WO2018228208A1 - 通信方法、基站和终端设备 - Google Patents

通信方法、基站和终端设备 Download PDF

Info

Publication number
WO2018228208A1
WO2018228208A1 PCT/CN2018/089309 CN2018089309W WO2018228208A1 WO 2018228208 A1 WO2018228208 A1 WO 2018228208A1 CN 2018089309 W CN2018089309 W CN 2018089309W WO 2018228208 A1 WO2018228208 A1 WO 2018228208A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink control
symbols
control information
terminal device
symbol
Prior art date
Application number
PCT/CN2018/089309
Other languages
English (en)
French (fr)
Inventor
吕永霞
闫志宇
温容慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018228208A1 publication Critical patent/WO2018228208A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and more particularly to a communication method, a base station, and a terminal device.
  • the total length of uplink control information and pilot sequences transmitted by different terminal devices may be different.
  • different terminal devices need to transmit respective uplink control channel sequences on different physical resource modules, which causes waste of resources. For example, if there are P (assuming P is greater than or equal to 2) terminal devices at the same time, the uplink control information and the pilot sequence need to be sent, and the P uplink control information and the pilot sequence include uplink control information with different total lengths and For the pilot sequence, each of the P terminal devices needs to occupy 12 subcarriers in the frequency domain. Therefore, in this case, P ⁇ 12 subcarriers are required in the frequency domain to avoid mutual interference between different signals.
  • the present application provides a communication method, a base station, and a terminal device, which can reduce waste of frequency domain resources when transmitting an uplink control channel sequence.
  • the embodiment of the present application provides a communication method, where the method includes: receiving, by a base station, first uplink control information and a first pilot sequence from a first terminal device, where the first uplink control information and the first guide The frequency sequence is carried by X symbols, the first pilot sequence includes N sub-sequences carried by N symbols in the X symbols, N is a positive integer greater than or equal to 1, and X is greater than N a positive integer; the base station receives the second uplink control information and the second pilot sequence from the second terminal, where the second uplink control information and the second pilot sequence are carried by Y symbols, the second pilot The sequence includes M sub-sequences carried by M symbols in the Y symbols, the N sub-sequences being orthogonal to the M1 sub-sequences carried by the M1 symbols in the M sub-sequences, the N symbols
  • the time domain location is the same as the time domain location of the M1 symbol, and the frequency domain resource for carrying the first uplink control
  • the uplink control information is used to occupy the same frequency domain resource, but the pilot control device uses the same frequency domain resource.
  • the same parts of the frequency sequence are all orthogonal, so that the resources can be fully utilized and the mutual interference between different signals can be reduced.
  • the method before the base station receives the first uplink control information and the first pilot sequence from the first terminal device, the method further includes: the base station The first terminal device sends the first format indication information, where the first format indication information is used to indicate that the first terminal device sends the first uplink control information and the first pilot sequence according to the first uplink control channel format; Before the base station receives the second uplink control information and the second pilot sequence from the second terminal, the method further includes: the base station sending, to the second terminal device, second format indication information, where the second format indication information is used to indicate The second terminal device sends the second uplink control information and the second pilot sequence according to the second uplink control channel format.
  • the base station indicates in advance the uplink control channel format that the terminal device needs to use, so that the uplink control information sent by different terminal devices occupies the same frequency domain resource, but the same parts of the pilot sequence time domain are all orthogonal. Therefore, it is possible to achieve the effect of making full use of resources and reducing mutual interference between different signals.
  • the base station sends the first format indication information to the first terminal device, where the base station sends Before the second terminal device sends the second format indication information
  • the method further includes: the base station transmitting, to the first terminal device and the second communication device, candidate format information, where the candidate format indication includes at least two of the following information: The number of symbols included in the candidate uplink control channel format, the symbol position used to carry the pilot sequence in the candidate uplink control channel format, and the symbol position used to carry the uplink control information in the candidate uplink control channel format.
  • the base station can determine the terminal device indicated by the uplink control channel format used by the terminal device, thereby controlling the uplink control channel format that the terminal device can use. .
  • the Y symbols include R symbol sets, and each of the R symbol sets
  • the set of symbols includes X symbols, the set of symbols includes an attribute of an xth symbol of the X symbols and a first of the X symbols used to carry the first uplink control information and the first pilot sequence
  • the attributes of the x symbols are the same, wherein the attributes of the symbol include the first attribute and the second attribute, and the attribute of the symbol used to carry the first uplink control information and the attribute of the symbol used to carry the second uplink control information are
  • the first attribute, the attribute for carrying the symbol of the first pilot sequence and the attribute of the symbol for carrying the second pilot sequence are the second attribute, and R is a positive integer greater than or equal to 2.
  • the Y symbols can be regarded as being obtained by repeating the X symbols R times, and the structure of the Y symbols is simple.
  • the sub-sequences carried by the M2 symbols in the M sub-sequences are the M1 in the M sub-sequences
  • the subsequence carried by the symbols is obtained by extending the orthogonal variable spreading factor OVSF, where M2 is a positive integer greater than or equal to 1, and the sum of M1 and M2 is M.
  • M2 may be equal to M1 or a multiple of M1
  • the subsequence carried by the M1 symbols may be orthogonal to the same portion of the time domain of the subsequence carried by the M2 symbols.
  • the base station can receive the uplink control information and the pilot sequence sent by the R+1 terminal devices at a maximum, thereby achieving the effect of further saving time-frequency resources and reducing mutual interference between different signals.
  • the base station can receive the uplink control information and the pilot sequence sent by the R+1 terminal devices at a maximum, thereby achieving the effect of further saving time-frequency resources and reducing mutual interference between different signals.
  • the first uplink control information is carried by the first sequence, the first sequence is performed by the S The symbol is carried, S is a positive integer greater than or equal to 1, and the sum of S and N is X; the second uplink control information is carried by the second sequence, and the second sequence includes T sub-sequences respectively by T Carrying, the first sequence is orthogonal to the sub-sequence carried by the T1 symbols in the T sub-sequences, and the time-domain positions of the S symbols are the same as the time-domain positions of the T1 symbols, where S is equal to T1, T is a positive integer greater than or equal to S, and the sum of T and M is Y. Based on the above technical solution, the first sequence and the second sequence can also realize that all parts in the same time domain are orthogonal, so that interference between different signals can be further reduced.
  • the embodiment of the present application provides a communication method, where the method includes: determining, by a first terminal device, a first uplink control channel format; and transmitting, by the first terminal device, a first uplink control to a base station according to the first uplink control channel format Information and a first pilot sequence, where the first uplink control information and the first pilot sequence are carried by X symbols, the first pilot sequence includes N sub-sequences, and the N sub-sequences are included in the X symbols And the frequency domain resources for carrying the first uplink control information are the same as the frequency domain resources for carrying the second uplink control information, and the N subsequences and the M subsequences of the second uplink control information are The M1 subsequences carried by the M1 symbols are orthogonal, the time domain positions of the N symbols are the same as the time domain positions of the M1 symbols, and the second pilot sequence includes the M subsequences, the second pilot sequence and the The second uplink control information
  • the uplink control information is used to occupy the same frequency domain resource, but the pilot control device uses the same frequency domain resource.
  • the frequency sequence is all orthogonal in the same time domain, so that the resource can be fully utilized and the mutual interference between different signals can be reduced.
  • the first terminal device determines the first uplink control channel format, that the first terminal device receives the first format indication information sent by the base station,
  • the first format indication information is used to indicate that the first terminal device sends the first uplink control information and the first pilot sequence according to the first uplink control channel format;
  • the first terminal device determines the first uplink control channel format.
  • the base station indicates in advance the uplink control channel format that the terminal device needs to use, so that the uplink control information sent by different terminal devices occupies the same frequency domain resource, but the same parts of the pilot sequence time domain are all orthogonal. Thereby, it is possible to achieve the effect of making full use of resources and reducing mutual interference between different signals.
  • the method further includes: receiving, by the first terminal device, candidate format information sent by the base station, where the candidate format indication includes at least two of the following information: a number of symbols included in the candidate uplink control channel format, and an uplink control channel format of the candidate a symbol position for carrying the pilot sequence, and a symbol position for carrying the uplink control information in the candidate uplink control channel format.
  • the Y symbols include R symbol sets, each of the R symbol sets
  • the set of symbols includes X symbols, the set of symbols includes an attribute of an xth symbol of the X symbols and a first of the X symbols used to carry the first uplink control information and the first pilot sequence
  • the attributes of the x symbols are the same, wherein the attributes of the symbol include the first attribute and the second attribute, and the attribute of the symbol used to carry the first uplink control information and the attribute of the symbol used to carry the second uplink control information are
  • the first attribute, the attribute for carrying the symbol of the first pilot sequence and the attribute of the symbol for carrying the second pilot sequence are the second attribute, and R is a positive integer greater than or equal to 2.
  • the Y symbols can be regarded as being obtained by repeating the X symbols R times, and the structure of the Y symbols is simple.
  • the sub-sequences carried by the M2 symbols in the M sub-sequences are the M1 in the M sub-sequences
  • the subsequence carried by the symbols is obtained by extending the orthogonal variable spreading factor OVSF, where M2 is a positive integer greater than or equal to 1, and the sum of M1 and M2 is M.
  • M2 may be equal to M1 or a multiple of M1
  • the subsequence carried by the M1 symbols may be orthogonal to the same portion of the time domain of the subsequence carried by the M2 symbols.
  • the base station can receive the uplink control information and the pilot sequence sent by the R+1 terminal devices at a maximum, thereby achieving the effect of further saving time-frequency resources and reducing mutual interference between different signals.
  • the base station can receive the uplink control information and the pilot sequence sent by the R+1 terminal devices at a maximum, thereby achieving the effect of further saving time-frequency resources and reducing mutual interference between different signals.
  • the first uplink control information is carried by the first sequence, the first sequence is performed by the S The symbol is carried, S is a positive integer greater than or equal to 1, and the sum of S and N is X;
  • the second uplink control information is carried by the second sequence, and the second sequence includes T sub-sequences respectively by T Carrying, the first sequence is orthogonal to the sub-sequence carried by the T1 symbols in the T sub-sequences, and the time-domain positions of the S symbols are the same as the time-domain positions of the T1 symbols, where S is equal to T1, T is a positive integer greater than or equal to S, and the sum of T and M is Y.
  • the first sequence and the second sequence can also realize that all parts in the same time domain are orthogonal, so that interference between different signals can be further reduced.
  • the embodiment of the present application provides a communication method, where the method includes: receiving, by a base station, a first uplink control information, and a first pilot sequence, where the first uplink control channel is sent by the first terminal device
  • the format includes Y symbols, and the Y symbols included in the first uplink control channel format include T information symbols and M pilot symbols, where the information symbols are used to carry uplink control information, and the pilot symbols are used to carry pilot sequences.
  • the first uplink control channel format is one of multiple uplink control channel formats, and the multiple uplink control channel formats further include a second uplink control channel format, where the second uplink control channel format includes Y symbols, and the second The Y symbols included in the uplink control channel format include S information symbols and N pilot symbols, where S and N are positive integers greater than or equal to 1, and Y is the sum of S and N, and the second uplink control channel format is used.
  • the yth symbol is one of the N pilot symbols
  • the yth symbol in the first uplink control channel format is one of the T information symbols y is greater than 1 and less than or equal to a positive integer Y; and the base station determines the first pilot sequence and the first uplink control information.
  • the base station can support different uplink control channel formats, and is configured to receive uplink control information sent by different terminal devices to occupy the same frequency domain resource, but the same parts of the pilot sequence time domain are all orthogonal, so that Achieve full use of resources and reduce the effects of mutual interference between different signals.
  • the method further includes: receiving, by the base station, second uplink control information and a second guide that are sent by the second terminal device by using the first uplink control channel format a frequency sequence, where the frequency domain resource for carrying the first uplink control information is the same as the frequency domain resource for carrying the second uplink control information, and is used for carrying the time domain of the M pilot symbols of the first pilot sequence.
  • the location is the same as the time domain location of the M pilot symbols used to carry the second pilot sequence, the first pilot sequence being orthogonal to the second pilot sequence.
  • the base station receives the uplink control information sent by different terminal devices using the same uplink control channel format to occupy the same frequency domain resource, but the pilot sequences are all orthogonal, so that resources can be fully utilized and different signals can be reduced.
  • the effect of mutual interference is the following technical solution.
  • the method further includes: receiving, by the base station, third uplink control channel information and a third guide that are sent by the third terminal device by using a third uplink control channel format.
  • a frequency sequence the third uplink control channel format includes X symbols, the X symbols include P information symbols and Q pilot symbols, P and Q are positive integers greater than or equal to 1, and X is P and Q.
  • Q is less than or equal to M, and P is smaller than T.
  • the first pilot sequence includes M sub-sequences, and the M sub-sequences are carried by the M pilot symbols, and are used to carry Q pilots of the third pilot sequence.
  • the time domain position of the symbol is the same as the time domain position of the M1 pilot symbols in the M pilot symbols, and M1 is equal to Q.
  • the base station receives the uplink control information sent by different terminal devices using different uplink control channel formats, and occupies the same frequency domain resources, but the same parts of the pilot sequence time domain are all orthogonal, so that the resources can be fully utilized. Reduce the effect of mutual interference between different signals.
  • the Y symbols included in the first uplink control channel format include R symbol sets, and the R symbol sets Each of the symbol sets includes X symbols, and each of the symbol sets includes an attribute of an xth symbol of the X symbols and X symbols for carrying the first uplink control information and the first pilot sequence
  • the attribute of the xth symbol is the same, wherein the attribute of the symbol includes a first attribute and a second attribute, and the attribute of the symbol carrying the first uplink control information and the symbol used to carry the third uplink control information
  • the attribute is the first attribute, and the attribute for carrying the symbol of the first pilot sequence and the attribute of the symbol for carrying the third pilot sequence are the second attribute, and R is a positive integer greater than or equal to 2.
  • the first uplink control channel format can be regarded as that the third uplink control channel format is repeated R times, and the structure of the first uplink control channel format is simple.
  • the sub-sequences carried by the M2 symbols in the M sub-sequences are the M1 of the M sub-sequences
  • the subsequence carried by the symbol is obtained by extending the orthogonal variable spreading factor OVSF, where M2 is a positive integer greater than or equal to 1, and the sum of M1 and M2 is M.
  • M2 is a positive integer greater than or equal to 1
  • the base station can receive the uplink control information and the pilot sequence sent by the R+1 terminal devices at a maximum, thereby achieving the effect of further saving time-frequency resources and reducing mutual interference between different signals.
  • the base station can receive the uplink control information and the pilot sequence sent by the R+1 terminal devices at a maximum, thereby achieving the effect of further saving time-frequency resources and reducing mutual interference between different signals.
  • the first uplink control information is carried by the first sequence, where the first sequence includes T a subsequence, the T subsequences being carried by the T information symbols; the third uplink control information being carried by the third sequence, the third sequence comprising P subsequences, the P subsequences being respectively carried by P information symbols, the The three sequences are orthogonal to the subsequences carried by the T1 information symbols in the T subsequences, and the time domain positions of the P information symbols are the same as the time domain positions of the T1 information symbols, where P is equal to T1.
  • the first sequence and the second sequence can also realize that all parts in the same time domain are orthogonal, so that interference between different signals can be further reduced.
  • the method before the receiving, by the base station, the first terminal device sends the first uplink control information and the first pilot sequence by using the first uplink control channel format, the method is The method further includes: the base station transmitting the first format indication information to the first terminal device, where the first format indication information is used to indicate that the first terminal device sends the first uplink control information and the first A pilot sequence.
  • the base station indicates in advance the uplink control channel format that the terminal device needs to use, so that the uplink control information sent by different terminal devices occupies the same frequency domain resource, but the same parts of the pilot sequence time domain are all orthogonal. Thereby, it is possible to achieve the effect of making full use of resources and reducing mutual interference between different signals.
  • the method before the sending, by the base station, the first format indication information to the first terminal device, the method further includes: The base station sends the candidate format information to the first terminal device, where the candidate format indication includes at least two of the following information: a number of symbols included in the candidate uplink control channel format, and a pilot sequence in the candidate uplink control channel format. The symbol position, and the symbol position of the candidate uplink control channel format for carrying the uplink control information.
  • the base station can determine the terminal device indicated by the uplink control channel format used by the terminal device, thereby controlling the uplink control channel format that the terminal device can use.
  • the present application provides a base station, where the base station has any possible implementation manner of implementing the first aspect or the first aspect, or any possible implementation manner of the third aspect or the third aspect
  • the function implemented by the base station can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the present application provides a terminal device, which has the functions implemented by the terminal device in implementing the second aspect or any possible implementation manner of the second aspect.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the application provides a base station including a processor and a transceiver.
  • the processor is configured to support the terminal device to implement the first aspect or any of the possible implementations of the first aspect, or the corresponding function of any of the possible implementations of the third aspect or the third aspect.
  • the transceiver is configured to support the base station to receive information involved in the foregoing method sent by the terminal device, and send the information involved in the foregoing method to the terminal device.
  • the base station may further include a memory, where the memory is coupled to the processor, and saves necessary program instructions and data packets of the base station.
  • the application provides a terminal device, where the terminal device includes a processor and a transceiver.
  • the processor is configured to support the terminal device to implement a corresponding function of any of the possible implementations of the second aspect or the second aspect.
  • the transceiver is configured to support the terminal device to send information related to the foregoing method to the base station and receive information involved in the foregoing method sent by the base station.
  • the terminal device may further include a memory for coupling with the processor to save necessary program instructions and data of the terminal device.
  • the present application provides a computer storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform any of the first aspect or the first aspect described above The method described for the implementation.
  • the present application provides a computer storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform any of the second aspect or the second aspect described above The method described for the implementation.
  • the present application provides a chip for supporting a terminal device to implement the functions involved in the first aspect or any of the possible implementation manners of the first aspect.
  • the present application provides a chip for supporting a base station to implement the functions involved in any of the possible implementations of the second aspect or the second aspect.
  • the present application provides a computer program product comprising instructions, when the computer program product is run on a computer, causing the computer to perform the first aspect or any of the possible implementations of the first aspect Methods.
  • the present application provides a computer program product comprising instructions, when the computer program product is run on a computer, causing the computer to perform the second aspect or any of the possible implementations of the second aspect Methods.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the first control channel format and the second control channel format.
  • FIG. 4 is a schematic diagram of another first control channel format and the second control channel format.
  • Figure 5 is a schematic diagram of the first control channel format and the third control channel format.
  • FIG. 6 is a schematic diagram of another first control channel format and the third control channel format.
  • FIG. 7 is a schematic diagram of uplink control information and pilot sequences transmitted by three terminal devices.
  • FIG. 8 is a structural block diagram of a base station according to an embodiment of the present application.
  • FIG. 9 is a structural block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 10 is a structural block diagram of a base station terminal device according to an embodiment of the present application.
  • FIG. 11 is a structural block diagram of a terminal device according to an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 4.5 4.5th Generation, 4.5G generation network
  • 5G 5th Generation
  • NR New Radio
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied.
  • the mobile communication system includes a core network device 110, a base station 120, and at least one terminal device (such as the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the base station in a wireless manner, and the base station is connected to the core network device by using a wireless or wired manner.
  • the core network device and the base station may be independent physical devices, or may integrate the functions of the core network device and the logical functions of the base station on the same physical device, or may integrate some core network devices on one physical device. Functional and partial base station functionality.
  • the terminal device can be fixed or mobile.
  • the communication system may further include other network devices, such as a wireless relay device and a wireless backhaul device, which are not shown in FIG. 1.
  • the embodiment of the present application does not limit the number of core network devices, base stations, and terminal devices included in the mobile communication system.
  • the base station is an access device that the terminal device accesses to the mobile communication system by using a wireless device, and may be a base station NodeB, an evolved base station eNodeB, a base station in a 5G mobile communication system, a base station in a future mobile communication system, or a WiFi system.
  • the specific technology and the specific device configuration adopted by the base station are not limited in the embodiment of the present application.
  • the terminal device may also be called a terminal, a user equipment (User Equipment, UE), a mobile station (Mobile Station, MS), a mobile terminal (MT), or the like.
  • the terminal device can be a mobile phone (Mobile Phone), a tablet (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, industrial control (industrial control) Wireless terminal, wireless terminal in self driving, wireless terminal in remote medical surgery, wireless terminal in smart grid, wireless in transport safety A terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • Base stations and terminal equipment can be deployed on land, indoors or outdoors, hand-held or on-board; they can also be deployed on the water; they can also be deployed on airborne aircraft, balloons and satellites.
  • the application scenarios of the base station and the terminal device are not limited in the embodiment of the present application.
  • the embodiments of the present application can be applied to downlink signal transmission, and can also be applied to uplink signal transmission, and can also be applied to device to device (D2D) signal transmission.
  • D2D device to device
  • the transmitting device is a base station, and the corresponding receiving device is a terminal device.
  • the transmitting device is a terminal device, and the corresponding receiving device is a base station.
  • D2D signal transmission the transmitting device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the embodiment of the present application does not limit the transmission direction of the signal.
  • the base station and the terminal device and the terminal device and the terminal device and the terminal device can communicate through a licensed spectrum, or can communicate through an unlicensed spectrum, or can simultaneously communicate through the licensed spectrum and the unlicensed spectrum.
  • the communication between the base station and the terminal device and between the terminal device and the terminal device may be performed by using a spectrum of 6 G or less, or by a spectrum of 6 G or more, or by using a spectrum of 6 G or less and a spectrum of 6 G or more at the same time.
  • the embodiment of the present application does not limit the spectrum resources used between the base station and the terminal device.
  • the uplink control channel referred to in the embodiment of the present application may be a physical uplink control channel (PUCCH), or may be another uplink control channel.
  • PUCCH physical uplink control channel
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the base station receives first uplink control information and a first pilot sequence from the first terminal device.
  • the base station receives second uplink control information and a second pilot sequence from the second terminal device.
  • the base station can support multiple uplink control channel formats.
  • the plurality of uplink control channel formats include a first uplink control channel format.
  • the first uplink control channel format includes Y symbols.
  • the Y symbols included in the first uplink control channel format may include T information symbols and M pilot symbols, where T is a positive integer greater than or equal to 1, and M is a positive integer greater than or equal to 1, T and M And for Y.
  • the information symbol is used to carry uplink control information.
  • the pilot symbols are used to carry a pilot sequence, and the multiple uplink control channel formats may further include a second uplink control channel format.
  • the second uplink control channel format includes Y symbols.
  • the Y symbols included in the second uplink control channel format may include S information symbols and N pilot symbols, S is a positive integer greater than or equal to 1, N is a positive integer greater than or equal to 1, and the sum of S and N Is Y.
  • the yth symbol in the second uplink control channel format is one of the N pilot symbols
  • the yth symbol in the first uplink control channel format is one of the T information symbols.
  • the symbol, y is a positive integer greater than 1 and less than or equal to Y.
  • there is at least one pilot symbol there is at least one pilot symbol, the location of the at least one pilot symbol in the first uplink control channel format being different from the location of the at least one pilot symbol in the second uplink control channel format.
  • S may be equal to T, and N may be equal to Y.
  • FIG. 3 is a schematic diagram of the first control channel format and the second control channel format.
  • the first uplink control channel format includes 14 symbols.
  • the fifth symbol and the tenth symbol of the 14 symbols are pilot symbols.
  • symbols other than the fifth symbol and the tenth symbol are information symbols.
  • the second uplink control channel format includes 14 symbols.
  • the first symbol and the fourth symbol of the 14 symbols are pilot symbols.
  • symbols other than the first symbol and the fourth symbol are information symbols.
  • S may not be equal to T, and N may not be equal to Y.
  • FIG. 4 is a schematic diagram of another first control channel format and the second control channel format.
  • the first uplink control channel format includes 14 symbols.
  • the fifth symbol and the tenth symbol of the 14 symbols are pilot symbols.
  • symbols other than the fifth symbol and the tenth symbol are information symbols.
  • the second uplink control channel format includes 14 symbols.
  • the first symbol, the fourth symbol, the eighth symbol, and the eleventh symbol of the 14 symbols are pilot symbols.
  • symbols other than the first symbol, the fourth symbol, the eighth symbol, and the eleventh symbol are information symbols.
  • the first terminal device and the second terminal device may send uplink control information and a pilot sequence by using the same uplink control channel format.
  • the first terminal device may send the first uplink control information and the first pilot sequence by using the first uplink control channel format.
  • the second terminal device may also send the second uplink control information and the second pilot sequence by using the first uplink control channel format.
  • the first terminal device may send the first uplink control information and the first pilot sequence by using the second uplink control channel format.
  • the second terminal device may also send the second uplink control information and the second pilot sequence by using the second uplink control channel format.
  • a frequency domain resource for carrying the first uplink control information and for carrying the second uplink where the first terminal device and the second terminal device use the same uplink control channel format to send the uplink control information and the pilot sequence.
  • the frequency domain resources of the control information are the same, and the time domain location for carrying the first pilot sequence is the same as the time domain location for carrying the second pilot sequence, and the first pilot sequence is orthogonal to the second pilot sequence. .
  • Both the first terminal device and the second terminal device may send uplink control information and a pilot sequence by using a first uplink control channel format as shown in FIG. 3.
  • the first uplink control information sent by the first terminal device may be carried by the first sequence.
  • the second uplink control information sent by the second terminal device may be carried by the second sequence.
  • the first sequence can be carried by 12 information symbols in the first uplink control channel format.
  • the second sequence can be carried by 12 information symbols in the first uplink control channel format.
  • the first pilot sequence transmitted by the first terminal device may include two sub-sequences.
  • the second pilot sequence transmitted by the second terminal device may also include two sub-sequences.
  • the subsequence included in the first pilot sequence is hereinafter referred to as a first pilot subsequence, and the second pilot is included.
  • the subsequences included in the sequence are referred to as second pilot subsequences.
  • the two first pilot subsequences are carried by two pilot symbols (ie, the fifth symbol and the tenth symbol) in the first uplink control channel format.
  • the two second pilot subsequences are carried by two pilot symbols (i.e., the fifth symbol and the tenth symbol) in the first uplink control channel format.
  • the two first pilot subsequences and the two second pilot subsequences are orthogonal. Since the time domain positions of the two first pilot subsequences and the two second pilot subsequences are the same. Therefore, the two first pilot subsequences and the two second pilot subsequences may be frequency division, and the two first pilot subsequences and the two second pilot subsequences may also be code divisions. Or the two first pilot subsequences and the two second pilot subsequences can be frequency divided and coded simultaneously.
  • the two first pilot subsequences and the two second pilot subsequences are frequency division
  • the two first pilot subsequences and the two second pilot subsequences are in the sequence
  • Subsequences located in the same time domain location may occupy different subcarriers in the same frequency domain unit.
  • the frequency domain unit may be 12 subcarriers included in one physical resource block (PRB).
  • PRB physical resource block
  • the first pilot subsequence can occupy the first subcarrier to the sixth subcarrier of the 12 subcarriers.
  • the second pilot subsequence may occupy the 7th subcarrier to the 12th subcarrier of the 12 subcarriers.
  • the first pilot subsequence can occupy odd subcarriers of the 12 subcarriers.
  • the second pilot subsequence may occupy an even number of subcarriers of the 12 subcarriers.
  • the first pilot sub-sequence and the second pilot sub-sequence may occupy the 12 sub-carriers in other manners, as long as the first pilot sub-sequence is different from the sub-carrier occupied by the second pilot sub-sequence.
  • the two first pilot subsequences and the two second pilot subsequences are code divisions
  • the two first pilot subsequences and the two second pilot subsequences may be the same Sequence generation, but with different cyclic shift values.
  • both the first pilot subsequence and the two second pilot subsequences can be generated using a ZC sequence, but with different cyclic shift values.
  • the two first pilot subsequences and the two second pilot subsequences may also be generated using different sequences.
  • the first uplink control information sent by the first terminal device and the first pilot sequence and the second uplink control information and the second pilot sequence sent by the second terminal device may use the same PRB. Therefore, the above technical solution can achieve the purpose of saving time-frequency resources.
  • the base station can support uplink control channels in multiple formats. In this case, the base station can select an appropriate uplink control channel format according to the requirement, so that the received uplink control information of different terminal devices occupy the same frequency domain resource, but the same parts of the pilot sequence time domain are all orthogonal. Thereby, it is possible to achieve the effect of making full use of resources and reducing mutual interference between different signals.
  • the multiple uplink control channel formats may further include a third uplink control channel format.
  • the third uplink control channel format may include X symbols.
  • the X symbols may include P information symbols and Q pilot symbols, where P is a positive integer greater than or equal to 1, Q is a positive integer greater than or equal to 1, the sum of P and Q is X, and X is less than Y.
  • the first uplink control channel format includes the same number of pilot symbols as the third uplink control channel format includes.
  • FIG. 5 is a schematic diagram of the first control channel format and the third control channel format.
  • the first uplink control channel format includes 14 symbols.
  • the first symbol and the fourth symbol of the 14 symbols are pilot symbols.
  • symbols other than the first symbol and the fourth symbol are information symbols.
  • the third uplink control channel format includes 7 symbols.
  • the first symbol and the fourth symbol of the seven symbols are pilot symbols.
  • symbols other than the first symbol and the fourth symbol are information symbols.
  • the first uplink control channel format includes a number of pilot symbols greater than a number of pilot symbols included in the third uplink control channel format.
  • FIG. 6 is a schematic diagram of another first control channel format and the third control channel format.
  • the first uplink control channel format includes 14 symbols.
  • the first symbol, the fourth symbol, the eighth symbol, and the eleventh symbol of the 14 symbols are pilot symbols.
  • symbols other than the first symbol, the fourth symbol, the eighth symbol, and the eleventh symbol are information symbols.
  • the third uplink control channel format includes 7 symbols.
  • the first symbol and the fourth symbol of the seven symbols are pilot symbols.
  • symbols other than the first symbol and the fourth symbol are information symbols.
  • the first terminal device and the second terminal device may send uplink control information and a pilot sequence by using an uplink control channel format with a different number of symbols.
  • the first uplink control channel format includes the same number of pilot symbols as the third uplink control channel format includes.
  • the first terminal device may send the first uplink control information and the first pilot sequence by using the first control channel format as shown in FIG. 5.
  • the second terminal device may transmit the second uplink control information and the second pilot sequence using a third control channel format as shown in FIG.
  • the frequency domain resource for carrying the first uplink control information is the same as the frequency domain resource for carrying the second uplink control information, and is used for carrying the time domain location of the first pilot sequence and the time for carrying the second pilot sequence.
  • the domain locations are the same, and the first pilot sequence is orthogonal to the second pilot sequence.
  • the first uplink control information sent by the first terminal device may be carried by the first sequence.
  • the second uplink control information sent by the second terminal device may be carried by the second sequence.
  • the first sequence can be carried by 12 information symbols in the first uplink control channel format.
  • the second sequence can be carried by five information symbols in the third uplink control channel format.
  • the first pilot sequence transmitted by the first terminal device may include two sub-sequences.
  • the second pilot sequence transmitted by the second terminal device may also include two sub-sequences.
  • the two first pilot subsequences are carried by two pilot symbols (ie, the first symbol and the fourth symbol) in the first uplink control channel format.
  • the two second pilot subsequences are carried by two pilot symbols (i.e., the first symbol and the fourth symbol) in the third uplink control channel format.
  • the two first pilot subsequences and the two second pilots can be referred to the description of the above embodiment, and need not be described here.
  • the first uplink control channel format includes a number of pilot symbols greater than a number of pilot symbols included in the third uplink control channel format.
  • the first terminal device may send the first uplink control information and the first pilot sequence by using the first control channel format as shown in FIG. 6.
  • the second terminal device may transmit the second uplink control information and the second pilot sequence using a third control channel format as shown in FIG. 6.
  • the frequency domain resource for carrying the first uplink control information is the same as the frequency domain resource for carrying the second uplink control information.
  • the time domain position of the first two pilot symbols in the four pilot symbols carrying the first pilot sequence and the time domain of the two pilot symbols used to carry the second pilot sequence The location is the same. As shown in FIG.
  • the time domain position of the first two pilot symbols in the four pilot symbols carrying the first pilot sequence and the two pilot symbols used to carry the second pilot sequence The time domain location of the two pilot symbols used to carry the first pilot sequence and the time domain location of the two pilot symbols used to carry the second pilot sequence, in the same time domain location There are other ways to do the same. For example, the time domain position of the last two pilot symbols of the four pilot symbols used to carry the first pilot sequence and the time domain locations of the two pilot symbols used to carry the second pilot sequence are the same.
  • the first uplink control information sent by the first terminal device may be carried by the first sequence.
  • the second uplink control information sent by the second terminal device may be carried by the second sequence.
  • the first sequence can be carried by 12 information symbols in the first uplink control channel format.
  • the second sequence can be carried by five information symbols in the third uplink control channel format.
  • the first pilot sequence transmitted by the first terminal device may include four sub-sequences.
  • the second pilot sequence transmitted by the second terminal device may also include two sub-sequences.
  • the four first pilot subsequences are carried by four pilot symbols (ie, the first symbol, the fourth symbol, the eighth symbol, and the eleventh symbol) in the first uplink control channel format.
  • the two second pilot subsequences are carried by two pilot symbols (i.e., the first symbol and the fourth symbol) in the third uplink control channel format.
  • Two first pilot subsequences carried by the first one of the four pilot symbols and the second pilot symbol are orthogonal to the two second pilot subsequences.
  • the orthogonal manners of the two first pilot subsequences and the two second pilot subsequences can be referred to the description of the foregoing embodiment, and need not be described here.
  • the first uplink control channel format is different from the number of pilot symbols included in the third uplink control channel format, the first terminal device and the second terminal device transmit the same sequence of pilot sequences in the time domain. All orthogonal.
  • the number of pilot symbols included in the first uplink control channel format may be R times the number of pilot symbols included in the third uplink control channel format, and the information symbol included in the first uplink control channel format may also be the first
  • the three uplink control channels include R times of information symbols, and R is a positive integer greater than or equal to 2.
  • M R ⁇ Q
  • T R ⁇ P.
  • the Y symbols may include R symbol sets, each of the R symbol sets includes X symbols, each of the symbol sets including attributes of the xth symbol of the X symbols And the attribute of the xth symbol of the X symbols included in the third uplink control channel format, where the attribute of the symbol includes the first attribute and the second attribute, and the attribute of the symbol used to carry the uplink control information is the first An attribute, the attribute of the symbol used to carry the pilot sequence is the second attribute.
  • the first uplink control channel format is a result that the third uplink control channel format is repeated R times.
  • the positions of the pilot symbols and the information symbols in any two of the R symbol sets are the same, and are the same as the positions of the pilot symbols and the information symbols included in the third uplink control channel format.
  • the first uplink control channel format in FIG. 6 includes two symbol sets.
  • the first symbol and the fourth symbol of each of the two symbol sets are pilot symbols.
  • the symbols other than the first symbol and the fourth symbol in each of the two symbol sets are information symbols.
  • the base station may receive uplink control information and a pilot sequence sent by the R+1 terminal devices on the same frequency domain resource.
  • the uplink control information and the pilot sequence transmitted by the R terminal devices of the R+1 terminal devices are consecutive in the time domain.
  • the uplink control information sent by the R terminal devices of the R+1 terminal devices and the total time domain resource occupied by the pilot sequence are equal to the other terminal devices of the R+1 terminal devices except the R terminal device.
  • the uplink control information is the same as the total time domain resource occupied by the pilot sequence.
  • a pilot sequence transmitted by any one of the R terminal devices is orthogonal to a partial subsequence of the another pilot sequence.
  • FIG. 7 is a schematic diagram of uplink control information and pilot sequences transmitted by three terminal devices.
  • the first uplink control information and the first pilot sequence sent by the first terminal device occupy 14 symbols, and the first pilot sequence occupies 4 symbols.
  • the second uplink control information and the second pilot sequence sent by the second terminal device occupy 7 symbols, and the second pilot sequence occupies 2 symbols.
  • the third uplink control information and the third pilot sequence transmitted by the third terminal device occupy 7 symbols and the third pilot sequence occupies 2 symbols.
  • FIG. 7 is a schematic diagram of uplink control information and pilot sequences transmitted by three terminal devices.
  • the second pilot sequence is orthogonal to the two subsequences carried by the first two pilot symbols in the first pilot sequence
  • the third pilot sequence and the first pilot sequence are The two subsequences carried by the last two pilot symbols are orthogonal.
  • the first pilot sequence may include M sub- a sequence, wherein the sub-sequences carried by the M2 symbols in the M sub-sequences are obtained by extending the Orthogonal Variable Spreading Factor (OVSF) of the sub-sequences carried by the M1 symbols in the M sub-sequences
  • OVSF Orthogonal Variable Spreading Factor
  • the first pilot sequence may include M sub- a sequence, wherein the sub-sequences carried by the M2 symbols in the M sub-sequences are obtained by extending the Orthogonal Variable Spreading Factor (OVSF) of the sub-sequences carried by the M1 symbols in the M sub-sequences
  • M2 is a positive integer greater than or equal to 1
  • the sum of M1 and M2 is M.
  • the subsequence carried by M1 symbols is [1-1]
  • the M sequences obtained after expansion by OVSF are [1, -1, -1, 1].
  • the other two terminal devices can use two pilot sequences of sequence [-1, 1] and [1, -1]. In this way, three terminal devices can be made to make full use of time-frequency resources while reducing mutual interference.
  • M sequences are [1, -1, 1, -1].
  • the other two terminal devices can use two pilot sequences of sequence [-1, 1] and [-1, 1]. In this way, three terminal devices can be made to make full use of time-frequency resources while reducing mutual interference.
  • the uplink control information when receiving, by the base station, the uplink control information and the pilot sequence that are sent by the different terminal devices in different uplink symbol formats, the uplink control information may also occupy the same frequency domain resource but the pilot.
  • the same parts of the sequence time domain are all orthogonal, so that the resources can be fully utilized and the mutual interference between different signals can be reduced.
  • step 203 may be further included; before step 202, step 204 may also be included.
  • the base station sends first format indication information to the first terminal device, where the first format indication information is used to indicate that the first terminal device is configured to send the first uplink control information and uplink control of the first pilot sequence.
  • Channel format is used to indicate that the first terminal device is configured to send the first uplink control information and uplink control of the first pilot sequence.
  • the base station sends the second format indication information to the second terminal device, where the second format indication information is used to indicate that the second terminal device is configured to send the second uplink control information and the uplink control of the second pilot sequence.
  • Channel format
  • the first format indication information may be used to indicate that the first terminal device sends the first uplink control information and the first pilot sequence by using the first uplink control channel format.
  • the second format may be used to indicate that the second terminal device sends the second uplink control information and the second pilot sequence by using the first uplink control channel format.
  • the first format indication information may be used to indicate that the first terminal device sends the first uplink control information and the first pilot sequence by using the first uplink control channel format.
  • the second format may be used to indicate that the first terminal device sends the second uplink control information and the second pilot sequence by using the third uplink control channel format.
  • the format indication information (that is, the first format indication information or the second format indication information) may be explicit indication information.
  • the format indication information may include K bits.
  • the uplink control channel format is indicated by different values of K bits.
  • K is a positive integer greater than or equal to 1.
  • the specific value of K can be related to the number of uplink control channel formats. For example, if the multiple uplink control channel formats include three uplink control channel formats or four uplink control channel formats, K may be equal to two.
  • the value of 00 of the K bits may be used to send the uplink control information and the pilot sequence in the first uplink control channel format, where the value of the K bits is 01, indicating that the uplink control information is sent by using the second uplink control channel format.
  • the pilot sequence where the value of the K bits is 10, may indicate that the uplink control information and the pilot sequence are transmitted in the third uplink control channel format.
  • the format indication information (that is, the first format indication information or the second format indication information) may be implicit indication information. That is, the base station can indicate an uplink control channel format for transmitting uplink control information and a pilot sequence by indicating other information.
  • the base station may indicate the uplink control channel format by indicating a time-frequency resource.
  • the terminal device can determine the uplink control channel format to be used according to the correspondence between the time-frequency resource and the uplink control channel format.
  • the first uplink control channel format indication information may be first time-frequency resource information, where the first time-frequency resource information is used to indicate that the first terminal device is configured to send the first uplink control information and the first pilot sequence.
  • the second uplink control channel format indication information may be second time-frequency resource information, where the second time-frequency resource information is used to indicate that the second terminal device is configured to send two uplink control information and a second pilot sequence time-frequency resource.
  • the first terminal device may determine to send the first uplink control information and the first uplink control channel format corresponding to the time-frequency resource indicated by the first time-frequency resource information according to the correspondence between the time-frequency resource and the uplink control channel format.
  • the second terminal device may determine to send the second uplink control information and the first uplink control channel format corresponding to the time-frequency resource indicated by the second time-frequency resource information according to the correspondence between the time-frequency resource and the uplink control channel format. Two pilot sequences.
  • the first terminal device may send the first uplink by using the first uplink control channel format. Control information and the first pilot sequence. If the second terminal device instructs the second terminal device to send the second uplink control information and the second pilot sequence by using one PRB, the second terminal device may use the third uplink control channel format to send the second uplink control information and The second pilot sequence.
  • the base station may indicate the uplink control channel format by indicating a coding mode.
  • the terminal device can determine the uplink control channel format to be used according to the correspondence between the coding mode and the uplink control channel format.
  • the first uplink control channel format indication information may be first coding information, where the first coding information is used to indicate that the first terminal device is used to generate the code of the first pilot sequence. the way.
  • the second uplink control channel format indication information may be the second coding information, where the second coding information is used to indicate the coding mode used by the second terminal device to generate the second pilot sequence.
  • the first terminal device may determine, according to the correspondence between the coding mode and the uplink control channel format, the first uplink control information and the first pilot sequence by using an uplink control channel format corresponding to the coding mode indicated by the first coding information.
  • the second terminal device may determine, according to the correspondence between the coding mode and the uplink control channel format, the second uplink control information and the second pilot sequence by using an uplink control channel format corresponding to the coding mode indicated by the second coding information. .
  • the first terminal device may use the first uplink control channel format to send the first uplink control information and the first Pilot sequence.
  • the second terminal device instructs the second terminal device to generate the second pilot sequence by using the second coding mode
  • the second terminal device may use the third uplink control channel format to send the second uplink control information and the second pilot sequence.
  • the first coding mode is different from the second coding mode.
  • the difference between the first coding mode and the second coding mode may be that the sequence for generating the pilot sequence is different, or the cyclic shift value may be different.
  • the first uplink control channel format indication information may be third coding information, where the third coding information is used to indicate that the first terminal device is configured to generate the first uplink.
  • the second uplink control channel format indication information may be the fourth coding information, where the fourth coding information is used to indicate the coding mode used by the second terminal device to generate a sequence for carrying the second uplink control information.
  • the first terminal device may determine, according to the correspondence between the coding mode and the uplink control channel format, the first uplink control information and the first pilot sequence by using an uplink control channel format corresponding to the coding mode indicated by the first coding information.
  • the second terminal device may determine, according to the correspondence between the coding mode and the uplink control channel format, the second uplink control information and the second pilot sequence by using an uplink control channel format corresponding to the coding mode indicated by the second coding information. .
  • the first terminal device may send the first uplink control by using the first uplink control channel format. Information and the first pilot sequence.
  • the second terminal device may send the second uplink control information by using the third uplink control channel format and The second pilot sequence.
  • This third coding method is different.
  • the base station may indicate the uplink control channel format by indicating a location of the pilot symbol.
  • the terminal device can determine the uplink control channel format to be used according to the location of the pilot symbol and the uplink control channel format correspondence.
  • the first uplink control channel format indication information may be location information of the first pilot symbol, where location information of the first pilot symbol is used to indicate that the first terminal device is used when transmitting the first pilot sequence.
  • the second uplink control channel format indication information may be location information of the second pilot symbol, where the location information of the second pilot symbol is used to indicate that the second terminal device is configured to carry the second pilot sequence when transmitting the second pilot sequence.
  • the first terminal device may determine, according to the mapping between the location of the pilot symbol and the uplink control channel format, the first uplink by using an uplink control channel format corresponding to the location of the pilot symbol indicated by the location of the first pilot symbol. Control information and the first pilot sequence.
  • the second terminal device may determine, according to the correspondence between the location of the pilot symbol and the uplink control channel format, the second uplink by using an uplink control channel format corresponding to the location of the pilot symbol indicated by the location of the second pilot symbol. Control information and the second pilot sequence.
  • the first terminal device may use the first uplink control channel format. If the second terminal device indicates that the second terminal device carries the first pilot sequence by using the first symbol and the fourth symbol, the second terminal device may use the third uplink control channel format to send the second uplink control information and The second pilot sequence.
  • the base station may also adopt other implicit indication manners, for example, indicating service types, etc., which are not enumerated here.
  • the terminal device may determine an uplink control channel format for sending the uplink control information and the pilot sequence according to the service type, the service delay requirement, the service reliability requirement, the terminal type, and the like.
  • the terminal device may send the determined uplink control channel format to the base station, or send related information for determining the format of the uplink control channel to the base station, so that the base station can determine the uplink control channel format used by the terminal device.
  • the base station can also determine the uplink control channel format used by the terminal device by other means.
  • the base station may obtain, by using other devices (such as a core network device or other terminal device), information about the terminal device using an uplink control channel format or for determining an uplink control channel format.
  • the related information used to determine the format of the uplink control channel may also be determined by the base station, so that the base station can directly use the related information to determine the uplink control channel format used by the terminal device.
  • step 205 may also be included.
  • the base station sends candidate format information to the first terminal device and the second communications device, where the candidate format information may include at least two of the following information: a number of symbols included in the candidate uplink control channel format, and an uplink of the candidate.
  • the symbol position of the control channel format for carrying the pilot sequence, and the symbol position of the candidate uplink control channel format for carrying the uplink control information may include at least two of the following information: a number of symbols included in the candidate uplink control channel format, and an uplink of the candidate.
  • the candidate format information may include a number of symbols included in the candidate uplink control channel format and a symbol position in the candidate uplink control channel format for carrying the pilot sequence.
  • the terminal device ie, the first terminal device and the second terminal device
  • the symbol position used to carry the uplink control information in the candidate uplink control channel format may be determined, according to the number of symbols included in the candidate uplink control channel format and the symbol position of the candidate uplink control channel format for carrying the pilot sequence.
  • the candidate format information may include a number of symbols included in the candidate uplink control channel format and a symbol position used to carry the uplink control information in the candidate uplink control channel format.
  • the terminal device may determine, according to the number of symbols included in the candidate uplink control channel format and the symbol position used to carry the uplink control information in the candidate uplink control channel format, to determine that the candidate uplink control channel format is used to carry the pilot. The symbol position of the sequence.
  • the candidate format information may include a symbol position for carrying the pilot sequence in the candidate uplink control channel format and a symbol position for carrying the uplink control information in the candidate uplink control channel format.
  • the terminal device may determine the candidate uplink control channel format according to the symbol position of the candidate uplink control channel format for carrying the pilot sequence and the symbol position of the candidate uplink control channel format for carrying the uplink control information. The number of symbols included.
  • the candidate format information may also include a number of symbols included in the candidate uplink control channel format, a symbol position used to carry the pilot sequence in the candidate uplink control channel format, and a used in the candidate uplink control channel format for carrying The symbol position of the uplink control information.
  • the candidate format information may further include one or all of an encoding manner for generating a pilot sequence and an encoding manner for generating a sequence for carrying uplink control information.
  • the candidate format information may include an encoding scheme for generating a pilot sequence and an encoding scheme for generating a sequence for carrying uplink control information.
  • the terminal device determines the adopted uplink control channel format, the terminal device can simultaneously determine the coding mode used to generate the pilot sequence and the coding mode used to generate the sequence for carrying the uplink control information.
  • the candidate format information may include an encoding method for generating a sequence for carrying uplink control information, and does not include an encoding method for generating a pilot sequence.
  • the terminal device determines the adopted uplink control channel format, the terminal device can simultaneously determine an encoding manner for generating a sequence for carrying the uplink control information.
  • the base station can indicate the coding mode used to generate the pilot sequence to the terminal device by using other information. For example, the base station may send the first coding information to the first terminal device after the step 203, where the first coding information is used to indicate that the first terminal device is used to generate the coding mode of the first pilot sequence.
  • the second encoding information is used by the second terminal device to indicate the encoding mode used by the second terminal device to generate the second pilot sequence.
  • the first format indication information may be used to indicate an encoding manner used to generate the first pilot sequence and an uplink control channel format used to send the first uplink control information and the first pilot sequence.
  • the second format indication information may be used to indicate the coding mode used to generate the second pilot sequence, and the specific indication manner of the uplink control channel format for transmitting the second uplink control information and the second pilot sequence. Description, no need to repeat here.
  • the candidate format information may include an encoding scheme for generating a pilot sequence, and does not include an encoding scheme for generating a sequence for carrying uplink control information.
  • the terminal device determines the adopted uplink control channel format, the terminal device can simultaneously determine the coding mode used to generate the pilot sequence.
  • the base station may indicate to the terminal device the coding mode used to generate the sequence for carrying the uplink control information by using other information. For example, the base station may send the third coding information to the first terminal device after the step 203, where the third coding information is used to indicate that the first terminal device is configured to generate a sequence for carrying the first uplink control information.
  • the encoding mode after the step 204, the fourth encoding information is sent to the second terminal device, where the fourth encoding information is used to indicate that the second terminal device is configured to generate a coding mode for carrying the sequence of the second uplink control information.
  • the first format indication information may be used to indicate an encoding manner for generating a sequence for carrying the first uplink control information, and an uplink control for sending the first uplink control information and the first pilot sequence.
  • the second format indication information may be used to indicate an encoding manner for generating a sequence for carrying the second uplink control information, and an uplink control for sending the second uplink control information and the second pilot sequence
  • an uplink control for sending the second uplink control information and the second pilot sequence
  • the candidate format information does not include an encoding manner used to generate a pilot sequence and an encoding manner used to generate a sequence for carrying uplink control information.
  • the terminal device may indicate, by other information, an encoding method for generating a pilot sequence and an encoding manner for generating a sequence for carrying uplink control information.
  • the base station may send the first encoding information and the third encoding information to the first terminal device after the step 203, and after the step 204, send the second encoding information and the fourth encoding information to the second terminal device, where
  • the contents of the first encoding information, the second encoding information, the third encoding information, and the fourth encoding information are the same as those of the above embodiment, and need not be described herein.
  • the first format indication information may be used to indicate an encoding manner for generating a sequence for carrying the first uplink control information, and an uplink control for sending the first uplink control information and the first pilot sequence.
  • the second format indication information may be used to indicate an encoding manner for generating a sequence for carrying the second uplink control information, and an uplink control for sending the second uplink control information and the second pilot sequence
  • an uplink control for sending the second uplink control information and the second pilot sequence
  • the coding manners used by the base station to generate pilot sequences to different terminal devices are different, so that the pilot sequences that can be generated by different devices are code points.
  • only one uplink control channel format may be included in the candidate uplink control channel format.
  • the candidate uplink control channel format may include multiple uplink control channel formats, for example, the candidate uplink control channel format may include the first uplink control channel format, the second uplink control channel format, and the Three uplink control channel formats.
  • the base station may notify the terminal device of an uplink control channel format that can be used by the terminal device.
  • the candidate uplink control channel format may also be pre-stored in the terminal device.
  • the base station may further send the first frequency domain resource indication information to the first terminal device, where the first frequency domain resource indication information is used to indicate the first pilot.
  • the subcarriers occupied by the sequence Before the step 202, the base station may further send the second frequency domain resource indication information to the second terminal device, where the second frequency domain resource indication information is used to indicate the subcarrier occupied by the second pilot sequence, where the first The subcarrier occupied by the pilot sequence is different from the subcarrier occupied by the second pilot sequence.
  • the above technical solution can make the first pilot sequence and the second pilot sequence orthogonal by frequency division.
  • the frequency domain resource indication information (that is, the first frequency domain resource indication information and the second frequency domain resource indication information) may also be explicit indication information or implicit indication information.
  • the specific indication manner is similar to the format indication information, and need not be described here.
  • the first terminal device and the second terminal device may also determine, by other manners, subcarriers occupied by the pilot sequence.
  • the first terminal device and the second terminal device may negotiate to determine subcarriers occupied by respective pilot sequences, so that the first pilot sequence and the second pilot sequence pass frequency division. The way to achieve orthogonality.
  • the first sequence used by the first terminal device to carry the first uplink control information is used, except that the same time domain of the pilot sequence transmitted by the first terminal device and the second terminal device are all orthogonal.
  • the portions of the second sequence carrying the second uplink control information in the same time domain may also be all orthogonal.
  • the first uplink control information sent by the first terminal device may be carried by the first sequence.
  • the second uplink control information sent by the second terminal device may be carried by the second sequence.
  • the first sequence is orthogonal to the second sequence.
  • the implementation of the specific orthogonality is the same as the implementation of the orthogonality of the pilot sequence, that is, the orthogonality can be implemented by frequency division and/or code division, and details are not described herein.
  • the first uplink control information sent by the first terminal device may be carried by the first sequence.
  • the second uplink control information sent by the second terminal device may be carried by the second sequence.
  • the first sequence may include 12 subsequences carried by 12 information symbols in the first uplink control channel format.
  • the second sequence can be carried by five information symbols in the third uplink control channel format.
  • the second sequence can be orthogonal to the first five subsequences of the 12 subsequences.
  • the implementation of the specific orthogonality is the same as the implementation of the orthogonality of the pilot sequence, that is, the orthogonality can be implemented by frequency division and/or code division, and details are not described herein.
  • FIG. 8 is a structural block diagram of a base station according to an embodiment of the present application. As shown in FIG. 8, the base station 800 includes a first communication unit 801 and a second communication unit 802.
  • the first communication unit 801 is configured to receive first uplink control information and a first pilot sequence from the first terminal device, where the first uplink control information and the first pilot sequence are carried by X symbols, the first The pilot sequence includes N subsequences carried by N symbols in the X symbols, N being a positive integer greater than or equal to 1, and X being a positive integer greater than N;
  • the second communication unit 802 is configured to receive second uplink control information and a second pilot sequence set by the second terminal, where the second uplink control information and the second pilot sequence are carried by Y symbols, where
  • the two pilot sequences include M subsequences carried by M symbols in the Y symbols, and the N subsequences are orthogonal to the M1 subsequences carried by the M1 symbols in the M subsequences, the N
  • the time domain location of the symbol is the same as the time domain location of the M1 symbol
  • the frequency domain resource for carrying the first uplink control information is the same as the frequency domain resource for carrying the second uplink control information, where M1 is equal to N , M is a positive integer greater than or equal to N, and Y is greater than or equal to M positive integer.
  • the first communication unit 801 and the second communication unit 802 can be implemented by a transceiver.
  • the specific functions and advantageous effects of the first communication unit 801 and the second communication unit 802 can be referred to the method shown in FIG. 2, and need not be described herein.
  • FIG. 9 is a structural block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 900 includes a processing unit 901 and a communication unit 902.
  • the processing unit 901 is configured to determine a first uplink control channel format.
  • the communication unit 902 is configured to send the first uplink control information and the first pilot sequence to the base station according to the first uplink control channel format determined by the control unit 901, where the first uplink control information and the first pilot sequence are The X pilots are carried, and the first pilot sequence includes N sub-sequences, which are carried by N symbols of the X symbols, and are used to carry the frequency domain resources of the first uplink control information and are used for carrying The frequency domain resources of the two uplink control information are the same, and the N subsequences are orthogonal to the M1 subsequences carried by the M1 symbols in the M subsequences of the second uplink control information, and the time domain locations of the N symbols and the M1 The time domain of the symbol is the same, the second pilot sequence includes the M subsequences, the second pilot sequence and the second uplink control information are sent by the second terminal device, the second pilot sequence and the second uplink control The information is carried by Y symbols, which are carried by M symbols in the
  • Processing unit 901 can be implemented by a processor, and communication unit 902 can be implemented by a transceiver.
  • the specific functions and beneficial effects of the processing unit 901 and the communication unit 902 can be seen in the method shown in FIG. 2, and need not be described here.
  • FIG. 10 is a structural block diagram of a base station according to an embodiment of the present application.
  • the base station 1000 shown in FIG. 10 includes a processor 1001, a memory 1002, and a transceiver 1003.
  • the processor 1001, the memory 1002, and the transceiver 1003 communicate with each other through an internal connection path to transfer control and/or data signals.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 1001 or implemented by the processor 1001.
  • the processor 1001 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1001 or an instruction in a form of software.
  • the processor 1001 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random access memory (RAM), a flash memory, a read-only memory (ROM), a programmable read only memory or an electrically erasable programmable memory, a register, etc.
  • RAM random access memory
  • ROM read-only memory
  • programmable read only memory or an electrically erasable programmable memory
  • register etc.
  • the storage medium is located in the memory 1002, and the processor 1001 reads the instructions in the memory 1002 and completes the steps of the above method in combination with its hardware.
  • the memory 1002 can store instructions for performing the method performed by the base station in the method of FIG. 2.
  • the processor 1001 can execute the instructions stored in the memory 1002 to complete the steps performed by the base station in the method shown in FIG. 2 in combination with other hardware (for example, the transceiver 1003).
  • other hardware for example, the transceiver 1003
  • FIG. 11 is a structural block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1100 shown in FIG. 11 includes a processor 1101, a memory 1102, and a transceiver 1103.
  • the processor 1101, the memory 1102, and the transceiver 1103 communicate with each other through an internal connection path to transfer control and/or data signals.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 1101 or implemented by the processor 1101.
  • the processor 1101 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1101 or an instruction in a form of software.
  • the processor 1101 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random access memory (RAM), a flash memory, a read-only memory (ROM), a programmable read only memory or an electrically erasable programmable memory, a register, etc.
  • RAM random access memory
  • ROM read-only memory
  • programmable read only memory or an electrically erasable programmable memory
  • register etc.
  • the storage medium is located in the memory 1102, and the processor 1101 reads the instructions in the memory 1102 and completes the steps of the above method in combination with its hardware.
  • the terminal device 1100 may also include other devices such as an input device, an output device, a battery, and the like.
  • the memory 1102 can store instructions for performing the method performed by the terminal device in the method of FIG. 2.
  • the processor 1101 can execute the instructions stored in the memory 1102 to complete the steps of the terminal device in the method shown in FIG. 2 in combination with other hardware (for example, the transceiver 1103).
  • other hardware for example, the transceiver 1103
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium eg, a Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、基站和终端设备,该方法包括:基站接收来自第一终端设备第一上行控制信息和第一导频序列;该基站接收来自第二终端设的第二上行控制信息和第二导频序列。基于上述技术方案,该基站在接收不同终端设备使用的包括的符号数目相同或者不同的上行控制信道格式发送的上行控制信息和导频序列时,可以实现上行控制信息占用相同的频域资源但是导频序列时域相同的部分全部正交,从而可以达到充分利用资源且减少不同信号之间相互干扰的效果。

Description

通信方法、基站和终端设备
本申请要求于2017年06月16日提交中国专利局、申请号为201710458356.3、申请名称为“通信方法、基站和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,并且更具体地,涉及通信方法、基站和终端设备。
背景技术
为了适应不同业务、不同的覆盖场景等新的需求,不同的终端设备发送的上行控制信息和导频序列的总长度可能是不同的。为了避免不同的终端设备发送的长度不同的上行控制信息和导频序列之间互相干扰,不同的终端设备需要在不同的物理资源模块上传输各自的上行控制信道序列这就会造成资源的浪费。例如,若在同一时刻有P(假设P大于或等于2)个终端设备需要发送上行控制信息和导频序列,且该P个上行控制信息和导频序列中包括总长度不同的上行控制信息和导频序列,则该P个终端设备中的每个终端设备在频域上需要占用12个子载波。因此,在此情况下,频域上需要P×12个子载波才能避免不同信号之间的互相干扰。
发明内容
本申请提供一种通信方法、基站和终端设备,能够减少在传输上行控制信道序列时对于频域资源的浪费。
第一方面,本申请实施例提供一种通信方法,该方法包括:基站接收来自第一终端设备第一上行控制信息和第一导频序列,其中,该第一上行控制信息和该第一导频序列由X个符号携带,该第一导频序列包括N个子序列,该N个子序列由该X个符号中的N个符号携带,N为大于或等于1的正整数,X为大于N的正整数;该基站接收来自第二终端设的第二上行控制信息和第二导频序列,其中,该第二上行控制信息和该第二导频序列由Y个符号携带,该第二导频序列包括M个子序列,该M个子序列由该Y个符号中的M个符号携带,该N个子序列与该M个子序列中的由M1个符号携带的M1个子序列正交,该N个符号的时域位置与该M1个符号的时域位置相同,用于携带该第一上行控制信息的频域资源和用于携带该第二上行控制信息的频域资源相同,其中M1等于N,M为大于或等于N的正整数,Y为大于或等于M正整数。基于上述技术方案,该基站在接收不同终端设备使用的包括的符号数目相同或者不同的上行控制信道格式发送的上行控制信息和导频序列时,可以实现上行控制信息占用相同的频域资源但是导频序列时域相同的部分全部正交,从而可以达到充分利用资源且减少不同信号之间相互干扰的效果。
结合第一方面,在第一方面的第一种可能的实现方式中,在该基站接收来自第一终端 设备的第一上行控制信息和第一导频序列之前,该方法还包括:该基站向该第一终端设备发送第一格式指示信息,该第一格式指示信息用于指示该第一终端设备按照第一上行控制信道格式发送该第一上行控制信息和该第一导频序列;在该基站接收来自第二终端设的第二上行控制信息和第二导频序列之前,该方法还包括:该基站向该第二终端设备发送第二格式指示信息,该第二格式指示信息用于指示该第二终端设备按照第二上行控制信道格式发送该第二上行控制信息和该第二导频序列。基于上述技术方案,该基站预先指示终端设备需要使用的上行控制信道格式,从而可以使得不同的终端设备发送的上行控制信息占用相同的频域资源但是导频序列时域相同的部分全部正交,从而可以达到充分利用资源且减少不同信号之间相互干扰的效果。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,在该基站向该第一终端设备发送第一格式指示信息,该基站向该第二终端设备发送第二格式指示信息之前,该方法还包括:该基站向该第一终端设备和该第二通信设备发送候选格式信息,该候选格式指示包括以下信息中的至少两个:候选的上行控制信道格式包括的符号数目、该候选的上行控制信道格式中用于携带导频序列的符号位置,和该候选的上行控制信道格式中用于携带上行控制信息的符号位置。基于上述技术方案,该基站可以将终端设备能够使用的上行控制信道格式指示的终端设备,从而控制该终端设备能够使用的上行控制信道格式。。
结合第一方面或第一方面的上述任一种可能的实现方式,在第一方面的第三种可能的实现方式中,该Y个符号包括R个符号集合,该R个符号集合中的每个符号集合包括的X个符号,该每个符号集合包括X个符号中的第x个符号的属性与用于携带该第一上行控制信息和该第一导频序列的X个符号中的第x个符号的属性相同,其中,符号的属性包括第一属性和第二属性,用于携带该第一上行控制信息的符号的属性和用于携带该第二上行控制信息的符号的属性为该第一属性,用于携带该第一导频序列的符号的属性和用于携带该第二导频序列的符号的属性为该第二属性,R为大于或等于2的正整数。这样,该Y个符号可以看做是将该X个符号重复R次得到的,该Y个符号的结构简单。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,该M个子序列中由M2个符号携带的子序列为该M个子序列中的由该M1个符号携带的子序列通过正交可变扩频因子OVSF扩展得到的,其中,M2为大于或等于1的正整数,M1与M2的和为M。这样,M2可以等于M1也可以是M1的倍数,该M1个符号携带的子序列可以与该M2个符号携带的子序列时域相同的部分全部正交。这样,该基站最多可以接收R+1个终端设备发送的上行控制信息和导频序列,从而可以达到进一步节省时频资源且减少不同信号之间相互干扰的效果。
结合第一方面的第三种可能的实现方式,在第一方面的第五种可能的实现方式中,该M个子序列中的第r×N+n个子序列与该M个子序列中的第n个子序列相同,其中r=1,…,R,n=1,…,N。这样,该基站最多可以接收R+1个终端设备发送的上行控制信息和导频序列,从而可以达到进一步节省时频资源且减少不同信号之间相互干扰的效果。
结合第一方面或第一方面的上述任一种可能的实现方式,在第一方面的第六种可能的实现方式中,该第一上行控制信息由第一序列承载,该第一序列由S个符号携带,S为大于或等于1的正整数,S与N的和为X;该第二上行控制信息由第二序列承载,该第二序 列包括T个子序列,该T个子序列分别由T个符号携带,该第一序列与该T个子序列中的由T1个符号携带的子序列正交,该S个符号的时域位置与该T1个符号的时域位置相同,其中S等于T1,T为大于或等于S的正整数,T与M的和为Y。基于上述技术方案,该第一序列和该第二序列也可以实现时域相同的部分全部正交,从而可以进一步减少不同信号之间的干扰。
第二方面,本申请实施例提供一种通信方法,该方法包括:第一终端设备确定第一上行控制信道格式;该第一终端设备按照该第一上行控制信道格式向基站发送第一上行控制信息和第一导频序列,其中,该第一上行控制信息和该第一导频序列由X个符号携带,该第一导频序列包括N个子序列,该N个子序列由该X个符号中的N个符号携带,用于携带该第一上行控制信息的频域资源和用于携带第二上行控制信息的频域资源相同,该N个子序列与第二上行控制信息的M个子序列中的由M1个符号携带的M1个子序列正交,该N个符号的时域位置与该M1个符号的时域位置相同,第二导频序列包括该M个子序列,该第二导频序列和该第二上行控制信息由第二终端设备发送,该第二导频序列和该第二上行控制信息由Y个符号携带,该M个子序列由该Y个符号中的M个符号携带,其中N为大于或等于1的正整数,X为大于N的正整数,M1等于N,M为大于或等于N的正整数,Y为大于或等于M正整数。基于上述技术方案,该基站在接收不同终端设备使用的包括的符号数目相同或者不同的上行控制信道格式发送的上行控制信息和导频序列时,可以实现上行控制信息占用相同的频域资源但是导频序列是时域相同的部分全部正交,从而可以达到充分利用资源且减少不同信号之间相互干扰的效果。
结合第二方面,在第二方面的第一种可能的实现方式中,该第一终端设备确定第一上行控制信道格式,包括:该第一终端设备接收该基站发送的第一格式指示信息,该第一格式指示信息用于指示该第一终端设备按照该第一上行控制信道格式发送该第一上行控制信息和该第一导频序列;该第一终端设备确定该第一上行控制信道格式为该第一格式指示信息的指示上行控制信道格式。基于上述技术方案,该基站预先指示终端设备需要使用的上行控制信道格式,从而可以使得不同的终端设备发送的上行控制信息占用相同的频域资源但是导频序列时域相同的部分全部正交,从而可以达到充分利用资源且减少不同信号之间相互干扰的效果。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,在该第一终端设备接收该基站发送的第一格式指示信息之前,该方法还包括:该第一终端设备接收该基站发送的候选格式信息,该候选格式指示包括以下信息中的至少两个:候选的上行控制信道格式包括的符号数目、该候选的上行控制信道格式中用于携带导频序列的符号位置,和该候选的上行控制信道格式中用于携带上行控制信息的符号位置。
结合第二方面或第二方面的上述任一种可能的实现方式,在第二方面的第三种可能的实现方式中,该Y个符号包括R个符号集合,该R个符号集合中的每个符号集合包括的X个符号,该每个符号集合包括X个符号中的第x个符号的属性与用于携带该第一上行控制信息和该第一导频序列的X个符号中的第x个符号的属性相同,其中,符号的属性包括第一属性和第二属性,用于携带该第一上行控制信息的符号的属性和用于携带该第二上行控制信息的符号的属性为该第一属性,用于携带该第一导频序列的符号的属性和用于携带该第二导频序列的符号的属性为该第二属性,R为大于或等于2的正整数。这样,该Y个 符号可以看做是将该X个符号重复R次得到的,该Y个符号的结构简单。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,该M个子序列中由M2个符号携带的子序列为该M个子序列中的由该M1个符号携带的子序列通过正交可变扩频因子OVSF扩展得到的,其中,M2为大于或等于1的正整数,M1与M2的和为M。这样,M2可以等于M1也可以是M1的倍数,该M1个符号携带的子序列可以与该M2个符号携带的子序列时域相同的部分全部正交。这样,该基站最多可以接收R+1个终端设备发送的上行控制信息和导频序列,从而可以达到进一步节省时频资源且减少不同信号之间相互干扰的效果。
结合第二方面的第三种可能的实现方式,在第一方面的第五种可能的实现方式中,该M个子序列中的第r×N+n个子序列与该M个子序列中的第n个子序列相同,其中r=1,…,R,n=1,…,N。这样,该基站最多可以接收R+1个终端设备发送的上行控制信息和导频序列,从而可以达到进一步节省时频资源且减少不同信号之间相互干扰的效果。
结合第二方面或第二方面的上述任一种可能的实现方式,在第二方面的第六种可能的实现方式中,该第一上行控制信息由第一序列承载,该第一序列由S个符号携带,S为大于或等于1的正整数,S与N的和为X;该第二上行控制信息由第二序列承载,该第二序列包括T个子序列,该T个子序列分别由T个符号携带,该第一序列与该T个子序列中的由T1个符号携带的子序列正交,该S个符号的时域位置与该T1个符号的时域位置相同,其中S等于T1,T为大于或等于S的正整数,T与M的和为Y。基于上述技术方案,该第一序列和该第二序列也可以实现时域相同的部分全部正交,从而可以进一步减少不同信号之间的干扰。
第三方面,本申请实施例提供一种通信方法,该方法包括:基站接收第一终端设备使用第一上行控制信道格式发送第一上行控制信息和第一导频序列,该第一上行控制信道格式包括Y个符号,该第一上行控制信道格式包括的Y个符号包括T个信息符号和M个导频符号,该信息符号用于携带上行控制信息,该导频符号用于携带导频序列,该第一上行控制信道格式为多个上行控制信道格式中的一个,该多个上行控制信道格式还包括第二上行控制信道格式,该第二上行控制信道格式包括Y个符号,该第二上行控制信道格式包括的Y个符号包括S个信息符号和N个导频符号,S、N均为大于或等于1的正整数,Y为S与N的和,该第二上行控制信道格式中的第y个符号为该N个导频符号中的一个导频符号,该第一上行控制信道格式中的第y个符号为该T个信息符号中的一个信息符号,y为大于1且小于或等于Y的正整数;该基站确定该第一导频序列和第一上行控制信息。基于上述技术方案,该基站可以支持不同的上行控制信道格式,有助于接收不同的终端设备发送的上行控制信息占用相同的频域资源但是导频序列时域相同的部分全部正交,从而可以达到充分利用资源且减少不同信号之间相互干扰的效果。
结合第三方面,在第三方面的第一种可能的实现方式中,该方法还包括:该基站接收第二终端设备使用该第一上行控制信道格式发送的第二上行控制信息和第二导频序列,用于携带该第一上行控制信息的频域资源和用于携带该第二上行控制信息的频域资源相同,用于携带该第一导频序列的M个导频符号的时域位置与用于携带该第二导频序列的M个导频符号的时域位置相同,该第一导频序列和该第二导频序列正交。基于上述技术方案,该基站接收不同的终端设备使用相同的上行控制信道格式发送的上行控制信息占用相同 的频域资源但是导频序列是全部正交,从而可以达到充分利用资源且减少不同信号之间相互干扰的效果。
结合第三方面,在第三方面的第二种可能的实现方式中,该方法还包括:该基站接收第三终端设备使用第三上行控制信道格式发送的第三上行控制信道信息和第三导频序列,该第三上行控制信道格式包括X个符号,该X个符号包括P个信息符号和Q个导频符号,P、Q均为大于或等于1的正整数,X为P与Q的和,Q小于或等于M,P小于T,该第一导频序列包括M个子序列,该M个子序列由该M个导频符号携带,用于携带该第三导频序列的Q个导频符号的时域位置与该M个导频符号中的M1个导频符号的时域位置相同,M1等于Q。基于上述技术方案,该基站接收不同的终端设备使用不同的上行控制信道格式发送的上行控制信息占用相同的频域资源但是导频序列时域相同的部分全部正交,从而可以达到充分利用资源且减少不同信号之间相互干扰的效果。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,该第一上行控制信道格式包括的Y个符号包括R个符号集合,该R个符号集合中的每个符号集合包括的X个符号,该每个符号集合包括X个符号中的第x个符号的属性与用于携带该第一上行控制信息和该第一导频序列的X个符号中的第x个符号的属性相同,其中,符号的属性包括第一属性和第二属性,用于携带该第一上行控制信息的符号的属性和用于携带该第三上行控制信息的符号的属性为该第一属性,用于携带该第一导频序列的符号的属性和用于携带该第三导频序列的符号的属性为该第二属性,R为大于或等于2的正整数。这样,该第一上行控制信道格式可以看做是该第三上行控制信道格式重复R次得到的,该第一上行控制信道格式的结构简单。
结合第三方面的第三种可能的实现方式,在三方面的第四种可能的实现方式中,该M个子序列中由M2个符号携带的子序列为该M个子序列中的由该M1个符号携带的子序列通过正交可变扩频因子OVSF扩展得到的,其中,M2为大于或等于1的正整数,M1与M2的和为M。这样,该基站最多可以接收R+1个终端设备发送的上行控制信息和导频序列,从而可以达到进一步节省时频资源且减少不同信号之间相互干扰的效果。
结合第三方面的第三种可能的实现方式,在三方面的第五种可能的实现方式中,该M个子序列中的第r×N+n个子序列与该M个子序列中的第n个子序列相同,其中r=1,…,R,n=1,…,N。这样,该基站最多可以接收R+1个终端设备发送的上行控制信息和导频序列,从而可以达到进一步节省时频资源且减少不同信号之间相互干扰的效果。
结合第三方面或第三方面的上述任一种可能的实现方式,在第三方面的第六种可能的实现方式中,该第一上行控制信息由第一序列承载,该第一序列包括T个子序列,该T个子序列由该T个信息符号携带;该第三上行控制信息由第三序列承载,该第三序列包括P个子序列,该P个子序列分别由P个信息符号携带,该第三序列与该T个子序列中的由T1个信息符号携带的子序列正交,该P个信息符号的时域位置与该T1个信息符号的时域位置相同,其中P等于T1。基于上述技术方案,该第一序列和该第二序列也可以实现时域相同的部分全部正交,从而可以进一步减少不同信号之间的干扰。
结合第三方面,在第三方面的第七种可能的实现方式中,在该基站接收第一终端设备使用第一上行控制信道格式发送第一上行控制信息和第一导频序列之前,该方法还包括:该基站向该第一终端设备发送第一格式指示信息,该第一格式指示信息用于指示该第一终 端设备使用该第一上行控制信道格式发送该第一上行控制信息和该第一导频序列。基于上述技术方案,该基站预先指示终端设备需要使用的上行控制信道格式,从而可以使得不同的终端设备发送的上行控制信息占用相同的频域资源但是导频序列时域相同的部分全部正交,从而可以达到充分利用资源且减少不同信号之间相互干扰的效果。
结合第三方面的第七种可能的实现方式,在第三方面的第八种可能的实现方式中,在该基站向该第一终端设备发送第一格式指示信息之前,该方法还包括:该基站向该第一终端设备发送候选格式信息,该候选格式指示包括以下信息中的至少两个:候选的上行控制信道格式包括的符号数目、该候选的上行控制信道格式中用于携带导频序列的符号位置,和该候选的上行控制信道格式中用于携带上行控制信息的符号位置。基于上述技术方案,该基站可以将终端设备能够使用的上行控制信道格式指示的终端设备,从而控制该终端设备能够使用的上行控制信道格式。
第四方面,本申请提供了一种基站,该基站具有实现第一方面或第一方面的任一种可能的实现方式中,或者第三方面或第三方面的任一种可能的实现方式中基站实现的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多于一个与上述功能相对应的模块。
第五方面,本申请提供了一种终端设备,该终端设备具有实现第二方面或第二方面的任一种可能的实现方式中终端设备实现的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多于一个与上述功能相对应的模块。
第六方面,本申请提供了一种基站,该基站包括处理器和收发器。该处理器被配置为支持该终端设备实现第一方面或第一方面的任一种可能的实现方式中,或者第三方面或第三方面的任一种可能的实现方式中相应的功能。该收发器用于支持基站接收该终端设备发送的上述方法中所涉及的信息以及向该终端设备发送上述方法中所涉及的信息。可选的,该基站还可以包括存储器,该存储器用于与处理器耦合,保存该基站必要的程序指令和数据包。
第七方面,本申请提供了一种终端设备,该终端设备中包括处理器和收发器。该处理器被配置为支持该终端设备实现第二方面或第二方面的任一种可能的实现方式中相应的功能。该收发器用于支持该终端设备向基站发送上述方法中所涉及的信息以及接收该基站发送的上述方法中所涉及的信息。可选的,该终端设备还可以包括存储器,该存储器用于与处理器耦合,保存该终端设备必要的程序指令和数据。
第八方面,本申请提供了一种计算机存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一种可能的实现方式所述的方法。
第九方面,本申请提供了一种计算机存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述第二方面或第二方面的任一种可能的实现方式所述的方法。
第十方面,本申请提供了一种芯片,该芯片用于支持终端设备实现第一方面或第一方面的任一种可能的实现方式中所涉及的功能。
第十一方面,本申请提供了一种芯片,该芯片用于支持基站实现第二方面或第二方面的任一种可能的实现方式中所涉及的功能。
第十二方面,本申请提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一种可能的实现方式所述的方法。
第十三方面,本申请提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第二方面或第二方面的任一种可能的实现方式所述的方法。
附图说明
图1是本申请的实施例应用的移动通信系统的架构示意图。
图2是根据本申请实施例提供的一种通信方法的示意性流程图。
图3是一个该第一控制信道格式和该第二控制信道格式的示意图。
图4是另一个该第一控制信道格式和该第二控制信道格式的示意图。
图5是一个该第一控制信道格式和该第三控制信道格式的示意图。
图6是另一个该第一控制信道格式和该第三控制信道格式的示意图。
图7是三个终端设备发送的上行控制信息和导频序列的示意图。
图8是根据本申请实施例提供的一种基站的结构框图。
图9是根据本申请实施例提供的终端设备的结构框图。
图10是根据本申请实施例提供的基站终端设备的结构框图。
图11是根据本申请实施例提供的终端设备的结构框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、第4.5(4.5th Generation,4.5G)代网络、第五代(5th Generation,5G)网络、新空口(New Radio,NR)等。
图1是本申请的实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、基站120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与基站相连,基站通过无线或有线方式与核心网设备连接。核心网设备与基站可以是独立的不同的物理设备,也可以是将核心网设备的功能与基站的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的基站的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、基站和终端设备的数量不做限定。
基站是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站eNodeB、5G移动通信系统中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等,本申请的实施例对基站所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端(Terminal)、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等。终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
基站和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对基站和终端设备的应用场景不做限定。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(Device to device,D2D)的信号传输。对于下行信号传输,发送设备是基站,对应的接收设备是终端设备。对于上行信号传输,发送设备是终端设备,对应的接收设备是基站。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例对信号的传输方向不做限定。
基站和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。基站和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对基站和终端设备之间所使用的频谱资源不做限定。
本申请实施例中所称的上行控制信道可以是物理上行控制信道(Physical Uplink Control Channel,PUCCH),也可以是其他上行控制信道。
图2是根据本申请实施例提供的一种通信方法的示意性流程图。
201,基站接收来自第一终端设备的第一上行控制信息和第一导频序列。
202,该基站接收来自第二终端设备的第二上行控制信息和第二导频序列。
具体地,该基站可以支持多种上行控制信道格式。该多种上行控制信道格式包括第一上行控制信道格式。该第一上行控制信道格式包括Y个符号。该第一上行控制信道格式包括的Y个符号可以包括T个信息符号和M个导频符号,其中T为大于或等于1的正整数,M为大于或等于1的正整数,T和M的和为Y。该信息符号用于携带上行控制信息。该导频符号用于携带导频序列,该多种上行控制信道格式还可以包括第二上行控制信道格式。该第二上行控制信道格式包括Y个符号。该第二上行控制信道格式包括的Y个符号可以包括S个信息符号和N个导频符号,S为大于或等于1的正整数,N为大于或等于1的正整数,S与N的和为Y。该第二上行控制信道格式中的第y个符号为该N个导频符号中的一个导频符号,该第一上行控制信道格式中的第y个符号为该T个信息符号中的一个信息符号,y为大于1且小于或等于Y的正整数。换句话说,存在至少一个导频符号,该至少一个导频符号在该第一上行控制信道格式中的位置与该至少一个导频符号在该第二上行控制信道格式中的位置不同。
可选的,在一些实施例中,S可以等于T,N可以等于Y。
例如,图3是一个该第一控制信道格式和该第二控制信道格式的示意图。如图3所示,该第一上行控制信道格式包括14个符号。该14个符号中的第5个符号和第10个符号为导频符号。该14个符号中除该第5个符号和该第10个符号以外的符号为信息符号。该第二上行控制信道格式包括14个符号。该14个符号中的第1个符号和第4个符号为导频符号。该14个符号中除该第1个符号和该第4个符号以外的符号为信息符号。
可选的,在另一些实施例中,S可以不等于T,N可以不等于Y。
例如,图4是另一个该第一控制信道格式和该第二控制信道格式的示意图。如图4所示,该第一上行控制信道格式包括14个符号。该14个符号中的第5个符号和第10个符号为导频符号。该14个符号中除该第5个符号和该第10个符号以外的符号为信息符号。该第二上行控制信道格式包括14个符号。该14个符号中的第1个符号、第4个符号、第8个符号和第11个符号为导频符号。该14个符号中除该第1个符号、该第4个符号、该第8个符号和该第11个符号以外的符号为信息符号。
可选的,在一些实施例中,该第一终端设备和该第二终端设备可以使用相同的上行控制信道格式发送上行控制信息和导频序列。例如,该第一终端设备可以使用该第一上行控制信道格式发送第一上行控制信息和第一导频序列。该第二终端设备也可以使用该第一上行控制信道格式发送第二上行控制信息和第二导频序列。再如,该第一终端设备可以使用该第二上行控制信道格式发送第一上行控制信息和第一导频序列。该第二终端设备也可以使用该第二上行控制信道格式发送第二上行控制信息和第二导频序列。
在该第一终端设备和该第二终端设备使用相同的上行控制信道格式发送上行控制信息和导频序列的情况下,用于携带第一上行控制信息的频域资源和用于携带第二上行控制信息的频域资源相同,用于携带第一导频序列的时域位置和用于携带第二导频序列的时域位置相同,该第一导频序列与该第二导频序列正交。
还以图3为例。该第一终端设备和该第二终端设备均可以采用如图3所示的第一上行控制信道格式发送上行控制信息和导频序列。具体地,该第一终端设备发送的第一上行控制信息可以由第一序列承载。该第二终端设备发送的第二上行控制信息可以由第二序列承载。该第一序列可以由该第一上行控制信道格式中的12个信息符号携带。该第二序列可以由该第一上行控制信道格式中的12个信息符号携带。该第一终端设备发送的第一导频序列可以包括两个子序列。该第二终端设备发送的第二导频序列也可以包括两个子序列。为了区分该第一导频序列包括的子序列和该第二导频序列包括的子序列,以下将第一导频序列包括的子序列称为第一导频子序列,将该第二导频序列包括的子序列称为第二导频子序列。两个第一导频子序列由该第一上行控制信道格式中的两个导频符号(即第5个符号和第10个符号)携带。两个第二导频子序列由该第一上行控制信道格式中的两个导频符号(即第5个符号和第10个符号)携带。
该两个第一导频子序列和该两个第二导频子序列正交。由于该两个第一导频子序列和该两个第二导频子序列的时域位置是相同的。因此,该两个第一导频子序列与该两个第二导频子序列可以是频分,该两个第一导频子序列与该两个第二导频子序列也可以是码分,或者该两个第一导频子序列和该两个第二导频子序列可以同时频分和码分。
具体地,在该两个第一导频子序列与该两个第二导频子序列是频分的情况下,该两个 第一导频子序列和该两个第二导频子序列中位于相同时域位置的子序列可以占用相同的频域单元中的不同子载波。该频域单元可以是一个物理资源模块(Physical Resource Block,PRB)包括的12个子载波。例如,该第一导频子序列可以占用该12个子载波中的第1个子载波至第6个子载波。该第二导频子序列可以占用该12个子载波中的第7个子载波至第12个子载波。又如,该第一导频子序列可以占用该12个子载波中的奇数子载波。该第二导频子序列可以占用该12个子载波中的偶数子载波。当然,只要该第一导频子序列与该第二导频子序列占用的子载波不同,该第一导频子序列和该第二导频子序列还可以采用其他方式占用该12个子载波。
在该两个第一导频子序列与该两个第二导频子序列是码分的情况下,该两个第一导频子序列和该两个第二导频子序列可以采用相同的序列生成,但是采用不同的循环移位值。例如,该两个第一导频子序列和该两个第二导频子序列均可以采用ZC序列生成,但是采用不同的循环移位值。该两个第一导频子序列和该两个第二导频子序列也可以采用不同的序列生成。
通过上述技术方案,该第一终端设备发送的第一上行控制信息和第一导频序列与该第二终端设备发送的第二上行控制信息和第二导频序列可以使用相同的PRB。因此,上述技术方案可以达到节省时频资源的目的。此外,该基站可以支持多种格式的上行控制信道。在此情况下,该基站可以根据需要选择适合的上行控制信道格式,以使得接收到的不同终端设备发送的上行控制信息占用相同的频域资源但是导频序列时域相同的部分全部正交,从而可以达到充分利用资源且减少不同信号之间相互干扰的效果。
可选的,在另一些实施例中,该多个上行控制信道格式还可以包括第三上行控制信道格式。该第三上行控制信道格式可以包括X个符号。该X个符号可以包括P个信息符号和Q个导频符号,其中P为大于或等于1的正整数,Q为大于或等于1的正整数,P和Q的和为X,X小于Y。
可选的,在一些实施例中,该第一上行控制信道格式包括的导频符号数目与该第三上行控制信道格式包括的导频符号数目相同。
例如,图5是一个该第一控制信道格式和该第三控制信道格式的示意图。如图5所示,该第一上行控制信道格式包括14个符号。该14个符号中的第1个符号和第4个符号为导频符号。该14个符号中除该第1个符号和该第4个符号以外的符号为信息符号。该第三上行控制信道格式包括7个符号。该7个符号中的第1个符号和第4个符号为导频符号。该7个符号中除该第1个符号和该第4个符号以外的符号为信息符号。
可选的,另在一些实施例中,该第一上行控制信道格式包括的导频符号数目大于该第三上行控制信道格式包括的导频符号数目。
例如,图6是另一个该第一控制信道格式和该第三控制信道格式的示意图。如图6所示。该第一上行控制信道格式包括14个符号。该14个符号中的第1个符号、第4个符号、第8个符号和第11个符号为导频符号。该14个符号中除该第1个符号、该第4个符号、该第8个符号和该第11个符号以外的符号为信息符号。该第三上行控制信道格式包括7个符号。该7个符号中的第1个符号和第4个符号为导频符号。该7个符号中除该第1个符号和该第4个符号以外的符号为信息符号。
可选的,在一些实施例中,该第一终端设备和该第二终端设备可以使用符号数目不同 的上行控制信道格式发送上行控制信息和导频序列。
可选的,在一些实施例中,该第一上行控制信道格式包括的导频符号数目与该第三上行控制信道格式包括的导频符号数目相同。
以图5为例,该第一终端设备可以使用如图5所示的第一控制信道格式发送第一上行控制信息和第一导频序列。该第二终端设备可以使用如图5所示的第三控制信道格式发送第二上行控制信息和第二导频序列。用于携带第一上行控制信息的频域资源和用于携带第二上行控制信息的频域资源相同,用于携带第一导频序列的时域位置和用于携带第二导频序列的时域位置相同,该第一导频序列与该第二导频序列正交。
具体地,该第一终端设备发送的第一上行控制信息可以由第一序列承载。该第二终端设备发送的第二上行控制信息可以由第二序列承载。该第一序列可以由该第一上行控制信道格式中的12个信息符号携带。该第二序列可以由该第三上行控制信道格式中的5个信息符号携带。该第一终端设备发送的第一导频序列可以包括两个子序列。该第二终端设备发送的第二导频序列也可以包括两个子序列。两个第一导频子序列由该第一上行控制信道格式中的两个导频符号(即第1个符号和第4个符号)携带。两个第二导频子序列由该第三上行控制信道格式中的两个导频符号(即第1个符号和第4个符号)携带。
在该第一上行控制信道格式包括的导频符号数目与该第三上行控制信道格式包括的导频符号数目相同的情况下,该两个第一导频子序列和该两个第二导频子序列的正交方式可以参见上述实施例描述,在此就不必赘述。
可选的,另在一些实施例中,该第一上行控制信道格式包括的导频符号数目大于该第三上行控制信道格式包括的导频符号数目。
以图6为例,该第一终端设备可以使用如图6所示的第一控制信道格式发送第一上行控制信息和第一导频序列。该第二终端设备可以使用如图6所示的第三控制信道格式发送第二上行控制信息和第二导频序列。用于携带第一上行控制信息的频域资源和用于携带第二上行控制信息的频域资源相同。如图6所示,用于携带第一导频序列的四个导频符号中的前两个导频符号的时域位置和用于携带第二导频序列的两个导频符号的时域位置相同。除如图6所示的,用于携带第一导频序列的四个导频符号中的前两个导频符号的时域位置和用于携带第二导频序列的两个导频符号的时域位置相同外,用于携带第一导频序列的四个导频符号中的两个导频符号的时域位置和用于携带第二导频序列的两个导频符号的时域位置相同的方式还可以有其他方式。例如,用于携带第一导频序列的四个导频符号中的最后两个导频符号的时域位置和用于携带第二导频序列的两个导频符号的时域位置相同。
具体地,该第一终端设备发送的第一上行控制信息可以由第一序列承载。该第二终端设备发送的第二上行控制信息可以由第二序列承载。该第一序列可以由该第一上行控制信道格式中的12个信息符号携带。该第二序列可以由该第三上行控制信道格式中的5个信息符号携带。该第一终端设备发送的第一导频序列可以包括四个子序列。该第二终端设备发送的第二导频序列也可以包括两个子序列。四个第一导频子序列由该第一上行控制信道格式中的四个导频符号(即第1个符号、第4个符号、第8个符号和第11个符号)携带。两个第二导频子序列由该第三上行控制信道格式中的两个导频符号(即第1个符号和第4个符号)携带。由该四个导频符号中的第一个导频符号和第二个导频符号携带的两个第一导频子序列与该两个第二导频子序列正交。该两个第一导频子序列和该两个第二导频子序 列的正交方式可以参见上述实施例描述,在此就不必赘述。换句话说,若该第一上行控制信道格式与该第三上行控制信道格式包括的导频符号数目不同,则该第一终端设备和该第二终端设备发送的导频序列时域相同的部分全部正交。
进一步,该第一上行控制信道格式包括的导频符号数目可以是该第三上行控制信道格式包括的导频符号数目的R倍,该第一上行控制信道格式包括的信息符号也可以是该第三上行控制信道包括的信息符号的R倍,R为大于或等于2的正整数。换句话说,M=R×Q,T=R×P。在此情况下,该Y个符号可以包括R个符号集合,该R个符号集合中的每个符号集合包括的X个符号,该每个符号集合包括X个符号中的第x个符号的属性与该第三上行控制信道格式包括的X个符号中的第x个符号的属性相同,其中,符号的属性包括第一属性和第二属性,用于携带上行控制信息的符号的属性为该第一属性,用于携带导频序列的符号的属性为该第二属性。。也就是说,该第一上行控制信道格式是该第三上行控制信道格式重复R次的结果。该R个符号集合中的任意两个符号集合中导频符号和信息符号的位置均是相同的,且均与该第三上行控制信道格式包括的导频符号和信息符号的位置相同。
还以图6为例,图6中的第一上行控制信道格式包括两个符号集合。该两个符号集合中的每个符号集合的第一个符号和第四个符号均为导频符号。该两个符号集合中的每个符号中除第一个符号和第四个符号以外的符号均为信息符号。
基于上述技术方案,该基站可以在相同的频域资源上接收R+1个终端设备发送的上行控制信息和导频序列。该R+1个终端设备中的R个终端设备发送的上行控制信息和导频序列在时域上是连续的。该R+1个终端设备中的R个终端设备发送的上行控制信息和导频序列占用的总时域资源等于该R+1个终端设备中除该R该终端设备以外的另一个终端设备发送的上行控制信息和导频序列占用的总时域资源相同。该R个终端设备中的任一个终端设备发送的导频序列与该另一个导频序列中的部分子序列正交。
例如,图7是三个终端设备发送的上行控制信息和导频序列的示意图。如图7所示,第一终端设备发送的第一上行控制信息和第一导频序列占用14个符号,且该第一导频序列占用4个符号。第二终端设备发送的第二上行控制信息和第二导频序列占用7个符号,且该第二导频序列占用2个符号。第三终端设备发送的第三上行控制信息和第三导频序列占用7个符号且第三导频序列占用2个符号。如图7所示,该第二导频序列与该第一导频序列中由前两个导频符号携带的两个子序列正交,该第三导频序列与该第一导频序列中由后两个导频符号携带的两个子序列正交。这样,在相同的时频资源上,最多可以由三个终端设备同时向该基站发送上行控制信息和导频序列,从而可以实现充分利用资源且减少不同信号之间相互干扰的效果。
可选的,在一些实施例中,在该第一终端设备采用该第一上行控制信道格式发送第一上行控制信息和第一导频序列的情况下,该第一导频序列可以包括M个子序列,该M个子序列中由M2个符号携带的子序列为该M个子序列中的由该M1个符号携带的子序列通过正交可变扩频因子(Orthogonal Variable Spreading Factor,OVSF)扩展得到的,其中,M2为大于或等于1的正整数,M1与M2的和为M。
可选的,在一些实施例中,在该第一终端设备采用该第一上行控制信道格式发送第一上行控制信息和第一导频序列的情况下,该第一导频序列可以包括M个子序列,该M个 子序列中由M2个符号携带的子序列为该M个子序列中的由该M1个符号携带的子序列通过正交可变扩频因子(Orthogonal Variable Spreading Factor,OVSF)扩展得到的,其中,M2为大于或等于1的正整数,M1与M2的和为M。例如,假设M1个符号携带的子序列为[1-1],在通过OVSF扩展后得到的M个序列为[1,-1,-1,1]。在此情况下,另外两个终端设备可以使用序列为[-1,1]和[1,-1]的两个导频序列。这样,可以使得三个终端设备可以在减少互相干扰的情况下,充分利用时频资源。
可选的,在另一些实施例中,该M个子序列中的第r×N+n个子序列与该M个子序列中的第n个子序列相同,其中r=1,…,R,n=1,…,N。例如,M个序列为[1,-1,1,-1]。在此情况下,另外两个终端设备可以使用序列为[-1,1]和[-1,1]的两个导频序列。这样,可以使得三个终端设备可以在减少互相干扰的情况下,充分利用时频资源。
基于上述技术方案,该基站在接收不同终端设备使用的包括的符号数目不同的上行控制信道格式发送的上行控制信息和导频序列时,也可以实现上行控制信息占用相同的频域资源但是导频序列时域相同的部分全部正交,从而可以达到充分利用资源且减少不同信号之间相互干扰的效果。
可选的,在一些实施例中,在步骤201之前,还可以包括步骤203;在步骤202之前,还可以包括步骤204。
203,该基站向该第一终端设备发送第一格式指示信息,该第一格式指示信息用于指示该第一终端设备用于发送该第一上行控制信息和该第一导频序列的上行控制信道格式。
204,该基站向该第二终端设备发送第二格式指示信息,该第二格式指示信息用于指示该第二终端设备用于发送该第二上行控制信息和该第二导频序列的上行控制信道格式。
例如,该第一格式指示信息可以用于指示该第一终端设备采用该第一上行控制信道格式发送该第一上行控制信息和该第一导频序列。该第二格式可以用于指示该第二终端设备采用该第一上行控制信道格式发送该第二上行控制信息和该第二导频序列。又如,该第一格式指示信息可以用于指示该第一终端设备采用该第一上行控制信道格式发送该第一上行控制信息和该第一导频序列。该第二格式可以用于指示该第一终端设备采用该第三上行控制信道格式发送该第二上行控制信息和该第二导频序列。
可选的,在一些实施例中,格式指示信息(即该第一格式指示信息或该第二格式指示信息)可以是显式指示信息。例如,该格式指示信息可以包括K个比特。通过K个比特的不同取值来指示上行控制信道格式。K为大于或等于1的正整数。K的具体取值可以与上行控制信道格式的数目相关。例如,若该多个上行控制信道格式包括三个上行控制信道格式或者四个上行控制信道格式,则K可以等于2。该K个比特的取值为00可以表示采用第一上行控制信道格式发送上行控制信息和导频序列,该K个比特的取值为01可以表示采用第二上行控制信道格式发送上行控制信息和导频序列,该K个比特的取值为10可以表示采用第三上行控制信道格式发送上行控制信息和导频序列。
可选的,在一些实施例中,格式指示信息(即该第一格式指示信息或该第二格式指示信息)可以是隐式指示信息。也就是说,该基站可以通过指示其他信息来指示用于发送上行控制信息和导频序列的上行控制信道格式。
可选的,在一些实施例中,该基站可以通过指示时频资源的方式指示该上行控制信道格式。该终端设备可以根据时频资源和上行控制信道格式对应关系确定需要使用的上行控 制信道格式。
具体地,该第一上行控制信道格式指示信息可以是第一时频资源信息,该第一时频资源信息用于指示该第一终端设备用于发送第一上行控制信息和第一导频序列的时频资源。该第二上行控制信道格式指示信息可以是第二时频资源信息,该第二时频资源信息用于指示该第二终端设备用于发送二上行控制信息和第二导频序列的时频资源。该第一终端设备可以根据时频资源和上行控制信道格式对应关系,确定使用与该第一时频资源信息所指示的时频资源对应的上行控制信道格式发送该第一上行控制信息和该第一导频序列。该第二终端设备可以根据时频资源和上行控制信道格式对应关系,确定使用与该第二时频资源信息所指示的时频资源对应的上行控制信道格式发送该第二上行控制信息和该第二导频序列。
例如,若该基站指示该第一终端设备使用两个PRB发送该第一上行控制信息和该第一导频序列,则该第一终端设备可以使用该第一上行控制信道格式发送该第一上行控制信息和该第一导频序列。若该基站指示该第二终端设备使用一个PRB发送该第二上行控制信息和该第二导频序列,则该第二终端设备可以使用该第三上行控制信道格式发送该第二上行控制信息和该第二导频序列。
可选的,在另一些实施例中,该基站可以通过指示编码方式的方式指示该上行控制信道格式。该终端设备可以根据编码方式和上行控制信道格式对应关系确定需要使用的上行控制信道格式。
可选的,在一些实施例中,该第一上行控制信道格式指示信息可以是第一编码信息,该第一编码信息用于指示该第一终端设备用于生成该第一导频序列的编码方式。该第二上行控制信道格式指示信息可以是第二编码信息,该第二编码信息用于指示该第二终端设备用于生成该第二导频序列的编码方式。该第一终端设备可以根据编码方式和上行控制信道格式对应关系,确定使用与该第一编码信息所指示的编码方式对应的上行控制信道格式发送该第一上行控制信息和该第一导频序列。该第二终端设备可以根据编码方式和上行控制信道格式对应关系,确定使用与该第二编码信息所指示的编码方式对应的上行控制信道格式发送该第二上行控制信息和该第二导频序列。
例如,若该基站指示该第一终端设备使用第一编码方式生成该第一导频序列,则该第一终端设备可以使用该第一上行控制信道格式发送该第一上行控制信息和该第一导频序列。若该基站指示该第二终端设备使用第二编码方式生成该第二导频序列,则该第二终端设备可以使用该第三上行控制信道格式发送该第二上行控制信息和该第二导频序列。该第一编码方式和该第二编码方式不同。该第一编码方式和该第二编码方式的不同可以是用于生成导频序列的序列不同,也可以是循环移位值不同。
可选的,在另一些实施例中,该第一上行控制信道格式指示信息可以是第三编码信息,该第三编码信息用于指示该第一终端设备用于生成用于承载该第一上行控制信息的序列的编码方式。该第二上行控制信道格式指示信息可以是第四编码信息,该第四编码信息用于指示该第二终端设备用于生成用于承载该第二上行控制信息的序列的编码方式。该第一终端设备可以根据编码方式和上行控制信道格式对应关系,确定使用与该第一编码信息所指示的编码方式对应的上行控制信道格式发送该第一上行控制信息和该第一导频序列。该第二终端设备可以根据编码方式和上行控制信道格式对应关系,确定使用与该第二编码信 息所指示的编码方式对应的上行控制信道格式发送该第二上行控制信息和该第二导频序列。
例如,若该基站指示该第一终端设备使用第三编码方式生成用于承载该第一上行控制信息的序列,则该第一终端设备可以使用该第一上行控制信道格式发送该第一上行控制信息和该第一导频序列。若该基站指示该第二终端设备使用第四编码方式生成用于承载该第二上行控制信息的序列,则该第二终端设备可以使用该第三上行控制信道格式发送该第二上行控制信息和该第二导频序列。该第三编码方式是不同的。
可选的,在另一些实施例中,该基站可以通过指示导频符号的位置的方式指示该上行控制信道格式。该终端设备可以根据导频符号的位置和上行控制信道格式对应关系确定需要使用的上行控制信道格式。
具体地,该第一上行控制信道格式指示信息可以是第一导频符号的位置信息,该第一导频符号的位置信息用于指示该第一终端设备在发送第一导频序列时用于携带该第一导频序列的符号的位置。该第二上行控制信道格式指示信息可以是第二导频符号的位置信息,该第二导频符号的位置信息用于指示该第二终端设备在发送第二导频序列时用于携带该第二导频序列的符号的位置。该第一终端设备可以根据导频符号的位置和上行控制信道格式对应关系,确定使用与该第一导频符号的位置所指示的导频符号的位置对应的上行控制信道格式发送该第一上行控制信息和该第一导频序列。该第二终端设备可以根据导频符号的位置和上行控制信道格式对应关系,确定使用与该第二导频符号的位置所指示的导频符号的位置对应的上行控制信道格式发送该第二上行控制信息和该第二导频序列。
例如,若该基站指示该第一终端设备使用第1个符号、第4个导频符号、第8个导频符号,和第11个符号携带该第一导频序列,则该第一终端设备可以使用该第一上行控制信道格式发送该第一上行控制信息和该第一导频序列。若该基站指示该第二终端设备使用第1个符号和第4个符号携带该第一导频序列,则该第二终端设备可以使用该第三上行控制信道格式发送该第二上行控制信息和该第二导频序列。
除了上述几种隐式指示方式以外,该基站也可以采用其他隐式指示方式,例如指示业务类型等,在此就不一一列举。
可选的,在另一些实施例中,终端设备可以根据业务类型、业务时延需求、业务的可靠性需求、终端类型等自行确定用于发送上行控制信息和导频序列的上行控制信道格式。该终端设备可以将确定的上行控制信道格式发送给该基站,也可以将用于确定上行控制信道格式的相关信息发送给基站,以便于该基站可以确定该终端设备使用的上行控制信道格式。当然,该基站也可以通过其他方式确定该终端设备使用的上行控制信道格式。例如,该基站可以通过其他设备(例如核心网设备或者其他终端设备等)获取到该终端设备使用上行控制信道格式或者用于确定上行控制信道格式的相关信息。又如,用于确定上行控制信道格式的相关信息也可以是该基站确定的,这样该基站可以直接利用这些相关信息确定该终端设备使用的上行控制信道格式。
可选的,在一些实施例中,在步骤203和步骤204之前,还可以包括步骤205。
205,该基站向该第一终端设备和该第二通信设备发送候选格式信息,该候选格式信息可以包括以下信息中的至少两个:候选的上行控制信道格式包括的符号数目、该候选的上行控制信道格式中用于携带导频序列的符号位置,和该候选的上行控制信道格式中用于 携带上行控制信息的符号位置。
例如,该候选格式信息可以包括候选的上行控制信道格式包括的符号数目和该候选的上行控制信道格式中用于携带导频序列的符号位置。这样,终端设备(即该第一终端设备和该第二终端设备)可以根据候选的上行控制信道格式包括的符号数目和该候选的上行控制信道格式中用于携带导频序列的符号位置,确定出该候选的上行控制信道格式中用于携带上行控制信息的符号位置。
又如,该候选格式信息可以包括候选的上行控制信道格式包括的符号数目和该候选的上行控制信道格式中用于携带上行控制信息的符号位置。这样,终端设备可以根据候选的上行控制信道格式包括的符号数目和该候选的上行控制信道格式中用于携带上行控制信息的符号位置,确定出该候选的上行控制信道格式中用于携带导频序列的符号位置。
又如,该候选格式信息可以包括该候选的上行控制信道格式中用于携带导频序列的符号位置和该候选的上行控制信道格式中用于携带上行控制信息的符号位置。这样,终端设备可以根据该候选的上行控制信道格式中用于携带导频序列的符号位置和该候选的上行控制信道格式中用于携带上行控制信息的符号位置,确定出候选的上行控制信道格式包括的符号数目。
当然,该候选格式信息也可以包括候选的上行控制信道格式包括的符号数目、该候选的上行控制信道格式中用于携带导频序列的符号位置,和该候选的上行控制信道格式中用于携带上行控制信息的符号位置。
可选的,在一些实施例中,该候选格式信息还可以包括用于生成导频序列的编码方式和用于生成用于承载上行控制信息的序列的编码方式中的一个或全部。
在一些实施例中,该候选格式信息可以包括用于生成导频序列的编码方式和用于生成用于承载上行控制信息的序列的编码方式。这样,在终端设备确定采用的上行控制信道格式的情况下,该终端设备也就可以同时确定用于生成导频序列的编码方式和用于生成用于承载上行控制信息的序列的编码方式。
在另一些实施例中,该候选格式信息可以包括用于生成用于承载上行控制信息的序列的编码方式,而不包括用于生成导频序列的编码方式。这样,在终端设备确定采用的上行控制信道格式的情况下,该终端设备也就可以同时确定用于生成用于承载上行控制信息的序列的编码方式。该基站可以通过其他信息将用于生成导频序列的编码方式指示给该终端设备。例如,该基站可以在步骤203后,可以向该第一终端设备发送第一编码信息,该第一编码信息用于指示该第一终端设备用于生成该第一导频序列的编码方式,在步骤204后,向该第二终端设备第二编码信息,该第二编码信息用于指示该第二终端设备用于生成该第二导频序列的编码方式。又如,该第一格式指示信息可以同时用于指示用于生成第一导频序列的编码方式和用于发送该第一上行控制信息和该第一导频序列的上行控制信道格式,该第二格式指示信息可以同时用于指示用于生成第二导频序列的编码方式和用于发送该第二上行控制信息和该第二导频序列的上行控制信道格式具体指示方式可以参见上述实施例描述,在此就不必赘述。
在另一些实施例中,该候选格式信息可以包括用于生成导频序列的编码方式,而不包括用于生成用于承载上行控制信息的序列的编码方式。这样,在终端设备确定采用的上行控制信道格式的情况下,该终端设备也就可以同时确定用于生成导频序列的编码方式。该 基站可以通过其他信息将用于生成用于承载上行控制信息的序列的编码方式指示给该终端设备。例如,该基站可以在步骤203后,向该第一终端设备发送第三编码信息,该第三编码信息用于指示该第一终端设备用于生成用于承载该第一上行控制信息的序列的编码方式,在步骤204后,向该第二终端设备发送第四编码信息,该第四编码信息用于指示该第二终端设备用于生成用于承载该第二上行控制信息的序列的编码方式。又如,该第一格式指示信息可以同时用于指示用于生成用于承载第一上行控制信息的序列的编码方式和用于发送该第一上行控制信息和该第一导频序列的上行控制信道格式,该第二格式指示信息可以同时用于指示用于生成用于承载第二上行控制信息的序列的编码方式和用于发送该第二上行控制信息和该第二导频序列的上行控制信道格式具体指示方式可以参见上述实施例描述,在此就不必赘述。
可选的,在另一些实施例中,该候选格式信息不包括用于生成导频序列的编码方式和用于生成用于承载上行控制信息的序列的编码方式。在此情况下,该终端设备可以通过其他信息指示用于生成导频序列的编码方式和用于生成用于承载上行控制信息的序列的编码方式。例如,该基站可以在步骤203后,向该第一终端设备发送第一编码信息和第三编码信息,在步骤204后,向该第二终端设备发送第二编码信息和第四编码信息,该第一编码信息、该第二编码信息、该第三编码信息和该第四编码信息的内容与上述实施例相同,在此就不必赘述。又如,该第一格式指示信息可以同时用于指示用于生成用于承载第一上行控制信息的序列的编码方式和用于发送该第一上行控制信息和该第一导频序列的上行控制信道格式,该第二格式指示信息可以同时用于指示用于生成用于承载第二上行控制信息的序列的编码方式和用于发送该第二上行控制信息和该第二导频序列的上行控制信道格式具体指示方式可以参见上述实施例描述,在此就不必赘述。
可以理解的是,该基站向不同的终端设备指示的用于生成导频序列的编码方式是不同的,这样可以不同设备生成的导频序列是码分。
在一些实施例中,候选的上行控制信道格式中可以仅包括一个上行控制信道格式。在另一些实施例中,候选的上行控制信道格式可以包括多个上行控制信道格式,例如该候选的上行控制信道格式可以包括该第一上行控制信道格式、该第二上行控制信道格式和该第三上行控制信道格式。
基于上述技术方案,该基站可以将该终端设备能够使用的上行控制信道格式通知给该终端设备。
当然,该候选的上行控制信道格式也可以是预先保存在终端设备的。
可选的,在一些实施例中,在步骤201之前,该基站还可以向该第一终端设备发送第一频域资源指示信息,该第一频域资源指示信息用于指示该第一导频序列占用的子载波。在步骤202之前,该基站还可以向该第二终端设备发送第二频域资源指示信息,该第二频域资源指示信息用于指示该第二导频序列占用的子载波,其中该第一导频序列占用的子载波与该第二导频序列占用的子载波不同。上述技术方案可以使得该第一导频序列与该第二导频序列通过频分的方式实现正交。
类似的,频域资源指示信息(即该第一频域资源指示信息和该第二频域资源指示信息)也可以是显式指示信息或者隐式指示信息。具体指示方式与格式指示信息类似,在此就不必赘述。
可选的,在另一些实施例中,该第一终端设备和该第二终端设备也可以通过其他方式确定导频序列占用的子载波。例如,该第一终端设备和该第二终端设备之间可以进行协商,以确定各自的导频序列占用的子载波,从而使得该第一导频序列和该第二导频序列通过频分的方式实现正交。
进一步,除了该第一终端设备和该第二终端设备发送的导频序列时域相同的部分全部正交外,该第一终端设备发送的用于承载第一上行控制信息的第一序列和用于承载第二上行控制信息的第二序列在时域相同的部分也可以全部正交。
以图3为例,该第一终端设备发送的第一上行控制信息可以由第一序列承载。该第二终端设备发送的第二上行控制信息可以由第二序列承载。该第一序列与该第二序列正交。具体正交的实现方式与导频序列正交的实现方式相同,即可以通过频分和/或码分的方式实现正交,在此就不赘述。
以图6为例,该第一终端设备发送的第一上行控制信息可以由第一序列承载。该第二终端设备发送的第二上行控制信息可以由第二序列承载。该第一序列可以包括12个子序列,该12个子序列由该第一上行控制信道格式中的12个信息符号携带。该第二序列可以由该第三上行控制信道格式中的5个信息符号携带。该第二序列可以与该12个子序列中的前五个子序列正交。具体正交的实现方式与导频序列正交的实现方式相同,即可以通过频分和/或码分的方式实现正交,在此就不赘述。
图8是根据本申请实施例提供的一种基站的结构框图。如图8所示,基站800包括第一通信单元801和第二通信单元802。
第一通信单元801,用于接收来自第一终端设备第一上行控制信息和第一导频序列,其中,该第一上行控制信息和该第一导频序列由X个符号携带,该第一导频序列包括N个子序列,该N个子序列由该X个符号中的N个符号携带,N为大于或等于1的正整数,X为大于N的正整数;
第二通信单元802,用于接收来自第二终端设的第二上行控制信息和第二导频序列,其中,该第二上行控制信息和该第二导频序列由Y个符号携带,该第二导频序列包括M个子序列,该M个子序列由该Y个符号中的M个符号携带,该N个子序列与该M个子序列中的由M1个符号携带的M1个子序列正交,该N个符号的时域位置与该M1个符号的时域位置相同,用于携带该第一上行控制信息的频域资源和用于携带该第二上行控制信息的频域资源相同,其中M1等于N,M为大于或等于N的正整数,Y为大于或等于M正整数。
第一通信单元801和第二通信单元802可以由收发器实现。第一通信单元801和第二通信单元802的具体功能和有益效果可以参见图2所示的方法,在此就不必赘述。
图9是根据本申请实施例提供的终端设备的结构框图。如图9所示,终端设备900包括处理单元901和通信单元902。
处理单元901,用于确定第一上行控制信道格式;
通信单元902,用于按照控制单元901确定的该第一上行控制信道格式向基站发送第一上行控制信息和第一导频序列,其中,该第一上行控制信息和该第一导频序列由X个符号携带,该第一导频序列包括N个子序列,该N个子序列由该X个符号中的N个符号携带,用于携带该第一上行控制信息的频域资源和用于携带第二上行控制信息的频域资源相 同,该N个子序列与第二上行控制信息的M个子序列中的由M1个符号携带的M1个子序列正交,该N个符号的时域位置与该M1个符号的时域位置相同,第二导频序列包括该M个子序列,该第二导频序列和该第二上行控制信息由第二终端设备发送,该第二导频序列和该第二上行控制信息由Y个符号携带,该M个子序列由该Y个符号中的M个符号携带,其中N为大于或等于1的正整数,X为大于N的正整数,M1等于N,M为大于或等于N的正整数,Y为大于或等于M正整数。
处理单元901可以由处理器实现,通信单元902可以由收发器实现。处理单元901和通信单元902的具体功能和有益效果可以参见图2所示的方法,在此就不必赘述。
图10是根据本申请实施例提供的基站的结构框图。图10所示的基站1000包括:处理器1001、存储器1002和收发器1003。
处理器1001、存储器1002和收发器1003之间通过内部连接通路互相通信,传递控制和/或数据信号。
上述本申请实施例揭示的方法可以应用于处理器1001中,或者由处理器1001实现。处理器1001可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1001中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1001可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的指令,结合其硬件完成上述方法的步骤。
可选的,在一些实施例中,存储器1002可以存储用于执行如图2所示方法中基站执行的方法的指令。处理器1001可以执行存储器1002中存储的指令结合其他硬件(例如收发器1003)完成如图2所示方法中基站执行的步骤,具体工作过程和有益效果可以参见图2所示实施例中的描述。
图11是根据本申请实施例提供的终端设备的结构框图。图11所示的终端设备1100包括:处理器1101、存储器1102和收发器1103。
处理器1101、存储器1102和收发器1103之间通过内部连接通路互相通信,传递控制和/或数据信号。
上述本申请实施例揭示的方法可以应用于处理器1101中,或者由处理器1101实现。处理器1101可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1101中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1101可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、 分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1102,处理器1101读取存储器1102中的指令,结合其硬件完成上述方法的步骤。
可以理解的是,尽管并未示出,终端设备1100还可以包括其他装置,例如输入装置、输出装置、电池等。
可选的,在一些实施例中,存储器1102可以存储用于执行如图2所示方法中终端设备执行的方法的指令。处理器1101可以执行存储器1102中存储的指令结合其他硬件(例如收发器1103)完成如图2所示方法中终端设备的步骤,具体工作过程和有益效果可以参见图2所示实施例中的描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
上述实施例可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、 服务器或数据中心传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (28)

  1. 一种通信方法,其特征在于,所述方法包括:
    基站接收来自第一终端设备的第一上行控制信息和第一导频序列,其中,所述第一上行控制信息和所述第一导频序列由X个符号携带,所述第一导频序列包括N个子序列,所述N个子序列由所述X个符号中的N个符号携带,N为大于或等于1的正整数,X为大于N的正整数;
    所述基站接收来自第二终端设的第二上行控制信息和第二导频序列,其中,所述第二上行控制信息和所述第二导频序列由Y个符号携带,所述第二导频序列包括M个子序列,所述M个子序列由所述Y个符号中的M个符号携带,所述N个子序列与所述M个子序列中的由M1个符号携带的M1个子序列正交,所述N个符号的时域位置与所述M1个符号的时域位置相同,用于携带所述第一上行控制信息的频域资源和用于携带所述第二上行控制信息的频域资源相同,其中M1等于N,M为大于或等于N的正整数,Y为大于或等于M正整数。
  2. 如权利要求1所述的方法,其特征在于,在所述基站接收来自第一终端设备的第一上行控制信息和第一导频序列之前,所述方法还包括:
    所述基站向所述第一终端设备发送第一格式指示信息,所述第一格式指示信息用于指示所述第一终端设备按照第一上行控制信道格式发送所述第一上行控制信息和所述第一导频序列;
    在所述基站接收来自第二终端设的第二上行控制信息和第二导频序列之前,所述方法还包括:
    所述基站向所述第二终端设备发送第二格式指示信息,所述第二格式指示信息用于指示所述第二终端设备按照第二上行控制信道格式发送所述第二上行控制信息和所述第二导频序列。
  3. 如权利要求2所述的方法,其特征在于,在所述基站向所述第一终端设备发送第一格式指示信息,所述基站向所述第二终端设备发送第二格式指示信息之前,所述方法还包括:
    所述基站向所述第一终端设备和所述第二通信设备发送候选格式信息,所述候选格式指示包括以下信息中的至少两个:候选的上行控制信道格式包括的符号数目、所述候选的上行控制信道格式中用于携带导频序列的符号位置,和所述候选的上行控制信道格式中用于携带上行控制信息的符号位置。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述Y个符号包括R个符号集合,所述R个符号集合中的每个符号集合包括的X个符号,所述每个符号集合包括X个符号中的第x个符号的属性与用于携带所述第一上行控制信息和所述第一导频序列的X个符号中的第x个符号的属性相同,其中,符号的属性包括第一属性和第二属性,用于携带所述第一上行控制信息的符号的属性和用于携带所述第二上行控制信息的符号的属性为所述第一属性,用于携带所述第一导频序列的符号的属性和用于携带所述第二导频序列的符号的属性为所述第二属性,R为大于或等于2的正整数。
  5. 如权利要求4所述的方法,其特征在于,所述M个子序列中由M2个符号携带的子序列为所述M个子序列中的由所述M1个符号携带的子序列通过正交可变扩频因子OVSF扩展得到的,其中,M2为大于或等于1的正整数,M1与M2的和为M。
  6. 如权利要求4所述的方法,其特征在于,所述M个子序列中的第r×N+n个子序列与所述M个子序列中的第n个子序列相同,其中r=1,…,R,n=1,…,N。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述第一上行控制信息由第一序列承载,所述第一序列由S个符号携带,S为大于或等于1的正整数,S与N的和为X;
    所述第二上行控制信息由第二序列承载,所述第二序列包括T个子序列,所述T个子序列分别由T个符号携带,所述第一序列与所述T个子序列中的由T1个符号携带的子序列正交,所述S个符号的时域位置与所述T1个符号的时域位置相同,其中S等于T1,T为大于或等于S的正整数,T与M的和为Y。
  8. 一种通信方法,其特征在于,所述方法包括:
    第一终端设备确定第一上行控制信道格式;
    所述第一终端设备按照所述第一上行控制信道格式向基站发送第一上行控制信息和第一导频序列,其中,所述第一上行控制信息和所述第一导频序列由X个符号携带,所述第一导频序列包括N个子序列,所述N个子序列由所述X个符号中的N个符号携带,用于携带所述第一上行控制信息的频域资源和用于携带第二上行控制信息的频域资源相同,所述N个子序列与第二上行控制信息的M个子序列中的由M1个符号携带的M1个子序列正交,所述N个符号的时域位置与所述M1个符号的时域位置相同,第二导频序列包括所述M个子序列,所述第二导频序列和所述第二上行控制信息由第二终端设备发送,所述第二导频序列和所述第二上行控制信息由Y个符号携带,所述M个子序列由所述Y个符号中的M个符号携带,其中N为大于或等于1的正整数,X为大于N的正整数,M1等于N,M为大于或等于N的正整数,Y为大于或等于M正整数。
  9. 如权利要求8所述的方法,其特征在于,所述第一终端设备确定第一上行控制信道格式,包括:
    所述第一终端设备接收所述基站发送的第一格式指示信息,所述第一格式指示信息用于指示所述第一终端设备按照所述第一上行控制信道格式发送所述第一上行控制信息和所述第一导频序列;
    所述第一终端设备确定所述第一上行控制信道格式为所述第一格式指示信息的指示上行控制信道格式。
  10. 如权利要求8或9所述的方法,其特征在于,在所述第一终端设备接收所述基站发送的第一格式指示信息之前,所述方法还包括:
    所述第一终端设备接收所述基站发送的候选格式信息,所述候选格式指示包括以下信息中的至少两个:候选的上行控制信道格式包括的符号数目、所述候选的上行控制信道格式中用于携带导频序列的符号位置,和所述候选的上行控制信道格式中用于携带上行控制信息的符号位置。
  11. 如权利要求8至10中任一项所述的方法,其特征在于,所述Y个符号包括R个符号集合,所述R个符号集合中的每个符号集合包括的X个符号,所述每个符号集合包 括X个符号中的第x个符号的属性与用于携带所述第一上行控制信息和所述第一导频序列的X个符号中的第x个符号的属性相同,其中,符号的属性包括第一属性和第二属性,用于携带所述第一上行控制信息的符号的属性和用于携带所述第二上行控制信息的符号的属性为所述第一属性,用于携带所述第一导频序列的符号的属性和用于携带所述第二导频序列的符号的属性为所述第二属性,R为大于或等于2的正整数。
  12. 如权利要求11所述的方法,其特征在于,所述M个子序列中由M2个符号携带的子序列为所述M个子序列中的由所述M1个符号携带的子序列通过正交可变扩频因子OVSF扩展得到的,其中,M2为大于或等于1的正整数,M1与M2的和为M。
  13. 如权利要求11所述的方法,其特征在于,所述M个子序列中的第r×N+n个子序列与所述M个子序列中的第n个子序列相同,其中r=1,…,R,n=1,…,N。
  14. 如权利要求8至13中任一项所述的方法,其特征在于,所述第一上行控制信息由第一序列承载,所述第一序列由S个符号携带,S为大于或等于1的正整数,S与N的和为X;
    所述第二上行控制信息由第二序列承载,所述第二序列包括T个子序列,所述T个子序列分别由T个符号携带,所述第一序列与所述T个子序列中的由T1个符号携带的子序列正交,所述S个符号的时域位置与所述T1个符号的时域位置相同,其中S等于T1,T为大于或等于S的正整数,T与M的和为Y。
  15. 一种基站,其特征在于,所述基站包括:
    第一通信单元,用于接收来自第一终端设备第一上行控制信息和第一导频序列,其中,所述第一上行控制信息和所述第一导频序列由X个符号携带,所述第一导频序列包括N个子序列,所述N个子序列由所述X个符号中的N个符号携带,N为大于或等于1的正整数,X为大于N的正整数;
    第二通信单元,用于接收来自第二终端设的第二上行控制信息和第二导频序列,其中,所述第二上行控制信息和所述第二导频序列由Y个符号携带,所述第二导频序列包括M个子序列,所述M个子序列由所述Y个符号中的M个符号携带,所述N个子序列与所述M个子序列中的由M1个符号携带的M1个子序列正交,所述N个符号的时域位置与所述M1个符号的时域位置相同,用于携带所述第一上行控制信息的频域资源和用于携带所述第二上行控制信息的频域资源相同,其中M1等于N,M为大于或等于N的正整数,Y为大于或等于M正整数。
  16. 如权利要求15所述的基站,其特征在于,
    第一通信单元,还用于向所述第一终端设备发送第一格式指示信息,所述第一格式指示信息用于指示所述第一终端设备按照第一上行控制信道格式发送所述第一上行控制信息和所述第一导频序列;
    第二通信单元,还用于向所述第二终端设备发送第二格式指示信息,所述第二格式指示信息用于指示所述第二终端设备按照第二上行控制信道格式发送所述第二上行控制信息和所述第二导频序列。
  17. 如权利要求15或16所述的基站,其特征在于,
    所述第一通信单元,还用于向所述第一终端设备发送候选格式信息,所述候选格式指示包括以下信息中的至少两个:候选的上行控制信道格式包括的符号数目、所述候选的上 行控制信道格式中用于携带导频序列的符号位置,和所述候选的上行控制信道格式中用于携带上行控制信息的符号位置;
    第二通信单元,还用于向所述第二终端设备发送所述候选格式信息。
  18. 如权利要求15至17中任一项所述的基站,其特征在于,所述Y个符号包括R个符号集合,所述R个符号集合中的每个符号集合包括的X个符号,所述每个符号集合包括X个符号中的第x个符号的属性与用于携带所述第一上行控制信息和所述第一导频序列的X个符号中的第x个符号的属性相同,其中,符号的属性包括第一属性和第二属性,用于携带所述第一上行控制信息的符号的属性和用于携带所述第二上行控制信息的符号的属性为所述第一属性,用于携带所述第一导频序列的符号的属性和用于携带所述第二导频序列的符号的属性为所述第二属性,R为大于或等于2的正整数。
  19. 如权利要求18所述的基站,其特征在于,所述M个子序列中由M2个符号携带的子序列为所述M个子序列中的由所述M1个符号携带的子序列通过正交可变扩频因子OVSF扩展得到的,其中,M2为大于或等于1的正整数,M1与M2的和为M。
  20. 如权利要求18所述的基站,其特征在于,所述M个子序列中的第r×N+n个子序列与所述M个子序列中的第n个子序列相同,其中r=1,…,R,n=1,…,N。
  21. 如权利要求15至20中任一项所述的基站,其特征在于,所述第一上行控制信息由第一序列承载,所述第一序列由S个符号携带,S为大于或等于1的正整数,S与N的和为X;
    所述第二上行控制信息由第二序列承载,所述第二序列包括T个子序列,所述T个子序列分别由T个符号携带,所述第一序列与所述T个子序列中的由T1个符号携带的子序列正交,所述S个符号的时域位置与所述T1个符号的时域位置相同,其中S等于T1,T为大于或等于S的正整数,T与M的和为Y。
  22. 一种终端设备,其特征在于,所述终端设备为第一终端设备,所述终端设备包括:
    处理单元,用于确定第一上行控制信道格式;
    通信单元,用于按照所述处理单元确定的所述第一上行控制信道格式向基站发送第一上行控制信息和第一导频序列,其中,所述第一上行控制信息和所述第一导频序列由X个符号携带,所述第一导频序列包括N个子序列,所述N个子序列由所述X个符号中的N个符号携带,用于携带所述第一上行控制信息的频域资源和用于携带第二上行控制信息的频域资源相同,所述N个子序列与第二上行控制信息的M个子序列中的由M1个符号携带的M1个子序列正交,所述N个符号的时域位置与所述M1个符号的时域位置相同,第二导频序列包括所述M个子序列,所述第二导频序列和所述第二上行控制信息由第二终端设备发送,所述第二导频序列和所述第二上行控制信息由Y个符号携带,所述M个子序列由所述Y个符号中的M个符号携带,其中N为大于或等于1的正整数,X为大于N的正整数,M1等于N,M为大于或等于N的正整数,Y为大于或等于M正整数。
  23. 如权利要求22所述的终端设备,其特征在于,所述通信单元,还用于接收所述基站发送的第一格式指示信息,所述第一格式指示信息用于指示所述第一终端设备按照第一上行控制信道格式发送所述第一上行控制信息和所述第一导频序列;
    所述处理单元,具体用于所述第一上行控制信道格式为所述第一格式指示信息的指示的上行控制信道格式。
  24. 如权利要求22或23所述的终端设备,其特征在于,所述通信单元,还用于接收所述基站发送的候选格式信息,所述候选格式指示包括以下信息中的至少两个:候选的上行控制信道格式包括的符号数目、所述候选的上行控制信道格式中用于携带导频序列的符号位置,和所述候选的上行控制信道格式中用于携带上行控制信息的符号位置所述基站发送的第一指示信息,所述第一指示信息用于指示用于携带所述第一导频序列的符号的位置、用于生成所述第一导频序列的编码方式,和用于生成用于承载所述第一上行控制信息的序列的编码方式。
  25. 如权利要求22至24中任一项所述的终端设备,其特征在于,所述Y个符号包括R个符号集合,所述R个符号集合中的每个符号集合包括的X个符号,所述每个符号集合包括X个符号中的第x个符号的属性与用于携带所述第一上行控制信息和所述第一导频序列的X个符号中的第x个符号的属性相同,其中,符号的属性包括第一属性和第二属性,用于携带所述第一上行控制信息的符号的属性和用于携带所述第二上行控制信息的符号的属性为所述第一属性,用于携带所述第一导频序列的符号的属性和用于携带所述第二导频序列的符号的属性为所述第二属性,R为大于或等于2的正整数。
  26. 如权利要求25所述的终端设备,其特征在于,所述M个子序列中由M2个符号携带的子序列为所述M个子序列中的由所述M1个符号携带的子序列通过正交可变扩频因子OVSF扩展得到的,其中,M2为大于或等于1的正整数,M1与M2的和为M。
  27. 如权利要求25所述的终端设备,其特征在于,所述M个子序列中的第r×N+n个子序列与所述M个子序列中的第n个子序列相同,其中r=1,…,R,n=1,…,N。
  28. 如权利要求22至27中任一项所述的终端设备,其特征在于,所述第一上行控制信息由第一序列承载,所述第一序列由S个符号携带,S为大于或等于1的正整数,S与N的和为X;
    所述第二上行控制信息由第二序列承载,所述第二序列包括T个子序列,所述T个子序列分别由T个符号携带,所述第一序列与所述T个子序列中的由T1个符号携带的子序列正交,所述S个符号的时域位置与所述T1个符号的时域位置相同,其中S等于T1,T为大于或等于S的正整数,T与M的和为Y。
PCT/CN2018/089309 2017-06-16 2018-05-31 通信方法、基站和终端设备 WO2018228208A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710458356.3A CN109152015B (zh) 2017-06-16 2017-06-16 通信方法、基站和终端设备
CN201710458356.3 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018228208A1 true WO2018228208A1 (zh) 2018-12-20

Family

ID=64659468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089309 WO2018228208A1 (zh) 2017-06-16 2018-05-31 通信方法、基站和终端设备

Country Status (2)

Country Link
CN (1) CN109152015B (zh)
WO (1) WO2018228208A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035955A2 (en) * 2006-09-22 2008-03-27 Lg Electronics Inc. Method for multiplexing user equipment signals having different bandwidth, and method for transmitting uplink signal
CN101478327A (zh) * 2008-01-02 2009-07-08 大唐移动通信设备有限公司 一种上行码道传输数据的方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101782647B1 (ko) * 2010-01-28 2017-09-28 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 인코딩 방법 및 장치
CN105490781B (zh) * 2011-12-21 2019-05-28 华为技术有限公司 传输控制信息的方法、用户设备和基站
EP2893747B1 (en) * 2012-09-10 2019-12-04 Avago Technologies International Sales Pte. Limited Uplink configuration and transmission control in inter-site carrier aggregation
JP6586762B2 (ja) * 2015-04-07 2019-10-09 ソニー株式会社 受信装置、送信装置、受信方法、送信方法及びプログラム
CN104853438B (zh) * 2015-04-28 2018-09-21 上海华为技术有限公司 一种资源分配方法、基站及通讯系统
KR102214078B1 (ko) * 2015-07-10 2021-02-09 엘지전자 주식회사 비면허 대역을 지원하는 무선접속시스템에서 디스커버리 참조 신호를 전송하는 방법 및 장치
CN106559198B (zh) * 2015-09-25 2019-09-17 电信科学技术研究院 一种基于pucch的上行控制信息传输方法及装置
CN106559101B (zh) * 2015-09-25 2019-12-10 电信科学技术研究院 一种频域扩频、解扩频方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035955A2 (en) * 2006-09-22 2008-03-27 Lg Electronics Inc. Method for multiplexing user equipment signals having different bandwidth, and method for transmitting uplink signal
CN101478327A (zh) * 2008-01-02 2009-07-08 大唐移动通信设备有限公司 一种上行码道传输数据的方法及系统

Also Published As

Publication number Publication date
CN109152015A (zh) 2019-01-04
CN109152015B (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
CN110800358A (zh) 传输配置方法及相关产品
JP2023123583A (ja) ユーザ端末及び無線通信方法
WO2021031939A1 (zh) 一种数据传输方法及装置
JP7319363B2 (ja) データ伝送方法及び通信装置
US11937281B2 (en) Communications method and apparatus
WO2019062154A1 (zh) 一种指示方法、确定方法、发送设备和接收设备
JP7306662B2 (ja) アップリンク伝送時間領域リソース決定方法および装置
CN112020145A (zh) 一种通信方法及装置
WO2018137688A1 (zh) 一种rs生成、接收方法及终端、基站
KR20220137063A (ko) 참조 신호 자원 구성 방법 및 장치
CN112399586A (zh) 配置时域资源的方法和装置
WO2018137667A1 (zh) 传输数据的方法和装置以及传输信息的方法和装置
WO2020030253A1 (en) Reducing dci payload
WO2019029588A1 (zh) 确定上行传输资源的方法、终端及网络设备
CN110875815B (zh) 资源映射方法及装置
WO2016074168A1 (zh) 资源指示的处理方法、计算机可读介质、接入点和站点
WO2018228208A1 (zh) 通信方法、基站和终端设备
JP2022095711A (ja) 通信方法及び通信装置
CN112753257B (zh) 由用户设备、基站执行的方法以及用户设备和基站
EP3614611B1 (en) Communication method and device
WO2020088342A1 (zh) 一种资源调度方法和装置
JP2023547806A (ja) 通信方法および装置
JP6669278B2 (ja) リソースマッピング方法、装置及び通信システム
WO2019062789A1 (zh) 一种时域信息的确定方法及装置
WO2022268114A1 (zh) 一种调制和编码方案mcs表格确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818809

Country of ref document: EP

Kind code of ref document: A1