WO2018228283A1 - 无线通信方法和设备 - Google Patents

无线通信方法和设备 Download PDF

Info

Publication number
WO2018228283A1
WO2018228283A1 PCT/CN2018/090393 CN2018090393W WO2018228283A1 WO 2018228283 A1 WO2018228283 A1 WO 2018228283A1 CN 2018090393 W CN2018090393 W CN 2018090393W WO 2018228283 A1 WO2018228283 A1 WO 2018228283A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
packet
pdcp
packet repetition
repetition function
Prior art date
Application number
PCT/CN2018/090393
Other languages
English (en)
French (fr)
Inventor
肖芳英
刘仁茂
Original Assignee
夏普株式会社
肖芳英
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 肖芳英 filed Critical 夏普株式会社
Priority to EP18817388.4A priority Critical patent/EP3641198A4/en
Priority to US16/621,076 priority patent/US11172537B2/en
Publication of WO2018228283A1 publication Critical patent/WO2018228283A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0076Allocation utility-based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0087Timing of allocation when data requirements change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present disclosure relates to the field of wireless communication technologies. More specifically, the present disclosure relates to methods and corresponding apparatus for implementing Packet Data Convergence Protocol (PDCP) repetition functionality.
  • PDCP Packet Data Convergence Protocol
  • NTT DOCOMO presented a new research project on 5G technology standards (see Non-patent literature: RP-160671, New SID Proposal: Study on New Radio Access Technology) and approved.
  • the goal of the research project is to develop a new wireless (New Radio: NR) access technology to meet all 5G application scenarios, requirements and deployment environments.
  • NR mainly has three application scenarios: Enhanced Mobile Broadband (eMBB), Massive Machine Type Communication (mMTC) and Ultra reliable and low latency communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra reliable and low latency communications
  • packet repetition uses Packet Data Convergence Protocol (PDCP) Protocol Data Units (PDUs) and/or Service Data Units ( SDU) transmits on multiple logical channels and causes repeated PDCP PDUs to be sent over different carriers.
  • PDCP Packet Data Convergence Protocol
  • PDUs Protocol Data Units
  • SDU Service Data Units
  • the RRC configuration was implemented to map two duplicate logical channels to different carriers, that is, duplicate logical channels could not be mapped to the same carrier.
  • the meeting also reached the use of MAC control elements to control the uplink PDCP repetition.
  • a method performed by a user equipment UE comprising: receiving a configuration message from a base station, the configuration message including two or more configured for a packet data convergence protocol PDCP packet repetition function Information of the cell group; determining, according to the state of each of the two or more cell groups, whether a condition required to implement the PDCP packet repetition function is satisfied; and if the required condition is met, enabling the PDCP packet repetition function.
  • determining whether the condition required to implement the PDCP packet repetition function is satisfied includes determining that the PDCP packet repetition function is satisfied if a primary cell is included in one cell group and at least one activated cell exists in another cell group. The required condition; or if the primary cell is not included in any one of the cell groups, when at least one activated cell exists in at least two cell groups, it is determined that the condition required to implement the PDCP packet repetition function is satisfied.
  • enabling the PDCP packet repetition function includes receiving a media access control MAC Control message for activating a cell in the cell group from the base station, and enabling the PDCP packet repetition function in response to the message.
  • the method further comprises disabling the PDCP packet repetition function if all cells in the group of cells not including the primary cell are deactivated.
  • disabling the PDCP packet repetition function includes receiving, from the base station, a Media Access Control MAC Control message for deactivating a cell in the group of cells, and disabling the PDCP packet repetition function in response to the message.
  • a method performed by a base station comprising: transmitting a configuration message to a user equipment UE, the configuration message including two or more configured for a packet data convergence protocol PDCP packet repetition function Information of the cell group; determining, according to the state of each of the two or more cell groups, whether a condition required to implement the PDCP packet repetition function is satisfied; and if the required condition is met, transmitting to the UE An instruction to enable the PDCP packet repeat function.
  • determining whether the condition required to implement the PDCP packet repetition function is satisfied includes determining that the PDCP packet repetition function is satisfied if a primary cell is included in one cell group and at least one activated cell exists in another cell group. The required condition; or if the primary cell is not included in any one of the cell groups, when at least one activated cell exists in at least two cell groups, it is determined that the condition required to implement the PDCP packet repetition function is satisfied.
  • the method further comprises transmitting, to the user equipment UE, a media access control MAC Control message for deactivating a cell in the group of cells.
  • a user equipment UE including a processor and a memory. Instructions are stored on the memory. The instructions, when executed by a processor, perform a method performed by a user equipment UE as described in accordance with the present disclosure.
  • a base station that includes a processor and a memory. Instructions are stored on the memory. The instructions, when executed by a processor, perform a method performed by a base station as described in accordance with the present disclosure.
  • FIG. 1A is a flow chart illustrating a method performed by a user device in accordance with one embodiment of the present disclosure.
  • FIG. 1B is a flow chart illustrating a method performed by a base station in accordance with an embodiment of the present disclosure.
  • FIG. 2A is a block diagram showing a user equipment in accordance with one embodiment of the present disclosure.
  • 2B is a block diagram showing a base station in accordance with one embodiment of the present disclosure.
  • 3A shows a schematic diagram of packet repeating MCG split DRB data transmission in accordance with one embodiment of the present disclosure
  • 3B shows a schematic diagram of packet repeated SCG split DRB data transmission in accordance with one embodiment of the present disclosure
  • FIG. 4A shows a schematic diagram of a packet repetition bearer protocol architecture in a carrier aggregation scenario, in accordance with an embodiment of the present disclosure
  • 4B shows a schematic diagram of a packet repetition bearer protocol architecture in a dual connectivity scenario, in accordance with an embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of a cell group configuration of a packet repeat bearer according to an embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of a cell group configuration of a packet repeat bearer according to an embodiment of the present disclosure.
  • FIG. 7 shows a schematic diagram of a cell group configuration of a packet repeat bearer according to an embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol, Packet Data Convergence Protocol.
  • the PDCP may represent NR or PDCP in LTE or eLTE, unless otherwise specified.
  • RLC Radio Link Control, radio link control.
  • the RLC may represent NR or RLC in LTE or eLTE, unless otherwise specified.
  • the MAC Medium Access Control, media access control.
  • the MAC may represent a NR or a MAC in LTE or eLTE, unless otherwise specified.
  • DTCH Dedicated Traffic Channel, dedicated traffic channel.
  • CCCH Common Control Channel, common control channel.
  • DCCH Dedicated Control Channel, dedicated control channel.
  • PDU Protocol Data Unit, protocol data unit.
  • SDU Service Data Unit, service data unit.
  • data received from the upper layer or sent to the upper layer is referred to as an SDU
  • data transmitted to the lower layer or received from the lower layer is referred to as a PDU
  • the data received by the PDCP entity from the upper layer or the data sent to the upper layer is called a PDCP SDU
  • the data received by the PDCP entity from the RLC entity or the data sent to the RLC entity is called a PDCP PDU (ie, an RLC SDU).
  • MeNB corresponding to E-UTRAN or base station of LTE or eLTE
  • MgNB base station corresponding to 5G-RAN or NR
  • S1-MME control node mobility management entity
  • the primary base station in the present disclosure is referred to as an MeNB. It should be noted that all schemes or definitions applicable to the MeNB are also applicable to the MgNB.
  • Secondary base station Secondary eNB, denoted as SeNB (corresponding to E-UTRAN or base station of LTE or eLTE) or SgNB (base station corresponding to 5G-RAN or NR).
  • SeNB corresponding to E-UTRAN or base station of LTE or eLTE
  • SgNB base station corresponding to 5G-RAN or NR.
  • a base station that does not serve as an MeNB providing additional radio resources to the UE.
  • the secondary base stations in the present disclosure are all referred to as SeNBs. It should be noted that all schemes or definitions applicable to the SeNB are also applicable to the SgNB.
  • Primary cell Primary Cell, PCell. A cell operating on the primary frequency on which the UE performs an initial connection setup procedure or initiates a connection re-establishment procedure or is designated as a primary cell in the handover procedure.
  • Primary and secondary cells Primary Secondary Cell, PSCell.
  • the SCG cell that the UE is used to perform random access is performed in performing the process of changing the SCG.
  • the SpCell in the embodiment of the present invention in a carrier aggregation scenario, is a PCell; in the dual connectivity, the SpCell in the embodiment of the present invention may be a PCell or a PSCell.
  • Secondary cell Secondary Cell, SCell.
  • a cell operating on a secondary frequency that can be configured after the RRC connection is established and can be used to provide additional radio resources.
  • Cell group Cell Group, CG, in a multi-connection, a group of serving cells or carriers associated with a primary base station or a secondary base station.
  • a group of cells or carriers associated with a certain logical channel of a packet repetition bearer or a group of cells providing radio resources or data transmission services for a certain logical channel of a packet repeated bearer the cell may be configured The cell of the uplink carrier.
  • the cell may also be referred to as a serving cell. It should be noted that the cell described in the present disclosure may also be referred to as a set of beam.
  • MCG Primary cell group
  • the MCG is composed of all serving cells; for a UE configured with multiple connections, the MCG is composed of a subset of serving cells (ie, a group of serving cells associated with the MeNB or the MgNB), which includes the PCell and 0 or 1 or more SCells.
  • Secondary cell group Secondary Cell Group, SCG.
  • SCG Secondary Cell Group
  • the SCG can contain one PSCell and can also contain one or more SCells.
  • Multi-connection The operation mode of the UE in the RRC connected state, where multiple cell groups are configured, the multiple cell groups include one MCG, one or more SCGs (ie, the UE is connected to multiple base stations). If only one MCG (or MeNB or MgNB) and one SCG (or SeNB or SgNB) are configured, it is called dual connectivity. That is, a UE with multiple receivers and/or transmitters in a connected state is configured to use EUTRAN and/or 5G-RAN radio resources provided by a plurality of different schedulers, which may pass non-ideal backhaul ( Non-ideal backhaul) or ideal backhaul connection.
  • the multiple connections described in this disclosure include dual connections. Multi-connection data transmission methods include but are not limited to: data repetition, link selection.
  • DRB Data Radio Bearer carrying user plane data
  • a data radio bearer carrying the user plane data or simply referred to as a data bearer.
  • the SRB Signalling Radio Bearer, signaling radio bearer.
  • the bearer may be used to transmit RRC messages and NAS messages or only to transmit RRC messages and NAS messages.
  • the SRB may include SRB0, SRB1, SRB1bis, and SRB2.
  • the SRB0 is used for the RRC message using the CCCH logical channel;
  • the SRB1 is used for the RRC message using the DCCH logical channel, and the RRC message may include the NAS message, and the SRB1 is also used to transmit the NAS message before the establishment of the SRB2.
  • the SRB1bis is used for the RRC message and the NAS message of the DCCH logical channel before the security activation, and the RRC message may include the NAS message.
  • SRB2 is used for RRC messages and NAS messages using DCCH logical channels, and the RRC messages include recorded measurement information (or measurement logs).
  • the bearers mentioned in this disclosure include DRB and SRB.
  • the radio protocol is located at the MeNB (or MgNB) and the SeNB (or SgNB) and utilizes the bearers of the MeNB (or MgNB) and SeNB (or SgNB) resources simultaneously.
  • MCG separation DRB If the PDCP entity that separates the DRB is located at the primary base station (that is, the data first arrives at the primary base station and is forwarded by the primary base station to the secondary base station to implement data separation in the primary base station), it is called MCG separation DRB; if the PDCP entity separating the DRB is located at the secondary base station (The data arrives at the secondary base station first, and the secondary base station forwards it to the primary base station to implement data separation in the secondary base station.) This is called SCG separation DRB.
  • the separation DRB described in the present disclosure may be an MCG separation DRB or an SCG separation DRB.
  • the embodiments of the present disclosure are also applicable to a scenario in which the MCG split DRB and the SCG split DRB are not distinguished, that is, the radio protocol of the split DRB is located in the MeNB (or MgNB) and the SeNB (or SgNB) and simultaneously utilizes the MeNB (or MgNB) and The bearer DRB of the SeNB (or SgNB) resource.
  • the radio protocol is located at the MeNB (or MgNB) and the SeNB (or SgNB) and utilizes the bearers of the MeNB (or MgNB) and SeNB (or SgNB) resources simultaneously.
  • the PDCP entity and/or RRC separating the SRB are located in the primary base station (ie, signaling, which may also be referred to as data, forwarded by the primary base station to the secondary base station, and signaling is separated in the primary base station), it is referred to as MCG separation SRB;
  • the PDCP entity and/or the RRC that separates the SRBs are located in the secondary base station (ie, signaling, which may also be referred to as data, and is forwarded by the secondary base station to the primary base station to implement signaling separation in the secondary base station), and is referred to as an SCG separation SRB.
  • the isolated SRB described in the present disclosure may be an MCG separation SRB or an SCG separation SRB.
  • the embodiments of the present disclosure are also applicable to a scenario in which the MCG split SRB and the SCG split SRB are not distinguished, that is, the radio protocol of the split SRB is located at the MeNB (or MgNB) and the SeNB (or SgNB) and simultaneously utilizes the MeNB (or MgNB) and The SeNB (or SgNB) resource carries the SRB.
  • the separation bearer can be a separate SRB or a separate DRB.
  • the MCG split carrier can be an MCG split SRB or an MCG split DRB.
  • the SCG split bearer may be an SCG split SRB or an SCG split DRB.
  • Packet repetition may also be referred to as data repetition or packet repetition or PDCP repetition or PDCP PDU repetition (if not specifically stated, the data in the present disclosure may be control plane signaling or user plane data, respectively corresponding to SRB signaling and DRB The data).
  • the same data or packet or packet, that is, PDCP PDU or PDCP SDU
  • MCG primary base station
  • SCG secondary base station
  • the provided resource transmission or the same data is sent to the lower layer (or RLC layer) located at the MCG or SCG or the PDCP entity sends the same PDCP PDU to the associated multiple lower layer entities (or RLC entities) or the same data in multiple different
  • the bearer is sent on.
  • the PDCP entity sends duplicate (or the same) PDCP PDUs to two or more RLC entities (or lower layer entities) and/or logical channels, and the MAC entities pass different carriers (ie, The cell or serving cell is sent to the receiving end; the receiving end PDCP entity is responsible for detecting and deleting duplicate PDCP PDUs or SDUs.
  • Packet Repeat Bearer A bearer that supports packet repetition in carrier aggregation or single-link mode, including packet repetition SRB and packet repetition DRB.
  • One PDCP entity of the bearer is associated to two or more RLC entities, two or more logical channels, and one MAC entity and the transmitting PDCP entity sends duplicate (or the same) PDCP PDUs to the two or more RLC entities (or lower layer entities) and/or two or more logical channels, which are sent by the MAC entity to the receiving end through different carriers (ie, cells or serving cells); the receiving end PDCP entity will repeat PDCP from the lower layer entity The PDU or SDU is removed.
  • Packet Repeat Separation Bearer In the multi-connection mode, separate bearers supporting packet repetition are supported. In the transmission mode, the same data is transmitted on multiple wireless protocols of the split bearer, including a packet repeat MCG split SRB, a packet repeat SCG split SRB, a packet repeat MCG split DRB, and a packet repeat SCG split DRB. If it is a packet repeating MCG split bearer, the PDCP entity located at the primary base station or MCG is responsible for packet repetition and/or repeated packet removal; if it is a packet repeat SCG split bearer, the PDCP entity located at the secondary base station or SCG is responsible for packet repetition. (ie, send PDCP PDUs to two or more RLC entities) and/or repeat packet removal.
  • packet repeat bearer described in the embodiment of the present disclosure includes a packet repeat bearer and a packet repeat split bearer, unless otherwise specified.
  • FIG. 3A shows a schematic diagram of downlink packet repeating MCG split DRB transmission between a base station and a user equipment UE in dual connectivity. It should be understood that the same protocol architecture may be adopted for performing uplink packet repeating MCG split DRB transmission between the base station and the UE, except that data is transmitted from the UE to the base station, that is, the arrow in FIG. 3A may be reversed.
  • data eg, Packet Data Convergence Protocol Protocol Data Units (PDCP PDUs)
  • PDCP PDUs Packet Data Convergence Protocol Protocol Data Units
  • RLC entities corresponding to multiple RLC entities associated with the same PDCP entity
  • each PDCP PDU is sent to the receiver through multiple RLC entities.
  • the interface between the MeNB and the SeNB can be written as Xn or Xx or X2. The interfaces may be named differently depending on the type of MeNB and SeNB.
  • the MeNB is an LTE eNB
  • the SeNB is a gNB
  • the interface is denoted as Xx
  • the MeNB is a gNB and the SeNB is an eLTE eNB
  • the interface is denoted as Xn.
  • the packet repetition MCG separation SRB adopts a similar protocol architecture, except that the upper layer entity that sends data to the PDCP entity is RRC, and the PDCP entity sends the data from the lower layer entity to the upper layer RRC entity.
  • FIG. 3B shows a schematic diagram of downlink packet repeat SCG split DRB transmission between a base station and a user equipment UE in dual connectivity. It should be understood that the same protocol architecture may be adopted for uplink packet repeated SCG split DRB transmission between the base station and the UE, except that data is transmitted from the UE to the base station, that is, the arrow in FIG. 3B may be reversed.
  • data eg, Packet Data Convergence Protocol Protocol Data Units (PDCP PDUs)
  • PDCP PDUs Packet Data Convergence Protocol Protocol Data Units
  • RLC entities corresponding to multiple RLC entities associated with the same PDCP entity
  • each PDCP PDU is sent to the receiver through multiple RLC entities.
  • the interface between the MeNB and the SeNB can be written as Xn or Xx or X2. The interfaces may be named differently depending on the type of MeNB and SeNB.
  • the MeNB is an LTE eNB
  • the SeNB is a gNB
  • the interface is denoted as Xx
  • the MeNB is a gNB and the SeNB is an eLTE eNB
  • the interface is denoted as Xn.
  • the packet repetition SCG separation SRB adopts a similar protocol architecture, except that the upper layer entity that sends data to the PDCP entity is RRC, and the PDCP entity sends the data from the lower layer entity to the upper layer RRC entity.
  • Embodiments of the present disclosure take the case that the data packet PDCP PDU or the SDU is repeatedly sent twice (ie, one PDCP entity associates two RLC entities and/or two logical channels), but the technical solution described in the present disclosure is not limited to the data packet.
  • Those skilled in the art can extend to scenarios that are repeatedly transmitted multiple times (ie, one PDCP entity associates multiple RLC entities and/or multiple logical channels).
  • FIG. 4A is a schematic diagram of a protocol architecture of a packet repeat bearer in a carrier aggregation scenario.
  • the PDCP entity of one DRB is associated with two RLC entities and two logical channels, one MAC entity.
  • the RRC entity and the PDCP entity of one SRB are associated with two RLC entities and two logical channels, one MAC entity.
  • FIG. 4B is a schematic diagram of a protocol architecture of a packet repeat bearer in a dual connectivity scenario.
  • the PDCP entity of one DRB is associated with two RLC entities and two logical channels, two MAC entities.
  • the RRC entity and the PDCP entity of one SRB are associated to two RLC entities and two logical channels, two MAC entities.
  • the enabling packet repetition also referred to as PDCP packet repetition or packet repetition bearer packet repetition or PDCP PDU repetition or PDCP SDU repetition or PDCP repetition or packet repetition bearer PDCP repetition or packet repetition bearer is described in the present disclosure.
  • the PDCP PDU repetition or the PDCP SDU repetition of the packet repetition bearer may also be expressed as configuring the PDCP entity to transmit the same PDCP PDU or PDCP SDU to the associated two or more lower layer entities (or RLC entities and/or logical channels). If the packet is a duplicate bearer, the packet repeat function is enabled such that the same PDCP PDU is sent through the MCG and SCG.
  • Disabling the packet repetition function may also be expressed as configuring the PDCP entity to send the same PDCP PDU to one or all of the two associated lower layer entities (or RLC entities and/or logical channels) only through two or more One of the underlying entities (or RLC entities and/or logical channels) is sent. For example, when receiving an instruction to disable PDCP packet repetition from an upper layer or a MAC layer or a lower layer, etc., the PDCP PDU is transmitted only through the RLC entity associated with the logical channel identified by the predefined logical channel or the logical channel identifier is smaller or smallest. Or the RLC entity associated with the larger or largest logical channel is sent.
  • the PDCP packet repeat function is disabled such that the PDCP PDU transmits or disables the PDCP packet repeat function only through the MCG or SCG such that the PDCP PDU transmits or disables the PDCP packet repeat function only through the MCG such that the PDCP PDU is transmitted only through the SCG.
  • packet repetition refers to an uplink packet repetition.
  • FIG. 1A is a flow chart illustrating a method 10a performed by a user device in accordance with one embodiment of the present disclosure.
  • a configuration message is received from the base station, the configuration message including information of two or more cell groups configured for the packet data convergence protocol PDCP packet repetition function.
  • step S120 it is determined whether the condition required to implement the PDCP packet repetition function is satisfied according to the state of each of the two or more cell groups. For example, if a primary cell is included in one cell group and at least one active cell exists in another cell group, it is determined that the conditions required to implement the PDCP packet repetition function are satisfied. Alternatively, if the primary cell is not included in any one of the cell groups, when at least one activated cell exists in at least two of the cell groups, it is determined that the condition required to implement the PDCP packet repetition function is satisfied.
  • the PDCP packet repetition function is enabled if the required condition is met.
  • the UE may enable the PDCP packet repetition function by itself when the conditions required to implement the PDCP packet repetition function are met.
  • the UE may receive an instruction to enable the PDCP packet repetition function from the base station when the conditions required to implement the PDCP packet repetition function are met, and enable the PDCP packet repetition function in response to the instruction.
  • the UE may receive a Media Access Control MAC Control message for activating a cell in the cell group from the base station and enable the PDCP packet repetition function in response to the message.
  • the PDCP packet repetition function is disabled if all cells in the cell group not including the primary cell are deactivated.
  • the UE receives a Media Access Control MAC Control message from the base station for deactivating a cell in the cell group, and disables the PDCP packet repetition function in response to the message.
  • FIG. 1B is a flow chart illustrating a method 10b performed by a base station in accordance with an embodiment of the present disclosure.
  • a configuration message is transmitted to the user equipment UE, the configuration message including information of two or more cell groups configured for the packet data convergence protocol PDCP packet repetition function.
  • step S160 it is determined whether the condition required to implement the PDCP packet repetition function is satisfied according to the state of each of the two or more cell groups. For example, if a primary cell is included in one cell group and at least one active cell exists in another cell group, it is determined that the conditions required to implement the PDCP packet repetition function are satisfied. Alternatively, if the primary cell is not included in any one of the cell groups, when at least one activated cell exists in at least two of the cell groups, it is determined that the condition required to implement the PDCP packet repetition function is satisfied.
  • step S170 if the required condition is met, an instruction for enabling the PDCP packet repetition function is transmitted to the UE.
  • the base station may also send a media access control MAC Control message for deactivating a cell in the cell group to the user equipment UE to disable the PDCP packet repetition function.
  • the PCell for any one of the packet repeat bearers, the PCell must be associated with a certain logical channel or RLC entity of the packet repeat bearer.
  • FIG. 5 and 6 illustrate schematic diagrams of a cell group configuration of a packet repeat bearer according to an embodiment of the present disclosure.
  • the diagrams on the left side of Figures 5 and 6 relate to data bearers, while the diagrams on the right side of Figures 5 and 6 relate to signalling bearers.
  • the PDCP packet repetition function of the packet repetition bearer is disabled, wherein the cell group does not include a PCell (ie, the cell group is a cell group not including a PCell).
  • the PDCP packet repetition function of the corresponding packet repetition bearer is disabled (ie, the MAC entity instructs the upper layer entity to disable PDCP packet repetition, and the upper layer entity may be an RRC entity or PDCP entity).
  • the PDCP packet repetition function of the packet repetition bearer when the PDCP packet repetition function of the packet repetition bearer is enabled, at least one activated cell or packet repeated bearer associated SCell in each cell group associated with the packet repetition bearer is activated (for packet repetition) The case where each logical channel carried is associated with one cell). If the cell group does not include a PCell, at least one of the SCells in the cell group is in an active state. In other words, when the PDCP packet repetition function of the packet repetition bearer is enabled, at least one SCell in the cell group configured not including the PCell configured by the packet repetition bearer is in an active state.
  • Activation/deactivation MAC CE MAC Control Element
  • the UE receives a MAC Control Element (referred to as Activation/deactivation MAC CE) for activating/deactivating the SCell
  • Activation/deactivation MAC CE MAC Control Element
  • CC1 is in an active state
  • CC2 and CC3 and CC4 are in a deactivated state, at which point the packet repetition of DRB1 is disabled.
  • the UE receives the Activate/Deactivate MAC CE, and the MAC CE is used to activate CC3. At this time, the UE will enable the packet repetition function of DRB1.
  • a cell group associated with a packet repeat bearer may not contain PCell
  • the PCell may not be associated with any logical channel or RLC entity of the packet repeat bearer.
  • FIG. 7 shows a schematic diagram of a cell group configuration of a packet repeat bearer according to an embodiment of the present disclosure.
  • the diagram on the left side of Figure 7 relates to the data bearer, while the diagram on the right side of Figure 7 relates to the signalling bearer.
  • the UE when all cells in a certain cell group associated with a packet repeat bearer are deactivated (for example, when the UE receives the Activate/Deactivate Media Access Control MAC Control Element CE for activating/deactivating the SCell, go to Activating all SCells in the cell group, disabling the PDCP packet repetition function of the packet repetition bearer, wherein the cell group does not include a PCell (ie, the cell group is a cell group not including a PCell).
  • the PDCP packet repetition function corresponding to the packet repeated bearer is disabled.
  • the SCell of at least one activated cell or packet repeated bearer configuration in each cell group associated with the packet repetition bearer is activated (for packet repetition) The case where each logical channel carried is associated with one cell). If the cell group does not contain a PCell, at least one SCell in the cell group is in an active state. In other words, when the PDCP packet repetition function of the packet repetition bearer is enabled, at least one SCell in the cell group configured not including the PCell configured by the packet repetition bearer is in an active state.
  • the cells in the cell group of the packet repeat bearer configuration are deactivated or in a deactivated state, releasing or suspending the packet repeat bearer or reporting an error to the upper layer or the upper layer
  • the SCells in the reporting cell group are all deactivated or disabled.
  • the PDCP packet repeating function of the packet repeating bearer is not included in the cell group configured for the packet repeat bearer, that is, the PCell is not used to transmit the data of the packet repeat bearer or the PCell does not include In a group of cells configured for repeating bearers for the packet.
  • Activation/Deactivation MAC CE MAC Control Element
  • the UE receives a MAC Control Element (referred to as Activation/Deactivation MAC CE) for activating/deactivating the SCell
  • Activation/Deactivation MAC CE MAC Control Element
  • CC1 is in an active state
  • CC2 and CC3 and CC4 are in a deactivated state, at which point the packet repetition of DRB1 is disabled.
  • the UE receives both activate/deactivate the MAC CE, and the MAC CE is used to activate CC3. At this time, the UE will enable the packet repetition function of DRB1.
  • At least one of the cells or groups of cells associated with the packet repeat bearer is active when the initially configured packet repeats the bearer. For example, as shown in FIG. 5, since one of the cell groups includes the PCell, and the PCell is always in an active state (ie, the PCell cannot be deactivated), it is satisfied that at least one cell in the cell or the cell group is activated. If the PDCP packet repetition function is enabled after the initial configuration packet repeat bearer, the SCells associated with the packet repeat bearer must be in an active state or at least one cell in each cell group associated with the packet repeat bearer is active. Or at least one SCell in the group of cells not including the PCell associated with the packet repeat bearer is activated.
  • the packet repeat bearer associated with the SCell is active (applicable when the logical channel is associated with only one cell) or at least one of each cell group associated with the packet repeat bearer association
  • the PDCP packet repetition function is enabled if at least one SCell in each cell group that does not contain the PCell is active or a packet repeat bearer association is active.
  • the cell or the cell group configured for the packet repetition and separation bearer is respectively located in the primary base station and the secondary base station, and the foregoing embodiment for the packet repeated bearer is also applicable to the repeated split bearer with the packet, and the description of the PCell is modified in the corresponding embodiment.
  • the PCell For SpCell.
  • FIG. 2A is a block diagram showing user equipment 20a in accordance with one embodiment of the present disclosure.
  • the user equipment 20a includes a processor 210a and a memory 220a.
  • Processor 210a may, for example, include a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 220a may include, for example, a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a nonvolatile memory (such as a flash memory), or other memory.
  • Program instructions are stored on the memory 220a. The instructions, when executed by the processor 210a, can perform the above-described methods (e.g., the method illustrated in FIG. 1A) performed by the user equipment as described in detail in the present disclosure.
  • FIG. 2B is a block diagram showing a base station 20b in accordance with one embodiment of the present disclosure.
  • the base station 20b includes a processor 210b and a memory 220b.
  • Processor 210b can include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 220b may include, for example, a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a nonvolatile memory (such as a flash memory), or other memory.
  • Program instructions are stored on the memory 220b. The instructions, when executed by the processor 210b, can perform the above-described methods (e.g., the method illustrated in FIG. 1B) performed by the base station as described in detail in the present disclosure.
  • the cell or cell group in which the packet repetition bearer or the packet repetition split bearer configuration or association in the embodiment of the present disclosure may also be described as a cell or cell to which an RLC entity or a logical channel to which a packet repeat bearer or a packet repeat split bearer is associated. group.
  • the scenario of enabling or disabling PDCP packet repetition includes, but is not limited to, receiving, from a base station, a MAC CE for enabling or disabling packet repetition, an initial configuration packet repetition bearer, or a packet repetition split bearer (from The base station receives an RRC reconfiguration message that configures a packet repeat bearer or a packet repeat split bearer.
  • the cell or cell group associated with the packet repetition bearer is a RLC entity or a cell or cell group associated with a logical channel.
  • the description of associating a logical channel (or RLC entity) to a group of cells (or a group of cells associated with a logical channel or an RLC entity) may also be described as a group of cells serving a logical channel, or data from a logical channel being transmitted through a cell or group of cells. Or grouping repeats the configured cell group.
  • Associating a logical channel to a cell group can be replaced with associating an RLC entity to a cell group.
  • the program running on the device may be a program that causes a computer to implement the functions of the embodiments of the present disclosure by controlling a central processing unit (CPU).
  • the program or information processed by the program may be temporarily stored in a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memory system.
  • a volatile memory such as a random access memory RAM
  • HDD hard disk drive
  • non-volatile memory such as a flash memory
  • a program for realizing the functions of the embodiments of the present disclosure may be recorded on a computer readable recording medium.
  • the corresponding functions can be realized by causing a computer system to read programs recorded on the recording medium and execute the programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as a peripheral device).
  • the "computer readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium of a short-term dynamic storage program, or any other recording medium readable by a computer.
  • circuitry e.g., monolithic or multi-chip integrated circuits.
  • Circuitry designed to perform the functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • a general purpose processor may be a microprocessor or any existing processor, controller, microcontroller, or state machine.
  • the above circuit may be a digital circuit or an analog circuit.
  • One or more embodiments of the present disclosure may also be implemented using these new integrated circuit technologies in the context of new integrated circuit technologies that replace existing integrated circuits due to advances in semiconductor technology.
  • present disclosure is not limited to the above embodiment. Although various examples of the embodiments have been described, the present disclosure is not limited thereto.
  • Fixed or non-mobile electronic devices installed indoors or outdoors can be used as terminal devices or communication devices such as AV devices, kitchen devices, cleaning devices, air conditioners, office equipment, vending machines, and other home appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种由用户设备UE执行的方法,包括从基站接收配置消息,该配置消息包括针对分组数据汇聚协议PDCP分组重复功能而配置的两个或更多个小区组的信息。该方法还包括根据所述两个或更多个小区组中的各个小区的状态,确定是否满足实现PDCP分组重复功能所需的条件。该方法还包括在满足所需条件时启用PDCP分组重复功能。此外,本公开还提供了一种由基站执行的方法以及相应的用户设备和基站。

Description

无线通信方法和设备 技术领域
本公开涉及无线通信技术领域。更具体地,本公开涉及用于实现分组数据汇聚协议(PDCP)重复功能的方法和相应的设备。
背景技术
2016年3月,在第三代合作伙伴计划(3GPP)RAN#71次全会上,NTT DOCOMO提出了一个关于5G技术标准的新的研究项目(参见非专利文献:RP-160671,New SID Proposal:Study on New Radio Access Technology),并获批准。该研究项目的目的是开发一个新的无线(New Radio:NR)接入技术以满足5G的所有应用场景、需求和部署环境。NR主要有三个应用场景:增强的移动宽带通信(Enhanced mobile broadband:eMBB)、大规模机器类通信(massive Machine type communication:mMTC)和超可靠低延迟通信(Ultra reliable and low latency communications:URLLC)。
在2016年10月召开的3GPP RAN2#96次会议上达成为满足URLLC对可靠性的要求,对多连接(包括双连接)进行研究。多连接可以采用分组重复或链路选择等机制。在2017年1月召开的3GPP NR AdHoc会议上达成在NR-PDCP实体中支持用户面和数据面的分组重复功能,发送端PDCP实体功能支持分组重复,且接收端PDCP实体功能支持删除重复包。
在2017年2月召开的3GPP RAN2#97次会议上达成在上行和下行均支持:在载波聚合中,分组重复采用分组数据汇聚协议(PDCP)协议数据单元(PDU)和/或服务数据单元(SDU)在多个逻辑信道上发送并使得重复的PDCP PDU通过不同的载波发送。在2017年4月召开的3GPP RAN2#98次会议上达成无线资源控制RRC配置将2个重复的逻辑信道映射到不同的载波(Carrier),即重复的逻辑信道不能映射到同一个载波,此次会议还达成了使用MAC控制元素来控制上行PDCP重复。
发明内容
然而,期望解决支持分组重复的多连接场景和载波聚合场景下为分组重复承载的PDCP分组重复功能的启用/禁用与载波(小区)的激活/去激活之间的问题。
根据本公开的一个方面,提供了一种由用户设备UE执行的方法,包括:从基站接收配置消息,所述配置消息包括针对分组数据汇聚协议PDCP分组重复功能而配置的两个或更多个小区组的信息;根据所述两个或更多个小区组中的各个小区的状态,确定是否满足实现PDCP分组重复功能所需的条件;以及如果满足所需条件,则启用PDCP分组重复功能。
在一个实施例中,确定是否满足实现PDCP分组重复功能所需的条件包括:如果一个小区组中包括主小区,而且另一个小区组中存在至少一个激活的小区,则确定满足实现PDCP分组重复功能所需的条件;或者如果任何一个小区组中均不包括主小区,则当至少两个小区组中均存在至少一个激活的小区时,确定满足实现PDCP分组重复功能所需的条件。
在一个实施例中,启用PDCP分组重复功能包括:从基站接收用于激活小区组中的小区的媒体访问控制MAC控制消息,并且响应于该消息来启用PDCP分组重复功能。
在一个实施例中,该方法还包括:如果不包含主小区的小区组中的所有小区都被去激活时,禁用PDCP分组重复功能。
在一个实施例中,禁用PDCP分组重复功能包括:从基站接收用于去激活小区组中的小区的媒体访问控制MAC控制消息,并且响应于该消息来禁用PDCP分组重复功能。
根据本公开的另一个方面,提供了一种由基站执行的方法,包括:向用户设备UE发送配置消息,所述配置消息包括针对分组数据汇聚协议PDCP分组重复功能而配置的两个或更多个小区组的信息;根据所述两个或更多个小区组中的各个小区的状态,确定是否满足实现PDCP分组重复功能所需的条件;以及如果满足所需条件,则向所述UE发送用于启用PDCP分组重复功能的指令。
在一个实施例中,确定是否满足实现PDCP分组重复功能所需的条件包括:如果一个小区组中包括主小区,而且另一个小区组中存在至少一个激活的小区,则确定满足实现PDCP分组重复功能所需的条件;或者如果任何一个小区组中均不包括主小区,则当至少两个小区组中均存在至少一 个激活的小区时,确定满足实现PDCP分组重复功能所需的条件。
在一个实施例中,该方法还包括:向用户设备UE发送用于去激活小区组中的小区的媒体访问控制MAC控制消息。
根据本公开的另一个方面,提供了一种用户设备UE,包括处理器以及存储器。该存储器上存储有指令。该指令在由处理器运行时执行根据本公开所描述的由用户设备UE执行的方法。
根据本公开的另一个方面,提供了一种基站,包括处理器以及存储器。该存储器上存储有指令。该指令在由处理器运行时执行根据本公开所描述的由基站执行的方法。
附图说明
通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:
图1A是示出了根据本公开一个实施例的由用户设备执行的方法的流程图。
图1B是示出了根据本公开一个实施例的由基站执行的方法的流程图。
图2A是示出了根据本公开一个实施例的用户设备的框图。
图2B是示出了根据本公开一个实施例的基站的框图。
图3A示出了根据本公开一个实施例的分组重复MCG分离DRB数据传输的示意图;
图3B示出了根据本公开一个实施例的分组重复SCG分离DRB数据传输的示意图;
图4A示出了根据本公开一个实施例的载波聚合场景中分组重复承载协议架构的示意图;
图4B示出了根据本公开一个实施例的双连接场景中分组重复承载协议架构的示意图;
图5示出了根据本公开一个实施例的分组重复承载的小区组配置示意图。
图6示出了根据本公开一个实施例的分组重复承载的小区组配置示意图。
图7示出了根据本公开一个实施例的分组重复承载的小区组配置示意图。
具体实施方式
下面结合附图和具体实施方式对本公开进行详细阐述。应当注意,本公开不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本公开没有直接关联的公知技术的详细描述,以防止对本公开的理解造成混淆。
下面描述本公开涉及的部分术语,如未特别说明,本公开涉及的术语采用此处定义。本公开给出的术语在NR、LTE和eLTE中可能采用不同的命名方式,但本公开中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
PDCP:Packet Data Convergence Protocol,分组数据汇聚协议。在本公开中,如未特别说明,PDCP可以表示NR或LTE或eLTE中的PDCP。
RLC:Radio Link Control,无线链路控制。在本公开中,如未特别说明,RLC可以表示NR或LTE或eLTE中的RLC。
MAC:Medium Access Control,媒体访问控制。在本公开中,如未特别说明,MAC可以表示NR或LTE或eLTE中的MAC。
DTCH:Dedicated Traffic Channel,专用业务信道。
CCCH:Common Control Channel,公共控制信道。
DCCH:Dedicated Control Channel,专用控制信道。
PDU:Protocol Data Unit,协议数据单元。
SDU:Service Data Unit,服务数据单元。
在本公开中,将从上层接收或发往上层的数据称为SDU,将发往下层或从下层接收的数据称为PDU。例如,PDCP实体从上层接收的数据或发往上层的数据称为PDCP SDU;PDCP实体从RLC实体接收到的数据或发往RLC实体的数据称为PDCP PDU(也就是RLC SDU)。
主基站:Master eNB,记为MeNB(对应E-UTRAN或LTE或eLTE的基站)或MgNB(对应5G-RAN或NR的基站)。在多连接中,至少终止于处理UE与核心网间交互的控制节点移动管理实体(记为S1-MME)的基站。 本公开中主基站均记为MeNB,需要说明的是,所有适用于MeNB的方案或定义也适用于MgNB。
辅基站:Secondary eNB,记为SeNB(对应E-UTRAN或LTE或eLTE的基站)或SgNB(对应5G-RAN或NR的基站)。在多连接中,不作为MeNB,为UE提供额外的无线资源的基站。本公开中辅基站均记为SeNB,需要说明的是,所有适用于SeNB的方案或定义也适用于SgNB。
主小区:Primary Cell,PCell。工作在主频率上的小区,UE在其上执行初始连接建立过程或发起连接重建过程或在切换过程中被指定为主小区的小区。
主辅小区:Primary Secondary Cell,PSCell。在执行改变SCG的过程中指示UE用于执行随机接入的SCG小区。本公开中,在载波聚合场景下,本发明实施例中所述SpCell是PCell;在双连接中,本发明实施例中所述SpCell可以是PCell或PSCell。
辅小区:Secondary Cell,SCell。工作在辅频率上的小区,所述小区可在RRC连接建立之后配置且可用于提供额外的无线资源。
小区组:Cell Group,CG,在多连接中,关联到主基站或辅基站的一组服务小区或载波。在载波聚合中,关联到分组重复承载的某个逻辑信道的一组小区或载波或为分组重复承载的某个逻辑信道提供无线资源或数据传输服务的一组小区,所述小区可以是配置了上行载波的小区。所述小区也可称为服务小区。需要说明的是,本公开所述的小区也可以称为光束集(a set of beam)。
主小区组:Master Cell Group,MCG。对于未配置多连接的UE,MCG由所有的服务小区组成;对于配置了多连接的UE,MCG由服务小区的子集组成(即关联到MeNB或MgNB的一组服务小区),其中包含PCell和0个或1个或多个SCell。
辅小区组:Secondary Cell Group,SCG。在多连接中,与SeNB或SgNB关联的一组服务小区。SCG可以包含一个PSCell,还可以包含一个或多个SCell
多连接:处于RRC连接态下UE的操作模式,配置了多个小区组,所述多个小区组包括一个MCG,一个或多个SCG(即UE连接到多个基站)。如果只配置了一个MCG(或MeNB或MgNB)和一个SCG(或SeNB或 SgNB),则称为双连接。即处于连接态的具有多个接收机和/或发送机的UE被配置为使用由多个不同的调度器提供的EUTRAN和/或5G-RAN无线资源,所述调度器可以通过非理想回程(non-ideal backhaul)或理想回程(ideal backhaul)连接。本公开所述的多连接包括双连接。多连接数据传输方式包括但不限于:数据重复,链路选择。
DRB:Data Radio Bearer carrying user plane data,承载用户面数据的数据无线承载或简称数据承载。
SRB:Signalling Radio Bearer,信令无线承载。所述承载可以用于传输RRC消息和NAS消息或仅用于传输RRC消息和NAS消息。SRB可以包括SRB0、SRB1、SRB1bis和SRB2。其中,SRB0用于采用CCCH逻辑信道的RRC消息;SRB1用于采用DCCH逻辑信道的RRC消息,所述RRC消息中可能包含NAS消息,SRB1还用于在SRB2建立之前传输NAS消息。SRB1bis用于安全激活前采用DCCH逻辑信道的RRC消息和NAS消息,所述RRC消息中可能包含NAS消息。SRB2用于采用DCCH逻辑信道的RRC消息和NAS消息,所述RRC消息包括记录的测量信息(或称测量日志)。
本公开中提到的承载包括DRB和SRB。
分离DRB:在多连接中,无线协议位于MeNB(或MgNB)和SeNB(或SgNB)且同时利用MeNB(或MgNB)和SeNB(或SgNB)资源的承载。如果分离DRB的PDCP实体位于主基站(即数据先到达主基站,由主基站转发给辅基站,实现数据在主基站中分离),则称为MCG分离DRB;如果分离DRB的PDCP实体位于辅基站(即数据先到达辅基站,由辅基站转发给主基站,实现数据在辅基站中分离),则称为SCG分离DRB。如未特别说明,本公开中所述分离DRB可以是MCG分离DRB,也可以是SCG分离DRB。本公开所述实施例也适用于不区分MCG分离DRB和SCG分离DRB的场景,即所述分离DRB的无线协议位于MeNB(或MgNB)和SeNB(或SgNB)且同时利用MeNB(或MgNB)和SeNB(或SgNB)资源的承载DRB。
分离SRB:在多连接中,无线协议位于MeNB(或MgNB)和SeNB(或SgNB)且同时利用MeNB(或MgNB)和SeNB(或SgNB)资源的承载。如果分离SRB的PDCP实体和/或RRC位于主基站(即信令,也可 称为数据,由主基站转发给辅基站,实现信令在主基站中分离),则称为MCG分离SRB;如果分离SRB的PDCP实体和/或RRC位于辅基站(即信令,也可称为数据,由辅基站转发给主基站,实现信令在辅基站中分离),则称为SCG分离SRB。如未特别说明,本公开中所述分离SRB可以是MCG分离SRB,也可以是SCG分离SRB。本公开所述实施例也适用于不区分MCG分离SRB和SCG分离SRB的场景,即所述分离SRB的无线协议位于MeNB(或MgNB)和SeNB(或SgNB)且同时利用MeNB(或MgNB)和SeNB(或SgNB)资源的承载SRB。
在本公开中,分离承载可以是分离SRB或分离DRB。MCG分离承载可以是MCG分离SRB或MCG分离DRB。SCG分离承载可以是SCG分离SRB或SCG分离DRB。
分组重复:也可称为数据重复或分组重复或PDCP重复或PDCP PDU重复(如未特别说明,本公开中所述数据可以是控制面信令或用户面数据,分别对应SRB的信令和DRB的数据)。在多连接方式下,同一数据(或称为包或者分组,即PDCP PDU或PDCP SDU)在多个CG的服务小区进行传输,即同一数据同时利用主基站(或MCG)和辅基站(或SCG)提供的资源传输或同一数据分别发送到位于MCG或SCG的下层(或RLC层)或PDCP实体将同一PDCP PDU发送到关联的多个下层实体(或RLC实体)或相同的数据在多个不同的承载上发送。在载波聚合或单连接方式下,PDCP实体将重复的(或同一)PDCP PDU发送到两个或多个RLC实体(或称下层实体)和/或逻辑信道,由MAC实体通过不同的载波(即小区或服务小区)发送给接收端;接收端PDCP实体负责检测并删除重复的PDCP PDU或SDU。
分组重复承载:在载波聚合或单连接方式下,支持分组重复的承载,包括分组重复SRB和分组重复DRB。所述承载的一个PDCP实体关联到两个或多个RLC实体、两个或多个逻辑信道以及一个MAC实体且发送端PDCP实体将重复的(或同一)PDCP PDU发送到所述两个或多个RLC实体(或下层实体)和/或两个或多个逻辑信道,由MAC实体通过不同的载波(即小区或服务小区)发送给接收端;接收端PDCP实体将来自下层实体的重复的PDCP PDU或SDU移除。
分组重复分离承载:在多连接方式下,支持分组重复的分离承载。在 所述发送方式中,同一数据在分离承载的多个无线协议上发送,包括分组重复MCG分离SRB、分组重复SCG分离SRB、分组重复MCG分离DRB和分组重复SCG分离DRB。如果是分组重复MCG分离承载,则由位于主基站或MCG的PDCP实体负责分组重复和/或重复分组移除;如果是分组重复SCG分离承载,则由位于辅基站或SCG的PDCP实体负责分组重复(即将PDCP PDU发送到两个或多个RLC实体)和/或重复分组移除。
需要说明的是,如未特别说明,本公开实施例中描述的分组重复承载包括分组重复承载和分组重复分离承载。
图3A示出了在双连接中,基站与用户设备UE之间进行下行分组重复MCG分离DRB传输的示意图。应理解,对于基站与UE之间进行上行分组重复MCG分离DRB传输可以采用同样的协议架构,只是数据从UE发送到基站,即,将图3A中的箭头反向即可。
如图3A所示,数据(例如分组数据汇聚协议协议数据单元(PDCP PDU))在分离DRB的多个无线协议(对应于与同一PDCP实体相关联的多个RLC实体)上发送,利用MeNB和SeNB资源。在PDCP PDU数据重复多连接方式下,每个PDCP PDU经过多个RLC实体发送给接收方。MeNB和SeNB间的接口可以记为Xn或Xx或X2。根据MeNB和SeNB的不同类型,所述接口可以采用不同命名。例如,如果MeNB为LTE eNB,SeNB为gNB,则所述接口记为Xx;如果MeNB为gNB,SeNB为eLTE eNB,则所述接口记为Xn。相应的,分组重复MCG分离SRB采用相似的协议架构,不同之处在于将数据发送给PDCP实体的上层实体是RRC,PDCP实体在接收到来自下层实体的数据后发送给上层的RRC实体。
图3B示出了在双连接中,基站与用户设备UE之间进行下行分组重复SCG分离DRB传输的示意图。应理解,对于基站与UE之间进行上行分组重复SCG分离DRB传输可以采用同样的协议架构,只是数据从UE发送到基站,即,将图3B中的箭头反向即可。
如图3B所示,数据(例如分组数据汇聚协议协议数据单元(PDCP PDU))在分离DRB的多个无线协议(对应于与同一PDCP实体相关联的多个RLC实体)上发送,利用MeNB和SeNB资源。在PDCP PDU数据重复多连接方式下,每个PDCP PDU经过多个RLC实体发送给接收方。MeNB和SeNB间的接口可以记为Xn或Xx或X2。根据MeNB和SeNB的不同 类型,所述接口可以采用不同命名。例如,如果MeNB为LTE eNB,SeNB为gNB,则所述接口记为Xx;如果MeNB为gNB,SeNB为eLTE eNB,则所述接口记为Xn。相应的,分组重复SCG分离SRB采用相似的协议架构,不同之处在于将数据发送给PDCP实体的上层实体是RRC,PDCP实体在接收到来自下层实体的数据后发送给上层的RRC实体。
本公开的实施例以数据包PDCP PDU或SDU重复发送两次为例(即一个PDCP实体关联两个RLC实体和/或两个逻辑信道),但本公开所述的技术方案并不限于数据包PDCP PDU或SDU重复发送两次的场景。本领域技术人员可以扩展到重复发送多次的场景(即一个PDCP实体关联多个RLC实体和/或多个逻辑信道)。
图4A给出了载波聚合场景中分组重复承载的协议架构示意图。在图4A左侧所示的示意图中,一个DRB的PDCP实体关联到两个RLC实体和两个逻辑信道、一个MAC实体。在图4A右侧所示的示意图中,一个SRB的RRC实体和PDCP实体关联到两个RLC实体和两个逻辑信道、一个MAC实体。
图4B给出了双连接场景中分组重复承载的协议架构示意图。在图4B左侧所示的示意图中,一个DRB的PDCP实体关联到两个RLC实体和两个逻辑信道、两个MAC实体。在图4B右侧所示的示意图中,一个SRB的RRC实体和PDCP实体关联到两个RLC实体和两个逻辑信道、两个MAC实体。
如未特别说明,本公开中所述的启用分组重复(也可称PDCP分组重复或分组重复承载分组重复或PDCP PDU重复或PDCP SDU重复或PDCP重复或分组重复承载的PDCP重复或分组重复承载的PDCP PDU重复或分组重复承载的PDCP SDU重复)也可以表述为配置PDCP实体将同一PDCP PDU或PDCP SDU发送到所关联的两个或多个下层实体(或RLC实体和/或逻辑信道)。如果是分组重复分离承载,则启用分组重复功能使得同一PDCP PDU通过MCG和SCG发送。禁用分组重复功能也可以表述为配置PDCP实体将同一PDCP PDU发送到所关联的两个多个下层实体(或RLC实体和/或逻辑信道)中的一个或所有PDCP PDU仅通过两个或多个下层实体(或RLC实体和/或逻辑信道)中的一个发送。例如,当接收到来自上层或MAC层或下层等的禁用PDCP分组重复的指令时,将PDCP PDU仅通 过预定义的逻辑信道标识的逻辑信道关联的RLC实体发送或通过逻辑信道标识较小或最小或较大或最大的逻辑信道关联的RLC实体发送。如果是分组重复分离承载,则禁用PDCP分组重复功能使得PDCP PDU仅通过MCG或SCG发送或禁用PDCP分组重复功能使得PDCP PDU仅通过MCG发送或禁用PDCP分组重复功能使得PDCP PDU仅通过SCG发送。在本公开中,分组重复是指上行分组重复。
图1A是示出了根据本公开一个实施例的由用户设备执行的方法10a的流程图。
在步骤S110,从基站接收配置消息,该配置消息包括针对分组数据汇聚协议PDCP分组重复功能而配置的两个或更多个小区组的信息。
在步骤S120,根据所述两个或更多个小区组中的各个小区的状态,确定是否满足实现PDCP分组重复功能所需的条件。例如,如果一个小区组中包括主小区,而且另一个小区组中存在至少一个激活的小区,则确定满足实现PDCP分组重复功能所需的条件。备选地,如果任何一个小区组中均不包括主小区,则当至少两个小区组中均存在至少一个激活的小区时,确定满足实现PDCP分组重复功能所需的条件。
在步骤S130,如果满足所需条件,则启用PDCP分组重复功能。例如,当满足实现PDCP分组重复功能所需的条件时,UE可以自行启用PDCP分组重复功能。备选地,当满足实现PDCP分组重复功能所需的条件时,UE可以从基站接收用于启用PDCP分组重复功能的指令,并响应于该指令而启用PDCP分组重复功能。
备选地,UE可以从基站接收用于激活小区组中的小区的媒体访问控制MAC控制消息,并且响应于该消息来启用PDCP分组重复功能。
备选地,如果不包含主小区的小区组中的所有小区都被去激活时,禁用PDCP分组重复功能。例如,UE从基站接收用于去激活小区组中的小区的媒体访问控制MAC控制消息,并且响应于该消息来禁用PDCP分组重复功能。
图1B是示出了根据本公开一个实施例的由基站执行的方法10b的流程图。
在步骤S150,向用户设备UE发送配置消息,该配置消息包括针对分组数据汇聚协议PDCP分组重复功能而配置的两个或更多个小区组的信息。
在步骤S160,根据两个或更多个小区组中的各个小区的状态,确定是否满足实现PDCP分组重复功能所需的条件。例如,如果一个小区组中包括主小区,而且另一个小区组中存在至少一个激活的小区,则确定满足实现PDCP分组重复功能所需的条件。备选地,如果任何一个小区组中均不包括主小区,则当至少两个小区组中均存在至少一个激活的小区时,确定满足实现PDCP分组重复功能所需的条件。
在步骤S170,如果满足所需条件,则向UE发送用于启用PDCP分组重复功能的指令。
备选地,基站还可以向用户设备UE发送用于去激活小区组中的小区的媒体访问控制MAC控制消息,以禁用PDCP分组重复功能。
以下分两种情形给出启用/禁用分组重复功能与激活/去激活载波(小区)之间的关系的示例。
情形I:一个分组重复承载的配置的小区组中包含PCell
在这种情形中,对于任意一个分组重复承载,PCell一定关联到所述分组重复承载的某个逻辑信道或RLC实体。
图5和图6示出了根据本公开一个实施例的分组重复承载的小区组配置示意图。图5和图6左侧的示意图与数据承载有关,而图5和图6右侧的示意图与信令承载有关。
例如,当一个分组重复承载关联的某个小区组中的所有小区都被去激活(例如,UE接收到用于激活/去激活SCell的激活/去激活媒体访问控制MAC控制元素CE时,去激活小区组中的所有SCell)时,禁用所述分组重复承载的PDCP分组重复功能,其中所述小区组中不包含PCell(即,该小区组是不包含PCell的小区组)。换言之,当不包含PCell的小区组的所有SCell都被去激活时,禁用对应分组重复承载的PDCP分组重复功能(即, MAC实体指示上层实体禁用PDCP分组重复,所述上层实体可以是RRC实体或PDCP实体)。
备选地,当启用分组重复承载的PDCP分组重复功能时,所述分组重复承载关联的每个小区组中至少有一个激活的小区或分组重复承载关联的SCell都是激活的(适用于分组重复承载的每个逻辑信道关联到一个小区的情况)。如果小区组不包含PCell,则所述小区组中至少有一个SCell处于激活态。换言之,当启用分组重复承载的PDCP分组重复功能时,分组重复承载所配置的不包含PCell的小区组中至少有一个SCell处于激活态。
备选地,当UE接收到用于激活/去激活SCell的MAC控制元素(称为激活/去激活MAC CE)时,使得UE的分组重复承载关联的每个小区组中至少有一个小区处于激活态,启用所述分组重复承载的分组重复。例如,分组重复承载DRB1关联的两个小区组为CG1={PCell,CC1,CC2},CG2={CC3,CC4}。初始时,CC1处于激活态,CC2和CC3和CC4处于去激活态,此时DRB1的分组重复是禁用的。UE接收激活/去激活MAC CE,所述MAC CE用于激活CC3,此时,UE将启用DRB1的分组重复功能。
情形II:一个分组重复承载关联的小区组中可能不包含PCell
在这种情形中,对于任意一个分组重复承载,PCell可以不关联到所述分组重复承载的任意逻辑信道或RLC实体。
图7示出了根据本公开一个实施例的分组重复承载的小区组配置示意图。图7左侧的示意图与数据承载有关,而图7右侧的示意图与信令承载有关。
例如,当一个分组重复承载关联的某个小区组中的所有小区都被去激活时(例如,UE接收到用于激活/去激活SCell的激活/去激活媒体访问控制MAC控制元素CE时,去激活小区组中的所有SCell),禁用所述分组重复承载的PDCP分组重复功能,其中所述小区组中不包含PCell(即,该小区组是不包含PCell的小区组)。换言之,当不包含PCell的小区组的所有SCell都被去激活时,禁用对应分组重复承载的PDCP分组重复功能。
备选地,当启用分组重复承载的PDCP分组重复功能时,所述分组重复承载关联的每个小区组中至少有一个激活的小区或分组重复承载配置的SCell都是激活的(适用于分组重复承载的每个逻辑信道关联到一个小区的 情况)。如果小区组不包含PCell,则小区组中至少有一个SCell处于激活态。换言之,当启用分组重复承载的PDCP分组重复功能时,分组重复承载所配置的不包含PCell的小区组中至少有一个SCell处于激活态。
备选地,当接收到激活/去激活MAC CE,使得分组重复承载配置的小区组中的小区都被去激活或处于去激活态,释放或挂起分组重复承载或向上层报告错误或向上层报告小区组中的SCell都被去激活或禁用分组重复承载的PDCP分组重复功能,所述为分组重复承载配置的小区组中不包括PCell,即PCell不用于传输分组重复承载的数据或PCell不包括在为所述分组重复承载配置的小区组中。
PDCP分组重复功能
备选地,当UE接收到用于激活/去激活SCell的MAC控制元素(称为激活/去激活MAC CE)时,使得UE的分组重复承载的配置的每个小区组中至少有一个小区处于激活态,启用所述分组重复承载的分组重复。例如,分组重复承载DRB1的两个小区组为CG1={CC1,CC2},CG2={CC3,CC4}。初始时,CC1处于激活态,CC2和CC3和CC4处于去激活态,此时DRB1的分组重复是禁用的。UE接收都激活/去激活MAC CE,所述MAC CE用于激活CC3,此时,UE将启用DRB1的分组重复功能。
备选地,在初始配置的分组重复承载时,分组重复承载关联的小区或小区组中至少有一个小区是激活的。例如图5所示,由于其中一个小区组中包含PCell,PCell总是处于激活态(即PCell不能被去激活),所以满足小区或小区组中至少有一个小区是激活的条件。如果初始配置分组重复承载后PDCP分组重复功能是使能的,则所述分组重复承载关联的SCell都必须处于激活态或所述分组重复承载关联的每个小区组中至少有一个小区是激活的或者所述分组重复承载关联的不包含PCell的小区组中至少有一个SCell是激活的。
备选地,在初始配置的分组重复承载时,如果分组重复承载关联的SCell都是激活的(适用于逻辑信道只关联到一个小区的情况)或者分组重复承载关联的每个小区组中至少有一个小区是激活的或分组重复承载关联的每个不包含PCell的小区组中至少有一个SCell是激活的,则启用PDCP分组重复功能。
在双连接中,为分组重复分离承载配置的小区或小区组分别位于主基 站和辅基站,上述针对分组重复承载的实施例也适用与分组重复分离承载,相应的实施例中针对PCell的描述修改为SpCell。
图2A是示出了根据本公开一个实施例的用户设备20a的框图。如图2A所示,该用户设备20a包括处理器210a和存储器220a。处理器210a例如可以包括微处理器、微控制器、嵌入式处理器等。存储器220a例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器220a上存储有程序指令。该指令在由处理器210a运行时,可以执行本公开详细描述的由用户设备执行的上述方法(例如图1A中所示的方法)。
图2B是示出了根据本公开一个实施例的基站20b的框图。如图2B所示,该基站20b包括处理器210b和存储器220b。处理器210b例如可以包括微处理器、微控制器、嵌入式处理器等。存储器220b例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器220b上存储有程序指令。该指令在由处理器210b运行时,可以执行本公开详细描述的由基站执行的上述方法(例如图1B中所示的方法)。
需要说明的是,本公开实施例中分组重复承载或分组重复分离承载配置或关联的小区或小区组也可描述为分组重复承载或分组重复分离承载的RLC实体或逻辑信道关联到的小区或小区组。
需要说明的是,本公开实施中,启用或禁用PDCP分组重复的场景包括但不限于:从基站接收到用于启用或禁用分组重复的MAC CE、初始配置分组重复承载或分组重复分离承载(从基站接收到配置分组重复承载或分组重复分离承载的RRC重配置消息)。
需要说明的是,在本公开中,所述分组重复承载关联的小区或小区组即为分组重复承载的RLC实体或逻辑信道关联的小区或小区组。将逻辑信道(或RLC实体)关联到小区组(或者小区组关联到逻辑信道或RLC实体)的描述也可以描述为小区组为逻辑信道提供服务、或来自逻辑信道的数据通过小区或小区组发送、或分组重复承载配置的小区组。将逻辑信道关联到小区组都可以替换为将RLC实体关联到小区组。
运行在根据本公开的设备上的程序可以是通过控制中央处理单元 (CPU)来使计算机实现本公开的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本公开各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本公开的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本公开并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本公开并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本公开的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本公开也包括不偏离本公开主旨的任何设计改动。另外,可以在权利要求的范围内对本公开进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本公开的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (10)

  1. 一种由用户设备UE执行的方法,包括:
    从基站接收配置消息,所述配置消息包括针对分组数据汇聚协议PDCP分组重复功能而配置的两个或更多个小区组的信息;
    根据所述两个或更多个小区组中的各个小区的状态,确定是否满足实现PDCP分组重复功能所需的条件;以及
    如果满足所需条件,则启用PDCP分组重复功能。
  2. 根据权利要求1所述的方法,其中,确定是否满足实现PDCP分组重复功能所需的条件包括:
    如果一个小区组中包括主小区,而且另一个小区组中存在至少一个激活的小区,则确定满足实现PDCP分组重复功能所需的条件;或者
    如果任何一个小区组中均不包括主小区,则当至少两个小区组中均存在至少一个激活的小区时,确定满足实现PDCP分组重复功能所需的条件。
  3. 根据权利要求1所述的方法,其中,启用PDCP分组重复功能包括:从基站接收用于激活小区组中的小区的媒体访问控制MAC控制消息,并且响应于该消息来启用PDCP分组重复功能。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:如果不包含主小区的小区组中的所有小区都被去激活时,禁用PDCP分组重复功能。
  5. 根据权利要求4所述的方法,其中,禁用PDCP分组重复功能包括:
    从基站接收用于去激活小区组中的小区的媒体访问控制MAC控制消息,并且响应于该消息来禁用PDCP分组重复功能。
  6. 一种由基站执行的方法,包括:
    向用户设备UE发送配置消息,所述配置消息包括针对分组数据汇聚协议PDCP分组重复功能而配置的两个或更多个小区组的信息;
    根据所述两个或更多个小区组中的各个小区的状态,确定是否满足实现PDCP分组重复功能所需的条件;以及
    如果满足所需条件,则向所述UE发送用于启用PDCP分组重复功能的指令。
  7. 根据权利要求6所述的方法,其中,确定是否满足实现PDCP分组重复功能所需的条件包括:
    如果一个小区组中包括主小区,而且另一个小区组中存在至少一个激活的小区,则确定满足实现PDCP分组重复功能所需的条件;或者
    如果任何一个小区组中均不包括主小区,则当至少两个小区组中均存在至少一个激活的小区时,确定满足实现PDCP分组重复功能所需的条件。
  8. 根据权利要求6所述的方法,还包括:向用户设备UE发送用于去激活小区组中的小区的媒体访问控制MAC控制消息。
  9. 一种用户设备UE,包括:
    处理器;以及
    存储器,所述存储器上存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求1-5中任意一项所述的方法。
  10. 一种基站,包括:
    处理器;以及
    存储器,所述存储器上存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求6-8中任意一项所述的方法。
PCT/CN2018/090393 2017-06-15 2018-06-08 无线通信方法和设备 WO2018228283A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18817388.4A EP3641198A4 (en) 2017-06-15 2018-06-08 WIRELESS COMMUNICATION PROCESS AND DEVICE
US16/621,076 US11172537B2 (en) 2017-06-15 2018-06-08 Wireless communication method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710455174.0 2017-06-15
CN201710455174.0A CN109150432A (zh) 2017-06-15 2017-06-15 无线通信方法和设备

Publications (1)

Publication Number Publication Date
WO2018228283A1 true WO2018228283A1 (zh) 2018-12-20

Family

ID=64660696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090393 WO2018228283A1 (zh) 2017-06-15 2018-06-08 无线通信方法和设备

Country Status (4)

Country Link
US (1) US11172537B2 (zh)
EP (1) EP3641198A4 (zh)
CN (1) CN109150432A (zh)
WO (1) WO2018228283A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113455044A (zh) * 2019-02-14 2021-09-28 上海诺基亚贝尔股份有限公司 用于使用配置授权的通信的装置、方法和计算机程序

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150415B (zh) * 2017-06-15 2022-01-21 夏普株式会社 基站、用户设备和相关方法
CN110771082B (zh) * 2017-06-22 2022-02-18 鸿颖创新有限公司 用于分组数据汇聚协议分组数据单元复制的系统、装置及方法
WO2019036862A1 (zh) 2017-08-21 2019-02-28 北京小米移动软件有限公司 数据传输方法及装置
JP2020536405A (ja) * 2017-09-07 2020-12-10 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. データ伝送方法及び端末装置
CN110971630B (zh) * 2018-09-29 2021-05-04 华为技术有限公司 一种通信方法及装置
MX2021009221A (es) * 2019-02-03 2021-09-08 Fg innovation co ltd Duplicado evolucionado de protocolo de convergencia de datos de paquete.
WO2020168055A1 (en) * 2019-02-14 2020-08-20 Google Llc Resuming radio connections in a communication network
WO2021002873A1 (en) * 2019-07-03 2021-01-07 Nokia Technologies Oy Selective packet duplication or alternative packet transmission based on survival time
CN113452487B (zh) * 2020-03-25 2022-09-13 展讯通信(上海)有限公司 数据传输方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140138A1 (en) * 2012-03-17 2013-09-26 Research In Motion Limited Handling packet data convergence protocol data units
CN106134099A (zh) * 2014-01-29 2016-11-16 三星电子株式会社 用于在移动通信系统中使用多个载波来发送和接收数据的方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104935413B (zh) * 2014-03-19 2019-12-27 夏普株式会社 分组数据汇聚协议pdcp实体及其执行的方法
WO2018156074A1 (en) * 2017-02-24 2018-08-30 Telefonaktiebolaget Lm Ericsson (Publ) Methods and nodes for packet duplication relating to carrier aggregation in a wireless communication network
US10716094B2 (en) * 2017-03-23 2020-07-14 Ofinno, Llc Packet duplication in a wireless device and wireless network
US11212701B2 (en) * 2017-05-14 2021-12-28 FG Innovation Company Limited Systems, methods, and devices for ultra-reliable low latency communication quality-of-service guarantee

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140138A1 (en) * 2012-03-17 2013-09-26 Research In Motion Limited Handling packet data convergence protocol data units
CN106134099A (zh) * 2014-01-29 2016-11-16 三星电子株式会社 用于在移动通信系统中使用多个载波来发送和接收数据的方法和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NEC: "Activation and Deactivation of UL PDCP duplication", 3GPP TSG-RAN WG2 #98, no. R2-1705266, 6 May 2017 (2017-05-06), XP051264815 *
See also references of EP3641198A4 *
SHARP: "Enable/Disable PDCP Duplication", 3GPP TSG-RAN2 MEETING #98, no. R2-1704941, 5 May 2017 (2017-05-05), XP051263897 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113455044A (zh) * 2019-02-14 2021-09-28 上海诺基亚贝尔股份有限公司 用于使用配置授权的通信的装置、方法和计算机程序

Also Published As

Publication number Publication date
CN109150432A (zh) 2019-01-04
US11172537B2 (en) 2021-11-09
EP3641198A1 (en) 2020-04-22
EP3641198A4 (en) 2021-06-30
US20200170072A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
TWI692988B (zh) 基站、使用者設備和相關方法
WO2018171546A1 (zh) 用户设备和基站处执行的方法及相应的设备
WO2018171512A1 (zh) 无线配置方法、用户设备和基站
WO2018228283A1 (zh) 无线通信方法和设备
US11758422B2 (en) User equipment and related method
WO2019029565A1 (zh) 用户设备、基站和相关方法
US20200053550A1 (en) Devices and methods for establishing multiple connections
US20200374752A1 (en) User equipment and related method
WO2018228328A1 (zh) 无线配置方法和相应的用户设备
EP3637820B1 (en) Base station, user equipment and relevant methods
WO2018059147A1 (zh) 用于建立/重配置数据承载的方法和设备
CN111315027B (zh) 用户设备及其方法、基站及其方法
WO2018059148A1 (zh) 一种数据转发的方法及其设备
WO2020221155A1 (zh) 基站、用户设备和相关方法
WO2019153937A1 (zh) 无线通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018817388

Country of ref document: EP

Effective date: 20200115