次序;
检测单元3212,用于将排列次序中后M个波束丢弃,并检测剩余波束的总发射功率是否低于或等于最大发射功率;
确定单元3213,用于当剩余波束的总发射功率低于或等于最大发射功率时,将剩余波束确定为第一目标发送波束。
其中,第一发送模块320包括:
第二确定子模块321b,用于当至少两个发送波束对应相同目标信道或目标信号,将发送波束中随机选择的N个波束确定为第二目标发送波束;其中,N为正整数,第二目标发送波束的总发射功率低于或等于最大发射功率;
第二发送子模块322b,用于通过第二目标发送波束向基站发送上行信号。
其中,第一发送模块320包括:
第一调整子模块321c,用于当至少两个发送波束对应相同目标信道或目标信号,分别调整每个发送波束的发射功率,直至发送波束的总发射功率低于或等于最大发射功率;
第三发送子模块322c,用于通过调整发射功率后的发送波束,向基站发送上行信号。
其中,第一发送模块320包括:
第一分组子模块321d,用于当至少两个发送波束对应相同目标信道或目标信号,将至少两个发送波束分为多组,其中,每组发送波束的总发射功率低于或等于最大发射功率;
第四发送子模块322d,用于通过时分复用的多组发送波束,分别向基站发送上行信号。
其中,第一发送模块320包括:
获取子模块321e,用于当至少两个发送波束对应不同的目标信道或目标信号时,根据不同目标信道或目标信号的优先级从高到低的序列,获取序列中后P个第一目标信道或第一目标信号;其中,P为正整数;
第三确定子模块322e,用于将第一目标信道或第一目标信号中的部分波束丢弃,并将除丢弃波束之外的剩余波束确定为第三目标发送波束;其中,第三目标发送波束的总发射功率低于或等于最大发射功率;
第五发送子模块323e,用于通过第三目标发送波束,向基站发送上行信号。
其中,第一发送模块320包括:
第四确定子模块321f,用于当至少两个发送波束对应不同目标信道或目标信号时,将各个目标信道或目标信号对应的发送波束中随机选择的Q个波束确定为第四目标发送波束;其中,Q为正整数,第四目标发送波束的总发射功率低于或等于最大发射功率;
第六发送子模块322f,用于通过第四目标发送波束,向基站发送上行信号。
其中,第一发送模块320包括:
第二调整子模块321g,用于当至少两个发送波束对应不同目标信道或目标信号时,分别调整各个目标信道或目标信号对应的每个发送波束的发射功率,直至发送波束的总发射功率低于或等于最大发射功率;
第七发送子模块322g,用于通过调整发射功率后的发送波束,向基站发送上行信号。
其中,第一发送模块320包括:
第二分组子模块321h,用于当至少两个发送波束对应不同目标信道或目标信号时,按照目标信道或目标信号,将发送波束分为多组;其中,每组发送波束的总发射功率低于或等于最大发射功率;
第八发送子模块322h,用于通过时分复用的多组发送波束,分别向基站发送上行信号。
其中,目标信道包括:物理上行共享信道、物理上行控制信道和物理随机接入信道中的至少一种信道,目标信号包括:信道探测参考信号。
其中,终端300还包括:
第二发送模块330,用于当目标信道为物理随机接入信道时,向基站发送用于指示波束功率爬升暂停的指示信息。
其中,终端300还包括:
第三发送模块340,用于当目标信道为物理上行共享信道和/或物理上行控制信道,或者目标信号为信道探测参考信号时,向基站发送携带有波束功率余量的信息。
值得指出的是,本公开实施例的终端,当目标信道或目标信号对应的多个发送波束的总发射功率超过终端的最大发射功率时,可通过丢弃部分发送波束,或调整各个发送波束的发射功率,或通过多波束时分复用等方式,将总发射功率控制在终端最大发射功率范围内,保证了各个发送波束的正常传输,且进一步保证了目标信道或目标信号的波束传输的可靠性。
需要说明的是,应理解上述终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可 以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,简称ASIC),或,一个或多个微处理器(digital singnal processor,简称DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,简称FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
为了更好地实现上述目的,本公开实施例还提供了一种终端,包括处理器、存储器以及存储于存储器上并可在处理器上运行的上行多波束功率控制程序,处理器执行上行多波束功率控制程序时实现如上所述的上行多波束功率控制方法中的步骤。本公开实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有上行多波束功率控制程序,上行多波束功率控制程序被处理器执行时实现如上所述的上行多波束功率控制方法的步骤。
具体地,图5是本公开另一个实施例的终端500的框图,如图5所示的终端包括:至少一个处理器501、存储器502、用户接口503和网络接口504。终端500中的各个组件通过总线系统505耦合在一起。可理解,总线系统505用于实现这些组件之间的连接通信。总线系统505除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图5中将各种总线都标为总线系统505。
其中,用户接口503可以包括显示器或者点击设备(例如触感板或者触摸屏等。
可以理解,本公开实施例中的存储器502可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性 存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的存储器502旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器502存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统5021和应用程序5022。
其中,操作系统5021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序5022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序5022中。
在本公开的实施例中,终端500还包括:存储在存储器502上并可在处理器501上运行的上行多波束功率控制程序,具体地,可以是应用程序5022中的上行多波束功率控制程序,上行多波束功率控制程序被处理器501执行时实现如下步骤:获取目标信道或目标信号对应的至少两个发送波束的资源标识信息;若资源标识信息对应的至少两个发送波束的总发射功率超过终端的最大发射功率,则通过发送波束中的部分波束向基站发送上行信号,或将发送波束的总发射功率调整至最大发射功率以下后再向基站发送上行信号,或对发送波束分组,并通过分组后的发送波束分别向基站发送上行信号。
上述本公开实施例揭示的方法可以应用于处理器501中,或者由处理器501实现。处理器501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器501可以是通用处理器、数字信 号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器502,处理器501读取存储器502中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
具体地,若至少两个发送波束对应相同目标信道或目标信号,上行多波束功率控制程序被处理器501执行时还可实现如下步骤:根据发送波束的传输质量从优至差的排列次序,将除排列次序中后M个波束之外的剩余波束确定为第一目标发送波束;其中,M为正整数,第一目标发送波束的总发射功率低于或等于最大发射功率;
通过第一目标发送波束向基站发送上行信号。
具体地,上行多波束功率控制程序被处理器501执行时还可实现如下步 骤:获取各个发送波束的传输质量,并按照传输质量从优至差排序,得到一排列次序;
将排列次序中后M个波束丢弃,并检测剩余波束的总发射功率是否低于或等于最大发射功率;
若低于或等于,则将剩余波束确定为第一目标发送波束。
具体地,若至少两个发送波束对应相同目标信道或目标信号,上行多波束功率控制程序被处理器501执行时还可实现如下步骤:将发送波束中随机选择的N个波束确定为第二目标发送波束;其中,N为正整数,第二目标发送波束的总发射功率低于或等于最大发射功率;
通过第二目标发送波束向基站发送上行信号。
具体地,若至少两个发送波束对应相同目标信道或目标信号,上行多波束功率控制程序被处理器501执行时还可实现如下步骤:分别调整每个发送波束的发射功率直至发送波束的总发射功率低于或等于最大发射功率;
通过调整发射功率后的发送波束,向基站发送上行信号。
具体地,若至少两个发送波束对应相同目标信道或目标信号,上行多波束功率控制程序被处理器501执行时还可实现如下步骤:将至少两个发送波束分为多组,其中,每组发送波束的总发射功率低于或等于最大发射功率;
通过时分复用的多组发送波束,分别向基站发送上行信号。
具体地,若至少两个发送波束对应不同的目标信道或目标信号,上行多波束功率控制程序被处理器501执行时还可实现如下步骤:根据不同目标信道或目标信号的优先级从高到低的序列,获取序列中后P个第一目标信道或第一目标信号;其中,P为正整数;
将第一目标信道或第一目标信号中的部分波束丢弃,并将除丢弃波束之外的剩余波束确定为第三目标发送波束;其中,第三目标发送波束的总发射功率低于或等于最大发射功率;
通过第三目标发送波束,向基站发送上行信号。
具体地,若至少两个发送波束对应不同的目标信道或目标信号,上行多波束功率控制程序被处理器501执行时还可实现如下步骤:将各个目标信道或目标信号对应的发送波束中随机选择的Q个波束确定为第四目标发送波束; 其中,Q为正整数,第四目标发送波束的总发射功率低于或等于最大发射功率;
通过第四目标发送波束,向基站发送上行信号。
具体地,若至少两个发送波束对应不同的目标信道或目标信号,上行多波束功率控制程序被处理器501执行时还可实现如下步骤:分别调整各个目标信道或目标信号对应的每个发送波束的发射功率,直至发送波束的总发射功率低于或等于最大发射功率;
通过调整发射功率后的发送波束,向基站发送上行信号。
具体地,若至少两个发送波束对应不同的目标信道或目标信号,上行多波束功率控制程序被处理器501执行时还可实现如下步骤:按照目标信道或目标信号,将发送波束分为多组;其中,每组发送波束的总发射功率低于或等于最大发射功率;
通过时分复用的多组发送波束,分别向基站发送上行信号。
具体地,目标信道包括:物理上行共享信道、物理上行控制信道和物理随机接入信道中的至少一种信道,目标信号包括:信道探测参考信号。
具体地,若目标信道为物理随机接入信道,上行多波束功率控制程序被处理器501执行时还可实现如下步骤:向基站发送用于指示波束功率爬升暂停的指示信息。
具体地,若目标信道为物理上行共享信道和/或物理上行控制信道,或者目标信号为信道探测参考信号,上行多波束功率控制程序被处理器501执行时还可实现如下步骤:向基站发送携带有波束功率余量的信息。
其中,上述终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话 发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例的终端,当目标信道或目标信号对应的多个发送波束的总发射功率超过终端的最大发射功率时,可通过丢弃部分发送波束,或调整各个发送波束的发射功率,或通过多波束时分复用等方式,将总发射功率控制在终端最大发射功率范围内,保证了各个发送波束的正常传输,且进一步保证了目标信道或目标信号的波束传输的可靠性。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置 和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的一些实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (28)

  1. 一种上行多波束功率控制方法,应用于终端,包括:
    获取目标信道或目标信号对应的至少两个发送波束的资源标识信息;
    若所述资源标识信息对应的至少两个发送波束的总发射功率超过所述终端的最大发射功率,则通过所述发送波束中的部分波束向基站发送上行信号,或将所述发送波束的总发射功率调整至最大发射功率以下后再向所述基站发送上行信号,或对所述发送波束分组,并通过分组后的发送波束分别向所述基站发送上行信号。
  2. 根据权利要求1所述的上行多波束功率控制方法,其中,若所述至少两个发送波束对应相同目标信道或目标信号,所述通过所述发送波束中的部分波束向基站发送上行信号的步骤,包括:
    根据发送波束的传输质量从优至差的排列次序,将除所述排列次序中后M个波束之外的剩余波束确定为第一目标发送波束;其中,M为正整数,所述第一目标发送波束的总发射功率低于或等于最大发射功率;
    通过所述第一目标发送波束向所述基站发送上行信号。
  3. 根据权利要求2所述的上行多波束功率控制方法,其中,所述根据发送波束的传输质量从优至差的排列次序,将除所述排列次序中后M个波束之外的剩余波束确定为第一目标发送波束的步骤,包括:
    获取各个发送波束的传输质量,并按照传输质量从优至差排序,得到一排列次序;
    将所述排列次序中后M个波束丢弃,并检测剩余波束的总发射功率是否低于或等于最大发射功率;
    若所述剩余波束的总发射功率低于或等于最大发射功率,则将剩余波束确定为所述第一目标发送波束。
  4. 根据权利要求1所述的上行多波束功率控制方法,其中,若所述至少两个发送波束对应相同目标信道或目标信号,所述通过所述发送波束中的部分波束向基站发送上行信号的步骤,包括:
    将发送波束中随机选择的N个波束确定为第二目标发送波束;其中,N 为正整数,所述第二目标发送波束的总发射功率低于或等于最大发射功率;
    通过所述第二目标发送波束向基站发送上行信号。
  5. 根据权利要求1所述的上行多波束功率控制方法,其中,若所述至少两个发送波束对应相同目标信道或目标信号,所述将所述发送波束的总发射功率调整至最大发射功率以下后再向基站发送上行信号的步骤,包括:
    分别调整每个发送波束的发射功率直至所述发送波束的总发射功率低于或等于最大发射功率;
    通过调整发射功率后的发送波束,向所述基站发送上行信号。
  6. 根据权利要求1所述的上行多波束功率控制方法,其中,若所述至少两个发送波束对应相同目标信道或目标信号,所述对所述发送波束分组,并通过分组后的发送波束分别向基站发送上行信号的步骤,包括:
    将所述至少两个发送波束分为多组,其中,每组发送波束的总发射功率低于或等于最大发射功率;
    通过时分复用的多组发送波束,分别向所述基站发送上行信号。
  7. 根据权利要求1所述的上行多波束功率控制方法,其中,若所述至少两个发送波束对应不同的目标信道或目标信号,所述通过所述发送波束中的部分波束向基站发送上行信号的步骤,包括:
    根据不同目标信道或目标信号的优先级从高到低的序列,获取所述序列中后P个第一目标信道或第一目标信号;其中,P为正整数;
    将所述第一目标信道或第一目标信号中的部分波束丢弃,并将除丢弃波束之外的剩余波束确定为第三目标发送波束;其中,所述第三目标发送波束的总发射功率低于或等于最大发射功率;
    通过所述第三目标发送波束,向所述基站发送上行信号。
  8. 根据权利要求1所述的上行多波束功率控制方法,其中,若所述至少两个发送波束对应不同目标信道或目标信号,所述通过所述发送波束中的部分波束向基站发送上行信号的步骤,包括:
    将各个目标信道或目标信号对应的发送波束中随机选择的Q个波束确定为第四目标发送波束;其中,Q为正整数,所述第四目标发送波束的总发射功率低于或等于最大发射功率;
    通过所述第四目标发送波束,向基站发送上行信号。
  9. 根据权利要求1所述的上行多波束功率控制方法,其中,若所述至少两个发送波束对应不同目标信道或目标信号,所述将所述发送波束的总发射功率调整至最大发射功率以下后再向基站发送上行信号的步骤,包括:
    分别调整各个目标信道或目标信号对应的每个发送波束的发射功率,直至所述发送波束的总发射功率低于或等于最大发射功率;
    通过调整发射功率后的发送波束,向所述基站发送上行信号。
  10. 根据权利要求1所述的上行多波束功率控制方法,其中,若所述至少两个发送波束对应不同目标信道或目标信号,所述对所述发送波束分组,并通过分组后的发送波束分别向基站发送上行信号的步骤,包括:
    按照目标信道或目标信号,将发送波束分为多组;其中,每组发送波束的总发射功率低于或等于最大发射功率;
    通过时分复用的多组发送波束,分别向所述基站发送上行信号。
  11. 根据权利要求1所述的上行多波束功率控制方法,其中,所述目标信道包括:物理上行共享信道、物理上行控制信道和物理随机接入信道中的至少一种信道,所述目标信号包括:信道探测参考信号。
  12. 根据权利要求11所述的上行多波束功率控制方法,其中,若所述目标信道为物理随机接入信道,在通过所述发送波束中的部分波束向基站发送上行信号,或将所述发送波束的总发射功率调整至最大发射功率以下后再向基站发送上行信号,或对所述发送波束分组,并通过分组后的发送波束分别向基站发送上行信号的步骤之后,还包括:
    向所述基站发送用于指示波束功率爬升暂停的指示信息。
  13. 根据权利要求11所述的上行多波束功率控制方法,其中,若所述目标信道为物理上行共享信道和/或物理上行控制信道,或者所述目标信号为信道探测参考信号,在通过所述发送波束中的部分波束向基站发送上行信号,或将所述发送波束的总发射功率调整至最大发射功率以下后再向基站发送上行信号,或对所述发送波束分组,并通过分组后的发送波束分别向基站发送上行信号的步骤之后,还包括:
    向基站发送携带有波束功率余量的信息。
  14. 一种终端,包括:
    获取模块,用于获取目标信道或目标信号对应的至少两个发送波束的资源标识信息;
    第一发送模块,用于当所述资源标识信息对应的至少两个发送波束的总发射功率超过所述终端的最大发射功率时,通过所述发送波束中的部分波束向基站发送上行信号,或将所述发送波束的总发射功率调整至最大发射功率以下后再向所述基站发送上行信号,或对所述发送波束分组,并通过分组后的发送波束分别向所述基站发送上行信号。
  15. 根据权利要求14所述的终端,其中,所述第一发送模块包括:
    第一确定子模块,用于当至少两个发送波束对应相同目标信道或目标信号时,根据发送波束的传输质量从优至差的排列次序,将除所述排列次序中后M个波束之外的剩余波束确定为第一目标发送波束;其中,M为正整数,所述第一目标发送波束的总发射功率低于或等于最大发射功率;
    第一发送子模块,用于通过所述第一目标发送波束向所述基站发送上行信号。
  16. 根据权利要求15所述的终端,其中,所述第一确定子模块包括:
    获取单元,用于获取各个发送波束的传输质量,并按照传输质量从优至差排序,得到一排列次序;
    检测单元,用于将所述排列次序中后M个波束丢弃,并检测剩余波束的总发射功率是否低于或等于最大发射功率;
    确定单元,用于当剩余波束的总发射功率低于或等于最大发射功率时,将剩余波束确定为所述第一目标发送波束。
  17. 根据权利要求14所述的终端,其中,所述第一发送模块包括:
    第二确定子模块,用于当至少两个发送波束对应相同目标信道或目标信号,将发送波束中随机选择的N个波束确定为第二目标发送波束;其中,N为正整数,所述第二目标发送波束的总发射功率低于或等于最大发射功率;
    第二发送子模块,用于通过所述第二目标发送波束向所述基站发送上行信号。
  18. 根据权利要求14所述的终端,其中,所述第一发送模块包括:
    第一调整子模块,用于当至少两个发送波束对应相同目标信道或目标信号,分别调整每个发送波束的发射功率,直至所述发送波束的总发射功率低于或等于最大发射功率;
    第三发送子模块,用于通过调整发射功率后的发送波束,向所述基站发送上行信号。
  19. 根据权利要求14所述的终端,其中,所述第一发送模块包括:
    第一分组子模块,用于当至少两个发送波束对应相同目标信道或目标信号,将所述至少两个发送波束分为多组,其中,每组发送波束的总发射功率低于或等于最大发射功率;
    第四发送子模块,用于通过时分复用的多组发送波束,分别向所述基站发送上行信号。
  20. 根据权利要求14所述的终端,其中,所述第一发送模块包括:
    获取子模块,用于当至少两个发送波束对应不同的目标信道或目标信号时,根据不同目标信道或目标信号的优先级从高到低的序列,获取所述序列中后P个第一目标信道或第一目标信号;其中,P为正整数;
    第三确定子模块,用于将所述第一目标信道或第一目标信号中的部分波束丢弃,并将除丢弃波束之外的剩余波束确定为第三目标发送波束;其中,所述第三目标发送波束的总发射功率低于或等于最大发射功率;
    第五发送子模块,用于通过所述第三目标发送波束,向所述基站发送上行信号。
  21. 根据权利要求14所述的终端,其中,所述第一发送模块包括:
    第四确定子模块,用于当至少两个发送波束对应不同目标信道或目标信号时,将各个目标信道或目标信号对应的发送波束中随机选择的Q个波束确定为第四目标发送波束;其中,Q为正整数,所述第四目标发送波束的总发射功率低于或等于最大发射功率;
    第六发送子模块,用于通过所述第四目标发送波束,向所述基站发送上行信号。
  22. 根据权利要求14所述的终端,其中,所述第一发送模块包括:
    第二调整子模块,用于当至少两个发送波束对应不同目标信道或目标信 号时,分别调整各个目标信道或目标信号对应的每个发送波束的发射功率,直至所述发送波束的总发射功率低于或等于最大发射功率;
    第七发送子模块,用于通过调整发射功率后的发送波束,向所述基站发送上行信号。
  23. 根据权利要求14所述的终端,其中,所述第一发送模块包括:
    第二分组子模块,用于当至少两个发送波束对应不同目标信道或目标信号时,按照目标信道或目标信号,将发送波束分为多组;其中,每组发送波束的总发射功率低于或等于最大发射功率;
    第八发送子模块,用于通过时分复用的多组发送波束,分别向所述基站发送上行信号。
  24. 根据权利要求14所述的终端,其中,所述目标信道包括:物理上行共享信道、物理上行控制信道和物理随机接入信道中的至少一种信道,所述目标信号包括:信道探测参考信号。
  25. 根据权利要求24所述的终端,还包括:
    第二发送模块,用于当目标信道为物理随机接入信道时,向所述基站发送用于指示波束功率爬升暂停的指示信息。
  26. 根据权利要求24所述的终端,还包括:
    第三发送模块,用于当所述目标信道为物理上行共享信道和/或物理上行控制信道,或者所述目标信号为信道探测参考信号时,向所述基站发送携带有波束功率余量的信息。
  27. 一种终端,包括:处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的上行多波束功率控制程序,所述处理器执行上行多波束功率控制程序时实现如权利要求1至13任一项所述的上行多波束功率控制方法中的步骤。
  28. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有上行多波束功率控制程序,所述上行多波束功率控制程序被处理器执行时实现如权利要求1至13任一项所述的上行多波束功率控制方法的步骤。
PCT/CN2018/091252 2017-06-14 2018-06-14 上行多波束功率控制方法及终端 WO2018228472A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710447558.8A CN109151967B (zh) 2017-06-14 2017-06-14 一种上行多波束功率控制方法及终端
CN201710447558.8 2017-06-14

Publications (1)

Publication Number Publication Date
WO2018228472A1 true WO2018228472A1 (zh) 2018-12-20

Family

ID=64658958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091252 WO2018228472A1 (zh) 2017-06-14 2018-06-14 上行多波束功率控制方法及终端

Country Status (2)

Country Link
CN (1) CN109151967B (zh)
WO (1) WO2018228472A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4108008A4 (en) * 2020-02-21 2024-03-13 Qualcomm Inc POWER REBALANCING DURING A MAXIMUM PERMISSIBLE EXPOSURE EVENT

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021108956A1 (zh) * 2019-12-02 2021-06-10 北京小米移动软件有限公司 安全控制方法及装置
CN114390648A (zh) * 2020-10-20 2022-04-22 上海大唐移动通信设备有限公司 节能方法、网络设备、装置及存储介质
CN116867043A (zh) * 2022-03-25 2023-10-10 维沃移动通信有限公司 功率控制方法、装置及终端
CN117202387A (zh) * 2022-05-27 2023-12-08 中兴通讯股份有限公司 信号的发送方法及装置、信号的接收方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624433A (zh) * 2011-01-27 2012-08-01 中兴通讯股份有限公司 多径波束成形方法及实现多径波束成形的终端
CN102624432A (zh) * 2011-01-26 2012-08-01 中兴通讯股份有限公司 多层波束成形方法及实现多层波束成形的终端
CN106358216A (zh) * 2015-07-17 2017-01-25 北京信威通信技术股份有限公司 一种多波束随机接入方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103891161B (zh) * 2011-10-19 2017-05-03 三星电子株式会社 无线通信系统中的上行链路控制方法和装置
CN103516410B (zh) * 2012-06-19 2018-03-02 中兴通讯股份有限公司 一种利用有源天线系统实现下行数据发射方法及装置
KR20160000225A (ko) * 2014-06-24 2016-01-04 한국전자통신연구원 무선통신단말기에서 원형 배열 빔 형성을 위한 안테나 선택 및 전력 할당 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624432A (zh) * 2011-01-26 2012-08-01 中兴通讯股份有限公司 多层波束成形方法及实现多层波束成形的终端
CN102624433A (zh) * 2011-01-27 2012-08-01 中兴通讯股份有限公司 多径波束成形方法及实现多径波束成形的终端
CN106358216A (zh) * 2015-07-17 2017-01-25 北京信威通信技术股份有限公司 一种多波束随机接入方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Detailed Considerations on UL Power Control Design for NR", 3GPP TSG RAN WG1 MEETING #89 R1-1706930, 19 May 2017 (2017-05-19), XP051272160 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4108008A4 (en) * 2020-02-21 2024-03-13 Qualcomm Inc POWER REBALANCING DURING A MAXIMUM PERMISSIBLE EXPOSURE EVENT

Also Published As

Publication number Publication date
CN109151967A (zh) 2019-01-04
CN109151967B (zh) 2020-07-21

Similar Documents

Publication Publication Date Title
WO2018228472A1 (zh) 上行多波束功率控制方法及终端
US11405773B2 (en) Method and device for relay transmission
WO2018224013A1 (zh) 波束失败处理方法、终端及网络设备
US11405896B2 (en) Sidelink communication method and terminal device
US11622366B2 (en) Apparatus and method for transmitting and receiving packet data information in wireless communication system
CN109089322A (zh) 一种上行多波束传输方法、终端及网络设备
US9025481B2 (en) Aperiodic CQI/PMI request in carrier aggregation
US10651968B2 (en) Data transmission method and communication device
US20090252108A1 (en) Base station, wireless control apparatus, and wireless apparatus
EP3553980B1 (en) Method for transmitting data, terminal device and network device
US11057905B2 (en) Communication method, network device and terminal device
WO2020221321A1 (zh) 通信方法以及通信装置
US10075223B1 (en) Systems and methods for performing beamforming during carrier aggregation
US11259362B2 (en) Method for repeatedly transmitting data and device
WO2019080132A1 (zh) 传输数据的方法、终端设备和网络设备
CN116346297A (zh) 一种通信方法与装置
WO2019084800A1 (zh) 上报射频能力的方法、终端设备和网络设备
TW202013917A (zh) 一種通道狀態訊息上報方法、終端設備及網路設備
JP2007527167A (ja) 媒体アクセス制御アクション・テーブルを使った無線パケット処理の方法および装置
WO2019084799A1 (zh) 上报频谱的方法、终端设备和网络设备
JP7425197B2 (ja) スケジューリング方法及び装置
CN109076367A (zh) 无线通信的方法、终端设备和接入网设备
WO2021087674A1 (zh) 数据传输方法、装置和通信设备
CN114466376A (zh) 数据传输方法、装置、设备及存储介质
JP2023513648A (ja) 無線通信方法及び端末装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817658

Country of ref document: EP

Kind code of ref document: A1