WO2021108956A1 - 安全控制方法及装置 - Google Patents

安全控制方法及装置 Download PDF

Info

Publication number
WO2021108956A1
WO2021108956A1 PCT/CN2019/122430 CN2019122430W WO2021108956A1 WO 2021108956 A1 WO2021108956 A1 WO 2021108956A1 CN 2019122430 W CN2019122430 W CN 2019122430W WO 2021108956 A1 WO2021108956 A1 WO 2021108956A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
human body
control information
base station
power threshold
Prior art date
Application number
PCT/CN2019/122430
Other languages
English (en)
French (fr)
Inventor
郭胜祥
张明
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/781,536 priority Critical patent/US20230007597A1/en
Priority to PCT/CN2019/122430 priority patent/WO2021108956A1/zh
Priority to CN201980003443.7A priority patent/CN111066350B/zh
Publication of WO2021108956A1 publication Critical patent/WO2021108956A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/283Power depending on the position of the mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3833Hand-held transceivers
    • H04B1/3838Arrangements for reducing RF exposure to the user, e.g. by changing the shape of the transceiver while in use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a security control method and device.
  • the electromagnetic radiation of mobile terminal equipment such as mobile phones, smart watches, computers will have a certain impact on human safety, especially as the terminals supporting high frequency and high power gradually become the mainstream in the market, and this objectively increases the electromagnetic radiation of the terminal.
  • the risk of radiation to human safety is a certain impact on human safety, especially as the terminals supporting high frequency and high power gradually become the mainstream in the market, and this objectively increases the electromagnetic radiation of the terminal. The risk of radiation to human safety.
  • the terminal and the base station can communicate through beamforming technology, and because the beam of the millimeter wave frequency band is narrow, the radiation is mainly concentrated in the direction of the beam .
  • the terminal when the terminal communicates with the base station, it needs to continuously detect whether the beam direction is pointing to the human body. If the beam direction is pointing to the human body, a power backoff operation is required.
  • the present disclosure provides a safety control method and device.
  • the technical solution is as follows:
  • a security control method is provided, the method is executed by a terminal, and the method includes:
  • the relationship between the current transmit power of the terminal and the transmit power threshold satisfies a specified condition
  • the relationship between the beam direction and the position of the human body is probed, and the beam direction is the business between the terminal and the base station The direction of the beam used for transmission;
  • safety control information is reported to the base station, where the safety control information is used to instruct the base station to perform electromagnetic radiation safety-related control operations.
  • the transmit power threshold includes a first power threshold and a second power threshold
  • the obtaining the transmission power threshold value according to the service requirement of the service transmitted between the terminal and the base station includes:
  • the first power threshold is less than the second power threshold.
  • the acquiring the first power threshold value according to the maximum transmit power of the terminal and the maximum power backoff value under the maximum duty cycle includes:
  • the sum of the first difference and the power compensation factor is used as the first power threshold.
  • the acquiring the second power threshold value according to the maximum transmit power of the terminal and the maximum power backoff value under the minimum duty cycle includes:
  • the sum of the second difference and the power compensation factor is used as the second power threshold.
  • the method further includes:
  • detecting the relationship between the beam direction and the position of the human body includes:
  • the reporting security control information to the base station when the relationship between the beam direction and the position of the human body satisfies a predetermined relationship includes:
  • the first safety control information is reported to the base station, where the first safety control information is used to instruct the base station to reduce the duty cycle.
  • detecting the relationship between the beam direction and the position of the human body includes:
  • the reporting security control information to the base station when the relationship between the beam direction and the position of the human body satisfies a predetermined relationship includes:
  • a security control method is provided, the method is executed by a base station, and the method includes:
  • the security control information is obtained by the terminal according to the business requirements of the transmit power threshold, when the relationship between the current transmit power of the terminal and the transmit power threshold meets the specified conditions, the detection beam direction and the position of the human body And the information reported when the relationship between the beam direction and the position of the human body meets a predetermined relationship;
  • the execution of electromagnetic radiation safety-related control operations according to the safety control information includes:
  • the security control information is the first security control information, reducing the duty cycle of the terminal;
  • the security control information is the second security control information, it is prepared to switch the beam used by the terminal to a beam that is not directed or partially directed in the direction of the human body.
  • a security control device is provided, the device is used in a terminal, and the device includes:
  • a power threshold obtaining module which is used to obtain the transmit power threshold according to the service requirements of the service transmitted between the terminal and the base station;
  • the detection module is configured to detect the relationship between the beam direction and the position of the human body when the relationship between the current transmit power of the terminal and the transmit power threshold satisfies a specified condition, and the beam direction is between the terminal and the The direction of the beam used for service transmission between base stations;
  • the reporting module is configured to report safety control information to the base station when the relationship between the beam direction and the position of the human body meets a predetermined relationship, where the safety control information is used to instruct the base station to perform electromagnetic radiation safety-related control operations .
  • the transmit power threshold includes a first power threshold and a second power threshold
  • the power threshold acquisition module includes:
  • a back-off value acquisition sub-module configured to acquire the maximum power back-off value under the maximum duty cycle corresponding to the business demand, and the maximum power back-off value under the minimum duty cycle corresponding to the business demand;
  • the first threshold value obtaining submodule is configured to obtain the first power threshold value according to the maximum transmit power of the terminal and the maximum power backoff value under the maximum duty cycle;
  • the second threshold value obtaining submodule is configured to obtain the second power threshold value according to the maximum transmit power of the terminal and the maximum power backoff value under the minimum duty cycle;
  • the first power threshold is less than the second power threshold.
  • the first threshold value obtaining submodule is configured to:
  • the sum of the first difference and the power compensation factor is used as the first power threshold.
  • the second threshold value obtaining sub-module is configured to:
  • the sum of the second difference and the power compensation factor is used as the second power threshold.
  • the device further includes:
  • a distance acquiring module used to acquire the distance between the terminal and the human body
  • the compensation factor obtaining module is configured to obtain the power compensation factor according to the distance between the terminal and the human body.
  • the detection module includes:
  • the first detection sub-module is configured to detect whether the beam direction points to the human body when the current transmit power of the terminal is between the first power threshold and the second power threshold;
  • the reporting module includes:
  • the first reporting submodule is configured to report first safety control information to the base station when the beam direction points to the human body, where the first safety control information is used to instruct the base station to reduce the duty cycle.
  • the detection module includes:
  • the second detection submodule is configured to detect whether the beam direction moves toward the human body when the current transmit power of the terminal is greater than or equal to the second power threshold;
  • the reporting module includes:
  • the second reporting submodule is configured to report second safety control information to the base station when the beam direction moves toward the human body, where the second safety control information is used to instruct the base station to prepare to use the terminal
  • the beam is switched to a beam that is not directed or partially directed in the direction of the human body.
  • a security control device is provided, the device is used in a base station, and the device includes:
  • the information receiving module is configured to receive security control information;
  • the security control information is obtained by the terminal according to the service requirements of the transmission power threshold, when the relationship between the current transmission power of the terminal and the transmission power threshold satisfies a specified condition Detect the relationship between the beam direction and the human body position, and report information when the relationship between the beam direction and the human body position meets a predetermined relationship;
  • the operation execution module is used to execute electromagnetic radiation safety-related control operations according to the safety control information.
  • the operation execution module includes:
  • the duty cycle reduction sub-module is used to reduce the duty cycle of the terminal when the safety control information is the first safety control information
  • the handover preparation sub-module is configured to prepare to switch the beam used by the terminal to a beam that is not directed or partly directed in the direction of the human body when the security control information is the second security control information.
  • a security control device is provided, the device is used in a terminal, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the relationship between the current transmit power of the terminal and the transmit power threshold satisfies a specified condition
  • the relationship between the beam direction and the position of the human body is probed, and the beam direction is the business between the terminal and the base station The direction of the beam used for transmission;
  • safety control information is reported to the base station, where the safety control information is used to instruct the base station to perform electromagnetic radiation safety-related control operations.
  • a security control device is provided, the device is used in a base station, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the security control information is obtained by the terminal according to the business requirements of the transmit power threshold, when the relationship between the current transmit power of the terminal and the transmit power threshold meets the specified conditions, the detection beam direction and the position of the human body And the information reported when the relationship between the beam direction and the position of the human body meets a predetermined relationship;
  • the terminal can obtain the transmit power threshold according to the business requirements of the service transmitted with the base station, and when the relationship between the current transmit power of the terminal and the transmit power threshold meets the specified conditions, perform the relationship between the detection beam direction and the position of the human body
  • the safety control information is reported to the base station to instruct the base station to perform electromagnetic radiation safety-related control operations.
  • the terminal does not It is necessary to continuously detect the relationship between the beam direction and the position of the human body. Instead, the detection step only needs to be performed when the relationship between the current transmission power of the terminal and the transmission power threshold meets the specified conditions, which can significantly reduce the electromagnetic radiation of the terminal. Power consumption during safety control.
  • Fig. 1 is a schematic diagram showing an implementation environment involved in a security control method according to some exemplary embodiments
  • Fig. 2 is a flow chart showing a safety control method according to an exemplary embodiment
  • Fig. 3 is a flow chart showing a safety control method according to an exemplary embodiment
  • Fig. 4 is a flow chart showing a safety control method according to an exemplary embodiment
  • FIG. 5 is a schematic diagram of area division involved in the embodiment shown in FIG. 4;
  • Fig. 6 is a block diagram showing a safety control device according to an exemplary embodiment
  • Fig. 7 is a block diagram showing a safety control device according to an exemplary embodiment
  • Fig. 8 is a schematic structural diagram of a terminal according to an exemplary embodiment
  • Fig. 9 is a schematic structural diagram showing a base station according to an exemplary embodiment.
  • the electromagnetic radiation standard for human body safety of the terminal is currently expressed internationally by the electromagnetic wave absorption ratio or specific absorption rate (Specific Absorption Rate, SAR) and Maximum Permissible Exposure (MPE).
  • SAR Specific Absorption Rate
  • MPE Maximum Permissible Exposure
  • the former is mainly aimed at Low frequency bands, such as frequency bands below 6GHz, while the latter is mainly aimed at millimeter wave bands.
  • a certain power back-off based on the transmission power or reduction of the uplink duty cycle (dutycycle) of the terminal transmission is usually adopted to meet the requirements of SAR or MPE.
  • P-MPR maximum allowed UE output power reduction
  • the terminal needs to report the maximum uplink duty cycle capability ( Maximum Dutycycle Capability), when the scheduled uplink duty cycle is greater than the maximum uplink duty cycle, the terminal reduces the transmission level or reduces the transmission power.
  • the above method is very effective to meet the requirements of low frequency SAR.
  • the terminal needs to continuously detect whether the beam is facing the human body, the terminal needs to consume more power for detecting the beam direction, which affects the terminal's cruise capability.
  • Subsequent embodiments of the present disclosure provide a solution for electromagnetic radiation safety control in a beamforming scenario, so that when the terminal meets the electromagnetic radiation standard, the power consumption of the terminal in the electromagnetic radiation safety control process is reduced.
  • FIG. 1 is a schematic diagram showing an implementation environment involved in a security control method according to some exemplary embodiments. As shown in FIG. 1, the implementation environment may include several terminals 110 and base stations 120.
  • the terminal 110 is a wireless communication device supporting multiple wireless access technologies.
  • the terminal 110 may support a cellular mobile communication technology, for example, may support a fifth-generation mobile communication technology.
  • the terminal 110 may also support a next-generation mobile communication technology of 5G technology.
  • the terminal 110 may also be a user terminal device, such as a mobile phone (or “cellular” phone) and a computer with a mobile terminal.
  • a user terminal device such as a mobile phone (or “cellular” phone) and a computer with a mobile terminal.
  • it may be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device.
  • station Station, STA
  • subscriber unit subscriber station
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile station
  • remote station remote station
  • access point remote terminal
  • remote terminal access terminal
  • user device user terminal
  • user agent user agent
  • user equipment user device
  • UE user equipment
  • the terminal 110 may be a terminal that supports beamforming technology to communicate with a base station.
  • the base station 120 may be a network side device in a wireless communication system.
  • the wireless communication system may also be a 5G system, also known as a new air interface NR system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the base station 120 may be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • the base station 120 adopts a centralized and distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • the unit is provided with a physical (PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 120.
  • PHY physical
  • the base station 120 may also be other devices with base station functions.
  • the base station 120 may be a relay (Relay) node or other access point devices.
  • Relay relay
  • a wireless connection can be established between the base station 120 and the terminal 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, for example, the wireless air interface is a new air interface; or, the wireless air interface can also be a wireless air interface based on 5G-based next-generation mobile communication network technology standards .
  • 5G fifth-generation mobile communication network technology
  • the foregoing wireless communication system may further include a network management device 130.
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 330 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), Policy and Charging Rules function unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules function unit Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • FIG. 2 is a flowchart showing a security control method according to an exemplary embodiment.
  • the security control method may be executed by a terminal.
  • the terminal may be the terminal 110 in the implementation environment shown in FIG. 1.
  • the method may include the following steps.
  • step 201 the transmit power threshold is obtained according to the service requirements of the service transmitted between the terminal and the base station.
  • step 202 when the relationship between the current transmit power of the terminal and the transmit power threshold satisfies a specified condition, the relationship between the beam direction and the position of the human body is probed, and the beam direction is the business between the terminal and the base station.
  • the direction of the beam used for transmission.
  • step 203 when the relationship between the beam direction and the position of the human body satisfies a predetermined relationship, safety control information is reported to the base station, and the safety control information is used to instruct the base station to perform electromagnetic radiation safety-related control operations.
  • the transmit power threshold includes a first power threshold and a second power threshold
  • the obtaining of the transmit power threshold value according to the service requirements of the service transmitted between the terminal and the base station includes:
  • the first power threshold is smaller than the second power threshold.
  • the obtaining the first power threshold value according to the maximum transmit power of the terminal and the maximum power backoff value under the maximum duty cycle includes:
  • the sum of the first difference and the power compensation factor is used as the first power threshold.
  • the obtaining the second power threshold value according to the maximum transmit power of the terminal and the maximum power backoff value under the minimum duty cycle includes:
  • the sum of the second difference and the power compensation factor is used as the second power threshold.
  • the method further includes:
  • the power compensation factor is obtained according to the distance between the terminal and the human body.
  • detecting the relationship between the beam direction and the position of the human body includes:
  • reporting security control information to the base station includes:
  • the first safety control information is reported to the base station, and the first safety control information is used to instruct the base station to reduce the duty cycle.
  • detecting the relationship between the beam direction and the position of the human body includes:
  • reporting security control information to the base station includes:
  • the second safety control information is reported to the base station.
  • the second safety control information is used to instruct the base station to switch the beam used by the terminal to a beam that is not directed or partly directed to the human body.
  • the terminal can obtain the transmission power threshold according to the service requirements of the service transmitted with the base station, and the relationship between the current transmission power of the terminal and the transmission power threshold satisfies the specified
  • the terminal does not need to continuously detect the relationship between the beam direction and the position of the human body, but only when the relationship between the current transmission power of the terminal and the transmission power threshold meets the specified conditions Only perform the detection step, which can significantly reduce the power consumption of the terminal during the electromagnetic radiation safety control process.
  • FIG. 3 is a flowchart showing a security control method according to an exemplary embodiment.
  • the security control method may be executed by a terminal.
  • the terminal may be the base station 120 in the implementation environment shown in FIG. 1.
  • the method may include the following steps.
  • step 301 security control information is received;
  • the security control information is obtained by the terminal according to the business requirements of the transmit power threshold, when the relationship between the current transmit power of the terminal and the transmit power threshold meets the specified conditions, the detection beam direction and the human body The relationship between the positions, and the information reported when the relationship between the beam direction and the position of the human body meets the predetermined relationship;
  • step 302 control operations related to electromagnetic radiation safety are performed according to the safety control information.
  • the execution of electromagnetic radiation safety-related control operations according to the safety control information includes:
  • the security control information is the second security control information, it is prepared to switch the beam used by the terminal to a beam that is not directed or partially directed in the direction of the human body.
  • the terminal can obtain the transmission power threshold according to the service requirements of the service transmitted with the base station, and the relationship between the current transmission power of the terminal and the transmission power threshold satisfies the specified If the conditions are met, perform the step of detecting the relationship between the beam direction and the position of the human body, and when it is detected that the relationship between the direction of the beam and the position of the human body satisfies the predetermined relationship, the safety control information is reported to the base station, and the base station is based on the safety control information Perform electromagnetic radiation safety-related control operations.
  • the terminal does not need to continuously detect the relationship between the beam direction and the position of the human body, but only needs to meet the specified relationship between the current transmission power of the terminal and the transmission power threshold.
  • the detection step is performed only when the conditions are met, which can significantly reduce the power consumption of the terminal during the electromagnetic radiation safety control process.
  • Fig. 4 is a flow chart showing a security control method according to an exemplary embodiment.
  • the security control method may be executed interactively by a terminal and a base station.
  • the terminal may be the terminal 110 in the implementation environment shown in FIG. It may be the base station 120 of the terminal in the implementation environment shown in FIG. 1.
  • the method may include the following steps.
  • step 401 the terminal obtains the service requirements of the service transmitted with the base station.
  • the terminal and the base station may communicate with each other through beamforming technology.
  • the service requirement of the service transmitted between the terminal and the base station can be obtained.
  • the service requirement may be a quality of service (QoS) requirement.
  • step 402 the terminal obtains the maximum power back-off value under the maximum duty cycle corresponding to the service requirement and the maximum power back-off value under the minimum duty cycle corresponding to the service requirement.
  • step 403 the terminal obtains the first power threshold value according to the maximum transmit power of the terminal and the maximum power backoff value under the maximum duty cycle.
  • the terminal when the terminal obtains the first power threshold value according to the maximum transmit power of the terminal and the maximum power backoff value under the maximum duty cycle, the maximum transmit power of the terminal may be obtained, and the The first difference between the maximum power backoff values under the maximum duty cycle; and the sum of the first difference and the power compensation factor is used as the first power threshold.
  • the terminal may calculate the first power threshold by the following power:
  • P m is the maximum transmit power of the terminal
  • P d is the above-mentioned power compensation factor
  • the terminal may obtain the distance between the terminal and the human body; and then obtain the power compensation factor according to the distance between the terminal and the human body.
  • the unit of the power compensation factor P d is also dB, which is also given by the manufacturer according to the product implementation.
  • P d is related to the distance between the terminal and the human body, and the terminal can be based on the distance from the human body. Determine the value of P d.
  • step 404 the terminal obtains the second power threshold value according to the maximum transmit power of the terminal and the maximum power backoff value under the minimum duty cycle.
  • the first power threshold is smaller than the second power threshold.
  • the terminal when obtaining the second power threshold according to the maximum transmit power of the terminal and the maximum power backoff value under the minimum duty cycle, the terminal may obtain the maximum transmit power of the terminal and the minimum duty cycle The second difference between the lower maximum power backoff values; then the sum of the second difference and the power compensation factor is used as the second power threshold.
  • the terminal may calculate the first power threshold by the following power:
  • step 405 when the current transmit power of the terminal is between the first power threshold and the second power threshold, it is detected whether the beam direction points to the human body.
  • FIG. 5 shows a schematic diagram of area division involved in an embodiment of the present disclosure.
  • the terminal can divide the current transmission power of the terminal into three regions according to the difference between the current transmission power and the maximum allowable transmission power that meets the requirements of the MPE.
  • the method of this division is as follows:
  • the terminal when the current transmit power of the terminal is in the safe zone, the terminal does not need to consider the MPE issue at this time, so there is no need to perform the step of detecting whether the beam direction is toward the human body.
  • the terminal When the current transmit power of the terminal is in the transition zone, the terminal starts to detect whether the beam direction is toward the human body.
  • the above-mentioned beam direction may be the beam direction of the uplink beam and/or the beam direction of the downlink beam.
  • the terminal when the terminal detects whether the beam direction is pointing to the human body, it can default to the direction the front of the terminal is facing is the direction where the human body is.
  • the terminal can obtain whether the detected beam direction is pointing to the direction of the front of the terminal.
  • the beam direction is toward the direction where the human body is located, otherwise, it can be determined that the beam direction is not toward the direction where the human body is located.
  • step 406 when the beam direction points to the human body, the first safety control information is reported to the base station, and correspondingly, the base station receives the first safety control information.
  • the first safety control information is used to instruct the base station to reduce the duty cycle.
  • the terminal when the terminal is in the transition zone, if it is detected that the beam direction of the terminal points to the direction where the human body is located, the first safety control information for instructing to reduce the duty cycle is reported to the base station.
  • step 407 the base station reduces the duty cycle of the terminal according to the first safety control information.
  • the base station after receiving the first safety control information reported by the terminal, the base station can reduce the duty cycle of the terminal to control the terminal to reduce the transmission power.
  • the foregoing first safety control information may include a decrease value of the duty cycle, and the base station may schedule the terminal to decrease the duty cycle according to the decrease value.
  • the farther the terminal is from the base station the higher the required transmit power.
  • the terminal is closer to the base station.
  • only lower transmission power is required to meet the uplink transmission requirements.
  • there is no need to consider the MPE problem so there is no need to detect whether the beam direction is facing the human body; and when the terminal is in the transition zone, the distance between the terminal and the base station is moderate , And only a moderate transmission power is needed to meet the uplink transmission demand, but there may still be a need for higher transmission power, resulting in a situation where the transmission power does not meet the MPE requirements.
  • the terminal can detect whether the beam direction is facing the human body.
  • the terminal can interact with the base station to perform the power back-off operation.
  • the terminal only needs moderate transmission power to meet the uplink transmission demand. Therefore, the power back-off operation will not cause power Reduce too much to meet the uplink transmission demand.
  • step 408 when the current transmit power of the terminal is greater than or equal to the second power threshold, it is detected whether the beam direction moves toward the human body.
  • the terminal when the current transmit power of the terminal is in the danger zone, the terminal can continuously detect the relationship between the beam direction and the human body direction, and determine whether the beam direction moves toward the human body.
  • step 409 when the beam direction moves toward the human body, the second safety control information is reported to the base station, and correspondingly, the base station receives the second safety control information.
  • the second safety control information is used to instruct the base station to prepare to switch the beam used by the terminal to a beam that is not directed or partially directed in the direction of the human body.
  • the terminal when the current transmit power of the terminal is in the danger zone and the terminal detects that the beam direction moves toward the human body, the terminal may report to the base station second safety control information indicating preparation for beam switching.
  • step 410 the base station prepares to switch the beam used by the terminal to a beam that is not directed or partly directed in the direction of the human body according to the second safety control information.
  • the terminal when the current transmit power of the terminal is in the danger zone, the terminal can continue to detect whether the beam direction moves toward the human body. If the beam direction is detected to move toward the human body, the base station is notified to prepare to transfer the current beam. Switch to other beams that are not pointing or partly pointing to the human body, so that when it is determined to perform beam switching, the beam switching can be quickly completed without performing power back-off, so as to avoid sudden failure of the communication link.
  • the terminal When the current power of the terminal is in the safe zone, the terminal does not need to consider the MPE problem at this time, and does not need to turn on the detection device to detect whether the beam is facing the human body.
  • the terminal When the current power of the terminal is in the transition zone, the terminal needs to detect whether the beam is facing the human body at this time. When it is found to be facing the human body, the terminal reports a message to the base station, requesting to reduce the dutycycle.
  • the message reported by the terminal to the base station may be 1-bit indication information, for example, 0 indicates a transition zone, 1 indicates a dangerous zone, or vice versa.
  • the reported information may also be information that contains a specific dutycycle value that needs to be reduced.
  • the dutycycle value that needs to be reduced can be estimated by the terminal based on the current power and dutycycle.
  • the terminal When the current power of the terminal enters the danger zone, the terminal needs to detect the beam direction. Once the beam is detected to start moving towards the human body, the base station is notified to switch to other beams that are not or partly towards the human body.
  • the terminal when the terminal is in the transition zone calculated according to the above method, if the base station cannot schedule a lower uplink duty cycle dutycycle for some reason, and even needs to increase the uplink duty cycle dutycycle, the terminal is in the transition zone.
  • the terminal can use a linear method to calculate according to the following formula:
  • the terminal can obtain the transmission power threshold according to the service requirements of the service transmitted with the base station, and the relationship between the current transmission power of the terminal and the transmission power threshold satisfies the specified If the conditions are met, perform the step of detecting the relationship between the beam direction and the position of the human body, and when it is detected that the relationship between the direction of the beam and the position of the human body satisfies the predetermined relationship, the safety control information is reported to the base station, and the base station is based on the safety control information Perform electromagnetic radiation safety-related control operations.
  • the terminal does not need to continuously detect the relationship between the beam direction and the position of the human body, but only needs to meet the specified relationship between the current transmission power of the terminal and the transmission power threshold.
  • the detection step is performed only when the conditions are met, which can significantly reduce the power consumption of the terminal during the electromagnetic radiation safety control process.
  • Fig. 6 is a block diagram showing a security control device according to an exemplary embodiment.
  • the resource switching device can be implemented as the terminal 110 in the implementation environment shown in Fig. 1 through hardware or a combination of software and hardware. All or part of, to execute the steps executed by the terminal in the embodiment shown in FIG. 2 or FIG. 3.
  • the safety control device may include:
  • the power threshold obtaining module 601 is configured to obtain the transmit power threshold according to the service requirements of the service transmitted between the terminal and the base station;
  • the detection module 602 is configured to detect the relationship between the beam direction and the position of the human body when the relationship between the current transmit power of the terminal and the transmit power threshold meets a specified condition.
  • the reporting module 603 is configured to report safety control information to the base station when the relationship between the beam direction and the position of the human body meets a predetermined relationship, where the safety control information is used to instruct the base station to perform electromagnetic radiation safety-related control operating.
  • the transmit power threshold includes a first power threshold and a second power threshold
  • the power threshold acquisition module includes:
  • a back-off value acquisition sub-module configured to acquire the maximum power back-off value under the maximum duty cycle corresponding to the business demand, and the maximum power back-off value under the minimum duty cycle corresponding to the business demand;
  • the first threshold value obtaining submodule is configured to obtain the first power threshold value according to the maximum transmit power of the terminal and the maximum power backoff value under the maximum duty cycle;
  • the second threshold value obtaining submodule is configured to obtain the second power threshold value according to the maximum transmit power of the terminal and the maximum power backoff value under the minimum duty cycle;
  • the first power threshold is less than the second power threshold.
  • the first threshold value obtaining submodule is configured to:
  • the sum of the first difference and the power compensation factor is used as the first power threshold.
  • the second threshold value obtaining sub-module is configured to:
  • the sum of the second difference and the power compensation factor is used as the second power threshold.
  • the device further includes:
  • a distance acquiring module used to acquire the distance between the terminal and the human body
  • the compensation factor obtaining module is configured to obtain the power compensation factor according to the distance between the terminal and the human body.
  • the detection module includes:
  • the first detection sub-module is configured to detect whether the beam direction points to the human body when the current transmit power of the terminal is between the first power threshold and the second power threshold;
  • the reporting module includes:
  • the first reporting submodule is configured to report first safety control information to the base station when the beam direction points to the human body, where the first safety control information is used to instruct the base station to reduce the duty cycle.
  • the detection module includes:
  • the second detection submodule is configured to detect whether the beam direction moves toward the human body when the current transmit power of the terminal is greater than or equal to the second power threshold;
  • the reporting module includes:
  • the second reporting sub-module is configured to report second safety control information to the base station when the beam direction moves toward the human body, and the second safety control information is used to instruct the base station to prepare to use the terminal
  • the beam is switched to a beam that is not directed or partially directed in the direction of the human body.
  • the terminal can obtain the transmission power threshold according to the service requirements of the service transmitted with the base station, and the relationship between the current transmission power of the terminal and the transmission power threshold satisfies the specified If the conditions are met, perform the step of detecting the relationship between the beam direction and the position of the human body, and when it is detected that the relationship between the direction of the beam and the position of the human body satisfies the predetermined relationship, the safety control information is reported to the base station, and the base station is based on the safety control information Perform electromagnetic radiation safety-related control operations.
  • the terminal does not need to continuously detect the relationship between the beam direction and the position of the human body, but only needs to meet the specified relationship between the current transmission power of the terminal and the transmission power threshold.
  • the detection step is performed only when the conditions are met, which can significantly reduce the power consumption of the terminal during the electromagnetic radiation safety control process.
  • Fig. 7 is a block diagram showing a security control device according to an exemplary embodiment.
  • the resource switching device can be implemented as the base station 120 in the implementation environment shown in Fig. 1 through hardware or a combination of software and hardware. All or part of, to perform the steps performed by the base station in the embodiment shown in FIG. 2 or FIG. 3.
  • the safety control device may include:
  • the information receiving module 701 is configured to receive security control information; the security control information is obtained by the terminal according to the service requirements of the transmission power threshold, when the relationship between the current transmission power of the terminal and the transmission power threshold satisfies the specified Conditionally detect the relationship between the beam direction and the human body position, and report information when the relationship between the beam direction and the human body position satisfies a predetermined relationship;
  • the operation execution module 702 is configured to execute electromagnetic radiation safety-related control operations according to the safety control information.
  • the operation execution module 702 includes:
  • the duty cycle reduction sub-module is used to reduce the duty cycle of the terminal when the safety control information is the first safety control information
  • the handover preparation sub-module is configured to prepare to switch the beam used by the terminal to a beam that is not directed or partly directed in the direction of the human body when the security control information is the second security control information.
  • the terminal can obtain the transmission power threshold according to the service requirements of the service transmitted with the base station, and the relationship between the current transmission power of the terminal and the transmission power threshold satisfies the specified If the conditions are met, perform the step of detecting the relationship between the beam direction and the position of the human body, and when it is detected that the relationship between the beam direction and the position of the human body satisfies the predetermined relationship, the safety control information is reported to the base station, and the base station is based on the safety control information Perform electromagnetic radiation safety-related control operations.
  • the terminal does not need to continuously detect the relationship between the beam direction and the position of the human body, but only needs to meet the specified relationship between the current transmit power of the terminal and the transmit power threshold.
  • the detection step is executed only when the conditions are met, which can significantly reduce the power consumption of the terminal during the electromagnetic radiation safety control process.
  • the device provided in the above embodiment realizes its functions, only the division of the above-mentioned functional modules is used as an example for illustration. In actual applications, the above-mentioned functions can be allocated by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • An exemplary embodiment of the present disclosure provides a security control device that can implement all or part of the steps executed by a terminal in the embodiment shown in FIG. 2 or FIG. 3 of the present disclosure.
  • the security control device includes: a processor, A memory storing processor executable instructions;
  • the processor is configured as:
  • the relationship between the current transmit power of the terminal and the transmit power threshold satisfies a specified condition
  • the relationship between the beam direction and the position of the human body is probed, and the beam direction is the business between the terminal and the base station The direction of the beam used for transmission;
  • safety control information is reported to the base station, where the safety control information is used to instruct the base station to perform electromagnetic radiation safety-related control operations.
  • the transmit power threshold includes a first power threshold and a second power threshold
  • the obtaining the transmission power threshold value according to the service requirement of the service transmitted between the terminal and the base station includes:
  • the first power threshold is less than the second power threshold.
  • the acquiring the first power threshold value according to the maximum transmit power of the terminal and the maximum power backoff value under the maximum duty cycle includes:
  • the sum of the first difference and the power compensation factor is used as the first power threshold.
  • the acquiring the second power threshold value according to the maximum transmit power of the terminal and the maximum power backoff value under the minimum duty cycle includes:
  • the sum of the second difference and the power compensation factor is used as the second power threshold.
  • the processor is further configured to:
  • detecting the relationship between the beam direction and the position of the human body includes:
  • the reporting security control information to the base station when the relationship between the beam direction and the position of the human body satisfies a predetermined relationship includes:
  • the first safety control information is reported to the base station, where the first safety control information is used to instruct the base station to reduce the duty cycle.
  • detecting the relationship between the beam direction and the position of the human body includes:
  • the reporting security control information to the base station when the relationship between the beam direction and the position of the human body satisfies a predetermined relationship includes:
  • An exemplary embodiment of the present disclosure provides a security control device that can implement all or part of the steps executed by a base station in the embodiment shown in FIG. 2 or FIG. 3 of the present disclosure.
  • the security control device includes: a processor, Memory for storing processor executable instructions;
  • the processor is configured as:
  • the security control information is obtained by the terminal according to the business requirements of the transmit power threshold, when the relationship between the current transmit power of the terminal and the transmit power threshold meets the specified conditions, the detection beam direction and the position of the human body And the information reported when the relationship between the beam direction and the position of the human body meets a predetermined relationship;
  • the execution of electromagnetic radiation safety-related control operations according to the safety control information includes:
  • the security control information is the first security control information, reducing the duty cycle of the terminal;
  • the security control information is the second security control information, it is prepared to switch the beam used by the terminal to a beam that is not directed or partially directed in the direction of the human body.
  • the user equipment includes hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 8 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • the terminal may be implemented as the terminal in the system environment shown in FIG. 1 above.
  • the terminal 800 includes a communication unit 804 and a processor 802.
  • the processor 802 may also be a controller, which is represented as "controller/processor 802" in FIG. 8.
  • the communication unit 804 is used to support the terminal to communicate with other network entities (for example, other terminals or base stations).
  • the terminal 800 may further include a memory 803, and the memory 803 is used to store program codes and data of the terminal 800.
  • FIG. 8 only shows a simplified design of the terminal 800.
  • the terminal 800 may include any number of processors, controllers, memories, communication units, etc., and all terminals that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • Fig. 9 is a schematic structural diagram showing a base station according to an exemplary embodiment.
  • the base station may be implemented as the base station in the system environment shown in FIG. 1 above.
  • the base station 900 includes a communication unit 904 and a processor 902.
  • the processor 902 may also be a controller, which is represented as "controller/processor 902" in FIG. 9.
  • the communication unit 904 is used to support the base station to communicate with other network entities (for example, other terminals or base stations, etc.).
  • the base station 900 may further include a memory 903, and the memory 903 is used to store program codes and data of the base station 900.
  • FIG. 9 only shows a simplified design of the base station 900.
  • the base station 900 may include any number of processors, controllers, memories, communication units, etc., and all base stations that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • the functions described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, or any combination thereof.
  • these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.
  • the embodiments of the present disclosure also provide a computer storage medium for storing computer software instructions used for the above-mentioned terminal or base station, which contains a program designed for executing the above-mentioned security control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开揭示了一种电磁辐射安全控制方法,属于无线通信技术领域。所述方法包括:终端根据与基站之间传输的业务的业务需求获取发射功率阈值,并在终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时,执行探测波束方向与人体位置之间的关系的步骤,并在探测到该波束方向与人体位置之间的关系满足预定关系时,向该基站上报安全控制信息,以指示该基站执行电磁辐射安全相关的控制操作,在上述方案中,终端不需要持续探测波束方向与人体位置之间的关系,而是只需要在终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时才执行探测步骤,从而可以显著的减少终端在电磁辐射安全控制过程中的电量消耗。

Description

安全控制方法及装置 技术领域
本公开涉及无线通信技术领域,特别涉及一种安全控制方法及装置。
背景技术
手机、智能手表、电脑等移动终端设备的电磁辐射会对人体安全产生一定的影响,特别是随着支持高频段高功率的终端逐渐成为市场上的主流,而这也客观上增加了终端的电磁辐射对人体安全的风险。
在第五代移动通信(the 5th generation mobile communication,5G)系统中,终端与基站之间可以通过波束赋形技术进行通信,而由于毫米波频段的波束较窄,因此辐射主要集中在波束方向上。在相关技术中,终端在与基站进行通信的过程中,需要持续探测波束方向是否指向人体,若波束方向指向人体,则需要进行功率回退操作。
发明内容
本公开提供一种安全控制方法及装置。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种安全控制方法,所述方法由终端执行,所述方法包括:
根据终端与基站之间传输的业务的业务需求获取发射功率阈值;
当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,所述波束方向是所述终端与所述基站之间进行业务传输所使用的波束的方向;
当所述波束方向与人体位置之间的关系满足预定关系时,向所述基站上报安全控制信息,所述安全控制信息用于指示所述基站执行电磁辐射安全相关的控制操作。
可选的,所述发射功率阈值包括第一功率阈值和第二功率阈值;
所述根据终端与基站之间传输的业务的业务需求获取发射功率阈值,包括:
获取所述业务需求对应的最大占空比下的最大功率回退值,以及所述业务 需求对应的最小占空比下的最大功率回退值;
根据所述终端的最大发射功率以及所述最大占空比下的最大功率回退值,获取所述第一功率阈值;
根据所述终端的最大发射功率以及所述最小占空比下的最大功率回退值,获取所述第二功率阈值;
其中,所述第一功率阈值小于所述第二功率阈值。
可选的,所述根据所述终端的最大发射功率以及所述最大占空比下的最大功率回退值,获取所述第一功率阈值,包括:
获取所述终端的最大发射功率,与所述最大占空比下的最大功率回退值之间的第一差值;
将所述第一差值与功率补偿因子的和作为所述第一功率阈值。
可选的,所述根据所述终端的最大发射功率以及所述最小占空比下的最大功率回退值,获取所述第二功率阈值,包括:
获取所述终端的最大发射功率,与所述最小占空比下的最大功率回退值之间的第二差值;
将所述第二差值与功率补偿因子的和作为所述第二功率阈值。
可选的,所述方法还包括:
获取所述终端与人体之间的距离;
根据所述终端与人体之间的距离获取所述功率补偿因子。
可选的,所述当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,包括:
当所述终端的当前发射功率处于所述第一功率阈值与所述第二功率阈值之间时,探测所述波束方向是否指向人体;
所述当所述波束方向与人体位置之间的关系满足预定关系时,向所述基站上报安全控制信息,包括:
当所述波束方向指向人体时,向所述基站上报第一安全控制信息,所述第一安全控制信息用于指示所述基站降低占空比。
可选的,所述当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,包括:
当所述终端的当前发射功率大于或者等于所述第二功率阈值时,探测所述波束方向是否向人体方向移动;
所述当所述波束方向与人体位置之间的关系满足预定关系时,向所述基站上报安全控制信息,包括:
当所述波束方向向人体方向移动时,向所述基站上报第二安全控制信息,所述第二安全控制信息用于指示所述基站准备将所述终端使用的波束切换至未指向或者部分指向人体方向的波束。
根据本公开实施例的第二方面,提供了一种安全控制方法,所述方法由基站执行,所述方法包括:
接收安全控制信息;所述安全控制信息是由所述终端根据业务需求获取发射功率阈值,当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件探测波束方向与人体位置之间的关系,并在所述波束方向与人体位置之间的关系满足预定关系时上报的信息;
根据所述安全控制信息执行电磁辐射安全相关的控制操作。
可选的,所述根据所述安全控制信息执行电磁辐射安全相关的控制操作,包括:
当所述安全控制信息是第一安全控制信息时,降低所述终端的占空比;
当所述安全控制信息是第二安全控制信息时,准备将所述终端使用的波束切换至未指向或者部分指向人体方向的波束。
根据本公开实施例的第三方面,提供了一种安全控制装置,所述装置用于终端中,所述装置包括:
功率阈值获取模块,用于根据终端与基站之间传输的业务的业务需求获取发射功率阈值;
探测模块,用于当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,所述波束方向是所述终端与所述基站之间进行业务传输所使用的波束的方向;
上报模块,用于当所述波束方向与人体位置之间的关系满足预定关系时,向所述基站上报安全控制信息,所述安全控制信息用于指示所述基站执行电磁辐射安全相关的控制操作。
可选的,所述发射功率阈值包括第一功率阈值和第二功率阈值;
所述功率阈值获取模块,包括:
回退值获取子模块,用于获取所述业务需求对应的最大占空比下的最大功率回退值,以及所述业务需求对应的最小占空比下的最大功率回退值;
第一阈值获取子模块,用于根据所述终端的最大发射功率以及所述最大占空比下的最大功率回退值,获取所述第一功率阈值;
第二阈值获取子模块,用于根据所述终端的最大发射功率以及所述最小占空比下的最大功率回退值,获取所述第二功率阈值;
其中,所述第一功率阈值小于所述第二功率阈值。
可选的,所述第一阈值获取子模块,用于,
获取所述终端的最大发射功率,与所述最大占空比下的最大功率回退值之间的第一差值;
将所述第一差值与功率补偿因子的和作为所述第一功率阈值。
可选的,所述第二阈值获取子模块,用于,
获取所述终端的最大发射功率,与所述最小占空比下的最大功率回退值之间的第二差值;
将所述第二差值与功率补偿因子的和作为所述第二功率阈值。
可选的,所述装置还包括:
距离获取模块,用于获取所述终端与人体之间的距离;
补偿因子获取模块,用于根据所述终端与人体之间的距离获取所述功率补偿因子。
可选的,所述探测模块,包括:
第一探测子模块,用于当所述终端的当前发射功率处于所述第一功率阈值与所述第二功率阈值之间时,探测所述波束方向是否指向人体;
所述上报模块,包括:
第一上报子模块,用于当所述波束方向指向人体时,向所述基站上报第一安全控制信息,所述第一安全控制信息用于指示所述基站降低占空比。
可选的,所述探测模块,包括:
第二探测子模块,用于当所述终端的当前发射功率大于或者等于所述第二功率阈值时,探测所述波束方向是否向人体方向移动;
所述上报模块,包括:
第二上报子模块,用于当所述波束方向向人体方向移动时,向所述基站上报第二安全控制信息,所述第二安全控制信息用于指示所述基站准备将所述终 端使用的波束切换至未指向或者部分指向人体方向的波束。
根据本公开实施例的第四方面,提供了一种安全控制装置,所述装置用于基站中,所述装置包括:
信息接收模块,用于接收安全控制信息;所述安全控制信息是由所述终端根据业务需求获取发射功率阈值,当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件探测波束方向与人体位置之间的关系,并在所述波束方向与人体位置之间的关系满足预定关系时上报的信息;
操作执行模块,用于根据所述安全控制信息执行电磁辐射安全相关的控制操作。
可选的,所述操作执行模块,包括:
占空比降低子模块,用于当所述安全控制信息是第一安全控制信息时,降低所述终端的占空比;
切换准备子模块,用于当所述安全控制信息是第二安全控制信息时,准备将所述终端使用的波束切换至未指向或者部分指向人体方向的波束。
根据本公开实施例的第五方面,提供了一种安全控制装置,所述装置用于终端中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
根据终端与基站之间传输的业务的业务需求获取发射功率阈值;
当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,所述波束方向是所述终端与所述基站之间进行业务传输所使用的波束的方向;
当所述波束方向与人体位置之间的关系满足预定关系时,向所述基站上报安全控制信息,所述安全控制信息用于指示所述基站执行电磁辐射安全相关的控制操作。
根据本公开实施例的第六方面,提供了一种安全控制装置,所述装置用于基站中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
接收安全控制信息;所述安全控制信息是由所述终端根据业务需求获取发射功率阈值,当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件探测波束方向与人体位置之间的关系,并在所述波束方向与人体位置之间的关系满足预定关系时上报的信息;
根据所述安全控制信息执行电磁辐射安全相关的控制操作。
本公开的实施例提供的技术方案可以包括以下有益效果:
终端可以根据与基站之间传输的业务的业务需求获取发射功率阈值,并在终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时,执行探测波束方向与人体位置之间的关系的步骤,并在探测到该波束方向与人体位置之间的关系满足预定关系时,向该基站上报安全控制信息,以指示该基站执行电磁辐射安全相关的控制操作,在上述方案中,终端不需要持续探测波束方向与人体位置之间的关系,而是只需要在终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时才执行探测步骤,从而可以显著的减少终端在电磁辐射安全控制过程中的电量消耗。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1是根据部分示例性实施例示出的一种安全控制方法所涉及的实施环境的示意图;
图2是根据一示例性实施例示出的一种安全控制方法的流程图;
图3是根据一示例性实施例示出的一种安全控制方法的流程图;
图4是根据一示例性实施例示出的一种安全控制方法的流程图;
图5是图4所示实施例涉及的区域划分示意图;
图6是根据一示例性实施例示出的一种安全控制装置的框图;
图7是根据一示例性实施例示出的一种安全控制装置的框图;
图8是根据一示例性实施例示出的一种终端的结构示意图;
图9是根据一示例性实施例示出的一种基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
应当理解的是,在本文中提及的“若干个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
终端的人体安全的电磁辐射标准,目前国际上采用电磁波吸收比值或比吸收率即(Specific Absorption Rate,SAR)和最大可允许的暴露量(Maximum Permissible Exposure,MPE)来表示,其中,前者主要针对低频段,如6GHz以下频段,而后者主要针对的是毫米波频段。
为了降低终端发射对人体安全产生的影响,通常采用在发射功率的基础上进行一定的功率回退或者减少终端发射的上行占空比(Dutycycle)来达到满足SAR或MPE的要求。比如,在3GPP射频标准中,专门引入了最大允许的终端功率回退(Maximum allowed UE output power reduction,P-MPR),并且在针对高功率的终端时,终端需要上报最大上行占空比能力(Maximum Dutycycle Capability),当调度的上行占空比大于该最大上行占空比时,终端降低发射等级或者降低发射功率。上述方法对于满足低频SAR的要求非常有效。
然而,在毫米波频段由于波束较窄,辐射比较集中,一旦该波束朝向人体,为了满足MPE要求最大可能需要20dB的功率的回退,这么大的功率突然降低极其容易造成通信链路的突然失效。
另外一方面,由于终端需要不断检测波束是否朝向人体,因此导致终端需 要额外消耗较多的电量用于波束方向的探测,影响终端的巡航能力。
本公开后续各个实施例,提供了一种在波束赋形场景下进行电磁辐射安全控制的方案,使得终端在满足电磁辐射标准的情况下,减少终端在电磁辐射安全控制过程中的电量消耗。
图1是根据部分示例性实施例示出的一种安全控制方法所涉及的实施环境的示意图,如图1所示,该实施环境可以包括:若干个终端110和基站120。
终端110是支持多种无线接入技术的无线通信设备。比如,终端110可以支持蜂窝移动通信技术,比如,可以支持第五代移动通信技术。或者,终端110也可以支持5G技术的更下一代移动通信技术。
例如,终端110也可以是用户终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。
在本公开实施例中,终端110可以是支持波束赋形技术与基站通信的终端。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统也可以是5G系统,又称新空口NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。
其中,基站120可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120也可以是其它具有基站功能的设备,比如,基站120可以是中继(Relay)节点,或者其它接入点设备。
基站120和终端110之间可以通过无线空口建立无线连接。该无线空口是 基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
可选的,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备330可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
图2是根据一示例性实施例示出的一种安全控制方法的流程图,该安全控制方法可以由终端执行,比如,该终端可以是图1所示的实施环境中的终端110。如图2所示,该方法可以包括以下步骤。
在步骤201中,根据终端与基站之间传输的业务的业务需求获取发射功率阈值。
在步骤202中,当该终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,该波束方向是该终端与该基站之间进行业务传输所使用的波束的方向。
在步骤203中,当该波束方向与人体位置之间的关系满足预定关系时,向该基站上报安全控制信息,该安全控制信息用于指示该基站执行电磁辐射安全相关的控制操作。
可选的,该发射功率阈值包括第一功率阈值和第二功率阈值;
该根据终端与基站之间传输的业务的业务需求获取发射功率阈值,包括:
获取该业务需求对应的最大占空比下的最大功率回退值,以及该业务需求对应的最小占空比下的最大功率回退值;
根据该终端的最大发射功率以及该最大占空比下的最大功率回退值,获取该第一功率阈值;
根据该终端的最大发射功率以及该最小占空比下的最大功率回退值,获取 该第二功率阈值;
其中,该第一功率阈值小于该第二功率阈值。
可选的,该根据该终端的最大发射功率以及该最大占空比下的最大功率回退值,获取该第一功率阈值,包括:
获取该终端的最大发射功率,与该最大占空比下的最大功率回退值之间的第一差值;
将该第一差值与功率补偿因子的和作为该第一功率阈值。
可选的,该根据该终端的最大发射功率以及该最小占空比下的最大功率回退值,获取该第二功率阈值,包括:
获取该终端的最大发射功率,与该最小占空比下的最大功率回退值之间的第二差值;
将该第二差值与功率补偿因子的和作为该第二功率阈值。
可选的,该方法还包括:
获取该终端与人体之间的距离;
根据该终端与人体之间的距离获取该功率补偿因子。
可选的,该当该终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,包括:
当该终端的当前发射功率处于该第一功率阈值与该第二功率阈值之间时,探测该波束方向是否指向人体;
该当该波束方向与人体位置之间的关系满足预定关系时,向该基站上报安全控制信息,包括:
当该波束方向指向人体时,向该基站上报第一安全控制信息,该第一安全控制信息用于指示该基站降低占空比。
可选的,该当该终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,包括:
当该终端的当前发射功率小于或者等于该第一功率阈值时,探测该波束方向是否向人体方向移动;
该当该波束方向与人体位置之间的关系满足预定关系时,向该基站上报安全控制信息,包括:
当该波束方向向人体方向移动时,向该基站上报第二安全控制信息,该第二安全控制信息用于指示该基站准备将该终端使用的波束切换至未指向或者部 分指向人体方向的波束。
综上所述,本申请实施例所示的方案,终端可以根据与基站之间传输的业务的业务需求获取发射功率阈值,并在终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时,执行探测波束方向与人体位置之间的关系的步骤,并在探测到该波束方向与人体位置之间的关系满足预定关系时,向该基站上报安全控制信息,以指示该基站执行电磁辐射安全相关的控制操作,在上述方案中,终端不需要持续探测波束方向与人体位置之间的关系,而是只需要在终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时才执行探测步骤,从而可以显著的减少终端在电磁辐射安全控制过程中的电量消耗。
图3是根据一示例性实施例示出的一种安全控制方法的流程图,该安全控制方法可以由终端执行,比如,该终端可以是图1所示的实施环境中的基站120。如图3所示,该方法可以包括以下步骤。
在步骤301中,接收安全控制信息;该安全控制信息是由该终端根据业务需求获取发射功率阈值,当该终端的当前发射功率与该发射功率阈值之间的关系满足指定条件探测波束方向与人体位置之间的关系,并在该波束方向与人体位置之间的关系满足预定关系时上报的信息;
在步骤302中,根据该安全控制信息执行电磁辐射安全相关的控制操作。
可选的,该根据该安全控制信息执行电磁辐射安全相关的控制操作,包括:
当该安全控制信息是第一安全控制信息时,降低该终端的占空比;
当该安全控制信息是第二安全控制信息时,准备将该终端使用的波束切换至未指向或者部分指向人体方向的波束。
综上所述,本申请实施例所示的方案,终端可以根据与基站之间传输的业务的业务需求获取发射功率阈值,并在终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时,执行探测波束方向与人体位置之间的关系的步骤,并在探测到该波束方向与人体位置之间的关系满足预定关系时,向该基站上报安全控制信息,基站根据该安全控制信息执行电磁辐射安全相关的控制操作,在上述方案中,终端不需要持续探测波束方向与人体位置之间的关系,而是只需要在终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时才执行探测步骤,从而可以显著的减少终端在电磁辐射安全控制过程中的电量消耗。
图4是根据一示例性实施例示出的一种安全控制方法的流程图,该安全控制方法可以由终端和基站交互执行,比如,该终端可以是图1所示实施环境中的终端110,基站可以是图1所示实施环境终端的基站120。如图4所示,该方法可以包括以下步骤。
在步骤401中,终端获取与基站之间传输的业务的业务需求。
在本公开实施例中,终端与基站之间可以通过波束赋形技术进行通信。终端与基站之间进行业务数据传输时,可以获取终端与基站之间传输的业务的业务需求,比如,该业务需求可以是服务质量(Quality of Service,QoS)需求。
在步骤402中,终端获取该业务需求对应的最大占空比下的最大功率回退值,以及该业务需求对应的最小占空比下的最大功率回退值。
在本公开实施例中,可以通过P-MPR dutycycle=Xmax来表示占空比dutycycle=Xmax时的最大功率回退值,其单位为分贝(dB),P-MPR dutycycle=Xmax的值由厂家根据产品测试给出,其中,Xmax是终端根据业务需求确定的最大可能的占空比dutycycle。如假设Xmax=100%。
类似的,可以通过P-MP Rdutycycle=Xmin来表示占空比dutycycle=Xmin时的最大功率回退值,单位为dB。P-MPR dutycycle=Xmax的值同样可以由厂家根据产品测试给出,Xmin是终端根据业务需求确定的最小可能的占空比dutycycle。如假设语音业务的dutycycle=50%,数据业务为5%等。
在步骤403中,终端根据该终端的最大发射功率以及该最大占空比下的最大功率回退值,获取该第一功率阈值。
在一种可能的实现方式中,终端根据该终端的最大发射功率以及该最大占空比下的最大功率回退值,获取该第一功率阈值时,可以获取该终端的最大发射功率,与该最大占空比下的最大功率回退值之间的第一差值;并将该第一差值与功率补偿因子的和作为该第一功率阈值。
例如,终端可以通过以下功率计算第一功率阈值:
P m-P-MPR dutycycle=Xmax+P d
其中,P m是终端的最大发射功率,P d是上述功率补偿因子。
可选的,终端可以获取该终端与人体之间的距离;然后根据该终端与人体之间的距离获取该功率补偿因子。
其中,功率补偿因子P d的单位也为dB,其也是由厂家根据产品实现给出,在本公开实施例中,P d与终端和人体之间的距离相关,终端可以根据距离人体 的远近来确定P d的值。
如终端正处于耳朵边通话时,P d=0dB,终端在手持状态时,P d=5dB。
在步骤404中,终端根据该终端的最大发射功率以及该最小占空比下的最大功率回退值,获取该第二功率阈值。
其中,该第一功率阈值小于该第二功率阈值。
可选的,在根据该终端的最大发射功率以及该最小占空比下的最大功率回退值,获取该第二功率阈值时,终端可以获取该终端的最大发射功率,与该最小占空比下的最大功率回退值之间的第二差值;然后将该第二差值与功率补偿因子的和作为该第二功率阈值。
例如,终端可以通过以下功率计算第一功率阈值:
P m-P-MPR dutycycle=Xmin+P d)。
在步骤405中,当该终端的当前发射功率处于该第一功率阈值与该第二功率阈值之间时,探测该波束方向是否指向人体。
请参考图5,其示出了本公开实施例涉及的区域划分示意图。如图5所示,在本公开实施例中,终端可以根据当前发射功率与满足MPE要求的最大允许发射功率之间的差值,将终端的当前发射功率分为三个区域,可选的,该划分的方法如下:
安全区:P-(P m-P-MPR dutycycle=Xmax+P d)≤0;
过渡区:P-(P m-P-MPR dutycycle=Xmax+P d)>0,且P-(P m-P-MPR dutycycle=Xmin+P d)≤0;
危险区:P-(P m-P-MPR dutycycle=Xmin+P d)≥0;
其中,当终端的当前发射功率处在安全区内时,终端此时不用考虑MPE问题,因此无需执行探测波束(beam)方向是否朝向人体的步骤。
而当终端的当前发射功率处于过渡区时,终端开始执行探测波束方向是否朝向人体。
其中,上述波束方向可以是上行波束的波束方向和/或下行波束的波束方向。
其中,终端在检测波束方向是否指向人体时,可以默认终端的正面所朝向的方向是人体所在的方向,终端可以获取探测到的波束方向是否指向终端的正面所朝向的方向,若是,则确定该波束方向朝向人体所在的方向,否则,可以确定该波束方向未朝向人体人体所在的方向。
在步骤406中,当该波束方向指向人体时,向该基站上报第一安全控制信息,相应的,基站接收该第一安全控制信息。
其中,该第一安全控制信息用于指示该基站降低占空比。
在本公开实施例中,当终端处于过渡区时,若检测到终端的波束方向指向人体所在的方向,则向基站上报用于指示降低占空比的第一安全控制信息。
在步骤407中,基站根据第一安全控制信息时,降低该终端的占空比。
在本公开实施例中,基站接收到终端上报的第一安全控制信息之后,可以降低终端的占空比,以控制终端降低发射功率。
可选的,上述第一安全控制信息中可以包含占空比的降低数值,基站可以根据该降低数值来调度该终端降低占空比。
如图5所示,终端距离基站越近,需要的发射功率也越低,相应的,终端距离基站越远,需要的发射功率也越高,当终端处于安全区内时,距离基站较近,此时只需要较低的发射功率即可以满足上行发送需求,此时不需要考虑MPE问题,因此无需探测波束方向是否朝向人体;而当终端处于过渡区内时,终端与基站之间的距离适中,且只需要适中的发射功率即可以满足上行发送需求,但是依然可能会出现需要较高的发射功率,从而导致发射功率不满足MPE要求的情况,因此,终端可以探测波束方向是否朝向人体,若终端探测到波束方向朝向人体,则可以与基站交互,以执行功率回退操作,由于此时,终端只需要适中的发射功率即可以满足上行发送需求,因此,执行功率回退操作不会导致功率降低太多而不满足上行发送需求。
在步骤408中,当该终端的当前发射功率大于或者等于该第二功率阈值时,探测该波束方向是否向人体方向移动。
如图5所示,在本公开实施例中,当终端的当前发射功率处于危险区时,终端可以持续探测波束方向与人体方向之间的关系,并判断波束方向是否向人体方向移动。
在步骤409中,当该波束方向向人体方向移动时,向该基站上报第二安全控制信息,相应的,基站接收该第二安全控制信息。
其中,该第二安全控制信息用于指示该基站准备将该终端使用的波束切换至未指向或者部分指向人体方向的波束。
在本公开实施例中,当终端的当前发射功率处于危险区内,且终端探测到波束方向向人体方向移动时,终端可以向基站上报用于指示准备进行波束切换的第二安全控制信息。
在步骤410中,基站根据该第二安全控制信息,准备将该终端使用的波束 切换至未指向或者部分指向人体方向的波束。
如图5所示,当终端的当前发射功率处于危险区时,终端与基站之间的距离也会比较远,此时,终端需要较高的发射功率才能满足上行发送需求,而此时如果终端探测到波束方向指向人体方向并执行功率回退,很可能会导致较大的功率突然降低造成通信链路的突然失效。
因此,在本公开实施例中,当终端的当前发射功率处于危险区时,终端可以持续探测波束方向是否向人体方向移动,若探测到波束方向向人体所在方向移动,则通知基站准备将当前波束切换到其它未指向或者部分指向人体方向的波束,以便在后续确定执行波束切换时,能够快速完成波束切换,而不需要执行功率回退,避免通信链路的突然失效。
例如,如图5所示,当某个用户正在使用手机打电话时,从某个基站的中心开始向外移动,终端根据当前发射功率与满足MPE要求的最大允许发射功率之间的差值,将终端的发射功率分为三个区域,划分的方法如上述步骤405下面的描述,此处不再赘述。
当终端的当前功率处在安全区内,终端此时不用考虑MPE问题,无需开启探测装置探测beam是否朝向人体。
当终端的当前功率处在过渡区内,终端此时需要探测波束(beam)是否朝向人体,当发现朝向人体,则终端向基站上报消息,要求降低dutycycle。
所述终端向基站上报的消息,可以是1bit的指示信息,比如:0表示过渡区,1表示危险区,或者相反。上报的信息也可以是包含具体需要降低的dutycycle值的信息。所述需要降低的dutycycle值,终端可以根据当前功率和dutycycle进行估算。
当终端的当前功率进入到危险区内,终端需要检测波束朝向,一旦检测到波束开始移向人体,通知基站准备切换其它不朝向或部分朝向人体的波束。
在另一个实施例中,当终端带有人体距离探测器(比如手机正面的距离传感器)时,根据上述方法确定终端当前发射功率所处的区域时,上述功率补偿因子P d可进一步可表示为P d=X*Δ,其中X是距离探测器探测到的终端与人体的距离,Δ可以是终端预设的数值,比如,可以是终端厂家根据自己的产品预设的值。
在另一个实施例中,在按照上述方法计算终端处在过渡区时,如果基站由于某种原因无法调度更低的上行占空比dutycycle,甚至需要增大上行占空比 dutycycle时,则终端在计算过渡区与危险区边界的公式,即上述第二功率阈值对应的公式:P-(P m-P-MPR dutycycle=Xmin+P d)时,MPR dutycycle=Xmin需要替换成当前的Dutycycle对应的MPR,该MPR值可由MPR dutycycle=Xmax和MPR dutycycle=Xmin确定,例如,终端可以通过线性的方法,按照以下公式计算:
MPR dutycycle=MPR dutycycle=Xmin+(Dutycycle-Xmin)/(Xmax-Xmin)*(MPR dutycycle=Xmax-MPR dutycycle=Xmin)。
综上所述,本申请实施例所示的方案,终端可以根据与基站之间传输的业务的业务需求获取发射功率阈值,并在终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时,执行探测波束方向与人体位置之间的关系的步骤,并在探测到该波束方向与人体位置之间的关系满足预定关系时,向该基站上报安全控制信息,基站根据该安全控制信息执行电磁辐射安全相关的控制操作,在上述方案中,终端不需要持续探测波束方向与人体位置之间的关系,而是只需要在终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时才执行探测步骤,从而可以显著的减少终端在电磁辐射安全控制过程中的电量消耗。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图6是根据一示例性实施例示出的一种安全控制装置的框图,如图6所示,该资源切换装置可以通过硬件或者软硬结合的方式实现为图1所示实施环境中的终端110的全部或者部分,以执行图2或图3所示实施例中由终端执行的步骤。该安全控制装置可以包括:
功率阈值获取模块601,用于根据终端与基站之间传输的业务的业务需求获取发射功率阈值;
探测模块602,用于当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,所述波束方向是所述终端与所述基站之间进行业务传输所使用的波束的方向;
上报模块603,用于当所述波束方向与人体位置之间的关系满足预定关系时,向所述基站上报安全控制信息,所述安全控制信息用于指示所述基站执行电磁辐射安全相关的控制操作。
可选的,所述发射功率阈值包括第一功率阈值和第二功率阈值;
所述功率阈值获取模块,包括:
回退值获取子模块,用于获取所述业务需求对应的最大占空比下的最大功率回退值,以及所述业务需求对应的最小占空比下的最大功率回退值;
第一阈值获取子模块,用于根据所述终端的最大发射功率以及所述最大占空比下的最大功率回退值,获取所述第一功率阈值;
第二阈值获取子模块,用于根据所述终端的最大发射功率以及所述最小占空比下的最大功率回退值,获取所述第二功率阈值;
其中,所述第一功率阈值小于所述第二功率阈值。
可选的,所述第一阈值获取子模块,用于,
获取所述终端的最大发射功率,与所述最大占空比下的最大功率回退值之间的第一差值;
将所述第一差值与功率补偿因子的和作为所述第一功率阈值。
可选的,所述第二阈值获取子模块,用于,
获取所述终端的最大发射功率,与所述最小占空比下的最大功率回退值之间的第二差值;
将所述第二差值与功率补偿因子的和作为所述第二功率阈值。
可选的,所述装置还包括:
距离获取模块,用于获取所述终端与人体之间的距离;
补偿因子获取模块,用于根据所述终端与人体之间的距离获取所述功率补偿因子。
可选的,
所述探测模块,包括:
第一探测子模块,用于当所述终端的当前发射功率处于所述第一功率阈值与所述第二功率阈值之间时,探测所述波束方向是否指向人体;
所述上报模块,包括:
第一上报子模块,用于当所述波束方向指向人体时,向所述基站上报第一安全控制信息,所述第一安全控制信息用于指示所述基站降低占空比。
可选的,
所述探测模块,包括:
第二探测子模块,用于当所述终端的当前发射功率大于或者等于所述第二功率阈值时,探测所述波束方向是否向人体方向移动;
所述上报模块,包括:
第二上报子模块,用于当所述波束方向向人体方向移动时,向所述基站上报第二安全控制信息,所述第二安全控制信息用于指示所述基站准备将所述终端使用的波束切换至未指向或者部分指向人体方向的波束。
综上所述,本申请实施例所示的方案,终端可以根据与基站之间传输的业务的业务需求获取发射功率阈值,并在终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时,执行探测波束方向与人体位置之间的关系的步骤,并在探测到该波束方向与人体位置之间的关系满足预定关系时,向该基站上报安全控制信息,基站根据该安全控制信息执行电磁辐射安全相关的控制操作,在上述方案中,终端不需要持续探测波束方向与人体位置之间的关系,而是只需要在终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时才执行探测步骤,从而可以显著的减少终端在电磁辐射安全控制过程中的电量消耗。
图7是根据一示例性实施例示出的一种安全控制装置的框图,如图7所示,该资源切换装置可以通过硬件或者软硬结合的方式实现为图1所示实施环境中的基站120的全部或者部分,以执行图2或图3所示实施例中由基站执行的步骤。该安全控制装置可以包括:
信息接收模块701,用于接收安全控制信息;所述安全控制信息是由所述终端根据业务需求获取发射功率阈值,当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件探测波束方向与人体位置之间的关系,并在所述波束方向与人体位置之间的关系满足预定关系时上报的信息;
操作执行模块702,用于根据所述安全控制信息执行电磁辐射安全相关的控制操作。
可选的,所述操作执行模块702,包括:
占空比降低子模块,用于当所述安全控制信息是第一安全控制信息时,降低所述终端的占空比;
切换准备子模块,用于当所述安全控制信息是第二安全控制信息时,准备将所述终端使用的波束切换至未指向或者部分指向人体方向的波束。
综上所述,本申请实施例所示的方案,终端可以根据与基站之间传输的业务的业务需求获取发射功率阈值,并在终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时,执行探测波束方向与人体位置之间的关系的步骤,并在探测到该波束方向与人体位置之间的关系满足预定关系时,向该基站上报 安全控制信息,基站根据该安全控制信息执行电磁辐射安全相关的控制操作,在上述方案中,终端不需要持续探测波束方向与人体位置之间的关系,而是只需要在终端的当前发射功率与该发射功率阈值之间的关系满足指定条件时才执行探测步骤,从而可以显著的减少终端在电磁辐射安全控制过程中的电量消耗。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例提供了一种安全控制装置,能够实现本公开上述图2或图3所示实施例中由终端执行的全部或者部分步骤,该安全控制装置包括:处理器、用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
根据终端与基站之间传输的业务的业务需求获取发射功率阈值;
当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,所述波束方向是所述终端与所述基站之间进行业务传输所使用的波束的方向;
当所述波束方向与人体位置之间的关系满足预定关系时,向所述基站上报安全控制信息,所述安全控制信息用于指示所述基站执行电磁辐射安全相关的控制操作。
可选的,所述发射功率阈值包括第一功率阈值和第二功率阈值;
所述根据终端与基站之间传输的业务的业务需求获取发射功率阈值,包括:
获取所述业务需求对应的最大占空比下的最大功率回退值,以及所述业务需求对应的最小占空比下的最大功率回退值;
根据所述终端的最大发射功率以及所述最大占空比下的最大功率回退值,获取所述第一功率阈值;
根据所述终端的最大发射功率以及所述最小占空比下的最大功率回退值,获取所述第二功率阈值;
其中,所述第一功率阈值小于所述第二功率阈值。
可选的,所述根据所述终端的最大发射功率以及所述最大占空比下的最大功率回退值,获取所述第一功率阈值,包括:
获取所述终端的最大发射功率,与所述最大占空比下的最大功率回退值之间的第一差值;
将所述第一差值与功率补偿因子的和作为所述第一功率阈值。
可选的,所述根据所述终端的最大发射功率以及所述最小占空比下的最大功率回退值,获取所述第二功率阈值,包括:
获取所述终端的最大发射功率,与所述最小占空比下的最大功率回退值之间的第二差值;
将所述第二差值与功率补偿因子的和作为所述第二功率阈值。
可选的,所述处理器还被配置为:
获取所述终端与人体之间的距离;
根据所述终端与人体之间的距离获取所述功率补偿因子。
可选的,
所述当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,包括:
当所述终端的当前发射功率处于所述第一功率阈值与所述第二功率阈值之间时,探测所述波束方向是否指向人体;
所述当所述波束方向与人体位置之间的关系满足预定关系时,向所述基站上报安全控制信息,包括:
当所述波束方向指向人体时,向所述基站上报第一安全控制信息,所述第一安全控制信息用于指示所述基站降低占空比。
可选的,所述当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,包括:
当所述终端的当前发射功率大于或者等于所述第二功率阈值时,探测所述波束方向是否向人体方向移动;
所述当所述波束方向与人体位置之间的关系满足预定关系时,向所述基站上报安全控制信息,包括:
当所述波束方向向人体方向移动时,向所述基站上报第二安全控制信息,所述第二安全控制信息用于指示所述基站准备将所述终端使用的波束切换至未 指向或者部分指向人体方向的波束。
本公开一示例性实施例提供了一种安全控制装置,能够实现本公开上述图2或图3所示实施例中由基站执行的全部或者部分步骤,该安全控制装置包括:处理器、用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
接收安全控制信息;所述安全控制信息是由所述终端根据业务需求获取发射功率阈值,当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件探测波束方向与人体位置之间的关系,并在所述波束方向与人体位置之间的关系满足预定关系时上报的信息;
根据所述安全控制信息执行电磁辐射安全相关的控制操作。
可选的,所述根据所述安全控制信息执行电磁辐射安全相关的控制操作,包括:
当所述安全控制信息是第一安全控制信息时,降低所述终端的占空比;
当所述安全控制信息是第二安全控制信息时,准备将所述终端使用的波束切换至未指向或者部分指向人体方向的波束。
上述主要以终端和基站为例,对本公开实施例提供的方案进行了介绍。可以理解的是,用户设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开中所公开的实施例描述的各示例的模块及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图8是根据一示例性实施例示出的一种终端的结构示意图。该终端可以实现为上述图1所示系统环境中的终端。
终端800包括通信单元804和处理器802。其中,处理器802也可以为控制器,图8中表示为“控制器/处理器802”。通信单元804用于支持终端与其它网络实体(例如其它终端或者基站等)进行通信。
进一步的,终端800还可以包括存储器803,存储器803用于存储终端800 的程序代码和数据。
可以理解的是,图8仅仅示出了终端800的简化设计。在实际应用中,终端800可以包含任意数量的处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的终端都在本公开实施例的保护范围之内。
图9是根据一示例性实施例示出的一种基站的结构示意图。该基站可以实现为上述图1所示系统环境中的基站。
基站900包括通信单元904和处理器902。其中,处理器902也可以为控制器,图9中表示为“控制器/处理器902”。通信单元904用于支持基站与其它网络实体(例如其它终端或者基站等)进行通信。
进一步的,基站900还可以包括存储器903,存储器903用于存储基站900的程序代码和数据。
可以理解的是,图9仅仅示出了基站900的简化设计。在实际应用中,基站900可以包含任意数量的处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的基站都在本公开实施例的保护范围之内。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
本公开实施例还提供了一种计算机存储介质,用于储存为上述终端或者基站所用的计算机软件指令,其包含用于执行上述安全控制方法所设计的程序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结 构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (20)

  1. 一种安全控制方法,其特征在于,所述方法由终端执行,所述方法包括:
    根据终端与基站之间传输的业务的业务需求获取发射功率阈值;
    当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,所述波束方向是所述终端与所述基站之间进行业务传输所使用的波束的方向;
    当所述波束方向与人体位置之间的关系满足预定关系时,向所述基站上报安全控制信息,所述安全控制信息用于指示所述基站执行电磁辐射安全相关的控制操作。
  2. 根据权利要求1所述的方法,其特征在于,所述发射功率阈值包括第一功率阈值和第二功率阈值;
    所述根据终端与基站之间传输的业务的业务需求获取发射功率阈值,包括:
    获取所述业务需求对应的最大占空比下的最大功率回退值,以及所述业务需求对应的最小占空比下的最大功率回退值;
    根据所述终端的最大发射功率以及所述最大占空比下的最大功率回退值,获取所述第一功率阈值;
    根据所述终端的最大发射功率以及所述最小占空比下的最大功率回退值,获取所述第二功率阈值;
    其中,所述第一功率阈值小于所述第二功率阈值。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述终端的最大发射功率以及所述最大占空比下的最大功率回退值,获取所述第一功率阈值,包括:
    获取所述终端的最大发射功率,与所述最大占空比下的最大功率回退值之间的第一差值;
    将所述第一差值与功率补偿因子的和作为所述第一功率阈值。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述终端的最大发射功率以及所述最小占空比下的最大功率回退值,获取所述第二功率阈值,包 括:
    获取所述终端的最大发射功率,与所述最小占空比下的最大功率回退值之间的第二差值;
    将所述第二差值与功率补偿因子的和作为所述第二功率阈值。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    获取所述终端与人体之间的距离;
    根据所述终端与人体之间的距离获取所述功率补偿因子。
  6. 根据权利要求2所述的方法,其特征在于,
    所述当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,包括:
    当所述终端的当前发射功率处于所述第一功率阈值与所述第二功率阈值之间时,探测所述波束方向是否指向人体;
    所述当所述波束方向与人体位置之间的关系满足预定关系时,向所述基站上报安全控制信息,包括:
    当所述波束方向指向人体时,向所述基站上报第一安全控制信息,所述第一安全控制信息用于指示所述基站降低占空比。
  7. 根据权利要求2所述的方法,其特征在于,
    所述当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,包括:
    当所述终端的当前发射功率大于或者等于所述第二功率阈值时,探测所述波束方向是否向人体方向移动;
    所述当所述波束方向与人体位置之间的关系满足预定关系时,向所述基站上报安全控制信息,包括:
    当所述波束方向向人体方向移动时,向所述基站上报第二安全控制信息,所述第二安全控制信息用于指示所述基站准备将所述终端使用的波束切换至未指向或者部分指向人体方向的波束。
  8. 一种安全控制方法,其特征在于,所述方法由基站执行,所述方法包括:
    接收安全控制信息;所述安全控制信息是由所述终端根据业务需求获取发射功率阈值,当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件探测波束方向与人体位置之间的关系,并在所述波束方向与人体位置之间的关系满足预定关系时上报的信息;
    根据所述安全控制信息执行电磁辐射安全相关的控制操作。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述安全控制信息执行电磁辐射安全相关的控制操作,包括:
    当所述安全控制信息是第一安全控制信息时,降低所述终端的占空比;
    当所述安全控制信息是第二安全控制信息时,准备将所述终端使用的波束切换至未指向或者部分指向人体方向的波束。
  10. 一种安全控制装置,其特征在于,所述装置用于终端中,所述装置包括:
    功率阈值获取模块,用于根据终端与基站之间传输的业务的业务需求获取发射功率阈值;
    探测模块,用于当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件时,探测波束方向与人体位置之间的关系,所述波束方向是所述终端与所述基站之间进行业务传输所使用的波束的方向;
    上报模块,用于当所述波束方向与人体位置之间的关系满足预定关系时,向所述基站上报安全控制信息,所述安全控制信息用于指示所述基站执行电磁辐射安全相关的控制操作。
  11. 根据权利要求10所述的装置,其特征在于,所述发射功率阈值包括第一功率阈值和第二功率阈值;
    所述功率阈值获取模块,包括:
    回退值获取子模块,用于获取所述业务需求对应的最大占空比下的最大功率回退值,以及所述业务需求对应的最小占空比下的最大功率回退值;
    第一阈值获取子模块,用于根据所述终端的最大发射功率以及所述最大占 空比下的最大功率回退值,获取所述第一功率阈值;
    第二阈值获取子模块,用于根据所述终端的最大发射功率以及所述最小占空比下的最大功率回退值,获取所述第二功率阈值;
    其中,所述第一功率阈值小于所述第二功率阈值。
  12. 根据权利要求11所述的装置,其特征在于,所述第一阈值获取子模块,用于,
    获取所述终端的最大发射功率,与所述最大占空比下的最大功率回退值之间的第一差值;
    将所述第一差值与功率补偿因子的和作为所述第一功率阈值。
  13. 根据权利要求11所述的装置,其特征在于,所述第二阈值获取子模块,用于,
    获取所述终端的最大发射功率,与所述最小占空比下的最大功率回退值之间的第二差值;
    将所述第二差值与功率补偿因子的和作为所述第二功率阈值。
  14. 根据权利要求12或13所述的装置,其特征在于,所述装置还包括:
    距离获取模块,用于获取所述终端与人体之间的距离;
    补偿因子获取模块,用于根据所述终端与人体之间的距离获取所述功率补偿因子。
  15. 根据权利要求11所述的装置,其特征在于,
    所述探测模块,包括:
    第一探测子模块,用于当所述终端的当前发射功率处于所述第一功率阈值与所述第二功率阈值之间时,探测所述波束方向是否指向人体;
    所述上报模块,包括:
    第一上报子模块,用于当所述波束方向指向人体时,向所述基站上报第一安全控制信息,所述第一安全控制信息用于指示所述基站降低占空比。
  16. 根据权利要求11所述的装置,其特征在于,
    所述探测模块,包括:
    第二探测子模块,用于当所述终端的当前发射功率大于或者等于所述第二功率阈值时,探测所述波束方向是否向人体方向移动;
    所述上报模块,包括:
    第二上报子模块,用于当所述波束方向向人体方向移动时,向所述基站上报第二安全控制信息,所述第二安全控制信息用于指示所述基站准备将所述终端使用的波束切换至未指向或者部分指向人体方向的波束。
  17. 一种安全控制装置,其特征在于,所述装置用于基站中,所述装置包括:
    信息接收模块,用于接收安全控制信息;所述安全控制信息是由所述终端根据业务需求获取发射功率阈值,当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件探测波束方向与人体位置之间的关系,并在所述波束方向与人体位置之间的关系满足预定关系时上报的信息;
    操作执行模块,用于根据所述安全控制信息执行电磁辐射安全相关的控制操作。
  18. 根据权利要求17所述的装置,其特征在于,所述操作执行模块,包括:
    占空比降低子模块,用于当所述安全控制信息是第一安全控制信息时,降低所述终端的占空比;
    切换准备子模块,用于当所述安全控制信息是第二安全控制信息时,准备将所述终端使用的波束切换至未指向或者部分指向人体方向的波束。
  19. 一种安全控制装置,其特征在于,所述装置用于终端中,所述装置包括:
    处理器、用于存储处理器可执行指令的存储器;
    其中,处理器被配置为:
    根据终端与基站之间传输的业务的业务需求获取发射功率阈值;
    当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件 时,探测波束方向与人体位置之间的关系,所述波束方向是所述终端与所述基站之间进行业务传输所使用的波束的方向;
    当所述波束方向与人体位置之间的关系满足预定关系时,向所述基站上报安全控制信息,所述安全控制信息用于指示所述基站执行电磁辐射安全相关的控制操作。
  20. 一种安全控制装置,其特征在于,所述装置用于基站中,所述装置包括:
    处理器、用于存储处理器可执行指令的存储器;
    其中,处理器被配置为:
    接收安全控制信息;所述安全控制信息是由所述终端根据业务需求获取发射功率阈值,当所述终端的当前发射功率与所述发射功率阈值之间的关系满足指定条件探测波束方向与人体位置之间的关系,并在所述波束方向与人体位置之间的关系满足预定关系时上报的信息;
    根据所述安全控制信息执行电磁辐射安全相关的控制操作。
PCT/CN2019/122430 2019-12-02 2019-12-02 安全控制方法及装置 WO2021108956A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/781,536 US20230007597A1 (en) 2019-12-02 2019-12-02 Safety control method and apparatus
PCT/CN2019/122430 WO2021108956A1 (zh) 2019-12-02 2019-12-02 安全控制方法及装置
CN201980003443.7A CN111066350B (zh) 2019-12-02 2019-12-02 安全控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122430 WO2021108956A1 (zh) 2019-12-02 2019-12-02 安全控制方法及装置

Publications (1)

Publication Number Publication Date
WO2021108956A1 true WO2021108956A1 (zh) 2021-06-10

Family

ID=70306492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122430 WO2021108956A1 (zh) 2019-12-02 2019-12-02 安全控制方法及装置

Country Status (3)

Country Link
US (1) US20230007597A1 (zh)
CN (1) CN111066350B (zh)
WO (1) WO2021108956A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055932A (zh) * 2021-03-22 2021-06-29 上海移远通信技术股份有限公司 波束的控制方法、系统、设备及介质
US11878055B1 (en) 2022-06-26 2024-01-23 BioNTech SE Coronavirus vaccine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998532A (zh) * 2009-08-20 2011-03-30 中国移动通信集团公司 信号峰均比控制方法及其装置
US20170332407A1 (en) * 2016-05-16 2017-11-16 Qualcomm Incorporated Beam and symbol selection to transmit rach

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10291309B2 (en) * 2017-03-24 2019-05-14 Qualcomm Incorporated Robust uplink beam management
CN109151967B (zh) * 2017-06-14 2020-07-21 维沃移动通信有限公司 一种上行多波束功率控制方法及终端
US10462755B2 (en) * 2017-06-16 2019-10-29 Qualcomm Incorporated Techniques and apparatuses for power headroom reporting in new radio

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998532A (zh) * 2009-08-20 2011-03-30 中国移动通信集团公司 信号峰均比控制方法及其装置
US20170332407A1 (en) * 2016-05-16 2017-11-16 Qualcomm Incorporated Beam and symbol selection to transmit rach

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLE: "R17 MIMO enhancements", 3GPP DRAFT; RP-192174 R17 NR MIMO ENHANCEMENTS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Newport Beach, USA; 20190916 - 20190920, 9 September 2019 (2019-09-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051782724 *
INTEL CORPORATION: "Discussion on NR MIMO maintenance work", 3GPP DRAFT; RP-190573, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Shenzhen, China; 20190318 - 20190321, 13 March 2019 (2019-03-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051690575 *

Also Published As

Publication number Publication date
CN111066350B (zh) 2023-05-30
US20230007597A1 (en) 2023-01-05
CN111066350A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
US11115073B2 (en) Method and device for decreasing electromagnetic radiation specific absorption rate
US9055544B2 (en) Methods of setting maximum output power for user equipment and reporting power headroom, and the user equipment
US20220006507A1 (en) Communication Method And Communications Device
EP3282811B1 (en) Transmission power adjustment method and apparatus
CN111279758B (zh) 上行数据传输方法、装置及计算机存储介质
US8649815B2 (en) Base station device, communication system, and method for controlling communication system
US11665678B2 (en) Antenna configuration in a communication network
CN114270955B (zh) 通信方法及装置
WO2021179305A1 (zh) 用于上行传输的方法和装置
WO2021196229A1 (zh) 控制发射功率的方法、终端设备和网络设备
WO2021108956A1 (zh) 安全控制方法及装置
US20220408379A1 (en) Predictive back-off reporting in telecommunication systems
CN115499903A (zh) 通信方法和通信装置
CN111641964B (zh) 无线通信方法和设备
US20230353219A1 (en) Beam Selection Method and Communication Apparatus
WO2021088048A1 (zh) 用于功率回退的方法、终端设备以及网络设备
US11082868B2 (en) Service access method and device to determine the availability of a service path for service access
WO2023000990A1 (zh) 一种通信方法、装置及系统
WO2020024957A1 (zh) 一种提升上行性能的方法、装置及用户终端
WO2021007870A1 (zh) 通信参数配置方法及相关产品
KR20230138018A (ko) 각 대역 이중 업링크(ul) 캐리어 어그리게이션(ca)에 대한 송신기(tx) 전력의 이용
WO2018090319A1 (zh) 数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954728

Country of ref document: EP

Kind code of ref document: A1