WO2019153937A1 - 无线通信方法和设备 - Google Patents

无线通信方法和设备 Download PDF

Info

Publication number
WO2019153937A1
WO2019153937A1 PCT/CN2018/124325 CN2018124325W WO2019153937A1 WO 2019153937 A1 WO2019153937 A1 WO 2019153937A1 CN 2018124325 W CN2018124325 W CN 2018124325W WO 2019153937 A1 WO2019153937 A1 WO 2019153937A1
Authority
WO
WIPO (PCT)
Prior art keywords
rlc
sdu
entity
retransmission
rlc sdu
Prior art date
Application number
PCT/CN2018/124325
Other languages
English (en)
French (fr)
Inventor
肖芳英
山田升平
刘仁茂
Original Assignee
夏普株式会社
肖芳英
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 肖芳英 filed Critical 夏普株式会社
Publication of WO2019153937A1 publication Critical patent/WO2019153937A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1809Selective-repeat protocols

Definitions

  • the present disclosure relates to the field of wireless communication technologies. More specifically, the present disclosure relates to a method and related apparatus that operate in a state in which a packet is repeatedly deactivated in a wireless communication system.
  • NTT DOCOMO proposed a new research project on 5G technology standards (see Non-patent literature: RP-160671) :New SID Proposal: Study on New Radio Access Technology), and approved.
  • the goal of the research project is to develop a new wireless (New Radio: NR) access technology to meet all 5G application scenarios, requirements and deployment environments.
  • the multiple connections may employ mechanisms such as packet repetition or link selection.
  • the packet repetition function of the user plane and the control plane is supported in the NR-PDCP entity
  • the PDCP entity function of the sender supports packet repetition
  • the PDCP entity function of the receiver supports deletion of duplicate packets.
  • Packet repetition is supported in both uplink and downlink: that is, in carrier aggregation, packet repetition is transmitted on two or more logical channels using Packet Data Convergence Protocol (PDCP) Protocol Data Units (PDUs) and/or Service Data Units (SDUs). And make repeated PDCP PDUs sent through different carriers.
  • PDCP Packet Data Convergence Protocol
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • the RRC configuration can map two repeated logical channels to different carriers, that is, duplicate logical channels cannot be mapped to the same carrier.
  • the limitation of the corresponding logical channel associated with the carrier is invalid, and the user equipment UE transmits the new data through a specific logical channel.
  • the UE falls back to the split bearer operation according to the configuration of the split bearer operation.
  • the present disclosure proposes a method of operating in a state in which a packet is repeatedly deactivated and a corresponding device in a wireless communication system.
  • a method performed by a user equipment comprising: obtaining an indication message indicating that a packet repetition function is deactivated; and controlling a state of a buffer of an RLC entity based on at least a wireless link And retransmitting the status of the inquiry timer t-pollRetransmit, and performing corresponding operations on the data in the buffer area.
  • the RVC entity's transmit buffer and retransmission buffer only include the RLC service data unit SDU or its segment that has been sent and awaiting acknowledgment and the retransmission query timer of the RLC entity is not t-pollRetransmit If it is running, the transmitted RLC SDU with the largest sequence number or any RLC SDU that has not been positively acknowledged is retransmitted, and the retransmitted RLC SDU carries the inquiry.
  • the RLC entity's transmit buffer and retransmission buffer only include the RLC service data unit SDU or its segment that has been sent and is awaiting acknowledgment
  • the RLC entity's retransmission query timer t-pollRetransmit is The maximum sequence number of the RLC SDU carrying the inquiry that has been sent and sent is smaller than the maximum sequence number of the transmitted RLC SDU, and the retransmitted RLC SDU with the largest sequence number or any RLC SDU that has not been positively acknowledged is retransmitted.
  • the transmitted RLC SDU carries the inquiry.
  • the transmit buffer and the retransmission buffer of the RLC entity only include the RLC service data unit SDU or its segment that has been sent and awaiting acknowledgment and the retransmission query timer of the RLC entity is t-pollRetransmit Period, the RLC SDU with the largest sequence number that has been transmitted is retransmitted or any RLC SDU that has not been positively acknowledged is retransmitted.
  • the transmit buffer and the retransmission buffer of the RLC entity only include the RLC service data unit SDU or its segment that has been sent and awaiting acknowledgment and the retransmission query timer t-pollRetransmit of the RLC entity is Running, when a status report is received and the status report does not include a positive or negative acknowledgement of the transmitted RLC SDU with the largest sequence number, retransmitting the transmitted RLC SDU with the largest sequence number or retransmitting any yet A positively confirmed RLC SDU.
  • the RVC entity's transmit buffer and retransmission buffer only include the RLC service data unit SDU or its segment that has been sent and awaiting acknowledgment and the retransmission query timer of the RLC entity is not t-pollRetransmit Run, then start the retransmission timer t-retransmit.
  • any of the following operations are performed: if the retransmission timer t -retransmit is running, stop the retransmission timer t-retransmit; or if the retransmission inquiry timer t-pollRetransmit is running, stop the retransmission inquiry timer t-pollRetransmit.
  • the packet data convergence protocol PDCP entity sends another indication message to the radio link control RLC entity to instruct the RLC entity to delete all RLC service data unit SDUs, segments of the RLC service data unit SDU, and RLC protocol data.
  • Unit PDU RLC protocol data.
  • a user equipment including a processor and a memory is provided. Instructions are stored on the memory. The instructions, when executed by the processor, cause the user equipment to perform the methods described herein.
  • FIG. 1 is a flow chart illustrating a method performed by a user equipment in accordance with one embodiment of the present disclosure.
  • FIG. 2 is a block diagram showing a user equipment in accordance with one embodiment of the present disclosure.
  • FIG. 3a is a schematic diagram showing a protocol architecture of a packet repeat bearer in carrier aggregation
  • Figure 3b shows a schematic diagram of a protocol architecture for split bearers in dual connectivity
  • RRC Radio Resource Control, radio resource control.
  • PDCP Packet Data Convergence Protocol, Packet Data Convergence Protocol.
  • the RLC entity may be an Unacknowledged Mode (UM) RLC entity or an Acknowledged Mode (AM) RLC entity.
  • UM Unacknowledged Mode
  • AM Acknowledged Mode
  • MAC Medium Access Control, media access control.
  • the PDU may be a data PDU and/or a control PDU, unless otherwise specified.
  • the PDCP PDU may be a PDCP Data PDU and/or a PDCP Control PDU.
  • SDU Service Data Unit, service data unit.
  • data received from the upper layer or sent to the upper layer is referred to as an SDU
  • data transmitted to the lower layer or received from the lower layer is referred to as a PDU
  • the data received by the PDCP entity from the upper layer or the data sent to the upper layer is called a PDCP SDU
  • the data received by the PDCP entity from the RLC entity or the data sent to the RLC entity is called a PDCP PDU (ie, an RLC SDU).
  • the primary RLC entity in the carrier aggregation, after the deactivation of the packet repetition, the PDCP entity sends the PDCP PDU to the primary RLC entity, where the primary RLC entity is one of the two RLC entities associated with the
  • the RRC signaling configuration or MAC Control Element CE is specified or predefined.
  • the PDCP entity will PDCP The PDU is sent to the primary RLC entity.
  • the base station passes the cell primary path carried in the RRC signaling (see 3GPP TS 38.331 for a detailed description of the cell) and the cell group and the logical channel identifier used to identify the cell group identifier included in the cell.
  • the cell logicalChannel or the like configures the primary RLC entity for the user equipment UE, and sets the data separation threshold by the cell ul-DataSplitThreshold (see 3GPP TS 38.331 and TS 38.323 for a detailed description of the cell).
  • the PDCP entity transmits the PDCP PDU to the associated primary RLC entity or secondary RLC entity. If the data separation threshold is not configured, the PDCP entity sends the PDCP PDU to one of the two RLC entities associated with the two RLC entities (eg, the primary RLC entity) or employs a link selection mode of operation.
  • the present disclosure refers to an RLC entity that is not designated as a primary RLC entity as a secondary RLC entity to facilitate the description of embodiments of the present disclosure.
  • the packet repeat activates/deactivates the media access control control element: Duplication Activation/Deactivation MAC CE, which is used to activate and/or deactivate the packet repetition.
  • a bearer packet repetition function can be activated or deactivated by setting the bit corresponding to the bearer identity to "1" or "0". See the related description of 3GPP TS38.321 for details.
  • the activating the packet repetition means that the PDCP transmitting entity duplicates the PDCP PDU and/or transmits the PDCP PDU to its associated two RLC entities; the deactivated packet repetition refers to the PDCP sending entity
  • the generated PDCP PDU is sent to one of its two RLC entities, that is, the PDCP PDU is sent to the primary RLC entity or the PDCP PDU is sent to the primary RLC entity or the secondary RLC entity (depending on whether the data separation threshold is configured. And determining the amount of PDCP data and the sum of the data amounts of the associated one or two RLC entities compared to the data separation threshold).
  • Non-split bearer The non-split bearer is located at the primary base station (eg, MgNB) or the secondary base station (eg, SgNB) and uses resources of the primary base station or the secondary base station, respectively.
  • the bearer's radio protocol is located at the primary base station (eg, MgNB) and uses the resources of the primary base station; or the bearer's radio protocol is located at the secondary base station (eg, SgNB) and uses the resources of the secondary base station.
  • Non-separating bearers may also be referred to as non-separable bearers
  • split bearer In dual connectivity, the bearer's radio protocol is located at the primary base station (eg, MgNB) and the secondary base station (eg, SgNB) and uses the resources of the primary base station and the secondary base station.
  • MgNB primary base station
  • SgNB secondary base station
  • the bearer in the present disclosure may be a data radio bearer DRB or a signaling radio bearer SRB, unless otherwise specified.
  • the separation bearer may be a separate SRB or a separate DRB; for example, MCG separation DRB, MCG separation SRB, SCG separation DRB, SCG separation SRB, etc. are all separated bearers.
  • the non-separating bearer may be a non-separating SRB or a non-separating DRB; for example, MCG DRB, MCG SRB, SCG DRB, SCG SRB, etc. are all non-separating bearers.
  • the primary base station Master NodeB, denoted as MeNB (corresponding to E-UTRAN or LTE or eLTE base station) or MgNB (ie NG-RAN or NR base station gNB).
  • MeNB corresponding to E-UTRAN or LTE or eLTE base station
  • MgNB ie NG-RAN or NR base station gNB
  • S1-MME control node mobility management entity
  • 5GC core network
  • the primary base station in the present disclosure is referred to as an MeNB. It should be noted that all embodiments or definitions applicable to the MeNB are also applicable to the MgNB.
  • Secondary base station Secondary NodeB, denoted as SeNB (corresponding to E-UTRAN or LTE or eLTE base station) or SgNB (corresponding to NG-RAN or NR base station gNB).
  • SeNB E-UTRAN or LTE or eLTE base station
  • SgNB NG-RAN or NR base station gNB
  • a base station that does not serve as an MeNB providing additional radio resources to the UE.
  • the secondary base stations in the present disclosure are all referred to as SeNBs. It should be noted that all embodiments or definitions applicable to the SeNB are also applicable to the SgNB.
  • Primary cell Primary Cell, PCell.
  • a cell of the present disclosure may also be referred to as a carrier.
  • Primary and secondary cells Primary Secondary Cell, PSCell.
  • the SCG cell that the UE is used to perform random access is performed in performing the process of changing the SCG.
  • Secondary cell Secondary Cell, SCell.
  • a cell operating on a secondary frequency that can be configured after the RRC connection is established and can be used to provide additional radio resources.
  • Cell group Cell Group, abbreviated as CG, in a multi-connection, a group of serving cells or carriers associated with a primary base station or a secondary base station.
  • CG Cell Group
  • a group of cells associated with a certain logical channel or RLC entity of a packet repetition bearer or a group of cells providing radio resources or data transmission services for a certain logical channel or RLC entity of a packet repetition bearer is called a cell.
  • the cell may be a cell configured with an uplink carrier. It should be noted that the cell described in the present disclosure may also be referred to as a set of beam.
  • a cell may also be referred to as a carrier.
  • Embodiments applicable to cells in the present disclosure are also applicable to the case of a Bandwidth Part (BWP).
  • BWP Bandwidth Part
  • MCG Primary cell group
  • the MCG is composed of all serving cells; for a UE configured with multiple connections, the MCG is composed of a subset of serving cells (ie, a group of serving cells associated with the MeNB or the MgNB), which includes the PCell and 0 or 1 or more SCells.
  • Secondary cell group Secondary Cell Group, SCG.
  • SCG Secondary Cell Group
  • the SCG can contain one PSCell and can also contain one or more SCells.
  • Multi-connection The operation mode of the UE in the RRC connected state, where multiple cell groups are configured, the multiple cell groups include one MCG, one or more SCGs (ie, the UE is connected to multiple base stations). If only one MCG (or MeNB or MgNB) and one SCG (or SeNB or SgNB) are configured, it is called dual connectivity. That is, a UE with multiple receivers and/or transmitters in a connected state is configured to use EUTRAN and/or 5G-RAN (or NG-RAN) radio resources provided by a plurality of different schedulers, the scheduler It can be connected by a non-ideal backhaul or an ideal backhaul.
  • the multiple connections described in this disclosure include dual connections. Multi-connection data transmission methods include but are not limited to: packet repetition, link selection.
  • Packet repetition duplication, the PDCP entity sends the same PDCP PDU to the associated two or more lower layer entities (or RLC entities).
  • the same data or packet or packet, that is, PDCP PDU or PDCP SDU
  • the same data is transmitted in the serving cell of two or more cell groups, that is, the same data is utilized by the primary base station (or MCG) and the secondary
  • the resource transmission provided by the base station (or SCG) or the same data is sent to the lower layer (or RLC layer) located at the MCG and SCG or the same data is transmitted on two or more different carriers.
  • the PDCP entity sends duplicate (or the same) PDCP PDUs to the associated two or more RLC entities (or lower layer entities) and/or logical channels, and the MAC entities pass different
  • the carrier (or cell or serving cell) or a different group of cells is sent to the receiving end; the receiving PDCP entity is responsible for detecting and deleting duplicate PDCP PDUs or SDUs.
  • the packet repetition described in the present disclosure may also be referred to as repetition or data repetition or packet repetition or PDCP repetition or PDCP PDU repetition or PDCP SDU repetition or PDCP packet repetition, etc., and these terms may be used interchangeably.
  • the data in the present disclosure may be control plane signaling or user plane data, which respectively correspond to SRB signaling and DRB data.
  • the "lower layer entity” and “lower layer” described in the present disclosure are equivalent descriptions and are used interchangeably.
  • Link selection The PDCP entity sends only the same packet (ie PDCP PDU or PDCP SDU) to one of the two or more associated RLC entities, which may be sent by the same or different RLC entities.
  • each PDCP PDU is sent to the receiver only through one of the two or more RLC entities associated with each other.
  • the PDCP entity In carrier aggregation, after deactivating PDCP packet repetition, the PDCP entity sends the PDCP PDU to one of its associated two or more RLC entities (eg, to the primary RLC entity).
  • the PDCP entity In the multi-connection mode, after the PDCP packet is deactivated, the PDCP entity sends the PDCP PDU by using the split bearer (or link selection) according to the configured split bearer related parameters. For example, one cell group is selected from the configured cell group for packet transmission, that is, the PDCP entity sends the PDCP PDU to the RLC entity associated with the MCG or the RLC entity associated with the SCG; or the PDCP entity sends the PDCP PDU to the primary RLC entity. .
  • Retransmission query timer t-pollRetransmit The timer is used by the AM RLC entity sender for retransmission of the inquiry.
  • Embodiments of the present disclosure take the case of repeatedly transmitting PDCP PDUs or SDUs twice (ie, one PDCP entity associates two RLC entities and/or two logical channels), but the technical solution described in this disclosure is not limited to PDCP PDUs or SDUs.
  • a scenario in which the transmission is repeated twice can be easily extended to a scenario in which the transmission is repeated multiple times (ie, one PDCP entity associates multiple RLC entities and/or multiple logical channels).
  • FIG. 3a shows a protocol architecture diagram of a packet repeat bearer
  • FIG. 3b shows a protocol architecture diagram of a split bearer.
  • one bearer PDCP entity is associated with two RLC entities and two logical channels, one MAC entity.
  • one bearer PDCP entity is associated with two RLC entities and two logical channels, two MAC entities.
  • An embodiment of an operation performed by a PDCP transmitting entity and/or an RLC entity (ie, an AM RLC entity transmitting end and/or a UM RLC entity transmitting end) after deactivating a packet repetition in a user equipment UE is described below.
  • the RLC entity may be a secondary RLC entity or a deactivated RLC entity. It should be noted that the embodiments below may also be performed at the PDCP transmitting entity and/or the RLC entity of the base station.
  • FIG. 1 is a flow chart illustrating a method performed by a user equipment in accordance with one embodiment of the present disclosure.
  • step S110 the user equipment UE acquires an indication message indicating that the packet repetition function is deactivated.
  • step S120 the user equipment UE performs a corresponding operation on the data in the buffer area based on at least the state of the buffer area of the radio link control RLC entity and the status of the retransmission inquiry timer t-pollRetransmit.
  • Solution 1 When the packet repetition is deactivated, the RLC entity does not delete the RLC PDU and/or the RLC SDU or the RLC entity in the buffer to continue to send the RLC SDU.
  • the RLC entity when the packet repetition is deactivated (eg, the RLC entity receives a deactivation packet repeat indication from the upper or lower layer), if the RLC entity's transmit buffer and retransmission buffer only include sent and awaiting acknowledgment RLC SDU or RLC SDU segmentation and retransmission query timer t-pollRetransmit for the RLC entity sender is not running or running (the timer t-pollRetransmit is not running or running is optional), the RLC entity retransmits The RLC SDU having the largest sequence number sent; or the RLC entity retransmitting any RLC SDU that has not been positively acknowledged (optionally, setting the inquiry state variable POLL_SN to the maximum sequence number of the transmitted RLC SDU); or If the inquiry state variable POLL_SN is the maximum sequence number of the transmitted RLC SDU, the transmitted RLC SDU with the largest sequence number is retransmitted or any RLC SDU that has not been positively acknowledged is retransmitted.
  • the query is carried in the
  • the RLC entity's transmit buffer and retransmission buffer only include sent and awaiting acknowledgment RLC SDU or RLC SDU segmentation and retransmission query timer t-pollRetransmit for the RLC entity sender is running (timer t-pollRetransmit is optional) and the maximum number of RLC SDUs carrying the query is sent.
  • the serial number (or the maximum sequence number of the RLC SDU carrying the inquiry or the sequence number of the sent RLC SDU carrying the inquiry or the value of the inquiry state variable POLL_SN) is smaller than the maximum sequence number of the transmitted RLC SDU, and the RLC entity retransmission has been sent.
  • the query is carried in the retransmitted RLC SDU or its corresponding RLC PDU.
  • the RLC entity when the packet repetition is deactivated (eg, the RLC entity receives a deactivation packet repeat indication from the upper or lower layer), if the RLC entity's transmit buffer and retransmission buffer only include sent and awaiting acknowledgment RLC SDU or RLC SDU segmentation and retransmission query timer t-pollRetransmit for the RLC entity sender is running (timer t-pollRetransmit is optional), if the timer t-pollRetransmit expires, RLC The entity retransmits the transmitted RLC SDU with the largest sequence number; or the RLC entity retransmits any RLC SDU that has not been positively acknowledged (optionally, the inquiry state variable POLL_SN is set to the maximum sequence number of the transmitted RLC SDU); Or if the inquiry state variable POLL_SN is the maximum sequence number of the transmitted RLC SDU, retransmit the transmitted RLC SDU with the largest sequence number or retransmit any RLC SDU that has not been positively acknowledged,
  • the RLC entity when the packet repetition is deactivated (eg, the RLC entity receives a deactivation packet repeat indication from the upper or lower layer), if the RLC entity's transmit buffer and retransmission buffer only include sent and awaiting acknowledgment RLC SDU or RLC SDU segmentation and retransmission query timer t-pollRetransmit for the RLC entity sender is running (the timer t-pollRetransmit is running condition is optional), if a status report is received (Status Report And if the status report does not include a positive acknowledgment or a negative acknowledgment of the transmitted RLC SDU with the largest sequence number, then the RLC entity retransmits the RLC SDU that has been sent and has the largest sequence number, or the retransmission is not yet confirmed.
  • the RLC entity's transmit buffer and retransmission buffer only include sent and awaiting acknowledgment RLC SDU or RLC SDU segmentation and retransmission query timer t-pollRetransmit for the RLC
  • Positively acknowledged RLC SDU (optionally, setting the inquiry state variable POLL_SN to the maximum sequence number of the transmitted RLC SDU); or if the inquiry state variable POLL_SN is the maximum sequence number of the transmitted RLC SDU, then Pass the RLC SDU with the largest sequence number sent or retransmit any RLC SDU that has not been positively acknowledged, if the query status variable POLL_SN is small
  • the maximum sequence number of the transmitted RLC SDU retransmit the transmitted RLC SDU with the largest sequence number or retransmit any RLC SDU that has not been positively acknowledged (optional, set the inquiry state variable POLL_SN to the transmitted RLC SDU) Maximum serial number).
  • the query is carried in the retransmitted RLC SDU or its corresponding RLC PDU.
  • the RLC entity when the packet repetition is deactivated (eg, the RLC entity receives a deactivation packet repeat indication from the upper or lower layer or the secondary RLC entity is deactivated), if the RLC entity's transmit buffer and retransmission buffer are only Include the RLC SDU or RLC SDU segment that has been sent and awaiting acknowledgment and the retransmission query timer t-pollRetransmit for the RLC entity sender is running or not running (the timer t-pollRetransmit is running or not running is optional) The RLC entity starts the retransmission timer t-retransmit. If the timer t-retransmit expires, you can do one of the following:
  • the query is carried in the retransmitted RLC SDU or its corresponding RLC PDU; optionally, the query state variable POLL_SN is set to the maximum sequence number of the transmitted RLC SDU;
  • the inquiry state variable POLL_SN is the maximum sequence number of the transmitted RLC SDU, the transmitted RLC SDU with the largest sequence number is retransmitted or any RLC SDU that has not been positively acknowledged is retransmitted.
  • inquiry state variable POLL_SN is the maximum sequence number of the transmitted RLC SDU, retransmit the RLC SDU with the largest sequence number that has been submitted to the lower layer or retransmit any RLC SDU that has not been positively acknowledged (optional, The inquiry state variable POLL_SN is set to the maximum sequence number of the transmitted RLC SDU.
  • the query is carried in the retransmitted RLC SDU or its corresponding RLC PDU.
  • the RLC entity receives the status report and does not include a positive or negative acknowledgement of the transmitted RLC SDU with the largest sequence number, then at least one of the following operations may be performed (note that the order of execution of the following operations may be exchanged):
  • the RLC entity sender may perform one of the following operations:
  • the retransmission timer t-retransmit described in the embodiment of the present disclosure may be used to control retransmission of the RLC SDU or control to send an inquiry, and the value may be configured through RRC, or the value is the same as the value of the timer t-pollRetransmit, or The timer t-retransmit can also be the timer t-pollRetransmit.
  • the AM RLC entity sender upon deactivating a packet repetition (eg, when the RLC entity receives a deactivation packet repeat indication from an upper layer or a lower layer or the RLC entity is deactivated or in the case of a packet repetition activation), upon receiving the lower layer
  • the AM RLC entity sender upon transmitting the opportunity indication, for each AMD PDU submitted to the lower layer (or for transmission), performs the following operations: if the transmit buffer and the retransmission buffer are both empty (excluding sent and An RLC SDU or RLC SDU segment awaiting acknowledgment, including an inquiry in the AMD PDU.
  • the transmit buffer area and the retransmission buffer area are both empty (excluding the RLC SDU or RLC SDU segment that has been sent and waiting for acknowledgement), regardless of the case where the upper layer has data waiting to be sent. In other words, even if the upper layer has data waiting (or waiting for transmission), if the RLC entity's transmit buffer and retransmission buffer are both empty (excluding the RLC SDU or RLC SDU segment that has been sent and waiting for acknowledgment), the AMD The PDU contains a query.
  • the RLC entity When no packet repetition or packet repetition activation is configured (or the RLC entity receives an indication of packet repetition activation), if the upper layer has data waiting (or waiting for transmission), even if the transmission buffer and the retransmission buffer are empty (not including The RLC SDU or RLC SDU segment sent and awaiting acknowledgment, the query is also not included in the AMD PDU, so that unnecessary queries can be avoided.
  • RLC SDU and “RLC PDU” are used interchangeably
  • inquiry and “interrogation bit” are used interchangeably
  • sent and “sent and awaiting confirmation” and “submitted to the lower layer”
  • secondary RLC entity and “secondary RLC entity sender” are used interchangeably.
  • the secondary RLC entity is an RLC entity that receives an indication of deactivation of the packet, and may include an AMD RLC entity or a UMD RLC entity.
  • the RLC SDU or RLC SDU segment that has been sent and awaiting acknowledgment may be replaced by the RLC entity's transmit buffer and retransmission buffer. All are empty (excluding RLC SDU or RLC SDU segments that have been sent and are waiting for acknowledgment), if the RLC SCM's transmit buffer and retransmission buffer are only included in the RLC SDUs that have been sent and are waiting for acknowledgment.
  • the RLC SDU segment is replaced by "the RLC entity's transmit buffer and retransmission buffer are both empty (excluding the RLC SDU or RLC SDU segment that has been sent and waiting for acknowledgment)", then the retransmission has been sent.
  • the RLC SDU of the largest sequence number or the retransmission of any RLC SDU that has not been positively acknowledged needs to first determine whether there is an RLC SDU or RLC SDU segment that has been sent and is awaiting acknowledgment. Both may refer to an indication of deactivating a packet repetition or receiving an indication of deactivation of a packet repetition or receiving an indication that a PDCP deletes an RLC SDU for indicating that the RLC entity deletes the RLC SDU when the PDCP entity deactivates the packet repetition.
  • the transmit buffer and the retransmission buffer are both empty, that is, there are only RLC SDUs or RLC SDU segments that have been sent and are waiting for acknowledgment in the buffer.
  • the RLC SDUs described in the embodiments of the present disclosure may be replaced with RLC PDUs, and the principles of the present disclosure still apply.
  • RLC SDU with the largest sequence number that has been submitted to the lower layer "the RLC SDU with the largest sequence number that has been sent”, and the RLC SDU with the largest sequence number that have been sent and are waiting for acknowledgment are described in the embodiments of the present disclosure. ", RLC SDU with the largest sequence number”, “RLC SDU with the largest sequence number that has been submitted to the lower layer and awaiting acknowledgment”, “RLC SDU with the largest sequence number in the retransmission buffer” and "not yet confirmed
  • the RLC SDU with the largest serial number is an equivalent description and can be used interchangeably.
  • the query state variable POLL_SN is the maximum sequence number of the RLC SDU that has been submitted to the lower layer and carries the query; or the query state variable POLL_SN is the most recently transmitted maximum sequence number of the RLC SDU including the query;
  • the interrogation state variable POLL_SN is the value of the most recently transmitted transmission state variable TX_Next-1 containing the interrogated RLC SDU or AMD PDU, and the TX_Next holds the sequence number of the next newly generated AMD PDU, the AMD PDU containing The first segment (or byte) or the last segment (or byte) of an RLC SDU or RLC SDU.
  • the carry inquiry described in the embodiments of the present disclosure may be to set the value of the interrogation bit to 1 or other predefined value.
  • Solution 2 When the packet repetition is deactivated, the RLC entity deletes the RLC PDU and/or the RLC SDU of the buffer area.
  • all RLC SDUs and/or RLC SDU segments and/or RLC PDUs of the transmit buffer and the retransmission buffer are deleted.
  • the PDCP entity performs at least one of the following operations upon receiving an indication from an upper layer (eg, RRC) or a lower layer (eg, a MAC) for deactivating packet repetition:
  • the first deletion indication is used to indicate that the lower layer (ie, the RLC entity or the secondary RLC entity) deletes the corresponding RLC SDU and/or RLC SDU segment and/or RLC PDU (if present) This operation is performed) regardless of whether the RLC SDU or its segment is delivered to the lower layer (eg, the MAC layer).
  • the lower layer indicates that the corresponding PDCP PDU is deleted, and when the lower layer receives the first deletion indication, the corresponding RLC SDU and/or the RLC SDU segment and/or the RLC PDU are deleted (if the existing operation is performed), regardless of Whether the RLC SDU or its segment is submitted to the lower layer (for example, the MAC layer).
  • the PDCP entity performs the following operations upon receiving an indication from an upper layer (eg, RRC) or a lower layer (eg, a MAC) for deactivating packet repetition (or packet repetition is deactivated):
  • an upper layer eg, RRC
  • a lower layer eg, a MAC
  • the RLC entity upon receiving an indication from the upper layer (eg, PDCP) or the lower layer (eg, MAC) to deactivate the packet repeat indication (or the packet repetition is deactivated), when receiving an indication from the upper layer (ie, PDCP) to delete the specific RLC SDU,
  • the AM RLC entity sender or the UM RLC entity sender deletes the indicated RLC SDU regardless of whether the RLC SDU or its segment is delivered to the lower layer.
  • two types of deletion indications are defined for the PDCP entity, namely a first deletion indication and a second deletion indication.
  • the PDCP entity After deactivating the packet repetition (or the PDCP receives an indication of deactivation of the deactivation packet from the upper layer or the lower layer), the PDCP entity sends a first deletion indication to the lower layer (ie, the RLC entity) (or the PDCP entity sends the lower layer to the lower layer for delivery to the lower layer
  • the first deletion indication of the PDCP PDU when the lower layer receives the first deletion indication, delete the corresponding RLC SDU and/or RLC SDU segment and/or RLC PDU (if the operation is performed), regardless of the Whether the RLC SDU or its segment is submitted to the lower layer (for example, the MAC layer).
  • deletion timer discard timer corresponding to the PDCP PDU expires or the PDCP PDU has been acknowledged to be successfully transmitted
  • the PDCP entity deletes the PDCP SDU and/or the corresponding PDCP PDU
  • the PDCP entity The lower layer sends a second deletion indication; when the lower layer receives the second deletion indication, if the indicated RLC SDU and its segment have not been delivered to the lower layer (ie, the MAC layer), the corresponding RLC SDU and/or RLC PDU are deleted.
  • the RLC entity sender when the RLC entity receives an indication of deactivation of a deactivated packet from an upper layer (eg, a PDCP entity or an RRC entity) or a lower layer (ie, a MAC entity), the RLC entity sender deletes all RLC SDUs, RLC SDU segments. And the RLC PDU, whether or not the RLC SDU or its segment is delivered to the lower layer (eg, the MAC layer). In other words, the RLC entity sender deletes or empties all data of the transmit buffer and the retransmission buffer, including the RLC SDU, the RLC SDU segment, and the RLC PDU, regardless of whether the RLC SDU or its segment is delivered to the lower layer (eg, the MAC layer) ).
  • an upper layer eg, a PDCP entity or an RRC entity
  • a lower layer ie, a MAC entity
  • the RLC entity is a secondary RLC entity or if the RLC entity is a secondary RLC entity and the packet repetition is activated, an AMD PDU or an RLC SDU is retransmitted, its sequence number is set to SN and the load is empty (ie, the data data is empty, But the serial number is AMD PDU of SN).
  • the TX_Next_ACK is an Acknowledgement state variable for storing a sequence number of the next RLC SDU that will be positively confirmed in the order as a lower bound of the transmission window; the TX_Next is a transmission state variable, The variable is used to store the serial number to be assigned to the next newly generated AMD PDU.
  • TX_Next_ACK and TX_Next are described in detail in 3GPP TS 38.322.
  • the buffer area in the present disclosure may be a transmission buffer area and/or a retransmission buffer area, unless otherwise specified.
  • deactivation of packet repetition may be mutually Change to use.
  • configuration of packet repetition but in deactivation state may be mutually Change to use.
  • reception of deactivation of packet deactivation from upper layer (eg, PDCP) or lower layer (eg, MAC) in the present disclosure may be mutually Change to use.
  • Embodiments of the present disclosure describe that a PDCP entity sends a first deletion indication to a deactivated RLC entity or a deactivated RLC entity (eg, a secondary RLC entity) deletes an RLC SDU and its segmentation or retransmission sent but awaiting acknowledgment
  • a deactivated RLC entity eg, a secondary RLC entity
  • the RLC SDU or its segmentation method can avoid waste of radio resources, save user equipment power consumption, or avoid the problem that the PDCP receiving entity and the transmitting entity superframe number are not synchronized (HFN desynchronization).
  • FIG. 2 is a block diagram showing user equipment 20 in accordance with one embodiment of the present disclosure.
  • the user equipment 20 includes a processor 210 and a memory 220.
  • Processor 210 can include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 220 may include, for example, a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a nonvolatile memory (such as a flash memory), or other memory.
  • Program instructions are stored on the memory 220. The instructions, when executed by the processor 210, can perform the above-described methods (e.g., the method illustrated in FIG. 1) performed by the user equipment as described in detail in this disclosure.
  • Computer-executable instructions or programs for implementing the functions of various embodiments of the present invention may be recorded on a computer readable storage medium.
  • the corresponding functions can be realized by causing a computer system to read programs recorded on the recording medium and execute the programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as a peripheral device).
  • the "computer readable storage medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium of a short-term dynamic storage program, or any other recording medium readable by a computer.
  • circuitry e.g., monolithic or multi-chip integrated circuits.
  • Circuitry designed to perform the functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • a general purpose processor may be a microprocessor or any existing processor, controller, microcontroller, or state machine.
  • the above circuit may be a digital circuit or an analog circuit.
  • One or more embodiments of the present invention may also be implemented using these new integrated circuit technologies in the context of new integrated circuit technologies that have replaced existing integrated circuits due to advances in semiconductor technology.
  • the present invention is not limited to the above embodiment. Although various examples of the embodiments have been described, the invention is not limited thereto.
  • Fixed or non-mobile electronic devices installed indoors or outdoors can be used as terminal devices or communication devices such as AV devices, kitchen devices, cleaning devices, air conditioners, office equipment, vending machines, and other home appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种由用户设备执行的方法。该方法包括获取指示消息,所述指示消息指示分组重复功能被去激活。该方法还包括:至少基于无线链路控制RLC实体的缓存区的状态以及重传询问定时器的状态,对所述缓存区中的数据执行相应操作。本公开还提供了一种相应的用户设备。

Description

无线通信方法和设备 技术领域
本公开涉及无线通信技术领域。更具体地,本公开涉及无线通信系统中在分组重复去激活的状态下进行操作的方法和相关的设备。
背景技术
2016年3月,在第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN#71次全会上,NTT DOCOMO提出了一个关于5G技术标准的新的研究项目(参见非专利文献:RP-160671:New SID Proposal:Study on New Radio Access Technology),并获批准。该研究项目的目的是开发一个新的无线(New Radio:NR)接入技术以满足5G的所有应用场景、需求和部署环境。
在2016年10月召开的3GPP RAN2#96次会议上达成为满足URLLC对可靠性的要求,对多连接(包括双连接)进行研究。所述多连接可以采用分组重复或链路选择等机制。目前,在NR-PDCP实体中支持用户面和控制面的分组重复功能,发送端PDCP实体功能支持分组重复,且接收端PDCP实体功能支持删除重复分组。上行和下行均支持分组重复:即,在载波聚合中,分组重复采用分组数据汇聚协议(PDCP)协议数据单元(PDU)和/或服务数据单元(SDU)在两个或多个逻辑信道上发送并使得重复的PDCP PDU通过不同的载波发送。
目前,无线资源控制RRC配置可以将2个重复的逻辑信道映射到不同的载波,即重复的逻辑信道不能映射到同一个载波。在载波聚合场景下,当分组重复功能被去激活后对应的逻辑信道与载波关联的限制无效,用户设备UE将新的数据通过一个特定的逻辑信道发送。在双连接场景下,当数据无线承载DRB的分组重复功能通过媒体访问控制MAC控制元素CE被去激活时,UE根据分离承载操作的配置回退到分离承载操作。
发明内容
本公开提出了一种无线通信系统中在分组重复去激活的状态下进行操作的方法以及相应的设备。
根据本公开的一个方面,提供了一种由用户设备执行的方法,包括:获取指示消息,所述指示消息指示分组重复功能被去激活;以及至少基于无线链路控制RLC实体的缓存区的状态以及重传询问定时器t-pollRetransmit的状态,对所述缓存区中的数据执行相应操作。
在一个实施例中,如果RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC服务数据单元SDU或其分段并且所述RLC实体的重传询问定时器t-pollRetransmit未运行,则重传已发送的具有最大序列号的RLC SDU或任意尚未被肯定确认的RLC SDU,所重传的RLC SDU携带询问。
在一个实施例中,如果RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC服务数据单元SDU或其分段、所述RLC实体的重传询问定时器t-pollRetransmit正在运行并且已发送的携带询问的RLC SDU的最大序列号小于已发送的RLC SDU的最大序列号,则重传已发送的具有最大序列号的RLC SDU或任意尚未被肯定确认的RLC SDU,所重传的RLC SDU携带询问。
在一个实施例中,如果RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC服务数据单元SDU或其分段并且所述RLC实体的重传询问定时器t-pollRetransmit到期,则重传已发送的具有最大序列号的RLC SDU或重传任意尚未被肯定确认的RLC SDU。
在一个实施例中,如果RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC服务数据单元SDU或其分段并且所述RLC实体的重传询问定时器t-pollRetransmit正在运行,当接收到状态报告且所述状态报告中不包含已发送的具有最大序列号的RLC SDU的肯定确认或否定确认时,重传已发送的具有最大序列号的RLC SDU或者重传任意尚未被肯定确认的RLC SDU。
在一个实施例中,如果RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC服务数据单元SDU或其分段并且所述RLC实体的重传询问定时器t-pollRetransmit未运行,则启动重传定时器t-retransmit。
在一个实施例中,如果接收到状态报告且所述状态报告不包括已发送 的具有最大序列号的RLC SDU的肯定确认或否定确认,则执行以下操作中的至少一项:停止重传定时器t-retransmit、重传已发送的具有最大序列号的RLC SDU或者重启重传定时器t-retransmit。
在一个实施例中,如果接收到状态报告且所述状态报告包括已发送的具有最大序列号的RLC SDU的肯定确认或否定确认,则执行以下操作中的任意一项:如果重传定时器t-retransmit正在运行,停止重传定时器t-retransmit;或者如果重传询问定时器t-pollRetransmit正在运行,停止重传询问定时器t-pollRetransmit。
在一个实施例中,分组数据汇聚协议PDCP实体向无线链路控制RLC实体发送另一指示消息,以指示RLC实体删除所有的RLC服务数据单元SDU、RLC服务数据单元SDU的分段以及RLC协议数据单元PDU。根据本公开的一个方面,提供了一种用户设备,包括处理器以及存储器。所述存储器上存储有指令。所述指令在由所述处理器运行时,使所述用户设备执行本文描述的方法。
附图说明
通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:
图1是示出了根据本公开一个实施例的由用户设备执行的方法的流程图。
图2是示出了根据本公开一个实施例的用户设备的框图。
图3a示出了载波聚合中分组重复承载的协议架构示意图;
图3b示出了双连接中分离承载的协议架构示意图;
需要注意的是,附图不一定按比例绘制,重点在于示出本文公开的技术的原理。另外,为了清楚起见,贯穿附图中的相似的附图标记指代相似的元素。
具体实施方式
下面结合附图和具体实施方式对本公开进行详细阐述。应当注意,本公开不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了 对与本公开没有直接关联的公知技术的详细描述,以防止对本公开的理解造成混淆。
下面描述本公开涉及的部分术语,如未特别说明,本公开涉及的术语采用此处定义。本公开给出的术语在NR、LTE和eLTE中可能采用不同的命名方式,但本公开中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
RRC:Radio Resource Control,无线资源控制。
PDCP:Packet Data Convergence Protocol,分组数据汇聚协议。
RLC:Radio Link Control,无线链路控制。RLC实体可以是非确认模式(Unacknowledged Mode,UM)RLC实体或确认模式(Acknowledged Mode,AM)RLC实体。
MAC:Medium Access Control,媒体访问控制。
PDU:Protocol Data Unit,协议数据单元。在本公开中,如未特别说明,PDU可以是数据PDU和/或控制PDU。例如,PDCP PDU可以是PDCP数据PDU和/或PDCP控制PDU。
SDU:Service Data Unit,服务数据单元。
在本公开中,将从上层接收或发往上层的数据称为SDU,将发往下层或从下层接收的数据称为PDU。例如,PDCP实体从上层接收的数据或发往上层的数据称为PDCP SDU;PDCP实体从RLC实体接收到的数据或发往RLC实体的数据称为PDCP PDU(也就是RLC SDU)。
主RLC实体:Primary RLC entity,在载波聚合中,去激活分组重复后PDCP实体将PDCP PDU发送到主RLC实体,所述主RLC实体是所关联的两个RLC实体中的一个RLC实体,可以通过RRC信令配置或MAC控制元素CE指定或预定义。在多连接中,对于未配置分组重复的分离承载,如果配置了数据分离门限且PDCP数据量和其关联的两个RLC实体的数据量的和小于设定的数据分离门限,则PDCP实体将PDCP PDU发送到主RLC实体。例如,基站通过RRC信令中携带的信元primarypath(所述信元的具体描述见3GPP TS38.331)以及包含在所述信元中的用于标识小区组标识的信元cellGroup和逻辑信道标识的信元logicalChannel等来为用户设备UE配置主RLC实体,并通过信元ul-DataSplitThreshold(所述信元的具体描述 见3GPP TS38.331和TS38.323)设定数据分离门限。如果PDCP数据量和其关联的两个RLC实体的数据量的和大于或等于设定的数据分离门限,则PDCP实体将PDCP PDU发送到所关联的主RLC实体或辅RLC实体。如果未配置数据分离门限,则PDCP实体将PDCP PDU发送到所关联的两个RLC实体的其中一个RLC实体(例如,主RLC实体)或者采用链路选择操作模式。
此外,本公开将不是指定为主RLC实体的RLC实体称为辅RLC实体(Sencondary RLC entity),以便于描述本公开实施例。
分组重复激活/去激活媒体访问控制控制元素:Duplication Activation/Deactivation MAC CE,所述MAC CE用于激活和/或去激活分组重复。可通过将承载标识对应的位设置为“1”或“0”来激活或者去激活一个承载的分组重复功能。具体见3GPP TS38.321的相关描述。本公开中,所述激活分组重复是指PDCP发送实体重复(duplicate)PDCP PDU和/或将所述PDCP PDU发送到其关联的两个RLC实体;所述去激活分组重复是指PDCP发送实体将生成的PDCP PDU发送到其关联的两个RLC实体中的一个RLC实体,即将PDCP PDU发送到主RLC实体或者将PDCP PDU发送到主RLC实体或辅RLC实体(具体需要根据是否配置了数据分离门限及PDCP数据量和关联的一个或两个RLC实体的数据量的和与数据分离门限的比较来确定)。
非分离承载:non-split bearer,所述承载的无线协议位于主基站(例如MgNB)或辅基站(例如SgNB)且分别使用主基站或辅基站的资源。换言之,所述承载的无线协议位于主基站(例如MgNB)且使用主基站的资源;或者,所述承载的无线协议位于辅基站(例如SgNB)且使用辅基站的资源。非分离承载也可以称为不可分离承载。
分离承载:split bearer,在双连接中,所述承载的无线协议位于主基站(例如MgNB)和辅基站(例如SgNB)且使用主基站和辅基站的资源。
如未特别说明,本公开中的所述承载可以是数据无线承载DRB,也可以是信令无线承载SRB。相应地,所述分离承载可以是分离SRB或分离DRB;例如,MCG分离DRB,MCG分离SRB,SCG分离DRB,SCG分离SRB等均为分离承载。所述非分离承载可以是非分离SRB或非分离DRB;例如,MCG DRB,MCG SRB,SCG DRB,SCG SRB等均为非分离承载。
主基站:Master NodeB,记为MeNB(对应E-UTRAN或LTE或eLTE的基站)或MgNB(即NG-RAN或NR的基站gNB)。在多连接中,至少终止于处理UE与核心网(例如5GC)间交互的控制节点移动管理实体(例如,S1-MME)的基站。本公开中主基站均记为MeNB,需要说明的是,所有适用于MeNB的实施例或定义也适用于MgNB。
辅基站:Secondary NodeB,记为SeNB(对应E-UTRAN或LTE或eLTE的基站)或SgNB(对应NG-RAN或NR的基站gNB)。在多连接中,不作为MeNB,为UE提供额外的无线资源的基站。本公开中辅基站均记为SeNB,需要说明的是,所有适用于SeNB的实施例或定义也适用于SgNB。
主小区:Primary Cell,PCell。工作在主频率上的小区,UE在其上执行初始连接建立过程或发起连接重建过程或在切换过程中被指定为主小区的小区。本公开所述小区也可称为载波。
主辅小区:Primary Secondary Cell,PSCell。在执行改变SCG的过程中指示UE用于执行随机接入的SCG小区。
辅小区:Secondary Cell,SCell。工作在辅频率上的小区,所述小区可在RRC连接建立之后配置且可用于提供额外的无线资源。
小区组:Cell Group,简写为CG,在多连接中,关联到主基站或辅基站的一组服务小区或载波。在本公开中,将关联到分组重复承载的某个逻辑信道或RLC实体的一组小区或为分组重复承载的某个逻辑信道或RLC实体提供无线资源或数据传输服务的一组小区称为小区组,所述小区可以是配置了上行载波的小区。需要说明的是,本公开所述的小区也可以称为光束集(a set of beam)。
服务小区:主小区或辅小区。本公开中,小区也可称为载波。在本公开中适用于小区的实施例也适用于部分带宽(Bandwidth Part,BWP)的情形。
主小区组:Master Cell Group,MCG。对于未配置多连接的UE,MCG由所有的服务小区组成;对于配置了多连接的UE,MCG由服务小区的子集组成(即关联到MeNB或MgNB的一组服务小区),其中包含PCell和0个或1个或多个SCell。
辅小区组:Secondary Cell Group,SCG。在多连接中,与SeNB或SgNB关联的一组服务小区。SCG可以包含一个PSCell,还可以包含一个或多个 SCell
多连接:处于RRC连接态下UE的操作模式,配置了多个小区组,所述多个小区组包括一个MCG,一个或多个SCG(即UE连接到多个基站)。如果只配置了一个MCG(或MeNB或MgNB)和一个SCG(或SeNB或SgNB),则称为双连接。即处于连接态的具有多个接收机和/或发送机的UE被配置为使用由多个不同的调度器提供的EUTRAN和/或5G-RAN(或NG-RAN)无线资源,所述调度器可以通过非理想回程(non-ideal backhaul)或理想回程(ideal backhaul)连接。本公开所述的多连接包括双连接。多连接数据传输方式包括但不限于:分组重复,链路选择。
分组重复:duplication,PDCP实体将同一PDCP PDU发送到关联的两个或多个下层实体(或RLC实体)。在多连接方式下,同一数据(或称为包或者分组,即PDCP PDU或PDCP SDU)在两个或多个小区组的服务小区进行传输,即同一数据分别利用主基站(或MCG)和辅基站(或SCG)提供的资源传输或同一数据分别发送到位于MCG和SCG的下层(或RLC层)或相同的数据在两个或多个不同的载波上发送。在载波聚合或单连接方式下,PDCP实体将重复的(或同一)PDCP PDU发送到所关联的两个或多个RLC实体(或称下层实体)和/或逻辑信道,并由MAC实体通过不同的载波(或小区或服务小区)或不同的小区组发送给接收端;接收端PDCP实体负责检测并删除重复的PDCP PDU或SDU。本公开中所述分组重复也可称为重复或数据重复或包重复或PDCP重复或PDCP PDU重复或PDCP SDU重复或PDCP分组重复等,这些术语可以互换使用。如未特别说明,本公开中所述数据可以是控制面信令或用户面数据,分别对应SRB的信令和DRB的数据。本公开中所述“下层实体”和“下层”是等价描述,可互换使用。
链路选择:PDCP实体将同一分组(即PDCP PDU或PDCP SDU)仅发送到所关联的两个或多个RLC实体中的一个RLC实体,不同分组可以通过相同或不同的RLC实体发送。在链路选择多连接方式下,每个PDCP PDU只经过所关联的两个或多个RLC实体中的一个RLC实体发送给接收方。
在载波聚合中,去激活PDCP分组重复后,PDCP实体将PDCP PDU发送到其关联的两个或多个RLC实体中的一个(例如,发送到主RLC实体)。在多连接方式下,去激活PDCP分组重复后,PDCP实体根据配置的分离承 载相关参数采用分离承载(或链路选择)发送PDCP PDU。例如,从配置的小区组中选择一个小区组进行分组传输,即PDCP实体将PDCP PDU发送到与MCG关联的RLC实体或与SCG关联的RLC实体;或者,PDCP实体将PDCP PDU发送到主RLC实体。
重传询问定时器t-pollRetransmit:所述定时器被AM RLC实体发送端用于重传询问的目的。
本公开的实施例以PDCP PDU或SDU重复发送两次为例(即一个PDCP实体关联两个RLC实体和/或两个逻辑信道),但本公开所述的技术方案并不限于PDCP PDU或SDU重复发送两次的场景,本领域技术人员可以容易地扩展到重复发送多次的场景(即一个PDCP实体关联多个RLC实体和/或多个逻辑信道)。
作为示例,图3a示出了分组重复承载的协议架构图,而图3b示出了分离承载的协议架构图。在图3a所示示意图中,一个承载的PDCP实体关联到两个RLC实体和两个逻辑信道、一个MAC实体。在图3b所示示意图中,一个承载的PDCP实体关联到两个RLC实体和两个逻辑信道、两个MAC实体。
下面描述用户设备UE中去激活分组重复后的PDCP发送实体(transmitting PDCP entity)和/或RLC实体(即AM RLC实体发送端和/或UM RLC实体发送端)执行的操作的实施例。所述RLC实体可以是辅RLC实体或者是去激活的RLC实体。需要指出的是,下文的实施例也可以在基站的PDCP发送实体和/或RLC实体处执行。
图1是示出了根据本公开一个实施例的由用户设备执行的方法的流程图。
在步骤S110,用户设备UE获取指示消息,该指示消息指示分组重复功能被去激活。
在步骤S120,用户设备UE至少基于无线链路控制RLC实体的缓存区的状态以及重传询问定时器t-pollRetransmit的状态,对所述缓存区中的数据执行相应操作。
下面,通过若干具体示例来详细描述该方法的细节。
方案一:当分组重复被去激活时,RLC实体不删除缓存区中的RLC  PDU和/或RLC SDU或RLC实体继续发送RLC SDU
在一个实施例中,在去激活分组重复(例如RLC实体接收到来自上层或下层的去激活分组重复指示)时,如果RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC SDU或RLC SDU分段且用于RLC实体发送端的重传询问定时器t-pollRetransmit未运行或正在运行(定时器t-pollRetransmit未运行或正在运行是可选的),所述RLC实体重传已发送的具有最大序列号的RLC SDU;或者所述RLC实体重传任意尚未被肯定确认的RLC SDU(可选的,将询问状态变量POLL_SN设置为已发送的RLC SDU的最大序列号);或者如果询问状态变量POLL_SN为已发送的RLC SDU的最大序列号,则重传已发送的具有最大序列号的RLC SDU或重传任意尚未被肯定确认的RLC SDU。可选的,在所述重传的RLC SDU或其对应的RLC PDU中携带询问。
在一个实施例中,在去激活分组重复(例如RLC实体接收到来自上层或下层的去激活分组重复指示)时,如果RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC SDU或RLC SDU分段且用于所述RLC实体发送端的重传询问定时器t-pollRetransmit正在运行(定时器t-pollRetransmit正在运行是可选的)且已发送的携带询问的RLC SDU的最大序列号(或携带询问的RLC SDU的最大序列号或已发送的携带询问的RLC SDU的序列号或询问状态变量POLL_SN的值)小于已发送的RLC SDU的最大序列号,RLC实体重传已发送的具有最大序列号的RLC SDU;或者重传任意尚未被肯定确认的RLC SDU(可选的,将询问状态变量POLL_SN设置为已发送的RLC SDU的最大序列号)。可选的,在所重传的RLC SDU或其对应的RLC PDU中携带询问。
在一个实施例中,在去激活分组重复(例如RLC实体接收到来自上层或下层的去激活分组重复指示)时,如果RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC SDU或RLC SDU分段且用于所述RLC实体发送端的重传询问定时器t-pollRetransmit正在运行(定时器t-pollRetransmit正在运行是可选的),如果定时器t-pollRetransmit到期,RLC实体重传已发送的具有最大序列号的RLC SDU;或者RLC实体重传任意尚未被肯定确认的RLC SDU(可选的,将询问状态变量POLL_SN设置为已发送的RLC SDU的最大序列号);或者如果询问状态变量POLL_SN 为已发送的RLC SDU的最大序列号,则重传已发送的具有最大序列号的RLC SDU或重传任意尚未被肯定确认的RLC SDU,如果询问状态变量POLL_SN小于发送的RLC SDU的最大序列号,则重传已发送的具有最大序列号的RLC SDU或重传任意尚未被肯定确认的RLC SDU(可选的,将询问状态变量POLL_SN设置为已发送的RLC SDU的最大序列号)。可选的,在所述重传的RLC SDU或其对应的RLC PDU中携带询问。
在一个实施例中,在去激活分组重复(例如RLC实体接收到来自上层或下层的去激活分组重复指示)时,如果RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC SDU或RLC SDU分段且用于所述RLC实体发送端的重传询问定时器t-pollRetransmit正在运行(定时器t-pollRetransmit正在运行的条件是可选的),如果接收到状态报告(Status Report)且所述状态报告中不包含已发送的具有最大序列号的RLC SDU的肯定确认或否定确认时,则RLC实体重传已发送且具有最大序列号的RLC SDU,或者重传任意尚未被肯定确认(positively acknowledged)的RLC SDU(可选的,将询问状态变量POLL_SN设置为已发送的RLC SDU的最大序列号);或者如果询问状态变量POLL_SN为已发送的RLC SDU的最大序列号,则重传已发送的具有最大序列号的RLC SDU或重传任意尚未被肯定确认的RLC SDU,如果询问状态变量POLL_SN小于发送的RLC SDU的最大序列号,则重传已发送的具有最大序列号的RLC SDU或重传任意尚未被肯定确认的RLC SDU(可选的,将询问状态变量POLL_SN设置为已发送的RLC SDU的最大序列号)。可选的,在所述重传的RLC SDU或其对应的RLC PDU中携带询问。
在一个实施例中,在去激活分组重复(例如RLC实体接收到来自上层或下层的去激活分组重复指示或辅RLC实体被去激活)时,如果RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC SDU或RLC SDU分段且用于所述RLC实体发送端的重传询问定时器t-pollRetransmit正在运行或未运行(定时器t-pollRetransmit正在运行或未运行是可选的),RLC实体启动重传定时器t-retransmit。如果定时器t-retransmit到期,则可以执行以下操作之一:
(1)重传已递交给下层的具有最大序列号的RLC SDU。可选的,在重传的RLC SDU或其对应的RLC PDU中携带询问;
(2)重传已递交给下层的具有最大序列号的RLC SDU或者重传任意尚未被肯定确认的RLC SDU(可选的,将询问状态变量POLL_SN设置为已发送的RLC SDU的最大序列号)。可选的,在所述重传的RLC SDU或其对应的RLC PDU中携带询问;
(3)重传任意尚未被肯定确认的RLC SDU。可选的,在所述重传的RLC SDU或其对应的RLC PDU中携带询问;可选的,将询问状态变量POLL_SN设置为已发送的RLC SDU的最大序列号;
(4)如果询问状态变量POLL_SN为已发送的RLC SDU的最大序列号,则重传已发送的具有最大序列号的RLC SDU或重传任意尚未被肯定确认的RLC SDU。可选的,在所述重传的RLC SDU或其对应的RLC PDU中携带询问;
(5)如果询问状态变量POLL_SN为已发送的RLC SDU的最大序列号,则重传已递交给下层的具有最大序列号的RLC SDU或重传任意尚未被肯定确认的RLC SDU(可选的,将询问状态变量POLL_SN设置为已发送的RLC SDU的最大序列号)。可选的,在所述重传的RLC SDU或其对应的RLC PDU中携带询问。
如果RLC实体接收到状态报告,且其中不包含已发送的具有最大序列号的RLC SDU的肯定确认或否定确认,则可以执行以下操作至少之一(需要注意,以下操作的执行顺序可交换):
(1)停止和/或重置定时器t-retransmit(当定时器t-retransmit正在运行时才执行此操作);
(2)重传已发送的具有最大序列号的RLC SDU,或者如果POLL_SN为已发送的RLC SDU的最大序列号,则重传已发送的具有最大序列号的RLC SDU或任意已发送且尚未肯定确认的RLC SDU;
(3)执行上述定时器t-retransmit到期时的上述操作(1)至(5)之一。
(4)重启定时器t-retransmit。
如果RLC实体接收到来自对等实体的状态报告,且其中包含已发送的具有最大序列号的RLC SDU的肯定确认或否定确认,则RLC实体发送端可以执行以下操作之一:
(1)如果重传定时器t-retransmit正在运行,停止和/或重置重传定时器t-retransmit;
(2)如果定时器t-pollRetransmit正在运行,停止和/或重置定时器t-pollRetransmit。
本公开的实施例中描述的重传定时器t-retransmit可用于控制重传RLC SDU或控制发送询问,其值可以通过RRC配置,或者取值与定时器t-pollRetransmit的取值相同,或者重传定时器t-retransmit也可以是定时器t-pollRetransmit。
在一个实施例中,在去激活分组重复(例如RLC实体接收到来自上层或下层的去激活分组重复指示或RLC实体被去激活或在分组重复激活的情况下)时,在接收到来自下层的传输机会指示时,对应每个递交给下层的(或递交用于传输的)AMD PDU,AM RLC实体发送端执行以下操作:如果发送缓存区和重传缓存区均为空(不包括已发送且等待确认的RLC SDU或RLC SDU分段),在所述AMD PDU中包含一个询问。其中所述发送缓存区和重传缓存区均为空(不包括已发送且等待确认的RLC SDU或RLC SDU分段)不考虑上层有数据等待发送的情况。换言之,即使上层有数据等待(或等待发送),如果RLC实体的发送缓存区和重传缓存区均为空(不包括已发送且等待确认的RLC SDU或RLC SDU分段),在所述AMD PDU中包含询问。在没有配置分组重复或分组重复激活(或RLC实体接收到分组重复激活的指示)时,如果上层有数据等待(或等待发送),即使发送缓存区和重传缓存区均为空(不包括已发送且等待确认的RLC SDU或RLC SDU分段),所述AMD PDU中也不包括询问,从而可以避免发送不必要的询问。
在本文中,“RLC SDU”和“RLC PDU”可互换使用、”询问”和”询问比特”可互换使用、”已发送”和”已发送且等待确认”以及“已递交给下层”和“已递交给下层且等待确认”和“尚未被肯定确认”可互换使用、“辅RLC实体”和“辅RLC实体发送端”可互换使用。辅RLC实体是接收到用于去激活分组重复指示的RLC实体,可以包括AMD RLC实体或UMD RLC实体。
本公开实施例中所述“RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC SDU或RLC SDU分段”可替换为“RLC实体的发送缓存区和重传缓存区均为空(不包括已发送且等待确认的RLC SDU或RLC SDU分段)”,如果将各个实施例中“RLC实体的发送缓存区和重传 缓存区仅包括已发送且等待确认的RLC SDU或RLC SDU分段”替换为“RLC实体的发送缓存区和重传缓存区均为空(不包括已发送且等待确认的RLC SDU或RLC SDU分段)”,则在重传已发送的具有最大序列号的RLC SDU或重传任意尚未被肯定确认的RLC SDU前需要先判断是否存在已发送且等待确认的RLC SDU或RLC SDU分段。两者均可以指去激活分组重复后或接收到去激活分组重复的指示或接收到PDCP删除RLC SDU的指示(所述指示用于PDCP实体去激活分组重复时指示RLC实体删除RLC SDU)时,RLC实体删除那些其本身且其分段尚未递交下层的RLC SDU后发送缓存区和重传缓存区均为空,即缓存区中仅存在已发送且等待确认的RLC SDU或RLC SDU分段。可将本公开的实施例中描述的RLC SDU替换为RLC PDU,本公开的原理仍然适用。
本公开的实施例中描述的“已递交给下层的具有最大序列号的RLC SDU”、“已发送的具有最大序列号的RLC SDU”、“已发送且等待确认的具有最大序列号的RLC SDU”、“具有最大序列号的RLC SDU”、“已递交给下层且等待确认的具有最大序列号的RLC SDU”、“重传缓存区中具有最大序列号的RLC SDU”和“尚未被肯定确认的具有最大序列号的RLC SDU”是等价描述,可以互换使用。
本公开实施例中,所述询问状态变量POLL_SN是已递交给下层且携带询问的RLC SDU的最大序列号;或者,所述询问状态变量POLL_SN是最近发送的包含询问的RLC SDU的最大序列号;或者,所述询问状态变量POLL_SN是最近发送的包含询问的RLC SDU或AMD PDU的发送状态变量TX_Next-1的值,所述TX_Next保存下一个新产生的AMD PDU的序列号,所述AMD PDU包含一个RLC SDU或RLC SDU的第一个分段(或字节)或最后一个分段(或字节)。
本公开的实施例中描述的携带询问可以是将询问比特的值设置为1或其他预定义的值。
方案二:当分组重复被去激活时,RLC实体删除缓存区的RLC PDU和/或RLC SDU
如果RLC实体接收到指示信息,则删除发送缓存区和重传缓存区的所有RLC SDU和/或RLC SDU分段和/或RLC PDU。
在一个实施例中,PDCP实体在接收到来自上层(例如RRC)或下层(例如MAC)的用于去激活分组重复的指示时,执行以下操作至少一项:
(1)删除已发送给辅RLC实体的PDCP PDU;
(2)向下层发送第一删除指示,所述第一删除指示用于指示下层(即RLC实体或辅RLC实体)删除对应的RLC SDU和/或RLC SDU分段和/或RLC PDU(如果存在才执行此操作),无论所述RLC SDU或其分段是否递交给下层(例如MAC层)。或者,向下层指示删除对应的PDCP PDU,下层接收到所述第一删除指示时,删除对应的RLC SDU和/或RLC SDU分段和/或RLC PDU(如果存在才执行此操作),无论所述RLC SDU或其分段是否递交给下层(例如MAC层)。
在一个实施例中,PDCP实体在接收到来自上层(例如RRC)或下层(例如MAC)的用于去激活分组重复的指示(或者分组重复被去激活)时,执行以下操作:
(1)指示下层(即RLC实体)去激活分组重复或向下层发送去激活分组重复的指示;
(2)删除已发送给下层(例如辅RLC实体)的PDCP PDU;并指示下层删除对应的PDCP PDU。
RLC实体在接收到来自上层(例如PDCP)或下层(例如MAC)去激活分组重复指示(或分组重复被去激活)后,当接收到来自上层(即PDCP)的删除特定RLC SDU的指示时,AM RLC实体发送端或UM RLC实体发送端删除所指示的RLC SDU,无论所述RLC SDU或其分段是否递交给下层。
在一个实施例中,为PDCP实体定义两种类型的删除指示,即第一删除指示和第二删除指示。在去激活分组重复后(或PDCP接收到来自上层或下层的去激活分组重复的指示),PDCP实体向下层(即RLC实体)发送第一删除指示(或PDCP实体向下层发送针对已递交给下层的PDCP PDU的第一删除指示);下层接收到所述第一删除指示时,删除对应的RLC SDU和/或RLC SDU分段和/或RLC PDU(如果存在才执行此操作),无论所述RLC SDU或其分段是否递交给下层(例如MAC层)。如果PDCP PDU对应的删除定时器discardtimer到期或所述PDCP PDU已被确认发送成功,PDCP实体在删除PDCP SDU和/或对应的PDCP PDU后,如果对应的PDCP  PDU已递交给下层,PDCP实体向下层发送第二删除指示;下层接收到所述第二删除指示时,如果所指示的RLC SDU和其分段尚未递交给下层(即MAC层),则删除对应的RLC SDU和/或RLC PDU。
在一个实施例中,RLC实体接收到来自上层(例如PDCP实体或RRC实体)或下层(即MAC实体)的去激活分组重复的指示时,RLC实体发送端删除所有的RLC SDU、RLC SDU分段和RLC PDU,无论所述RLC SDU或其分段是否递交给下层(例如MAC层)。换言之,RLC实体发送端删除或清空发送缓存区和重传缓存区的所有数据,包括RLC SDU、RLC SDU分段和RLC PDU,无论所述RLC SDU或其分段是否递交给下层(例如MAC层)。
下面,描述RLC实体发送端在接收到状态报告时的操作。
对应于分组重复的情况(或如果RLC实体是辅RLC实体或如果RLC实体是辅RLC实体且分组重复被激活),如从AM RLC实体的对等实体接收到一个RLC SDU或RLC SDU分段的否定确认(negative acknowledgement),AM RLC实体发送端可以执行以下操作:如果所述RLC SDU的序列号SN满足TX_Next_ACK<=SN<TX_Next,则重传所述接收到否定确认的RLC SDU或RLC SDU分段。否则,如果RLC实体是辅RLC实体或如果RLC实体是辅RLC实体且分组重复被激活,重传一个AMD PDU或RLC SDU,将其序列号设为SN且负载为空(即数据data为空,但序列号为SN的AMD PDU)。换言之,如果接收到否定确认的RLC SDU的序列号不满足TX_Next_ACK<=SN<TX_Next,重传一个AMD PDU或RLC SDU,将其序列号设为SN且负载为空(即数据data为空,但序列号为SN的AMD PDU)。所述TX_Next_ACK是确定状态变量(Acknowledgement state variable),所述变量用于存储下一个将顺序被肯定确认的RLC SDU的序列号,其作为发送窗的下界;所述TX_Next是发送状态变量,所述变量用于存储将要分配给下一个新产生的AMD PDU的序列号。TX_Next_ACK和TX_Next在3GPP TS38.322中有详细描述。
如未特别说明,本公开中的缓存区可以是发送缓存区和/或重传缓存区。
另外,本公开中的“去激活分组重复”、“配置了分组重复但处于去激活状态”以及“接收到来自上层(例如PDCP)或下层(例如MAC)的去激活分组重复的指示”可互换使用。
本公开的实施例描述了PDCP实体向被去激活的RLC实体发送第一删除指示或者被去激活的RLC实体(例如辅RLC实体)删除RLC SDU及其分段或重传已发送但等待确认的RLC SDU或其分段的方法,可以避免无线资源的浪费、节省用户设备功耗或者避免PDCP接收实体与发送实体超帧号不同步(HFN desynchronization)的问题。
图2是示出了根据本公开一个实施例的用户设备20的框图。如图2所示,该用户设备20包括处理器210和存储器220。处理器210例如可以包括微处理器、微控制器、嵌入式处理器等。存储器220例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器220上存储有程序指令。该指令在由处理器210运行时,可以执行本公开详细描述的由用户设备执行的上述方法(例如图1中所示的方法)。
用于实现本发明各实施例功能的计算机可执行指令或程序可以记录在计算机可读存储介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读存储介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本发明的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本发明并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本发明并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、 空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (10)

  1. 一种由用户设备执行的方法,包括:
    获取指示消息,所述指示消息指示分组重复功能被去激活;以及
    至少基于无线链路控制RLC实体的缓存区的状态以及重传询问定时器t-pollRetransmit的状态,对所述缓存区中的数据执行相应操作。
  2. 根据权利要求1所述的方法,其中,如果RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC服务数据单元SDU或其分段并且所述RLC实体的重传询问定时器t-pollRetransmit未运行,则重传已发送的具有最大序列号的RLC SDU或任意尚未被肯定确认的RLC SDU,所重传的RLC SDU携带询问。
  3. 根据权利要求1所述的方法,其中,如果RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC服务数据单元SDU或其分段、所述RLC实体的重传询问定时器t-pollRetransmit正在运行并且已发送的携带询问的RLC SDU的最大序列号小于已发送的RLC SDU的最大序列号,则重传已发送的具有最大序列号的RLC SDU或任意尚未被肯定确认的RLC SDU,所重传的RLC SDU携带询问。
  4. 根据权利要求1所述的方法,其中,如果RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC服务数据单元SDU或其分段并且所述RLC实体的重传询问定时器t-pollRetransmit到期,则重传已发送的具有最大序列号的RLC SDU或重传任意尚未被肯定确认的RLC SDU。
  5. 根据权利要求1所述的方法,其中,如果RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC服务数据单元SDU或其分段并且所述RLC实体的重传询问定时器t-pollRetransmit正在运行,当接收到状态报告且所述状态报告中不包含已发送的具有最大序列号的RLC SDU的肯定确认或否定确认时,重传已发送的具有最大序列号的RLC SDU或者重传任意尚未被肯定确认的RLC SDU。
  6. 根据权利要求1所述的方法,其中,如果RLC实体的发送缓存区和重传缓存区仅包括已发送且等待确认的RLC服务数据单元SDU或其分段并且所述RLC实体的重传询问定时器t-pollRetransmit未运行,则启动重传定时器t-retransmit。
  7. 根据权利要求6所述的方法,其中,如果接收到状态报告且所述状态报告不包括已发送的具有最大序列号的RLC SDU的肯定确认或否定确认,则执行以下操作中的至少一项:停止重传定时器t-retransmit、重传已发送的具有最大序列号的RLC SDU或者重启重传定时器t-retransmit。
  8. 根据权利要求6所述的方法,其中,如果接收到状态报告且所述状态报告包括已发送的具有最大序列号的RLC SDU的肯定确认或否定确认,则执行以下操作中的任意一项:
    如果重传定时器t-retransmit正在运行,停止重传定时器t-retransmit;或者
    如果重传询问定时器t-pollRetransmit正在运行,停止重传询问定时器t-pollRetransmit。
  9. 根据权利要求1所述的方法,其中,所述方法还包括:
    分组数据汇聚协议PDCP实体向无线链路控制RLC实体发送另一指示消息,以指示RLC实体删除所有的RLC服务数据单元SDU、RLC服务数据单元SDU的分段以及RLC协议数据单元PDU。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,所述存储器上存储有指令;
    其中,所述指令在由所述处理器运行时,使所述用户设备执行根据权利要求1-9中任意一项所述的方法。
PCT/CN2018/124325 2018-02-09 2018-12-27 无线通信方法和设备 WO2019153937A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810139576.4 2018-02-09
CN201810139576.4A CN110138512A (zh) 2018-02-09 2018-02-09 无线通信方法和设备

Publications (1)

Publication Number Publication Date
WO2019153937A1 true WO2019153937A1 (zh) 2019-08-15

Family

ID=67547888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124325 WO2019153937A1 (zh) 2018-02-09 2018-12-27 无线通信方法和设备

Country Status (2)

Country Link
CN (1) CN110138512A (zh)
WO (1) WO2019153937A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547842A (zh) * 2010-12-14 2012-07-04 联芯科技有限公司 Rlc层的空口资源分配方法、轮询位重传方法和装置
WO2016122928A1 (en) * 2015-01-26 2016-08-04 Qualcomm Incorporated Methods and apparatus for radio link control switching
CN107241164A (zh) * 2017-05-05 2017-10-10 电信科学技术研究院 一种无线承载重复传输的处理方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547842A (zh) * 2010-12-14 2012-07-04 联芯科技有限公司 Rlc层的空口资源分配方法、轮询位重传方法和装置
WO2016122928A1 (en) * 2015-01-26 2016-08-04 Qualcomm Incorporated Methods and apparatus for radio link control switching
CN107241164A (zh) * 2017-05-05 2017-10-10 电信科学技术研究院 一种无线承载重复传输的处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "RLC Behaviors upon Duplicate Deactivation", 3GPP TSG RAN WG2 #99BIS R2-1710762, 8 October 2017 (2017-10-08), XP051342788 *

Also Published As

Publication number Publication date
CN110138512A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
US11751097B2 (en) Method and apparatus for reestablishing packet data convergence protocol (PDCP) entity in a wireless communication system
CN110012454B (zh) 用户设备和相关方法
US11696198B2 (en) Method and device for performing handover in mobile communication system
US20210144062A1 (en) Communication method and apparatus for bandwidth part switching in wireless communication system
TWI678124B (zh) 使用者設備和相關方法
AU2017389025B2 (en) Method for reporting multi-connection transmission capability, method for configuring multi-connection transmission mode, method for preventing retransmission of data, UE and base station
TWI692988B (zh) 基站、使用者設備和相關方法
JP6532062B2 (ja) 無線通信システム、端末装置、無線通信方法、集積回路および処理方法
WO2017163676A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP2022542024A (ja) 次世代移動通信システムで休眠部分帯域幅を効率的に操作する方法及び装置
WO2018228283A1 (zh) 无线通信方法和设备
US20220393794A1 (en) Timer handling in multiple active grant configurations
KR20200002265A (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
KR20230105934A (ko) 차세대 이동 통신 시스템에서 셀그룹 활성화 또는 비활성화를 지원하는 헤더 압축 또는 압축 해제 절차를 위한 방법 및 장치
TW202226879A (zh) 降低多分支傳輸中封包延遲的方法和裝置
WO2015018009A1 (zh) 用于自动重传的方法、用户设备和基站
WO2014101061A1 (zh) 控制上行载波聚合的方法、用户设备和基站
WO2020221155A1 (zh) 基站、用户设备和相关方法
WO2019153937A1 (zh) 无线通信方法和设备
KR20200094059A (ko) 차세대 이동 통신 시스템에서 전력 소모 절감을 위한 링크 별 활성화 및 비활성화 방법 및 장치
WO2024096097A1 (ja) 端末装置、方法、および、集積回路
WO2024070379A1 (ja) 端末装置、方法、および集積回路
WO2024029478A1 (ja) 端末装置、方法、および、集積回路
WO2024070447A1 (ja) 端末装置、方法、および集積回路
KR20220008697A (ko) 무선 통신 시스템에서 셀 그룹의 활성화를 제어하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905590

Country of ref document: EP

Kind code of ref document: A1