WO2018228426A1 - 用于信道估计的方法和设备 - Google Patents

用于信道估计的方法和设备 Download PDF

Info

Publication number
WO2018228426A1
WO2018228426A1 PCT/CN2018/091039 CN2018091039W WO2018228426A1 WO 2018228426 A1 WO2018228426 A1 WO 2018228426A1 CN 2018091039 W CN2018091039 W CN 2018091039W WO 2018228426 A1 WO2018228426 A1 WO 2018228426A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
channel estimation
subsequence
subcarrier
estimation training
Prior art date
Application number
PCT/CN2018/091039
Other languages
English (en)
French (fr)
Inventor
周正春
杨柳
颜敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18817882.6A priority Critical patent/EP3633940B1/en
Publication of WO2018228426A1 publication Critical patent/WO2018228426A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/262Reduction thereof by selection of pilot symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects

Definitions

  • the present application relates to the field of communications and, more particularly, to methods and apparatus for channel estimation.
  • MIMO-orthogonal frequency division multiplexing (OFDM) technology has received widespread attention due to its own series of advantages, and wireless local area networks ( WLAN)
  • WLAN wireless local area networks
  • the physical layer of the standard 802.11n adopts this technology, but the channel state estimation information is a key issue for the receiver to achieve optimal detection in the MIMO-OFDM system.
  • the accuracy of the channel estimation directly affects the performance of the whole system.
  • channel estimation can be further divided into blind channel estimation, non-blind channel estimation and semi-blind channel estimation.
  • Channel estimation based on training sequence has the advantages of simple implementation and good performance, and is widely used in various communication systems.
  • the frequency domain channel estimation algorithm can perform direct frequency domain equalization and frequency domain signal detection directly after the channel estimation, since the channel estimation is performed in the frequency domain, and the time-frequency domain conversion operation after the time domain channel estimation can be avoided.
  • MIMO-OFDM technology adopts multi-carrier modulation technology, its biggest disadvantage is the peak-to-average power ratio.
  • the OFDM signal appears as a superposition of N mutually orthogonal subcarrier signals in the time domain. When the N subcarrier signals are added in the same phase, the obtained OFDM signal will reach a maximum peak, and the peak power is average. N times the power.
  • PAPR peak to average power ratio
  • the present application provides a method for channel estimation, which can reduce the peak-to-average ratio of the channel estimation training sequence and simplify the implementation difficulty of the communication system.
  • a method for channel estimation comprising: generating a channel estimation training sequence, the channel estimation training sequence comprising a first subsequence and a second subsequence, the first subsequence comprising a target ZC sequence a partial element in the second subsequence, including other elements in the target ZC sequence except the partial element; transmitting the channel estimation training sequence, wherein the subcarriers carrying the first subsequence and The subcarriers carrying the second subsequence are located on both sides of the DC subcarrier.
  • a channel estimation training sequence is determined according to a Zadoff-Chu (ZC) sequence by dividing a target ZC sequence into two first sub-sequences mapped onto subcarriers on both sides of a DC subcarrier and The second subsequence can make the channel estimation training sequence have a lower peak to average power ratio (PAPR), improve the accuracy of channel estimation, and simplify the implementation of the communication system.
  • ZC Zadoff-Chu
  • the channel estimation training sequence further includes a third sub-sequence, a fourth sub-sequence, and a fifth sub-sequence, the third sub-sequence, the fourth The sub-sequence and the element in the fifth sub-sequence are preset values, where the sub-carrier carrying the third sub-sequence is the guard band sub-carrier to the left of the sub-carrier carrying the first sub-sequence, and the bearer The subcarrier of the fourth subsequence is the guard band subcarrier to the right of the subcarrier carrying the second subsequence, and the subcarrier carrying the fifth subsequence is the DC subcarrier.
  • the channel estimation training sequence of the present application includes, in addition to the first subsequence and the second subsequence, a third subsequence and a fourth subsequence (or called reserved subcarriers) mapped onto the guard band subcarriers. Also included is a fifth subsequence mapped onto the DC subcarrier.
  • the elements in the third subsequence, the fourth subsequence, and the fifth subsequence may be 0.
  • the method before determining the channel estimation training sequence, further includes: determining a channel estimation training sequence matrix, the channel estimation training sequence
  • the matrix is composed of M ZC sequences of length N ZC , and the i-th ZC sequence of the M ZC sequences constitutes an i-th row in the channel estimation training sequence matrix, and the i-th of the M ZC sequences
  • the channel estimation training sequence matrix may be specified by a protocol, or may be generated by the transmitting device itself.
  • M ZC sequences of length N ZC may not exist in the form of a matrix.
  • the device selects multiple ZC sequences from the M ZC sequences, and generates multiple channel estimation training sequences, which are respectively sent on the multiple transmit antennas.
  • the method for channel estimation in the embodiment of the present application can meet the requirements for the channel estimation training sequence under the condition of multiple input multiple output (MIMO) multi-channel.
  • MIMO multiple input multiple output
  • the determining the channel estimation training sequence matrix includes: determining the channel estimation training sequence matrix according to the number of channels to be bound.
  • multiple channel estimation training sequence matrices may be pre-configured for different channel binding numbers, and each channel binding number corresponds to one channel estimation training sequence matrix, and the transmitting device may determine the corresponding channel according to the configured channel binding number. Estimate the training sequence matrix.
  • the requirements of the channel estimation training sequence by different numbers of channel bonding scenarios can be satisfied.
  • the length of the first subsequence is N LS
  • the length of the second subsequence is N RS
  • N LS is a positive integer
  • the target ZC sequence of N LS sequence number of the first element to said first sub-N LS sequence number of the first element to the target ZC sequence of N LS +1 N ZC element to the second order of the second sub-sequence of the first to N RS element.
  • the s subcarrier of the N LS subcarriers to the left of the DC subcarrier carries the sth of the first subsequence elements
  • the t-th carrier carries a second sub-sequence on the N subcarriers in the RS the right of the current subcarrier in the t-th element of the N subcarriers
  • a method for channel estimation comprising: receiving a channel estimation training sequence, the channel estimation training sequence comprising a first subsequence and a second subsequence, the first subsequence comprising a target ZC sequence a partial element, the second subsequence includes other elements of the target ZC sequence except the partial element, wherein a subcarrier carrying the first subsequence and a second subsequence are carried
  • the subcarriers are respectively located on both sides of the DC subcarrier; channel estimation is performed according to the channel estimation training sequence.
  • the channel estimation training sequence received by the receiving end device is determined according to the ZC sequence, and the subcarriers of the first subsequence and the second subsequence in the bearer channel estimation training sequence are respectively located in the direct current.
  • the two sides of the subcarrier, and the first subsequence and the second subsequence respectively correspond to different elements in the target ZC sequence, can enable the channel estimation training sequence to have a lower PAPR, and improve the accuracy of channel estimation.
  • the channel estimation training sequence further includes a third sub-sequence, a fourth sub-sequence, and a fifth sub-sequence, the third sub-sequence, the fourth The sub-sequence and the element in the fifth sub-sequence are preset values, where the sub-carrier carrying the third sub-sequence is the guard band sub-carrier to the left of the sub-carrier carrying the first sub-sequence, and the bearer The subcarrier of the fourth subsequence is the guard band subcarrier to the right of the subcarrier carrying the second subsequence, and the subcarrier carrying the fifth subsequence is the DC subcarrier.
  • the target ZC sequence is one of M length Z ZC sequences included in the channel estimation training sequence matrix
  • the i-th ZC sequence in the M ZC sequences constitutes an i-th row in the channel estimation training sequence matrix
  • the channel estimation training sequence matrix is determined according to the number of channels to be bound.
  • the channel estimation training sequence matrix is phase-shifted by determining a ZC root sequence according to the number of the bound channels.
  • the length of the first subsequence is N LS
  • the length of the second subsequence is N RS
  • N LS is a positive integer
  • the target ZC sequence of N LS sequence number of the first element to said first sub-N LS sequence number of the first element to the target ZC sequence of N LS +1 N ZC element to the second order of the second sub-sequence of the first to N RS element.
  • the s subcarrier of the N LS subcarriers to the left of the DC subcarrier carries the sth of the first subsequence elements
  • the t-th carrier carries a second sub-sequence on the N subcarriers in the RS the right of the current subcarrier in the t-th element of the N subcarriers
  • a third aspect provides a sender device, including: a processing module, configured to determine a channel estimation training sequence, where the channel estimation training sequence includes a first subsequence and a second subsequence, the first subsequence including a target a part of the ZC sequence, the second subsequence includes other elements of the target ZC sequence except the part of the element; and a transceiver module, configured to send the channel estimation training sequence, where The subcarriers of a subsequence and the subcarriers carrying the second subsequence are located on both sides of the DC subcarrier.
  • the channel estimation training sequence further includes a third sub-sequence, a fourth sub-sequence, and a fifth sub-sequence, the third sub-sequence, the fourth The sub-sequence and the element in the fifth sub-sequence are preset values, where the sub-carrier carrying the third sub-sequence is the guard band sub-carrier to the left of the sub-carrier carrying the first sub-sequence, and the bearer The subcarrier of the fourth subsequence is the guard band subcarrier to the right of the subcarrier carrying the second subsequence, and the subcarrier carrying the fifth subsequence is the DC subcarrier.
  • the processing module is further configured to: determine a channel estimation training sequence matrix, where the channel estimation training sequence matrix is M lengths are N ZC a ZC sequence, the i-th ZC sequence of the M ZC sequences constitutes an i-th row in the channel estimation training sequence matrix, an i-th ZC sequence and a j-th ZC in the M ZC sequences
  • One of the matrices acts on the target ZC sequence.
  • the processing module is specifically configured to: determine the channel estimation training sequence matrix according to the number of channels to be bound.
  • the length of the first subsequence is N LS
  • the length of the second subsequence is N RS , N LS , and N RS Is a positive integer
  • the target ZC sequence of N LS sequence number of the first element to said first sub-N LS sequence number of the first element to the target ZC sequence of N LS +1 through N ZC The elements are in turn the first to Nth RS elements in the second subsequence.
  • the s subcarrier of the N LS subcarriers on the left side of the DC subcarrier carries the sth in the first subsequence elements
  • the t-th carrier carries a second sub-sequence on the N subcarriers in the RS the right of the current subcarrier in the t-th element of the N subcarriers
  • a fourth aspect provides a receiving end device, including: a transceiver module, configured to receive a channel estimation training sequence, where the channel estimation training sequence includes a first subsequence and a second subsequence, where the first subsequence includes a target a partial element in a ZC sequence, the second subsequence includes other elements of the target ZC sequence except the partial element, wherein a subcarrier carrying the first subsequence and carrying the second sub The subcarriers of the sequence are located on both sides of the DC subcarrier; and the processing module is configured to perform channel estimation according to the channel estimation training sequence.
  • the channel estimation training sequence further includes a third sub-sequence, a fourth sub-sequence, and a fifth sub-sequence, the third sub-sequence, the fourth The sub-sequence and the element in the fifth sub-sequence are preset values, where the sub-carrier carrying the third sub-sequence is the guard band sub-carrier to the left of the sub-carrier carrying the first sub-sequence, and the bearer The subcarrier of the fourth subsequence is the guard band subcarrier to the right of the subcarrier carrying the second subsequence, and the subcarrier carrying the fifth subsequence is the DC subcarrier.
  • the target ZC sequence is one of M length Z ZC sequences included in the channel estimation training sequence matrix
  • the i-th ZC sequence in the M ZC sequences constitutes an i-th row in the channel estimation training sequence matrix
  • the channel estimation training sequence matrix is determined according to the number of channels to be bound.
  • the channel estimation training sequence matrix is phase-shifted by determining a ZC root sequence according to the number of the bound channels.
  • the length of the first subsequence is N LS
  • the length of the second subsequence is N RS
  • N RS is a positive integer
  • the target ZC sequence of N LS sequence number of the first element to said first sub-N LS sequence number of the first element to the target ZC sequence of N LS +1 N ZC element to the second order of the second sub-sequence of the first to N RS element.
  • the s subcarrier of the N LS subcarriers on the left side of the DC subcarrier carries the sth in the first subsequence elements
  • the t-th carrier carries a second sub-sequence on the N subcarriers in the RS the right of the current subcarrier in the t-th element of the N subcarriers
  • a transmitting device including a processor, a memory, and a transceiver.
  • the processor, the memory, and the transceiver communicate with each other through an internal connection path, transmitting control and/or data signals, such that the device performs the first aspect or any of the possible implementations of the first aspect Methods.
  • a receiving end device including a processor, a memory, and a transceiver.
  • the processor, the memory, and the transceiver communicate with each other through an internal connection path, transmitting control and/or data signals, such that the device performs any of the second or second aspects of the foregoing possible implementations.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the first aspect or the first aspect of the first aspect.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the second aspect or the second aspect of the second aspect.
  • a ninth aspect provides a computer program product comprising instructions for performing the above-described first aspect or any of the possible implementations of the first aspect when the computer runs the instructions of the computer program product The method of channel estimation.
  • the computer program product can be run on the device of the third or fifth aspect described above.
  • a computer program product comprising instructions for performing the above-described second aspect or any of the possible implementations of the second aspect when the computer executes the instructions of the computer program product
  • the method of channel estimation can be run on the device of the fourth or sixth aspect described above.
  • FIG. 1 is a schematic flowchart of a method for channel estimation according to an embodiment of the present application.
  • FIG. 2 is a mapping pattern of a first subsequence and a second subsequence according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a channel estimation principle according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of orthogonal frequency division multiplexing OFDM symbols in accordance with an embodiment of the present application.
  • FIG. 5 is a mapping diagram of a channel estimation training sequence in scenario one according to an embodiment of the present application.
  • FIG. 12 is a mapping pattern of a channel estimation training sequence in scenario four according to an embodiment of the present application.
  • 19 is a mapping pattern of a channel estimation training sequence in scenario 7 in accordance with an embodiment of the present application.
  • FIG. 26 is a mapping pattern of a channel estimation training sequence in scene ten according to an embodiment of the present application.
  • FIG. 33 is a schematic block diagram of a transmitting device according to an embodiment of the present application.
  • FIG. 34 is a schematic block diagram of a receiving end device according to another embodiment of the present application.
  • FIG. 35 is a schematic block diagram of a transmitting device according to still another embodiment of the present application.
  • FIG. 36 is a schematic block diagram of a receiving end device according to still another embodiment of the present application.
  • the method for channel estimation in the embodiment of the present application can be applied to a wireless local area network (WLAN), and can also be applied to other various communication systems, for example, global system of mobile communication (GSM).
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunications system
  • WiMAX Worldwide interoperability for microwave access, WiMAX
  • the transmitting end device involved in the embodiment of the present application may be a base station, and the base station may include various forms of a macro base station, a micro base station, a relay station, an access point, and the like.
  • the names of devices with base station functionality may vary.
  • an LTE network referred to as an evolved Node B (evolved NodeB, eNB or an eNodeB)
  • a third-generation (3 rd generation, 3G) network referred to as Node B (Node B) and the like.
  • the receiving device may be a terminal device, and the terminal device may include, but is not limited to, a mobile station (MS), a mobile terminal, a mobile telephone, and a user equipment. (UE), a handset, a portable device, a vehicle, etc., the terminal device can communicate with one or more core networks via a radio access network (RAN), for example,
  • the terminal device may be a mobile phone (or "cellular" phone), a computer with wireless communication function, etc., and the terminal device may also be a portable, pocket, handheld, computer built-in or vehicle-mounted mobile device.
  • FIG. 1 is a schematic flow chart for channel estimation according to an embodiment of the present application. As shown in FIG. 1, the method 100 includes:
  • the source device generates a channel estimation training sequence, where the channel estimation training sequence includes a first subsequence and a second subsequence, where the first subsequence includes a part of elements in the target ZC sequence, and the second subsequence includes Other elements of the target ZC sequence other than the partial elements.
  • the transmitting device if the transmitting device sends the channel estimation training sequence to the receiving device by using only one transmitting antenna, the transmitting device performs the target ZC according to the length and determination of the first subsequence and the second subsequence.
  • the length of the sequence is N ZC .
  • the target ZC sequence is generated according to different configurations of N ZC parity.
  • N ZC is odd
  • the k+1th element in the target ZC sequence is
  • N ZC is even
  • the sending end device and the receiving end device use multiple-input multiple-output (MIMO) technology to communicate, and the sending end device uses multiple sending antennas to send to the receiving end device.
  • MIMO multiple-input multiple-output
  • the source device determines a channel estimation training sequence based on the target ZC sequence selected from the orthogonal ZC sequence matrix.
  • the orthogonal ZC sequence matrix here may be pre-configured by the protocol, or may be generated by the transmitting device itself.
  • the transmitting device itself generates an orthogonal ZC sequence matrix and determines a channel estimation training sequence from the target ZC sequence selected from the orthogonal ZC sequence matrix. For example, if the source device determines that the length of the channel estimation training sequence is N SD , and the total length of the first sub-sequence and the second sub-sequence is N ZC , the channel estimation training sequence needs to satisfy the relationship shown in formula (1):
  • n represents the nth element in the channel estimation training sequence, or is understood to be the nth position
  • N LG and N RG are the number of reserved subcarriers on the left and right sides of the channel estimation training sequence, respectively
  • N DC0 , N DC1 and N DC2 are the positions of DC subcarrier 0, DC subcarrier 1 and DC subcarrier 2 in the channel estimation training sequence, respectively
  • q represents the qth sequence
  • k 0, 1, 2, ..., N ZC - 1
  • k+1 represents the kth element in the qth sequence.
  • the length of the sequence b k q to be designed ie, the sum of the lengths of the first subsequence and the second subsequence, or the length of the target ZC sequence N ZC ) satisfies the formula (2):
  • N DC is the number of DC subcarriers
  • N LS can be understood as the length of the first subsequence
  • N RS can be understood as the length of the second subsequence.
  • each row can be used as a target ZC sequence, wherein the orthogonal ZC sequence matrix includes N ZC ZC sequences, each of which has a length of N ZC , and any two rows of the orthogonal ZC sequence matrix are orthogonal to each other, that is,
  • the transmitting device can select multiple target ZC sequences from the orthogonal ZC sequence matrix, generate multiple channel estimation training sequences, and generate multiple channel estimation training sequences. Send out through these multiple antennas.
  • the source device sends the channel estimation training sequence, where the subcarrier carrying the first subsequence and the subcarrier carrying the second subsequence are located on both sides of the DC subcarrier.
  • the subcarrier carrying the first subsequence and the subcarrier carrying the second subsequence are located on both sides of the DC subcarrier, specifically: the carrier frequency of the subcarrier on the left side of the DC subcarrier is lower than The carrier frequency of the DC subcarrier, the carrier frequency of the subcarrier to the right of the DC subcarrier is higher than the carrier frequency of the DC subcarrier.
  • the transmitting device may map the first subsequence and the second subsequence in the channel estimation training sequence to one transmitting antenna of the transmitting end according to the method shown in FIG. 2.
  • First subsequence includes sequence Top N LS elements
  • Second subsequence includes sequence Post N RS elements
  • the receiving end device receives the channel estimation training sequence.
  • the receiving end device performs channel estimation according to the channel estimation training sequence.
  • the transmitting device sends the channel estimation training sequence to the receiving device by using only one transmitting antenna
  • the receiving device receives the channel estimation training sequence and sends the received channel estimation training sequence.
  • the channel estimation training sequence sent on the transmitting antenna of the end device performs a correlation operation to obtain a link channel gain between the transmitting antenna and the receiving antenna.
  • the transmitting device sends the channel estimation training sequence to the receiving device by using the N T transmit antennas.
  • H nm, n 1,2, ... N T
  • q A (for example, i, j in the figure), indicating that the channel estimation training sequence is determined according to the ZC sequence of the Ath row in the orthogonal ZC sequence matrix described above, and q corresponding to different transmitting antennas. The value is different.
  • M j ⁇ zeroes(1, N LG ) b j (0: N LS -1) 0 0 0 b j ( N LS : N ZC -1) zeroes(1,N RG ) ⁇ .
  • the frequency domain training symbol of the orthogonal frequency division multiplexing (OFDM) symbol transmitted by the jth transmitting antenna on the kth subcarrier is M j (k)
  • the channel frequency response of the receiving antenna is H ij (k).
  • the channel is a slow fading channel, that is, the same transceiver antenna does not change the channel frequency response on the same subcarrier of each OFDM symbol. It is specified that one OFDM symbol has N SD subcarriers.
  • the transmitting device inserts a cyclic prefix with a length of N SD /4 after performing parallel-to-serial conversion on the channel estimation training sequence ( Cyclic prefix, CP). Then, the mth OFDM symbol of the jth transmitting antenna is specifically shown in FIG. 4 before entering the channel.
  • the receiving end device After receiving the data, the receiving end device removes the CP and performs an inverse fast fourier transform (IFFT) process to obtain an IFFT data of length N, and the i th receiving antenna receives the mth OFDM symbol.
  • IFFT inverse fast fourier transform
  • the receiving end device can obtain the channel frequency response H ij (k) between the jth transmitting antenna and the ith receiving antenna by using the frequency domain channel estimation method by solving the formula (3).
  • 802.11ay is taken as an example.
  • the number of different channel bindings the number of total subcarriers and the number of reserved subcarriers are different. For details, see Table 1.
  • Table 1 shows the different channel number bound to the N CB, the total number of subcarriers N SD (total number of subcarriers) , the DC sub-carrier number N DC (number of DC subcarriers) , the left side of the protective tape needs fill the number 0 N LG (number of zeroes in the left guard band), the protective tape needs to fill the right number of N RG 0 (number of zeroes in the right guard band), the enhanced left directional gigabit ( Enhance directional multi-gigabit, EDMG) OFDM channel estimation filed (CEF) number N LS (number of EDMG OFDM CEF in the left side), right-side enhanced directional multi-gigabit OFDM channel estimation domain
  • N ZC N LS +N RS 352 766 1180 1596
  • N SD 512
  • the channel estimation training sequence satisfies the relationship shown in equation (4):
  • the transmitting device performs linear phase shift processing on the ZC root sequence a k according to the method for generating the orthogonal ZC sequence matrix described above, and the phase shift factor of the phase shift is: Sequence It can be expressed as: The following orthogonal ZC sequence matrix can be obtained:
  • a guard band of lengths 78 and 79 and a middle three DC subcarriers N DC are added on both sides of the line sequence of the orthogonal ZC sequence matrix to form a frequency domain channel estimation training sequence.
  • the pattern of each channel estimation training sequence is shown in Figure 5.
  • the channel estimation training sequence length N SD 512
  • the transmitting device may select four ZC sequences from the orthogonal ZC sequence matrix generated in the scene one, and generate four frequency domain channel estimation training sequences according to the selected four ZC sequences, which are respectively the same as the pattern shown in FIG.
  • the pattern maps the four channel estimation training sequences to subcarriers of different transmit antennas.
  • the cross-correlation property between It can be seen that the channel estimation training sequence according to an embodiment of the present application has good autocorrelation properties and cross-correlation properties.
  • the channel estimation training sequence length N SD 512
  • the transmitting device may select eight ZC sequences from the orthogonal ZC sequence matrix generated in the scene one, and generate eight frequency domain channel estimation training sequences according to the selected eight ZC sequences, which are respectively the same as the pattern shown in FIG.
  • the pattern maps the eight channel estimation training sequences to the subcarriers of different transmit antennas.
  • the channel estimation training sequence has a PAPR value, and it can be seen that the channel estimation training sequence according to an embodiment of the present application has a smaller PAPR.
  • the cross-correlation property between It can be seen that the channel estimation training sequence according to an embodiment of the present application has good autocorrelation properties and cross-correlation properties.
  • N CB 2
  • N T 2
  • N SD 1024
  • the channel estimation training sequence satisfies the relationship shown in equation (5):
  • the transmitting device performs linear phase shift processing on the ZC root sequence a k according to the method for generating the orthogonal ZC sequence matrix described above, and the phase shift factor of the phase shift is: Sequence It can be expressed as: The following orthogonal ZC sequence matrix can be obtained:
  • a guard band of lengths 127 and 128 and a middle three DC subcarriers N DC are added on both sides of the line sequence of the orthogonal ZC sequence matrix to form a frequency domain channel estimation training sequence.
  • the channel estimation training sequence length N SD 512
  • the transmitting device may select four ZC sequences from the orthogonal ZC sequence matrix generated in the scenario four, and generate four frequency domain channel estimation training sequences according to the selected four ZC sequences, which are respectively the same as the pattern shown in FIG.
  • the pattern maps the four channel estimation training sequences to subcarriers of different transmit antennas.
  • the channel estimation training sequence of an embodiment has a smaller PAPR.
  • the cross-correlation property between It can be seen that the channel estimation training sequence according to an embodiment of the present application has good autocorrelation properties and cross-correlation properties.
  • the channel estimation training sequence length N SD 512
  • the transmitting device may select eight ZC sequences from the orthogonal ZC sequence matrix generated in the scenario four, and generate eight frequency domain channel estimation training sequences according to the selected eight ZC sequences, which are respectively the same as the pattern shown in FIG.
  • the pattern maps the eight channel estimation training sequences to the subcarriers of different transmit antennas.
  • the channel estimation training sequence has a PAPR value, and it can be seen that the channel estimation training sequence according to an embodiment of the present application has a smaller PAPR.
  • the cross-correlation property between It can be seen that the channel estimation training sequence according to an embodiment of the present application has good autocorrelation properties and cross-correlation properties.
  • N SD 1536
  • the channel estimation training sequence satisfies the relationship shown in equation (6):
  • the transmitting device performs linear phase shift processing on the ZC root sequence a k according to the method for generating the orthogonal ZC sequence matrix described above, and the phase shift factor of the phase shift is: Sequence It can be expressed as: The following orthogonal ZC sequence matrix can be obtained:
  • a guard band of lengths 176 and 177 and three intermediate DC subcarriers N DC are added on both sides of the line sequence of the orthogonal ZC sequence matrix to form a frequency domain channel estimation training sequence.
  • N SD 1536
  • the transmitting device may select four ZC sequences from the orthogonal ZC sequence matrix generated in the scenario seven, and generate four frequency domain channel estimation training sequences according to the selected four ZC sequences, which are respectively the same as the pattern shown in FIG. The pattern maps the four channel estimation training sequences to subcarriers of different transmit antennas.
  • the cross-correlation property between It can be seen that the channel estimation training sequence according to an embodiment of the present application has good autocorrelation properties and cross-correlation properties.
  • N SD 1536
  • the transmitting device may select eight ZC sequences from the orthogonal ZC sequence matrix generated in the scenario seven, and generate eight frequency domain channel estimation training sequences according to the selected eight ZC sequences, which are respectively the same as the pattern shown in FIG. The pattern maps the eight channel estimation training sequences to the subcarriers of different transmit antennas.
  • the channel estimation training sequence has a PAPR value, and it can be seen that the channel estimation training sequence according to an embodiment of the present application has a smaller PAPR.
  • the cross-correlation property between It can be seen that the channel estimation training sequence according to an embodiment of the present application has good autocorrelation properties and cross-correlation properties.
  • N SD 2048
  • the channel estimation training sequence satisfies the relationship shown in equation (7):
  • the transmitting device performs linear phase shift processing on the ZC root sequence a k according to the method for generating the orthogonal ZC sequence matrix described above, and the phase shift factor of the phase shift is: Sequence It can be expressed as: The following orthogonal ZC sequence matrix can be obtained:
  • a guard band of lengths 224 and 225 and a middle three DC subcarriers N DC are added on both sides of the line sequence of the orthogonal ZC sequence matrix to form a frequency domain channel estimation training sequence.
  • N SD 2048
  • the transmitting device may select four ZC sequences from the orthogonal ZC sequence matrix generated in the scene ten, and generate four frequency domain channel estimation training sequences according to the selected four ZC sequences, which are respectively the same as the pattern shown in FIG. The pattern maps the four channel estimation training sequences to subcarriers of different transmit antennas.
  • the cross-correlation property between It can be seen that the channel estimation training sequence according to an embodiment of the present application has good autocorrelation properties and cross-correlation properties.
  • N SD 2048
  • the transmitting device may select eight ZC sequences from the orthogonal ZC sequence matrix generated in the scene ten, and generate eight frequency domain channel estimation training sequences according to the selected eight ZC sequences, which are respectively the same as the pattern shown in FIG. The pattern maps the eight channel estimation training sequences to the subcarriers of different transmit antennas.
  • the channel estimation training sequence has a PAPR value, and it can be seen that the channel estimation training sequence according to an embodiment of the present application has a smaller PAPR.
  • the channel estimation training sequence in the frequency domain of the embodiment of the present application can obtain a lower PAPR (about 2.7 dB), which can reduce the impact of a power amplifier (PA) on the communication system. Improve the accuracy of channel estimation.
  • PA power amplifier
  • the device at the transmitting end can arbitrarily select the number of ZC sequences that meet the requirements of the number of transmitting antennas, and the setting rule can be set by the device at the sending end. This is not limited.
  • orthogonal ZC sequence matrices described in the above embodiments are all square arrays of N ZC ⁇ N ZC .
  • the number of rows of orthogonal ZC matrices generated by the source device may be greater than or equal to the number of transmit antennas.
  • a method for channel estimation according to an embodiment of the present application is described in detail above with reference to FIG. 1 through FIG. 32.
  • a transmitting device according to an embodiment of the present application will be described in detail below with reference to FIG.
  • the transmitting device described in this embodiment has any function of the transmitting device in the above method.
  • the transmitting device 10 includes:
  • the processing module 11 is configured to determine a channel estimation training sequence, where the channel estimation training sequence includes a first subsequence and a second subsequence, where the first subsequence includes a part of elements in the target ZC sequence, and the second subsequence Included in the target ZC sequence, other elements than the partial elements;
  • the transceiver module 12 is configured to send the channel estimation training sequence, where the subcarrier carrying the first subsequence and the subcarrier carrying the second subsequence are located on both sides of the DC subcarrier.
  • the device determines the channel estimation training sequence according to the ZC sequence, and can divide the target ZC sequence into two first sub-sequences and a second sub-sequence mapped to subcarriers on both sides of the DC subcarrier.
  • the channel estimation training sequence has a lower peak-to-average ratio and improves the accuracy of channel estimation.
  • the channel estimation training sequence further includes a third sub-sequence, a fourth sub-sequence, and a fifth sub-sequence, the third sub-sequence, the fourth sub-sequence, and the The element in the fifth sub-sequence is a preset value, where the sub-carrier carrying the third sub-sequence is a guard band sub-carrier to the left of the DC sub-carrier, and the sub-carrier carrying the fourth sub-sequence is the A guard band subcarrier to the right of the DC subcarrier, and a subcarrier carrying the fifth subsequence is the DC subcarrier.
  • the processing module 11 is specifically configured to: determine the channel estimation training sequence matrix according to the number of channels to be bound.
  • the length of the first subsequence is N LS
  • the length of the second subsequence is N RS , where N LS and N RS are positive integers;
  • the target ZC sequence of N LS sequence number of the first element to said first sub-N LS sequence number of the first element to the target ZC sequence of N LS +1 through N ZC The elements are in turn the first to Nth RS elements in the second subsequence.
  • the sth subcarrier of the N LS subcarriers on the left side of the DC subcarrier carries the sth element in the first subsequence, and the right side of the DC subcarrier
  • the transmitting end device may refer to the sending end device of the method 100 of the embodiment of the present application, and the respective units/modules in the device and the other operations and/or functions described above are respectively implemented to implement the corresponding processes in the method 100.
  • the respective units/modules in the device and the other operations and/or functions described above are respectively implemented to implement the corresponding processes in the method 100.
  • FIG. 34 shows a receiving end device according to another embodiment of the present application, and the receiving end device in the present embodiment has any function of the receiving end device in the above method.
  • the receiving device 20 includes:
  • the transceiver module 21 is configured to receive a channel estimation training sequence, where the channel estimation training sequence includes a first subsequence and a second subsequence, where the first subsequence includes a part of elements in the target ZC sequence, and the second subsequence Included in the target ZC sequence, other than the part of the element, wherein the subcarrier carrying the first subsequence and the subcarrier carrying the second subsequence are located on both sides of the DC subcarrier;
  • the processing module 22 is configured to perform channel estimation according to the channel estimation training sequence.
  • the channel estimation training sequence received by the receiving end device is determined according to the ZC sequence, and the subcarriers of the first subsequence and the second subsequence in the bearer channel estimation training sequence are respectively located on the DC subcarrier.
  • the channel estimation training sequence can have a lower peak-to-average ratio and improve the accuracy of channel estimation.
  • the channel estimation training sequence further includes a third sub-sequence, a fourth sub-sequence, and a fifth sub-sequence, the third sub-sequence, the fourth sub-sequence, and the The element in the fifth sub-sequence is a preset value, where the sub-carrier carrying the third sub-sequence is a guard band sub-carrier to the left of the DC sub-carrier, and the sub-carrier carrying the fourth sub-sequence is the A guard band subcarrier to the right of the DC subcarrier, and a subcarrier carrying the fifth subsequence is the DC subcarrier.
  • the target ZC sequence is one of M length Z ZC sequences included in the channel estimation training sequence matrix, and the i-th ZC in the M ZC sequences
  • the channel estimation training sequence matrix is determined according to the number of channels to be bound.
  • the length of the first subsequence is N LS
  • the length of the second subsequence is N RS
  • N LS and N RS are positive integers
  • the target ZC N LS sequence number of the first element to the order of the first sub-N LS sequence number of the first element to the target ZC sequence of N LS +1 through N ZC sequence is the element The first to Nth RS elements in the second subsequence.
  • the sth subcarrier of the N LS subcarriers on the left side of the DC subcarrier carries the sth element in the first subsequence, and the right side of the DC subcarrier
  • the receiving end device may refer to the receiving end device of the method 100 of the embodiment of the present application, and the respective units/modules in the device and the foregoing other operations and/or functions respectively implement the corresponding processes in the method 100.
  • the respective units/modules in the device and the foregoing other operations and/or functions respectively implement the corresponding processes in the method 100.
  • FIG. 35 shows a transmitting end device according to another embodiment of the present application.
  • the transmitting end device described in this embodiment has any function of the transmitting end device in the foregoing method.
  • the transmitting device 100 includes a processor 110 and a transceiver 120.
  • the processor 110 is connected to the transceiver 120.
  • the transmitting device 100 further includes a memory 130.
  • the memory 130 is connected to the processor 110.
  • the processor 110, the memory 130, and the transceiver 120 can communicate with each other through an internal connection path.
  • the processor 110 is configured to determine a channel estimation training sequence, where the channel estimation training sequence includes a first subsequence and a second subsequence, where the first subsequence includes a part of elements in the target ZC sequence, The second subsequence includes other elements of the target ZC sequence except the part of the element; the transceiver 120 is configured to send the channel estimation training sequence, where the subcarrier carrying the first subsequence is carried And the subcarriers carrying the second subsequence are located on both sides of the DC subcarrier.
  • the transmitting end device can make the channel estimation training sequence lower by dividing the target ZC sequence into two first subsequences and a second subsequence mapped to subcarriers on both sides of the direct current subcarrier.
  • the peak-to-average ratio improves the accuracy of channel estimation.
  • the transmitting device 100 may refer to the transmitting device 10 corresponding to the embodiment of the present application, and the respective units/modules in the transmitting device 100 and the other operations and/or functions described above are respectively implemented in the method 100.
  • the corresponding process for the sake of brevity, will not be described here.
  • FIG. 36 is a schematic block diagram of a receiving end device according to an embodiment of the present application.
  • the receiving end device in the present embodiment has any function of the receiving end device in the foregoing method.
  • the receiving end device 200 includes The processor 210 and the transceiver 220, the processor 210 and the transceiver 220 are connected.
  • the device 200 further includes a memory 230, and the memory 230 is connected to the processor 210.
  • the processor 210, the memory 230, and the transceiver 220 can communicate with each other through an internal connection path.
  • the transceiver 220 is configured to receive a channel estimation training sequence, where the channel estimation training sequence includes a first subsequence and a second subsequence, where the first subsequence includes a part of elements in the target ZC sequence, The second subsequence includes other elements of the target ZC sequence except the part of the element, wherein the subcarrier carrying the first subsequence and the subcarrier carrying the second subsequence are located on the DC subcarrier
  • the processor 210 is configured to perform channel estimation according to the channel estimation training sequence.
  • the channel estimation training sequence received by the receiving device is determined according to the ZC sequence, and the subcarriers of the first subsequence and the second subsequence in the bearer channel estimation training sequence are respectively located on the DC subcarrier.
  • the channel estimation training sequence can have a lower peak-to-average ratio and improve the accuracy of channel estimation.
  • the receiving device 200 may refer to the receiving device 20 corresponding to the embodiment of the present application, and the respective units/modules in the receiving device 200 and the other operations and/or functions described above are respectively implemented in the method 100.
  • the corresponding process for the sake of brevity, will not be described here.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM double data rate synchronous DRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected dynamic random access memory
  • DR RAM direct memory bus random access memory
  • the embodiment of the present application further provides a computer program product comprising instructions, when the computer runs the finger of the computer program product, the computer performs the method for channel estimation of the method embodiment.
  • the computer program product can run on the above-mentioned sender device and receiver device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the available media can be magnetic media (eg, floppy disk, hard disk, tape) ), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)) or the like.
  • magnetic media eg, floppy disk, hard disk, tape
  • optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提供了一种用于信道估计的方法和设备,该方法包括:确定信道估计训练序列,所述信道估计训练序列包括第一子序列和第二子序列,所述第一子序列包括目标 ZC 序列中的部分元素,所述第二子序列包括所述目标 ZC 序列中除所述部分元素之外的其他元素;发送所述信道估计训练序列,其中,承载所述第一子序列的子载波和承载所述第二子序列的子载波位于直流子载波的两侧。本申请提供的用于信道估计的方法,能够使得信道估计训练序列具有较低的峰均比,提高信道估计的准确性。

Description

用于信道估计的方法和设备
本申请要求于2017年6月13日提交中国专利局、申请号为201710444419.X、申请名称为“用于信道估计的方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及用于信道估计的方法和设备。
背景技术
多输入多输出(multiple input multiple output,MIMO)-正交频分复用(orthogonal frequency division multiplexing,OFDM)技术由于自身的一系列优点受到普遍的重视,新一代无线局域网络(wireless local area networks,WLAN)标准802.11n的物理层即采用了该技术,但是信道状态估计信息是MIMO-OFDM系统中接收机实现最佳检测的一个关键问题,信道估计的精确度直接影响着整个系统的性能。根据使用导频(pilot)与否,信道估计又可以分为盲信道估计、非盲信道估计和半盲信道估计。基于训练序列的信道估计具有实现简单、性能好等优点,广泛应用于各类通信系统。
频域信道估计算法由于信道估计是在频域进行的,在信道估计之后即可以直接进行后续的频域均衡和频域信号检测,可以避免时域信道估计后的时频域转换运算。但由于MIMO-OFDM技术采用多载波调制技术,其最大的缺点就是高峰均功率比。OFDM信号在时域上表现为N个相互正交的子载波信号的叠加,当这N个子载波信号都以相同的相位相加时,所得到的OFDM信号将达到最大峰值,该峰值功率是平均功率的N倍。由于一般的功率放大器都不是线性的,且动态范围有限,所以对于动态范围较大的信号会产生非线性失真,引起子载波间的交调干扰和带外辐射,从而导致整个系统的性能的下降。虽然最大峰均比(peak to average power ratio,PAPR)出现的概率极低,但是为了不失真的传送信号,就要求前端功率放大器具有大的线性范围,从而加大了整个系统的实现难度。
因此,需要提供一种用于信道估计的方法,降低信道估计训练序列的峰均比,简化通信系统的实现难度。
发明内容
本申请提供一种用于信道估计的方法,能够降低信道估计训练序列的峰均比,简化通信系统的实现难度。
第一方面,提供了一种用于信道估计的方法,包括:生成信道估计训练序列,所述信道估计训练序列包括第一子序列和第二子序列,所述第一子序列包括目标ZC序列中的部分元素,所述第二子序列包括所述目标ZC序列中除所述部分元素之外的其他元素;发送所述信道估计训练序列,其中,承载所述第一子序列的子载波和承载所述第二子序列的子 载波位于直流子载波的两侧。
根据本申请的用于信道估计的方法,根据Zadoff–Chu(ZC)序列确定信道估计训练序列,通过将目标ZC序列分成两个映射到直流子载波两侧的子载波上的第一子序列和第二子序列,能够使得信道估计训练序列具有较低的峰均比(peak to average power ratio,PAPR),提高信道估计的准确性,简化通信系统的实现难度。
结合第一方面,在第一方面的一种实现方式中,所述信道估计训练序列还包括第三子序列、第四子序列和第五子序列,所述第三子序列、所述第四子序列和所述第五子序列中的元素为预设值,其中,承载所述第三子序列的子载波为所述承载所述第一子序列的子载波左侧的保护带子载波,承载所述第四子序列的子载波为所述承载所述第二子序列的子载波右侧的保护带子载波,承载所述第五子序列的子载波为所述直流子载波。
也就是说,本申请的信道估计训练序列除第一子序列和第二子序列外,还包括映射到保护带子载波上的第三子序列和第四子序列(或称为预留子载波),还包括映射到直流子载波上的第五子序列。可选地,所述第三子序列、所述第四子序列和所述第五子序列中的元素可以为0。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,在确定所述信道估计训练序列之前,所述方法还包括:确定信道估计训练序列矩阵,所述信道估计训练序列矩阵由M个长度为N ZC的ZC序列构成,所述M个ZC序列中的第i个ZC序列构成所述信道估计训练序列矩阵中的第i行,所述M个ZC序列中的第i个ZC序列与第j个ZC序列正交,其中,M为大于等于发送天线数且小于等于N ZC的正整数,i=1,…M,j=1,…M,且i≠j。确定所述信道估计训练序列矩阵中的一行为所述目标ZC序列。
可选地,信道估计训练序列矩阵可以是协议规定的,也可以是发送端设备自己生成的。
可以理解的是,M个长度为N ZC的ZC序列可以不以矩阵的形式存在。并且,如果设备中有多个发送天线,设备从M个ZC序列中选取多个ZC序列,生成多个信道估计训练序列,分别在这多个发送天线上发送。
因此,本申请实施例的用于信道估计的方法,能够满足多输入多输出(multiple input multiple output,MIMO)多信道条件下对信道估计训练序列的要求。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述确定信道估计训练序列矩阵,包括:根据被绑定的信道的数量,确定所述信道估计训练序列矩阵。
由于对于不同的信道绑定数目,通信系统所需要的预留子载波数目不同,因此信道估计训练序列中第一子序列和第二子序列的总长度也不同。所以可以针对不同的信道绑定数目预先配置多个信道估计训练序列矩阵,每种信道绑定数目对应一个信道估计训练序列矩阵,发送端设备可以根据被配置的信道绑定数目,确定对应的信道估计训练序列矩阵。
因此,根据本申请实施例的用于信道估计的方法,能够满足不同数量的信道绑定场景对信道估计训练序列的要求。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述根据被绑定的信道的数量,确定所述信道估计训练序列矩阵,包括:根据所述被绑定的信道的数量,确定ZC根序列;对所述ZC根序列进行相移处理,得到所述信道估计训练序列矩阵,其中相移处理的相移因子为
Figure PCTCN2018091039-appb-000001
l=1,…M,k=0,…N ZC-1。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述第一子序列的 长度为N LS,所述第二子序列的长度为N RS,N LS和N RS为正整数;其中,所述目标ZC序列中的第1至N LS个元素依次为所述第一子序列中的第1至N LS个元素,所述目标ZC序列中的第N LS+1至第N ZC个元素依次为所述第二子序列中的第1至第N RS个元素。
结合第一方面及其上述实现方式,在第一方面的另一实现方式中,所述直流子载波左侧的N LS个子载波中的第s个子载波承载所述第一子序列中的第s个元素,所述直流子载波右侧的N RS个子载波上中的第t个子载波承载所述第二子序列中的第t个元素,所述N LS个子载波中的第N LS子载波为与所述直流子载波相邻的子载波,s=1,…N LS,所述N RS个子载波中的第1子载波为与所述直流子载波相邻的子载波,t=1,…N RS
由此,能够保证ZC序列的相关性,降低信道估计训练序列的PAPR。
第二方面,提供了一种用于信道估计的方法,包括:接收信道估计训练序列,所述信道估计训练序列包括第一子序列和第二子序列,所述第一子序列包括目标ZC序列中的部分元素,所述第二子序列包括所述目标ZC序列中除所述部分元素之外的其他元素,其中,承载所述第一子序列的子载波和承载所述第二子序列的子载波分别位于直流子载波的两侧;根据所述信道估计训练序列,进行信道估计。
根据本申请的用于信道估计的方法,接收端设备接收到的信道估计训练序列是根据ZC序列确定的,承载信道估计训练序列中的第一子序列和第二子序列的子载波分别位于直流子载波的两侧,并且第一子序列和第二子序列分别对应目标ZC序列中的不同元素,能够使得信道估计训练序列具有较低的PAPR,提高信道估计的准确性。
结合第二方面,在第二方面的一种实现方式中,所述信道估计训练序列还包括第三子序列、第四子序列和第五子序列,所述第三子序列、所述第四子序列和所述第五子序列中的元素为预设值,其中,承载所述第三子序列的子载波为所述承载所述第一子序列的子载波左侧的保护带子载波,承载所述第四子序列的子载波为所述承载所述第二子序列的子载波右侧的保护带子载波,承载所述第五子序列的子载波为所述直流子载波。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述目标ZC序列为信道估计训练序列矩阵中包括的M个长度为N ZC的ZC序列中的一个,所述M个ZC序列中的第i个ZC序列构成所述信道估计训练序列矩阵中的第i行,所述M个ZC序列中的第i个ZC序列与第j个ZC序列正交,其中,M为大于或等于发送天线数且小于或等于N ZC的正整数,i=1,…M,j=1,…M,且i≠j。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述信道估计训练序列矩阵是根据被绑定的信道的数量确定的。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述信道估计训练序列矩阵是通过对根据所述被绑定的信道的数量,确定的ZC根序列进行相移处理得到的,其中相移处理的相移因子为
Figure PCTCN2018091039-appb-000002
l=1,…M,k=0,…N ZC-1。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述第一子序列的长度为N LS,所述第二子序列的长度为N RS,N LS和N RS为正整数;其中,所述目标ZC序列中的第1至N LS个元素依次为所述第一子序列中的第1至N LS个元素,所述目标ZC序列中的第N LS+1至第N ZC个元素依次为所述第二子序列中的第1至第N RS个元素。
结合第二方面及其上述实现方式,在第二方面的另一实现方式中,所述直流子载波左侧的N LS个子载波中的第s个子载波承载所述第一子序列中的第s个元素,所述直流子载 波右侧的N RS个子载波上中的第t个子载波承载所述第二子序列中的第t个元素,所述N LS个子载波中的第N LS子载波为与所述直流子载波相邻的子载波,s=1,…N LS,所述N RS个子载波中的第1子载波为与所述直流子载波相邻的子载波,t=1,…N RS
第三方面,提供了一种发送端设备,包括:处理模块,用于确定信道估计训练序列,所述信道估计训练序列包括第一子序列和第二子序列,所述第一子序列包括目标ZC序列中的部分元素,所述第二子序列包括所述目标ZC序列中除所述部分元素之外的其他元素;收发模块,用于发送所述信道估计训练序列,其中,承载所述第一子序列的子载波和承载所述第二子序列的子载波位于直流子载波的两侧。
结合第三方面,在第三方面的一种实现方式中,所述信道估计训练序列还包括第三子序列、第四子序列和第五子序列,所述第三子序列、所述第四子序列和所述第五子序列中的元素为预设值,其中,承载所述第三子序列的子载波为所述承载所述第一子序列的子载波左侧的保护带子载波,承载所述第四子序列的子载波为所述承载所述第二子序列的子载波右侧的保护带子载波,承载所述第五子序列的子载波为所述直流子载波。
结合第三方面及其上述实现方式,在第三方面的另一实现方式中,所述处理模块还用于:确定信道估计训练序列矩阵,所述信道估计训练序列矩阵由M个长度为N ZC的ZC序列构成,所述M个ZC序列中的第i个ZC序列构成所述信道估计训练序列矩阵中的第i行,所述M个ZC序列中的第i个ZC序列与第j个ZC序列正交,其中,M为大于或等于发送天线数且小于或等于N ZC的正整数,i=1,…M,j=1,…M,且i≠j;确定所述信道估计训练序列矩阵中的一行为所述目标ZC序列。
结合第三方面及其上述实现方式,在第三方面的另一实现方式中,所述处理模块具体用于:根据被绑定的信道的数量,确定所述信道估计训练序列矩阵。
结合第三方面及其上述实现方式,在第三方面的另一实现方式中,所述处理模块具体用于:根据所述被绑定的信道的数量,确定ZC根序列;对所述ZC根序列进行相移处理,得到所述信道估计训练序列矩阵,其中相移处理的相移因子为
Figure PCTCN2018091039-appb-000003
l=1,…M,k=0,…N ZC-1。
结合第三方面及其上述实现方式,在第三方面的另一实现方式中,所述第一子序列的长度为N LS,所述第二子序列的长度为N RS,N LS和N RS为正整数;
其中,所述目标ZC序列中的第1至N LS个元素依次为所述第一子序列中的第1至N LS个元素,所述目标ZC序列中的第N LS+1至第N ZC个元素依次为所述第二子序列中的第1至第N RS个元素。
结合第三方面及其上述实现方式,在第三方面的另一实现方式中,所述直流子载波左侧的N LS个子载波中的第s个子载波承载所述第一子序列中的第s个元素,所述直流子载波右侧的N RS个子载波上中的第t个子载波承载所述第二子序列中的第t个元素,所述N LS个子载波中的第N LS子载波为与所述直流子载波相邻的子载波,s=1,…N LS,所述N RS个子载波中的第1子载波为与所述直流子载波相邻的子载波,t=1,…N RS
第四方面,提供了一种接收端设备,包括,收发模块,用于接收信道估计训练序列,所述信道估计训练序列包括第一子序列和第二子序列,所述第一子序列包括目标ZC序列中的部分元素,所述第二子序列包括所述目标ZC序列中除所述部分元素之外的其他元素,其中,承载所述第一子序列的子载波和承载所述第二子序列的子载波位于直流子载波的两 侧;处理模块,用于根据所述信道估计训练序列,进行信道估计。
结合第四方面,在第四方面的一种实现方式中,所述信道估计训练序列还包括第三子序列、第四子序列和第五子序列,所述第三子序列、所述第四子序列和所述第五子序列中的元素为预设值,其中,承载所述第三子序列的子载波为所述承载所述第一子序列的子载波左侧的保护带子载波,承载所述第四子序列的子载波为所述承载所述第二子序列的子载波右侧的保护带子载波,承载所述第五子序列的子载波为所述直流子载波。
结合第四方面及其上述实现方式,在第四方面的另一实现方式中,所述目标ZC序列为信道估计训练序列矩阵中包括的M个长度为N ZC的ZC序列中的一个,所述M个ZC序列中的第i个ZC序列构成所述信道估计训练序列矩阵中的第i行,所述M个ZC序列中的第i个ZC序列与第j个ZC序列正交,其中,M为大于或等于发送天线数且小于或等于N ZC的正整数,i=1,…M,j=1,…M,且i≠j。
结合第四方面及其上述实现方式,在第四方面的另一实现方式中,所述信道估计训练序列矩阵是根据被绑定的信道的数量确定的。
结合第四方面及其上述实现方式,在第四方面的另一实现方式中,所述信道估计训练序列矩阵是通过对根据所述被绑定的信道的数量,确定的ZC根序列进行相移处理得到的,其中相移处理的相移因子为
Figure PCTCN2018091039-appb-000004
l=1,…M,k=0,…N ZC-1。
结合第四方面及其上述实现方式,在第四方面的另一实现方式中,所述第一子序列的长度为N LS,所述第二子序列的长度为N RS,N LS和N RS为正整数;其中,所述目标ZC序列中的第1至N LS个元素依次为所述第一子序列中的第1至N LS个元素,所述目标ZC序列中的第N LS+1至第N ZC个元素依次为所述第二子序列中的第1至第N RS个元素。
结合第四方面及其上述实现方式,在第四方面的另一实现方式中,所述直流子载波左侧的N LS个子载波中的第s个子载波承载所述第一子序列中的第s个元素,所述直流子载波右侧的N RS个子载波上中的第t个子载波承载所述第二子序列中的第t个元素,所述N LS个子载波中的第N LS子载波为与所述直流子载波相邻的子载波,s=1,…N LS,所述N RS个子载波中的第1子载波为与所述直流子载波相邻的子载波,t=1,…N RS
第五方面,提供了一种发送端设备,包括处理器、存储器和收发器。所述处理器、所述存储器和所述收发器之间通过内部连接通路互相通信,传递控制和/或数据信号,使得所述设备执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种接收端设备,包括处理器、存储器和收发器。所述处理器、所述存储器和所述收发器之间通过内部连接通路互相通信,传递控制和/或数据信号,使得所述设备执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读介质,用于存储计算机程序,所述计算机程序包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,所述计算机程序包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的指令。
第九方面,提供了一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指令时,所述计算机执行上述第一方面或第一方面的任意可能的实现方式中的用于信道估计的方法。具体地,该计算机程序产品可以运行于上述第三方面或第五方面的设备上。
第十方面,提供了一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指令时,所述计算机执行上述第二方面或第二方面的任意可能的实现方式中的用于信道估计的方法。具体地,该计算机程序产品可以运行于上述第四方面或第六方面的设备上。
附图说明
图1是本申请实施例的用于信道估计的方法的示意性流程图。
图2是根据本申请实施例的第一子序列和第二子序列的映射图样。
图3是根据本申请实施例的信道估计原理的示意图。
图4是根据本申请实施例的正交频分复用OFDM符号的示意图。
图5是根据本申请实施例的场景一中的信道估计训练序列的映射图样。
图6是根据本申请实施例的场景一中q=97对应的信道估计训练序列的自相关特性曲线。
图7是根据本申请实施例的场景一中q=97和q=256对应的信道估计训练序列的互相关特性曲线。
图8是根据本申请实施例的场景二中q=213对应的信道估计训练序列的自相关特性曲线。
图9是根据本申请实施例的场景二中q=213和q=140对应的信道估计训练序列的互相关特性曲线。
图10是根据本申请实施例的场景三中q=153对应的信道估计训练序列的自相关特性曲线。
图11是根据本申请实施例的场景三中q=153和q=140对应的信道估计训练序列的互相关特性曲线。
图12是根据本申请实施例的场景四中的信道估计训练序列的映射图样。
图13是根据本申请实施例的场景四中q=557对应的信道估计训练序列的自相关特性曲线。
图14是根据本申请实施例的场景四中q=557和q=210对应的信道估计训练序列的互相关特性曲线。
图15是根据本申请实施例的场景五中q=313对应的信道估计训练序列的自相关特性曲线。
图16是根据本申请实施例的场景五中q=313和q=557对应的信道估计训练序列的互相关特性曲线。
图17是根据本申请实施例的场景六中q=560对应的信道估计训练序列的自相关特性曲线。
图18是根据本申请实施例的场景六中q=313和q=560对应的信道估计训练序列的互相关特性曲线。
图19是根据本申请实施例的场景七中的信道估计训练序列的映射图样。
图20是根据本申请实施例的场景七中q=230对应的信道估计训练序列的自相关特性曲线。
图21是根据本申请实施例的场景七中q=230和q=951对应的信道估计训练序列的互相关特性曲线。
图22是根据本申请实施例的场景八中q=173对应的信道估计训练序列的自相关特性曲线。
图23是根据本申请实施例的场景八中q=173和q=230对应的信道估计训练序列的互相关特性曲线。
图24是根据本申请实施例的场景九中q=1138对应的信道估计训练序列的自相关特性曲线。
图25是根据本申请实施例的场景九中q=230和q=1138对应的信道估计训练序列的互相关特性曲线。
图26是根据本申请实施例的场景十中的信道估计训练序列的映射图样。
图27是根据本申请实施例的场景十中q=1321对应的信道估计训练序列的自相关特性曲线。
图28是根据本申请实施例的场景十中q=1321和q=276对应的信道估计训练序列的互相关特性曲线。
图29是根据本申请实施例的场景十一中q=770对应的信道估计训练序列的自相关特性曲线。
图30是根据本申请实施例的场景十一中q=1321和q=770对应的信道估计训练序列的互相关特性曲线。
图31是根据本申请实施例的场景十二中q=1378对应的信道估计训练序列的自相关特性曲线。
图32是根据本申请实施例的场景十二中q=1378和q=1321对应的信道估计训练序列的互相关特性曲线。
图33是根据本申请实施例的发送端设备的示意性框图。
图34是根据本申请另一实施例的接收端设备的示意性框图。
图35是根据本申请再一实施例的发送端设备的示意性框图。
图36是根据本申请再一实施例的接收端设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的用于信道估计的方法可以应用于无线局域网(wireless local area network,WLAN)中,也可以应用于其它各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunications system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,以及未来的通信系统等。
本申请实施例所涉及到的发送端设备可以为基站,所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等。在采用不同的无线接入技术的系统中,具有基站功能的设备的名称可能会有所不同。例如在LTE网络中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在第三代(3 rd generation,3G)网络中,称为节点B(Node B)等等。
在本申请实施例中,接收端设备可以为终端设备,终端设备可以包括但不限于移动台(mobile station,MS)、移动终端(mobile terminal)、移动电话(mobile telephone)、用户设备(user equipment,UE)、手机(handset)及便携设备(portable equipment)、车辆(vehicle)等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
图1是根据本申请实施例的用于信道估计的示意性流程图。如图1所示,方法100包括:
S110,发送端设备生成信道估计训练序列,所述信道估计训练序列包括第一子序列和第二子序列,所述第一子序列包括目标ZC序列中的部分元素,所述第二子序列包括所述目标ZC序列中除所述部分元素之外的其他元素。
可选地,在一些实施例中,如果发送端设备只采用一个发送天线向接收端设备发送信道估计训练序列,发送端设备将根据第一子序列和第二子序列的长度和确定为目标ZC序列的长度N ZC。并根据N ZC奇偶性选择不同构造方式生成目标ZC序列,当N ZC为奇数时,目标ZC序列中的第k+1个元素为
Figure PCTCN2018091039-appb-000005
当N ZC为偶数时,目标ZC序列中的第k+1个元素为:
Figure PCTCN2018091039-appb-000006
其中,gcd(u,N ZC)=1,k=0,1,2…N ZC-1,gcd()为返回两个或多个整数的最大公约数的函数。
进一步地,由于目标ZC序列是在单位圆上的取值,u的值取得太大,可能会导致经过相移后面的序列与前面的序列相同,影响序列的相关性,为了获得较好的相关性,本申请实施例中u=1。可选地,在另一些实施例中,发送端设备和接收端设备采用多输入多输出(multiple-input multiple-output,MIMO)技术进行通信,发送端设备采用多根发送天线向接收端设备发送信道估计训练序列。发送端设备根据从正交ZC序列矩阵中选出的目标ZC序列确定信道估计训练序列。这里的正交ZC序列矩阵可以是协议预先配置的,也可以是发送端设备自己生成的。
具体地,在一些实施例中,发送端设备自己生成正交ZC序列矩阵,并从正交ZC序列矩阵中选出的目标ZC序列确定信道估计训练序列。举例来说,发送端设备确定信道估计训练序列的长度为N SD,第一子序列和第二子序列的总长为N ZC,则信道估计训练序列需要满足公式(1)所示的关系:
Figure PCTCN2018091039-appb-000007
其中,n表示信道估计训练序列中的第n个元素,或者理解为第n个位置,N LG和N RG分别是信道估计训练序列的左侧和右侧预留子载波的数量,N DC0、N DC1和N DC2分别为直流子载波0、直流子载波1和直流子载波2在信道估计训练序列中的位置,q表示第q个序列,k=0,1,2,….N ZC-1,k+1表示第q个序列中的第k个元素。因此需要设计的序列b k q的长度(即第一子序列和第二子序列的长度总和,或者说目标ZC序列的长度N ZC)满足公式(2):
N ZC=N SD-N LG-N RG-N DC=N LS+N RS             (2)
其中,N DC为直流子载波的数量,N LS可以理解为第一子序列的长度,N RS可以理解为第二子序列的长度。
长度为N ZC的序列
Figure PCTCN2018091039-appb-000008
可以按照以下步骤生成:
a)确定N ZC奇偶性,根据奇偶性选择不同构造方式生成ZC根序列,当N ZC为奇数时,根序列
Figure PCTCN2018091039-appb-000009
当N ZC为偶数时,根序列
Figure PCTCN2018091039-appb-000010
其中,gcd(u,N ZC)=1,k=0,1,2…N ZC-1,根序列的自相关函数
Figure PCTCN2018091039-appb-000011
在u=1且N ZC为奇数时ZC根序列a k为:
Figure PCTCN2018091039-appb-000012
在u=1且N ZC为偶数时ZC根序列a k为:
Figure PCTCN2018091039-appb-000013
b)对ZC根序列a k进行线性相移处理,相移的相移因子为:
Figure PCTCN2018091039-appb-000014
因此序列
Figure PCTCN2018091039-appb-000015
可以表示为:
Figure PCTCN2018091039-appb-000016
其中,q=1,2,…N ZC,k=0,1,2…N ZC-1,令
Figure PCTCN2018091039-appb-000017
在N ZC为偶数时,序列
Figure PCTCN2018091039-appb-000018
构成的正交ZC矩阵可以作是由
Figure PCTCN2018091039-appb-000019
构成的矩阵和由
Figure PCTCN2018091039-appb-000020
构成的矩阵的哈达玛(Hadamard)乘积,具体地,可以得到下面的正交ZC序列矩阵:
Figure PCTCN2018091039-appb-000021
可以看出,每一行都可作为目标ZC序列,其中正交ZC序列矩阵中包括N ZC个ZC序列,每一个的长度为N ZC,该正交ZC序列矩阵的任意两行相互正交,即
Figure PCTCN2018091039-appb-000022
可以理解的是,如果发送端设备有多根发送天线,发送端设备可以从正交ZC序列矩阵中选择多个目标ZC序列,生成多个信道估计训练序列,将生成的多个信道估计训练序列通过这多根天线发送出去。
S120,发送端设备发送所述信道估计训练序列,其中,承载所述第一子序列的子载波和承载所述第二子序列的子载波位于直流子载波的两侧。
需要说明的是,承载所述第一子序列的子载波和承载所述第二子序列的子载波位于直流子载波的两侧,具体为:直流子载波左侧的子载波的载波频率低于直流子载波的载波频率,直流子载波右侧的子载波的载波频率高于直流子载波的载波频率。
具体地,在一些实施例中,发送端设备可以将信道估计训练序列中的第一子序列和第二子序列按照图2所示的方法映射到发送端的一根发送天线上。第一子序列包括序列
Figure PCTCN2018091039-appb-000023
的前N LS个元素
Figure PCTCN2018091039-appb-000024
第二子序列包括序列
Figure PCTCN2018091039-appb-000025
的后N RS个元素
Figure PCTCN2018091039-appb-000026
Figure PCTCN2018091039-appb-000027
S130,接收端设备接收所述信道估计训练序列。
S140,接收端设备根据所述信道估计训练序列进行信道估计。
具体地,在一些实施例中,如果发送端设备只采用一个发送天线向接收端设备发送信道估计训练序列,接收端设备在接收到信道估计训练序列时,将接收到的信道估计训练序列与发送端设备的发送天线上发送的信道估计训练序列进行相关运算,得到发送天线和接收天线之间的链路信道增益。
具体地,在另一些实施例中,如果发送端设备和接收端设备采用多输入多输出MIMO技术进行通信,发送端设备采用N T个发送天线向接收端设备发送信道估计训练序列。则如图3所示出的,接收端设备通过N R根接收天线接收到信道估计训练序列后,将每根接 收天线接收到的信道估计训练序列分别经过与发送端设备的N T个发送天线上发送的信道估计训练序列进行相关运算,得到N T个发送天线与当前的接收天线m的N T×1条链路信道增益(H nm,n=1,2,…N T),所有N R根接收天线的信道估计结果即为完整的N R×N T信道估计结果。图3中q=A(例如,图中的i,j),表示该信道估计训练序列是根据上述的正交ZC序列矩阵中的第A行的ZC序列确定的,不同的发送天线对应的q的值不同。
具体地,在一些实施例中,第j个发送天线上发送的信道估计训练序列为:M j={zeroes(1,N LG) b j(0:N LS-1) 0 0 0 b j(N LS:N ZC-1) zeroes(1,N RG)}。假设第j个发送天线发送的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号在第k个子载波上的频域训练符号为M j(k),第j个发送天线到第i个接收天线的信道频率响应为H ij(k)。并假定信道为慢衰落信道,即相同收发天线经过每个OFDM符号相同子载波上的信道频率响应不变。规定一个OFDM符号有N SD个子载波,为避免传输过程中时延对信道估计准确性的影响,发送端设备在将信道估计训练序列进行并串转换后插入长度为N SD/4的循环前缀(cyclic prefix,CP)。则第j个发送天线的第m个OFDM符号在进入信道前具体如图4所示。接收端设备接收到数据之后先去掉CP,进行N点快速傅里叶逆变换(inverse fast fourier transform,IFFT)处理得到长度为N的IFFT数据,第i个接收天线接收到第m个OFDM符号在第k个子载波上的信息如公式(3)所示:
Figure PCTCN2018091039-appb-000028
接收端设备通过求解公式(3)可以通过频域信道估计方法得到第j个发送天线与第i个接收天线之间的信道频率响应H ij(k)。
下面将结合具体场景描述根据本申请实施例的用于信道估计的方法。在描述具体实施例时,以802.11ay为例。对于不同的信道绑定数目,总的子载波的数目、预留子载波的数目等均不相同,具体可以参见表1。表1示出了在不同的信道绑定数目N CB下,总的子载波个数N SD(total number of subcarriers)、直流子载波个数N DC(number of DC subcarriers)、左侧保护带需要填0的个数N LG(number of zeroes in the left guard band)、右侧保护带需要填0的个数N RG(number of zeroes in the right guard band)、左侧增强型定向数千兆(enhance directional multi-gigabit,EDMG)OFDM信道估计域(channel estimate filed,CEF)的个数N LS(number of EDMG OFDM CEF in the left side)、右侧增强型定向数千兆OFDM信道估计域的个数N RS(number of EDMG OFDM CEF in the right side)和EDMG OFDM-CEF序列(sequence)的长度N=N LS+N RS(EDMG OFDM-CEF sequence size)。
表1
参数 N CB=1 N CB=2 N CB=3 N CB=4
N SD 512 1024 1536 2048
N DC 3 3 3 3
N LG 78 127 176 224
N RG 79 128 177 225
N LS 176 383 590 798
N RS 176 383 590 798
N ZC=N LS+N RS 352 766 1180 1596
场景一:
通信系统中的信道绑定的数目N CB=1,MIMO天线数N T=2,根据表1可知信道估计训练序列长度N SD=512,序列
Figure PCTCN2018091039-appb-000029
的长度N ZC=N LS+N RS=352,并且信道估计训练序列满足公式(4)所示的关系:
Figure PCTCN2018091039-appb-000030
由于N ZC为偶数,得到ZC根序列a k为:
Figure PCTCN2018091039-appb-000031
发送端设备根据上述生成正交ZC序列矩阵的方法,对ZC根序列a k进行线性相移处理,相移的相移因子为:
Figure PCTCN2018091039-appb-000032
因此序列
Figure PCTCN2018091039-appb-000033
可以表示为:
Figure PCTCN2018091039-appb-000034
可以得到如下的正交ZC序列矩阵:
Figure PCTCN2018091039-appb-000035
在正交ZC序列矩阵的行序列两侧分别添入长度为78和79的保护频带以及中间3个直流子载波N DC,形成频域信道估计训练序列。每个信道估计训练序列的图样如图5所示。表2示出了在u=1时,根据q=97和q=256的ZC序列确定的频域的信道估计训练序列的PAPR值,可以看出,根据本申请实施例的信道估计训练序列具有较小的PAPR。图6和图7分别示出了根据q=97的ZC序列确定的频域信道估计训练序列的自相关特性,以及根据q=97和q=256的ZC序列确定的频域的信道估计训练序列之间的互相关特性。可以看出根据本申请实施例的信道估计训练序列具有良好的自相关特性和互相关特性。
表2
q PAPR
97 2.5323
256 2.5323
场景二:
通信系统中的信道绑定的数目N CB=1,MIMO天线数N T=4,根据表1可知信道估计训练序列长度N SD=512,序列
Figure PCTCN2018091039-appb-000036
的长度N ZC=N LS+N RS=352。发送端设备可以从场景一中生成的正交ZC序列矩阵中选择4个ZC序列,根据选择的这4个ZC序列生成4个频域 信道估计训练序列,分别采用与图5所示的图样相同的图样将这4个信道估计训练序列映射到不同发送天线的子载波上。表3示出了在u=1时,根据q=97、q=256、q=213和q=140的ZC序列确定的频域的信道估计训练序列的PAPR值,可以看出,根据本申请实施例的信道估计训练序列具有较小的PAPR。图8和图9分别示出了根据q=213的ZC序列确定的频域信道估计训练序列的自相关特性,以及根据q=213和q=140的ZC序列确定的频域的信道估计训练序列之间的互相关特性。可以看出根据本申请实施例的信道估计训练序列具有良好的自相关特性和互相关特性。
表3
q PAPR
97 2.5323
256 2.5323
213 2.5421
140 2.5421
场景三:
通信系统中的信道绑定的数目N CB=1,MIMO天线数N T=8,根据表1可知信道估计训练序列长度N SD=512,序列
Figure PCTCN2018091039-appb-000037
的长度N ZC=N LS+N RS=352。发送端设备可以从场景一中生成的正交ZC序列矩阵中选择8个ZC序列,根据选择的这8个ZC序列生成8个频域信道估计训练序列,分别采用与图5所示的图样相同的图样将这8个信道估计训练序列映射到不同发送天线的子载波上。表4示出了在u=1时,根据q=97、q=256、q=213、q=140、q=153、q=200、q=269和q=84的ZC序列确定的频域的信道估计训练序列的PAPR值,可以看出,根据本申请实施例的信道估计训练序列具有较小的PAPR。图10和图11分别示出了根据q=153的ZC序列确定的频域信道估计训练序列的自相关特性,以及根据q=153和q=140的ZC序列确定的频域的信道估计训练序列之间的互相关特性。可以看出根据本申请实施例的信道估计训练序列具有良好的自相关特性和互相关特性。
表4
q PAPR
97 2.5323
256 2.5323
213 2.5421
140 2.5421
153 2.5423
200 2.5423
169 2.5467
84 2.5467
场景四:
通信系统中的信道绑定的数目N CB=2,MIMO天线数N T=2,根据表1可知信道估计训练序列长度N SD=1024,序列
Figure PCTCN2018091039-appb-000038
的长度N ZC=N LS+N RS=766,并且信道估计训练序列满足公式(5)所示的关系:
Figure PCTCN2018091039-appb-000039
由于N ZC为偶数,得到ZC根序列a k为:
Figure PCTCN2018091039-appb-000040
发送端设备根据上述生成正交ZC序列矩阵的方法,对ZC根序列a k进行线性相移处理,相移的相移因子为:
Figure PCTCN2018091039-appb-000041
因此序列
Figure PCTCN2018091039-appb-000042
可以表示为:
Figure PCTCN2018091039-appb-000043
可以得到如下的正交ZC序列矩阵:
Figure PCTCN2018091039-appb-000044
在正交ZC序列矩阵的行序列两侧分别添入长度为127和128的保护频带以及中间3个直流子载波N DC,形成频域信道估计训练序列。每个信道估计训练序列的图样如图12所示。表5示出了在u=1时,根据q=557和q=210的ZC序列确定的频域的信道估计训练序列的PAPR值,可以看出,根据本申请实施例的信道估计训练序列具有较小的PAPR。图13和图14分别示出了根据q=557的ZC序列确定的频域信道估计训练序列的自相关特性,以及根据q=557和q=210的ZC序列确定的频域的信道估计训练序列之间的互相关特性。可以看出根据本申请实施例的信道估计训练序列具有良好的自相关特性和互相关特性。
表5
q PAPR
557 2.6256
210 2.6256
场景五:
通信系统中的信道绑定的数目N CB=1,MIMO天线数N T=4,根据表1可知信道估计训练序列长度N SD=512,序列
Figure PCTCN2018091039-appb-000045
的长度N ZC=N LS+N RS=766。发送端设备可以从场景四中生成的正交ZC序列矩阵中选择4个ZC序列,根据选择的这4个ZC序列生成4个频域信道估计训练序列,分别采用与图12所示的图样相同的图样将这4个信道估计训练序列映射到不同发送天线的子载波上。表6示出了在u=1时,根据q=557、q=210、q=313和q=454的ZC序列确定的频域的信道估计训练序列的PAPR值,可以看出,根据本申请实施例的信道估计训练序列具有较小的PAPR。图15和图16分别示出了根据q=313的ZC序列确定的频域信道估计训练序列的自相关特性,以及根据q=313和q=557的ZC序列确 定的频域的信道估计训练序列之间的互相关特性。可以看出根据本申请实施例的信道估计训练序列具有良好的自相关特性和互相关特性。
表6
q PAPR
557 2.6256
210 2.6256
313 2.6277
454 2.6277
场景六:
通信系统中的信道绑定的数目N CB=1,MIMO天线数N T=8,根据表1可知信道估计训练序列长度N SD=512,序列
Figure PCTCN2018091039-appb-000046
的长度N ZC=N LS+N RS=766。发送端设备可以从场景四中生成的正交ZC序列矩阵中选择8个ZC序列,根据选择的这8个ZC序列生成8个频域信道估计训练序列,分别采用与图12所示的图样相同的图样将这8个信道估计训练序列映射到不同发送天线的子载波上。表7示出了在u=1时,根据q=557、q=210、q=313、q=454、q=560、q=207、q=316和q=451的ZC序列确定的频域的信道估计训练序列的PAPR值,可以看出,根据本申请实施例的信道估计训练序列具有较小的PAPR。图17和图18分别示出了根据q=560的ZC序列确定的频域信道估计训练序列的自相关特性,以及根据q=313和q=560的ZC序列确定的频域的信道估计训练序列之间的互相关特性。可以看出根据本申请实施例的信道估计训练序列具有良好的自相关特性和互相关特性。
表7
q PAPR
557 2.6256
210 2.6256
313 2.6277
454 2.6277
560 2.6309
207 2.6309
316 2.6350
451 2.6350
场景七:
通信系统中的信道绑定的数目N CB=3,MIMO天线数N T=2,根据表1可知信道估计训练序列长度N SD=1536,序列
Figure PCTCN2018091039-appb-000047
的长度N ZC=N LS+N RS=1180,并且信道估计训练序列满足公式(6)所示的关系:
Figure PCTCN2018091039-appb-000048
由于N ZC为偶数,得到ZC根序列a k为:
Figure PCTCN2018091039-appb-000049
发送端设备根据上述生成正交ZC序列矩阵的方法,对ZC根序列a k进行线性相移处理,相移的相移因子为:
Figure PCTCN2018091039-appb-000050
因此序列
Figure PCTCN2018091039-appb-000051
可以表示为:
Figure PCTCN2018091039-appb-000052
可以得到如下的正交ZC序列矩阵:
Figure PCTCN2018091039-appb-000053
在正交ZC序列矩阵的行序列两侧分别添入长度为176和177的保护频带以及中间3个直流子载波N DC,形成频域信道估计训练序列。每个信道估计训练序列的图样如图19所示。表8示出了在u=1时,根据q=230和q=951的ZC序列确定的频域的信道估计训练序列的PAPR值,可以看出,根据本申请实施例的信道估计训练序列具有较小的PAPR。图20和图21分别示出了根据q=230的ZC序列确定的频域信道估计训练序列的自相关特性,以及根据q=230和q=951的ZC序列确定的频域的信道估计训练序列之间的互相关特性。可以看出根据本申请实施例的信道估计训练序列具有良好的自相关特性和互相关特性。
表8
q PAPR
230 2.5719
951 2.5719
场景八:
通信系统中的信道绑定的数目N CB=3,MIMO天线数N T=4,根据表1可知信道估计训练序列长度N SD=1536,序列
Figure PCTCN2018091039-appb-000054
的长度N ZC=N LS+N RS=1180。发送端设备可以从场景七中生成的正交ZC序列矩阵中选择4个ZC序列,根据选择的这4个ZC序列生成4个频域信道估计训练序列,分别采用与图19所示的图样相同的图样将这4个信道估计训练序列映射到不同发送天线的子载波上。表9示出了在u=1时,根据q=230、q=951、q=173和q=1008的ZC序列确定的频域的信道估计训练序列的PAPR值,可以看出,根据本申请实施例的信道估计训练序列具有较小的PAPR。图22和图23分别示出了根据q=173的ZC序列确定的频域信道估计训练序列的自相关特性,以及根据q=173和q=230的ZC序列确定的频域的信道估计训练序列之间的互相关特性。可以看出根据本申请实施例的信道估计训练序列具有良好的自相关特性和互相关特性。
表9
q PAPR
230 2.5719
951 2.5719
173 2.5721
1008 2.5721
场景九:
通信系统中的信道绑定的数目N CB=3,MIMO天线数N T=8,根据表1可知信道估计训练序列长度N SD=1536,序列
Figure PCTCN2018091039-appb-000055
的长度N ZC=N LS+N RS=1180。发送端设备可以从场景七中生成的正交ZC序列矩阵中选择8个ZC序列,根据选择的这8个ZC序列生成8个频域信道估计训练序列,分别采用与图19所示的图样相同的图样将这8个信道估计训练序列映射到不同发送天线的子载波上。表10示出了在u=1时,根据q=230、q=951、q=173、q=1008、q=549、q=632、q=1138和q=43的ZC序列确定的频域的信道估计训练序列的PAPR值,可以看出,根据本申请实施例的信道估计训练序列具有较小的PAPR。图24和图25分别示出了根据q=1138的ZC序列确定的频域信道估计训练序列的自相关特性,以及根据q=230和q=1138的ZC序列确定的频域的信道估计训练序列之间的互相关特性。可以看出根据本申请实施例的信道估计训练序列具有良好的自相关特性和互相关特性。
表10
q PAPR
230 2.5719
951 2.5719
173 2.5721
1008 2.5721
549 2.5727
632 2.5727
1138 2.5729
43 2.5729
场景十:
通信系统中的信道绑定的数目N CB=4,MIMO天线数N T=2,根据表1可知信道估计训练序列长度N SD=2048,序列
Figure PCTCN2018091039-appb-000056
的长度N ZC=N LS+N RS=1596,并且信道估计训练序列满足公式(7)所示的关系:
Figure PCTCN2018091039-appb-000057
由于N ZC为偶数,得到ZC根序列a k为:
Figure PCTCN2018091039-appb-000058
发送端设备根据上述生成正交ZC序列矩阵的方法,对ZC根序列a k进行线性相移处理,相移的相移因子为:
Figure PCTCN2018091039-appb-000059
因此序列
Figure PCTCN2018091039-appb-000060
可以表示为:
Figure PCTCN2018091039-appb-000061
可以得到如下的正交ZC序列矩阵:
Figure PCTCN2018091039-appb-000062
在正交ZC序列矩阵的行序列两侧分别添入长度为224和225的保护频带以及中间3个直流子载波N DC,形成频域信道估计训练序列。每个信道估计训练序列的图样如图26所示。表11示出了在u=1时,根据q=1321和q=276的ZC序列确定的频域的信道估计训练序列的PAPR值,可以看出,根据本申请实施例的信道估计训练序列具有较小的PAPR。图27和图28分别示出了根据q=1321的ZC序列确定的频域信道估计训练序列的自相关特性,以及根据q=1321和q=276的ZC序列确定的频域的信道估计训练序列之间的互相关特性。可以看出根据本申请实施例的信道估计训练序列具有良好的自相关特性和互相关特性。
表11
q PAPR
1321 2.5634
276 2.5634
场景十一:
通信系统中的信道绑定的数目N CB=4,MIMO天线数N T=4,根据表1可知信道估计训练序列长度N SD=2048,序列
Figure PCTCN2018091039-appb-000063
的长度N ZC=N LS+N RS=1596。发送端设备可以从场景十中生成的正交ZC序列矩阵中选择4个ZC序列,根据选择的这4个ZC序列生成4个频域信道估计训练序列,分别采用与图26所示的图样相同的图样将这4个信道估计训练序列映射到不同发送天线的子载波上。表12示出了在u=1时,根据q=1321、q=210、q=770和q=827的ZC序列确定的频域的信道估计训练序列的PAPR值,可以看出,根据本申请实施例的信道估计训练序列具有较小的PAPR。图29和图30分别示出了根据q=770的ZC序列确定的频域信道估计训练序列的自相关特性,以及根据q=1321和q=770的ZC序列确定的频域的信道估计训练序列之间的互相关特性。可以看出根据本申请实施例的信道估计训练序列具有良好的自相关特性和互相关特性。
表12
q PAPR
1321 2.5634
276 2.5634
770 2.5638
827 2.5638
场景十二:
通信系统中的信道绑定的数目N CB=4,MIMO天线数N T=4,根据表1可知信道估计训练序列长度N SD=2048,序列
Figure PCTCN2018091039-appb-000064
的长度N ZC=N LS+N RS=1596。发送端设备可以从场景十中生成的正交ZC序列矩阵中选择8个ZC序列,根据选择的这8个ZC序列生成8个频域信道估计训练序列,分别采用与图26所示的图样相同的图样将这8个信道估计训练序 列映射到不同发送天线的子载波上。表13示出了在u=1时,根据q=1321、q=276、q=770、q=827、q=1378、q=219、q=1264和q=333的ZC序列确定的频域的信道估计训练序列的PAPR值,可以看出,根据本申请实施例的信道估计训练序列具有较小的PAPR。图31和图32分别示出了根据q=1378的ZC序列确定的频域信道估计训练序列的自相关特性,以及根据q=1378和q=1321的ZC序列确定的频域的信道估计训练序列之间的互相关特性。可以看出根据本申请实施例的信道估计训练序列具有良好的自相关特性和互相关特性。
表13
q PAPR
1321 2.5634
276 2.5634
770 2.5638
827 2.5638
1378 2.5643
219 2.5643
1264 2.5652
333 2.5652
通过对以上场景的描述,可以看出本申请实施例的频域的信道估计训练序列能够获得较低的PAPR(约2.7dB),能够减弱功率放大器(power amplifier,PA)对通信系统的影响,提高信道估计的准确性。
需要说明的是,在从正交ZC序列矩阵中选择ZC序列时,发送端设备可以任意选取满足发送天线数要求的数量的ZC序列,也可以由发送端设备商设置选择规则,本申请实施例对此不作限定。
还需要说明的是,在上述实施例中描述的正交ZC序列矩阵均为N ZC×N ZC的方阵。但本领域技术人员可以理解,在本申请实施例的方法应用于MIMO场景中时,发送端设备生成的正交ZC矩阵的行数只要大于或等于发送天线的数目即可。
以上结合图1至图32详细描述根据本申请实施例的用于信道估计的方法,下面将结合图33详细描述根据本申请实施例的发送端设备。本实施中所述的发送端设备具有上述方法中发送端设备的任意功能。
如图33所示,发送端设备10包括:
处理模块11,用于确定信道估计训练序列,所述信道估计训练序列包括第一子序列和第二子序列,所述第一子序列包括目标ZC序列中的部分元素,所述第二子序列包括所述目标ZC序列中除所述部分元素之外的其他元素;
收发模块12,用于发送所述信道估计训练序列,其中,承载所述第一子序列的子载波和承载所述第二子序列的子载波位于直流子载波的两侧。
因此,根据本申请实施例的设备根据ZC序列确定信道估计训练序列,通过将目标ZC序列分成两个映射到直流子载波两侧的子载波上的第一子序列和第二子序列,能够使得信道估计训练序列具有较低的峰均比,提高信道估计的准确性。
在本申请实施例中,可选地,所述信道估计训练序列还包括第三子序列、第四子序列和第五子序列,所述第三子序列、所述第四子序列和所述第五子序列中的元素为预设值, 其中,承载所述第三子序列的子载波为所述直流子载波左侧的保护带子载波,承载所述第四子序列的子载波为所述直流子载波右侧的保护带子载波,承载所述第五子序列的子载波为所述直流子载波。
在本申请实施例中,可选地,所述处理模块11还用于:确定信道估计训练序列矩阵,所述信道估计训练序列矩阵由M个长度为N ZC的ZC序列构成,所述M个ZC序列中的第i个ZC序列构成所述信道估计训练序列矩阵中的第i行,所述M个ZC序列中的第i个ZC序列与第j个ZC序列正交,其中,M为大于或等于发送天线数且小于或等于N ZC的正整数,i=1,…M,j=1,…M,且i≠j;确定所述信道估计训练序列矩阵中的一行为所述目标ZC序列。
在本申请实施例中,可选地,所述处理模块11具体用于:根据被绑定的信道的数量,确定所述信道估计训练序列矩阵。
在本申请实施例中,可选地,所述处理模块11具体用于:根据所述被绑定的信道的数量,确定ZC根序列;对所述ZC根序列进行相移处理,得到所述信道估计训练序列矩阵,其中相移处理的相移因子为
Figure PCTCN2018091039-appb-000065
l=1,…M,k=0,…N ZC-1。
在本申请实施例中,可选地,所述第一子序列的长度为N LS,所述第二子序列的长度为N RS,其中,N LS和N RS为正整数;
其中,所述目标ZC序列中的第1至N LS个元素依次为所述第一子序列中的第1至N LS个元素,所述目标ZC序列中的第N LS+1至第N ZC个元素依次为所述第二子序列中的第1至第N RS个元素。
在本申请实施例中,可选地,所述直流子载波左侧的N LS个子载波中的第s个子载波承载所述第一子序列中的第s个元素,所述直流子载波右侧的N RS个子载波上中的第t个子载波承载所述第二子序列中的第t个元素,所述N LS个子载波中的第N LS子载波为与所述直流子载波相邻的子载波,s=1,…N LS,所述N RS个子载波中的第1子载波为与所述直流子载波相邻的子载波,t=1,…N RS
根据本申请实施例的发送端设备可以参照本申请实施例的方法100的发送端设备,并且,该设备中的各个单元/模块和上述其他操作和/或功能分别为了实现方法100中的相应流程,为了简洁,在此不再赘述。
图34示出了根据本申请另一实施例的接收端设备,本实施中所述的接收端设备具有上述方法中接收端设备的任意功能。如图34所示,接收端设备20包括:
收发模块21,用于接收信道估计训练序列,所述信道估计训练序列包括第一子序列和第二子序列,所述第一子序列包括目标ZC序列中的部分元素,所述第二子序列包括所述目标ZC序列中除所述部分元素之外的其他元素,其中,承载所述第一子序列的子载波和承载所述第二子序列的子载波位于直流子载波的两侧;
处理模块22,用于根据所述信道估计训练序列,进行信道估计。
因此,根据本申请实施例的接收端设备接收到的信道估计训练序列是根据ZC序列确定的,承载信道估计训练序列中的第一子序列和第二子序列的子载波分别位于直流子载波的两侧,并且第一子序列和第二子序列分别对应目标ZC序列中的不同元素,能够使得信道估计训练序列具有较低的峰均比,提高信道估计的准确性。
在本申请实施例中,可选地,所述信道估计训练序列还包括第三子序列、第四子序列 和第五子序列,所述第三子序列、所述第四子序列和所述第五子序列中的元素为预设值,其中,承载所述第三子序列的子载波为所述直流子载波左侧的保护带子载波,承载所述第四子序列的子载波为所述直流子载波右侧的保护带子载波,承载所述第五子序列的子载波为所述直流子载波。
在本申请实施例中,可选地,所述目标ZC序列为信道估计训练序列矩阵中包括的M个长度为N ZC的ZC序列中的一个,所述M个ZC序列中的第i个ZC序列构成所述信道估计训练序列矩阵中的第i行,所述M个ZC序列中的第i个ZC序列与第j个ZC序列正交,其中,M为大于或等于发送天线数且小于或等于N ZC的正整数,i=1,…M,j=1,…M,且i≠j。
在本申请实施例中,可选地,所述信道估计训练序列矩阵是根据被绑定的信道的数量确定的。
在本申请实施例中,可选地,所述信道估计训练序列矩阵是通过对根据所述被绑定的信道的数量,确定的ZC根序列进行相移处理得到的,其中相移处理的相移因子为
Figure PCTCN2018091039-appb-000066
l=1,…M,k=0,…N ZC-1。
在本申请实施例中,可选地,所述第一子序列的长度为N LS,所述第二子序列的长度为N RS,N LS和N RS为正整数;其中,所述目标ZC序列中的第1至N LS个元素依次为所述第一子序列中的第1至N LS个元素,所述目标ZC序列中的第N LS+1至第N ZC个元素依次为所述第二子序列中的第1至第N RS个元素。
在本申请实施例中,可选地,所述直流子载波左侧的N LS个子载波中的第s个子载波承载所述第一子序列中的第s个元素,所述直流子载波右侧的N RS个子载波上中的第t个子载波承载所述第二子序列中的第t个元素,所述N LS个子载波中的第N LS子载波为与所述直流子载波相邻的子载波,s=1,…N LS,所述N RS个子载波中的第1子载波为与所述直流子载波相邻的子载波,t=1,…N RS
根据本申请实施例的接收端设备可以参照本申请实施例的方法100的接收端设备,并且,该设备中的各个单元/模块和上述其他操作和/或功能分别为了实现方法100中的相应流程,为了简洁,在此不再赘述。
图35示出了根据本申请另一实施例的发送端设备,本实施中所述的发送端设备具有上述方法中发送端设备的任意功能。如图35所示,发送端设备100包括处理器110和收发器120,处理器110和收发器120相连,可选地,该发送端设备100还包括存储器130,存储器130与处理器110相连。其中,处理器110、存储器130和收发器120可以通过内部连接通路互相通信。其中,所述处理器110,用于确定信道估计训练序列,所述信道估计训练序列包括第一子序列和第二子序列,所述第一子序列包括目标ZC序列中的部分元素,所述第二子序列包括所述目标ZC序列中除所述部分元素之外的其他元素;所述收发器120,用于发送所述信道估计训练序列,其中,承载所述第一子序列的子载波和承载所述第二子序列的子载波位于直流子载波的两侧。
因此,根据本申请实施例的发送端设备通过将目标ZC序列分成两个映射到直流子载波两侧的子载波上的第一子序列和第二子序列,能够使得信道估计训练序列具有较低的峰均比,提高信道估计的准确性。
根据本申请实施例的发送端设备100可以参照对应本申请实施例的发送端设备10,并且,该发送端设备100中的各个单元/模块和上述其他操作和/或功能分别为了实现方法 100中的相应流程,为了简洁,在此不再赘述。
图36示出了根据本申请实施例的接收端设备的示意性框图,本实施中所述的接收端设备具有上述方法中接收端设备的任意功能,如图36所示,接收端设备200包括:处理器210和收发器220,处理器210和收发器220相连,可选地,所述设备200还包括存储器230,存储器230与处理器210相连。其中,处理器210、存储器230和收发器220可以通过内部连接通路互相通信。其中,所述收发器220,用于接收信道估计训练序列,所述信道估计训练序列包括第一子序列和第二子序列,所述第一子序列包括目标ZC序列中的部分元素,所述第二子序列包括所述目标ZC序列中除所述部分元素之外的其他元素,其中,承载所述第一子序列的子载波和承载所述第二子序列的子载波位于直流子载波的两侧;所述处理器210,用于根据所述信道估计训练序列,进行信道估计。
因此,根据本申请实施例的接收到设备接收到的信道估计训练序列是根据ZC序列确定的,承载信道估计训练序列中的第一子序列和第二子序列的子载波分别位于直流子载波的两侧,并且第一子序列和第二子序列分别对应目标ZC序列中的不同元素,能够使得信道估计训练序列具有较低的峰均比,提高信道估计的准确性。
根据本申请实施例的接收端设备200可以参照对应本申请实施例的接收端设备20,并且,该接收端设备200中的各个单元/模块和上述其他操作和/或功能分别为了实现方法100中的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM, SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指时,所述计算机执行上述方法实施例的用于信道估计的方法。具体地,该计算机程序产品可以运行于上述发送端设备和接收端设备上。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机 软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (17)

  1. 一种用于信道估计的方法,其特征在于,包括:
    生成信道估计训练序列,所述信道估计训练序列包括第一子序列和第二子序列,所述第一子序列包括目标ZC序列中的部分元素,所述第二子序列包括所述目标ZC序列中除所述部分元素之外的其他元素;
    发送所述信道估计训练序列,其中,承载所述第一子序列的子载波和承载所述第二子序列的子载波位于直流子载波的两侧。
  2. 一种用于信道估计的方法,其特征在于,包括:
    接收信道估计训练序列,所述信道估计训练序列包括第一子序列和第二子序列,所述第一子序列包括目标ZC序列中的部分元素,所述第二子序列包括所述目标ZC序列中除所述部分元素之外的其他元素,其中,承载所述第一子序列的子载波和承载所述第二子序列的子载波分别位于直流子载波的两侧;
    根据所述信道估计训练序列,进行信道估计。
  3. 根据权利要求1或2所述的方法,其特征在于,所述信道估计训练序列还包括第三子序列、第四子序列和第五子序列,所述第三子序列、所述第四子序列和所述第五子序列中的元素为预设值,其中,承载所述第三子序列的子载波为所述承载所述第一子序列的子载波左侧的保护带子载波,承载所述第四子序列的子载波为所述承载所述第二子序列的子载波右侧的保护带子载波,承载所述第五子序列的子载波为所述直流子载波。
  4. 根据权利要求1或3任一项所述的方法,其特征在于,在确定所述信道估计训练序列之前,所述方法还包括:
    确定信道估计训练序列矩阵,所述信道估计训练序列矩阵由M个长度为N ZC的ZC序列构成,所述M个ZC序列中的第i个ZC序列构成所述信道估计训练序列矩阵中的第i行,所述M个ZC序列中的第i个ZC序列与第j个ZC序列正交,其中,M为大于等于发送天线数且小于等于N ZC的正整数,i=1,…M,j=1,…M,且i≠j。
    确定所述信道估计训练序列矩阵中的一行为所述目标ZC序列。
  5. 根据权利要求4所述的方法,其特征在于,所述确定信道估计训练序列矩阵,包括:
    根据被绑定的信道的数量,确定所述信道估计训练序列矩阵。
  6. 根据权利要求5所述的方法,其特征在于,所述根据被绑定的信道的数量,确定所述信道估计训练序列矩阵,包括:
    根据所述被绑定的信道的数量,确定ZC根序列;
    对所述ZC根序列进行相移处理,得到所述信道估计训练序列矩阵,其中相移处理的相移因子为
    Figure PCTCN2018091039-appb-100001
    l=1,…M,k=0,…N ZC-1。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一子序列的长度为N LS,所述第二子序列的长度为N RS,N LS和N RS为正整数;
    其中,所述目标ZC序列中的第1至N LS个元素依次为所述第一子序列中的第1至N LS个元素,所述目标ZC序列中的第N LS+1至第N ZC个元素依次为所述第二子序列中的第1 至第N RS个元素。
  8. 根据权利要求7所述的方法,其特征在于,所述直流子载波左侧的N LS个子载波中的第s个子载波承载所述第一子序列中的第s个元素,所述直流子载波右侧的N RS个子载波上中的第t个子载波承载所述第二子序列中的第t个元素,所述N LS个子载波中的第N LS子载波为与所述直流子载波相邻的子载波,s=1,…N LS,所述N RS个子载波中的第1子载波为与所述直流子载波相邻的子载波,t=1,…N RS
  9. 一种发送端设备,其特征在于,包括:
    处理器,用于确定信道估计训练序列,所述信道估计训练序列包括第一子序列和第二子序列,所述第一子序列包括目标ZC序列中的部分元素,所述第二子序列包括所述目标ZC序列中除所述部分元素之外的其他元素;
    收发器,用于发送所述信道估计训练序列,其中,承载所述第一子序列的子载波和承载所述第二子序列的子载波位于直流子载波的两侧。
  10. 一种接收端设备,其特征在于,包括:
    收发器,用于接收信道估计训练序列,所述信道估计训练序列包括第一子序列和第二子序列,所述第一子序列包括目标ZC序列中的部分元素,所述第二子序列包括所述目标ZC序列中除所述部分元素之外的其他元素,其中,承载所述第一子序列的子载波和承载所述第二子序列的子载波位于直流子载波的两侧;
    处理器,用于根据所述信道估计训练序列,进行信道估计。
  11. 根据权利要求9所述的发送端设备或10所述的接收端设备,其特征在于,所述信道估计训练序列还包括第三子序列、第四子序列和第五子序列,所述第三子序列、所述第四子序列和所述第五子序列中的元素为预设值,其中,承载所述第三子序列的子载波为所述承载所述第一子序列的子载波左侧的保护带子载波,承载所述第四子序列的子载波为所述承载所述第二子序列的子载波右侧的保护带子载波,承载所述第五子序列的子载波为所述直流子载波。
  12. 根据权利要求9或11所述的发送端设备,其特征在于,所述处理器还用于:
    确定信道估计训练序列矩阵,所述信道估计训练序列矩阵由M个长度为N ZC的ZC序列构成,所述M个ZC序列中的第i个ZC序列构成所述信道估计训练序列矩阵中的第i行,所述M个ZC序列中的第i个ZC序列与第j个ZC序列正交,其中,M为大于等于发送天线数且小于等于N ZC的正整数,i=1,…M,j=1,…M,且i≠j;
    确定所述信道估计训练序列矩阵中的一行为所述目标ZC序列。
  13. 根据权利要求12所述的发送端设备,其特征在于,所述处理器具体用于:
    根据被绑定的信道的数量,确定所述信道估计训练序列矩阵。
  14. 根据权利要求13所述的发送端设备,其特征在于,所述处理器具体用于:
    根据所述被绑定的信道的数量,确定ZC根序列;
    对所述ZC根序列进行相移处理,得到所述信道估计训练序列矩阵,其中相移处理的相移因子为
    Figure PCTCN2018091039-appb-100002
    l=1,…M,k=0,…N ZC-1。
  15. 根据权利要求9至14中任一项所述的发送端设备,其特征在于,所述第一子序列的长度为N LS,所述第二子序列的长度为N RS,N LS和N RS为正整数;
    其中,所述目标ZC序列中的第1至N LS个元素依次为所述第一子序列中的第1至N LS 个元素,所述目标ZC序列中的第N LS+1至第N ZC个元素依次为所述第二子序列中的第1至第N RS个元素。
  16. 根据权利要求15所述的发送端设备,其特征在于,所述直流子载波左侧的N LS个子载波中的第s个子载波承载所述第一子序列中的第s个元素,所述直流子载波右侧的N RS个子载波上中的第t个子载波承载所述第二子序列中的第t个元素,所述N LS个子载波中的第N LS子载波为与所述直流子载波相邻的子载波,s=1,…N LS,所述N RS个子载波中的第1子载波为与所述直流子载波相邻的子载波,t=1,…N RS
  17. 一种计算机可读介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至8中任一项所述的方法。
PCT/CN2018/091039 2017-06-13 2018-06-13 用于信道估计的方法和设备 WO2018228426A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18817882.6A EP3633940B1 (en) 2017-06-13 2018-06-13 Method and device for channel estimation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710444419.X 2017-06-13
CN201710444419.XA CN109150769B (zh) 2017-06-13 2017-06-13 用于信道估计的方法和设备

Publications (1)

Publication Number Publication Date
WO2018228426A1 true WO2018228426A1 (zh) 2018-12-20

Family

ID=64659580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091039 WO2018228426A1 (zh) 2017-06-13 2018-06-13 用于信道估计的方法和设备

Country Status (3)

Country Link
EP (1) EP3633940B1 (zh)
CN (1) CN109150769B (zh)
WO (1) WO2018228426A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110022198B (zh) * 2019-02-15 2020-07-24 北京邮电大学 一种图样分割多址接入技术的图样选择和设计优化方法
CN112019470B (zh) 2019-05-30 2023-04-07 华为技术有限公司 一种数据传输方法及装置
CN112583755B (zh) * 2019-09-30 2022-05-06 华为技术有限公司 卫星通信方法和相关通信设备
CN114325134B (zh) * 2021-12-30 2024-05-31 北京交大思诺科技股份有限公司 一种机车信号接收天线频响特性自动测试系统
CN117675447A (zh) * 2022-08-09 2024-03-08 华为技术有限公司 信号识别方法及通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102934405A (zh) * 2010-06-07 2013-02-13 高通股份有限公司 通过避免全1的R矩阵来避免IEEE 802.11ac中导频音调上的谱线
WO2013184671A2 (en) * 2012-06-04 2013-12-12 Qualcomm Incorporated Communication device, method, computer-program product and apparatus for transmitting a pilot sequence with a reduced peak-to-average power ratio contribution
CN105991498A (zh) * 2015-01-30 2016-10-05 上海数字电视国家工程研究中心有限公司 前导符号的生成方法及接收方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2698383C (en) * 2007-09-03 2015-11-10 Samsung Electronics Co., Ltd. Sequence hopping in sc-fdma communication systems
CN101605397B (zh) * 2009-07-01 2011-07-13 中兴通讯股份有限公司 上行随机接入中zc根序列的频域序列生成方法及装置
JP5556640B2 (ja) * 2010-12-10 2014-07-23 アイコム株式会社 プリアンブル生成装置、プリアンブル生成方法、およびプログラム
CN102752244B (zh) * 2012-07-25 2015-01-14 浙江大学 一种无循环前缀的单载波频域均衡方法
CN105284078B (zh) * 2013-06-27 2019-01-11 华为技术有限公司 长训练序列生成方法、发送信号方法和装置
EP3343856B1 (en) * 2015-09-24 2020-10-28 Huawei Technologies Co., Ltd. Method and apparatus for transmitting synchronization signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102934405A (zh) * 2010-06-07 2013-02-13 高通股份有限公司 通过避免全1的R矩阵来避免IEEE 802.11ac中导频音调上的谱线
WO2013184671A2 (en) * 2012-06-04 2013-12-12 Qualcomm Incorporated Communication device, method, computer-program product and apparatus for transmitting a pilot sequence with a reduced peak-to-average power ratio contribution
CN105991498A (zh) * 2015-01-30 2016-10-05 上海数字电视国家工程研究中心有限公司 前导符号的生成方法及接收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633940A4

Also Published As

Publication number Publication date
EP3633940A1 (en) 2020-04-08
EP3633940A4 (en) 2020-05-06
CN109150769A (zh) 2019-01-04
CN109150769B (zh) 2021-10-22
EP3633940B1 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
WO2018228426A1 (zh) 用于信道估计的方法和设备
WO2020238573A1 (zh) 信号处理方法及装置
KR102290920B1 (ko) Dmrs 송신 방법 및 통신 기기
CN116319228B (zh) 设计短训练序列的方法和装置
US11757603B2 (en) Method and device for transmitting uplink demodulation reference signal
WO2017193867A1 (zh) 传输信号的方法、发送端和接收端
US11632207B2 (en) Method and apparatus for transmitting uplink signal
CN109076048B (zh) 传输信号的方法、发送端和接收端
WO2019029470A1 (zh) 用于数据传输的方法、网络设备和终端设备
WO2019015587A1 (zh) 用于传输dmrs的方法和通信设备
US11770281B2 (en) Symbol processing method and apparatus
US20220263697A1 (en) Symbol processing method and apparatus
WO2019033396A1 (zh) 无线通信方法和设备
KR102526417B1 (ko) 무선 통신 방법, 단말 및 네트워크 기기
WO2020211578A1 (zh) 参考信号发送方法和装置
US11991112B2 (en) Symbol processing method and apparatus
WO2018024127A1 (zh) 一种传输信号的方法及网络设备
EP3573275B1 (en) Signal sending and receiving method, apparatus and system in wireless communications
US11943086B2 (en) Symbol processing method and apparatus
CN114556875B (zh) 符号处理的方法与装置
US8953660B2 (en) Pilot structure to support a virtual diversity receiver scheme
WO2018196707A1 (zh) 发送和接收参考信号的方法、网络设备和终端设备
CN117413497A (zh) 双面扩展的基于Slepian的波形符号的生成和接收

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018817882

Country of ref document: EP

Effective date: 20200102