WO2018227865A1 - 液晶显示模组及其色彩生成方法、装置和可读存储介质 - Google Patents

液晶显示模组及其色彩生成方法、装置和可读存储介质 Download PDF

Info

Publication number
WO2018227865A1
WO2018227865A1 PCT/CN2017/110371 CN2017110371W WO2018227865A1 WO 2018227865 A1 WO2018227865 A1 WO 2018227865A1 CN 2017110371 W CN2017110371 W CN 2017110371W WO 2018227865 A1 WO2018227865 A1 WO 2018227865A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display module
thin film
film transistor
Prior art date
Application number
PCT/CN2017/110371
Other languages
English (en)
French (fr)
Inventor
张冬灿
刘树标
林健源
Original Assignee
深圳Tcl新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳Tcl新技术有限公司 filed Critical 深圳Tcl新技术有限公司
Publication of WO2018227865A1 publication Critical patent/WO2018227865A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source

Definitions

  • the present invention relates to the field of television technology, and in particular, to a liquid crystal display module, a color generating method thereof, a device, and a readable storage medium.
  • the liquid crystal display is an important part of the LCD TV. It is mainly composed of a backlight, a polarizer, a liquid crystal panel, a glass substrate, a filter film and a transparent electrode.
  • the backlight used in the liquid crystal display is a white light backlight, so the liquid crystal display needs to filter the white light passing through the liquid crystal screen to obtain a primary light source, thereby displaying the set color on the glass substrate.
  • the filter film due to the high manufacturing cost of the filter film, the cost of the liquid crystal display is high.
  • the main object of the present invention is to provide a liquid crystal display module, a color generating method thereof, a device and a readable storage medium, aiming at solving the problem of high cost of the liquid crystal display.
  • the present invention provides a color generating method for a liquid crystal display module, and the color generating method of the liquid crystal display module includes the following steps:
  • controlling the three primary color light sources to sequentially emit different primary color lights at a preset switching frequency, and controlling the thin film transistor switches corresponding to the display positions of the pixel points to be turned on;
  • the step of controlling the opening of the thin film transistor switch comprises:
  • the opening frequency of the thin film transistor switch is controlled to be synchronized with the switching frequency of the primary color light of the three primary color light sources within a preset time, and the three primary color light sources emit primary color light when the thin film crystal switch is turned on.
  • the step of generating a corresponding pulse signal according to the gray value of the pixel point to be displayed and the display position of the pixel point includes:
  • the step of transmitting the pulse signal to the driving circuit for the driving circuit to load the corresponding pulse current according to the pulse signal to the corresponding thin film transistor comprises:
  • the color generating method of the liquid crystal display module further includes:
  • the present invention further provides a color generating device for a liquid crystal display module, wherein the color generating device of the liquid crystal display module includes:
  • control program configured to, after acquiring the gray value of each pixel point, control the three primary color light sources to sequentially emit different primary color lights at a preset switching frequency, and control the thin film transistor switch corresponding to the display position of the pixel point to be turned on;
  • Generating a program configured to generate a corresponding pulse signal according to a gray value of a pixel point currently to be displayed and a display position of the pixel point;
  • a transmitting program configured to send the pulse signal to the driving circuit, so that the driving circuit loads the corresponding pulse current to the corresponding thin film transistor according to the pulse signal.
  • control program is further configured to control that an opening frequency of the thin film transistor switch is synchronized with a switching frequency of a primary color light of the three primary color light sources within a preset time, when the thin film crystal switch is turned on,
  • the three primary color light sources emit primary light.
  • control program is further configured to determine, according to the thin film transistor, a thin film transistor switch corresponding to the pulse signal;
  • the control program is further configured to control an opening degree of the thin film transistor switch according to the pulse signal to load a pulse current corresponding to the pulse signal to the thin film transistor.
  • the obtaining program is further configured to acquire a voltage value between the liquid crystal screens according to the gray value of the pixel to be displayed and the display position of the pixel;
  • the generating program is further configured to generate a corresponding pulse signal according to a voltage value between the liquid crystal screens, wherein a switching frequency of the scan signal is synchronized with a switching frequency of the primary color light of the three primary color light sources within a preset time.
  • the control program is further configured to: when detecting a failure of the light source of the three primary color light sources, control all thin film transistor switches in the liquid crystal display module to be turned on, and control the three primary color light sources to continuously emit the set Base color light.
  • the present invention further provides a readable storage medium, wherein the readable storage medium stores a color generation program of a liquid crystal display module, and the color generation program of the liquid crystal display module is implemented by a processor. The steps of the color generating method of the liquid crystal display module as described above.
  • the present invention further provides a liquid crystal display module, the liquid crystal display module comprising three primary color light sources, a lower polarizer, a first glass substrate, a first transparent electrode, a liquid crystal, and a second transparent electrode disposed in parallel a second glass substrate and an upper polarizer.
  • a wire electrode and a signal electrode are disposed on a side of the first transparent electrode of the liquid crystal, and the wire electrode and the signal electrode are interdigitated to form a plurality of closed regions, and each of the closed regions is disposed There is a thin film transistor that can communicate with the trace electrode and the signal electrode through a thin film transistor switch.
  • the liquid crystal display module provided by the invention and the color generating method and device thereof and the readable storage medium, the liquid crystal display module uses three primary color light sources to sequentially display different primary colors at the corresponding display positions of the pixel points to generate colors, and control different The display time of the base color in the display position enables the liquid crystal display module to generate the set color, so that the liquid crystal display module can generate the set color without using the filter film for color filtering, thereby reducing the liquid crystal display module. cost.
  • FIG. 1 is an exploded view of a liquid crystal display module
  • FIG. 2 is a front elevational view of a first transparent electrode of a liquid crystal display module
  • FIG. 3 is a schematic flow chart of a first embodiment of a color generating method of a liquid crystal display module according to the present invention
  • FIG. 4 is a schematic flow chart of a second embodiment of a color generating method of a liquid crystal display module according to the present invention.
  • FIG. 5 is a schematic diagram of a program module of a color generating device of a liquid crystal display module of the present invention.
  • the main solution of the embodiment of the present invention is that the color generating device of the liquid crystal display module sequentially acquires the gray values of the pixels to be displayed in a preset order; and then, after obtaining the gray value of each pixel Controlling the three primary color light sources to sequentially emit different primary color lights at a preset switching frequency, and controlling the thin film transistor switches corresponding to the display positions of the pixel points to be turned on; and then generating according to the gray value of the currently displayed pixel points and the display position of the pixel points Corresponding pulse signal; finally, the pulse signal is sent to the driving circuit for the driving circuit root pulse signal to load the corresponding pulse current into the corresponding thin film transistor.
  • the liquid crystal display screen contains a filter film, and the manufacturing cost of the filter film is relatively high, so that the manufacturing cost of the liquid crystal display panel is high.
  • the invention provides a solution, the liquid crystal display module sequentially displays the same color of the three primary color light sources in the same point of the display screen in a certain time, so that the liquid crystal screen can generate the set color without the filter film, thereby The cost of the liquid crystal display module is reduced.
  • FIG. 1 is an exploded view of a liquid crystal display module
  • FIG. 2 is a front view of the first transparent electrode 40.
  • the liquid crystal display module will be described in detail with reference to FIGS. 1, 2, and 3.
  • the liquid crystal display module is composed of a N-primary (vertical direction) three primary color light source 10, a lower polarizer 20, a first glass substrate 30, a first transparent electrode 40, a liquid crystal 50, a second transparent electrode 60, and a second glass substrate 70.
  • the upper polarizers 80 are sequentially connected.
  • a trace electrode 43 and a signal electrode 44 are disposed on a side of the first transparent electrode 40 adjacent to the liquid crystal 50.
  • the trace electrode 43 and the signal electrode 44 are interdigitated to form a plurality of closed regions, and each closed region is provided with a thin film transistor 41, a thin film transistor. 41 is connected to the trace electrode 43 and the signal electrode 44 through the thin film transistor switch 42, and the trace electrode 43 and the signal electrode 44 constitute a part of the drive circuit.
  • the thin film transistor switch 42 When the thin film transistor switch 42 is turned on (the switch is in the closed state), a current is generated in the thin film transistor 41 corresponding to the thin film transistor switch 42, so that an induced electric field is generated between the corresponding closed region of the thin film transistor 41 and the second transparent electrode 60, so that The liquid crystal molecules in the induced electric field (the liquid crystal molecules are between the first transparent electrode 40 and the second transparent electrode 60) are aligned, so that the refractive angle of the light in the liquid crystal molecules is changed, thereby changing the transmittance of the light penetrating liquid crystal molecules. .
  • FIG. 3 is a first embodiment of a color generating method of a liquid crystal display module according to the present invention.
  • the color generating method of the liquid crystal display module includes the following steps:
  • Step S10 sequentially acquiring gray values of respective pixels to be displayed according to a preset order
  • the invention utilizes the method of time color mixing to image the liquid crystal display module, and the method utilizes the visual inertia of the human eye (for medium-intensity light stimulation, the visual retention time is about 0.05 s to 0.2 s, and the visual retention time is For the reaction time of the optic nerve of the retina, as long as the liquid crystal display module sequentially displays the three primary colors in the same place on the same surface of the display screen, the human eye will feel that the three primary colors are simultaneously present and three types are captured. The color of the base color is added.
  • the display screen of the liquid crystal display module (the second glass substrate) can be divided into a plurality of display areas, each of which corresponds to a thin film transistor.
  • the liquid crystal display module will follow the number of display areas of the display screen.
  • the color generating method of the liquid crystal display module divides the display surface into corresponding pixel points, and the color generating method of the liquid crystal display module in the present embodiment adopts a time color changing method, and each pixel point corresponds to a display area of the display screen. That is, each pixel corresponds to a corresponding display position.
  • Each pixel represents a color, and each color is composed of three primary colors of red, green and yellow, and each primary color has a corresponding gray value, and the gray value of the primary color is determined by the transmittance of the primary color through the liquid crystal molecules. That is to say, according to the picture to be displayed by the liquid crystal display module, the color displayed by each pixel is determined, and the basic color of the color to be displayed by the pixel has a corresponding gray value, which means that the liquid crystal display module needs The transmittance of the primary color light that penetrates the liquid crystal molecules is adjusted a plurality of times. In order to avoid the disorderly display of the display screen, the liquid crystal display module must sort the gray value adjustment of the primary colors.
  • the display positions corresponding to the pixels on the display screen can be sorted, so that the display screen can display the images consecutively, and when the color of one display position is generated, the color generation of the next sequential display position is performed immediately.
  • the picture can be presented in a regular and consistent manner.
  • the preset order in this embodiment refers to the color generation order of the pixel points corresponding to the display position.
  • the liquid crystal display module divides the display screen into corresponding areas according to the display area of the display screen, and each area of the screen is a pixel point, and the liquid crystal display module obtains corresponding colors according to the pixel points. Then, the primary color composition of the color is analyzed according to the color, and the gray value of each primary color in the color is determined.
  • Step S20 after obtaining the gray value of each pixel point, controlling the three primary color light sources to emit different primary color lights at a preset switching frequency, and controlling the thin film transistor switches corresponding to the display positions of the pixel points to be turned on;
  • the three primary color light source refers to the primary color light of three kinds of red, green and yellow light sources, and the three primary color light sources sequentially emit only a single primary color light at a time, and the three primary color light sources continuously switch the emitted primary color light, for example, the three primary color light sources.
  • the color generation method adopted by the liquid crystal display module in this embodiment is a time color mixing method, and the duration of the primary color light of each of the three primary color light sources (red, green, and blue primary light) should be less than or equal to the residual of the human eye.
  • the primary color of the three primary color light source The preset switching frequency is 180 Hz, and the duration of switching the primary light of the three primary color light sources is about 0.0112S, which is much smaller than the residual image length of the human eye by 0.05s-0.2s.
  • the primary color switching frequency of the three primary color light sources can be any other. The appropriate value.
  • each display position of the display screen corresponds to one thin film transistor, and the color of the display position is generated in an orderly manner, when a color is generated at a certain display position, the thin film transistor switch corresponding to the display position is required. On, the other thin film transistor switches are turned off (the switch is in the off state).
  • each primary light needs to be adjusted in gray value, that is, the color generation in each pixel needs to be adjusted by the primary primary gray value.
  • the adjustment frequency of the primary color gray value corresponds to the opening frequency of the thin film transistor switch
  • the adjustment frequency of the primary color gray level corresponds to the preset switching frequency of the primary color of the three primary color light source, so the opening frequency of the thin film transistor switch and the primary color of the three primary color light source can be The preset switching frequency is synchronized.
  • the thin film crystal switch is turned on, the three primary color light sources emit the primary color light.
  • the thin film transistor switch can be always turned on, and only the thin film transistor switch is adjusted according to the pulse signal. The opening of the primary color can be adjusted.
  • Step S30 generating a corresponding pulse signal according to the gray value of the pixel point to be displayed and the display position of the pixel point;
  • the liquid crystal of the liquid crystal display module refers to a liquid crystal molecular layer, and the liquid crystal is in a material state between a liquid state and a crystalline state, and is a rod-shaped molecule.
  • the liquid crystal molecules have polarities at both ends and can be twisted at different voltages. Different angles, and the liquid crystal molecules have the function of refracting light, so the liquid crystal molecular layer is twisted at different angles under different electric fields to determine the transmittance of light, so the liquid crystal molecular layer adjusts the basic color of the display screen by adjusting the transmittance of the primary light. Degree value.
  • the liquid crystal display module After the liquid crystal display module obtains the gray values of the respective primary colors of the colors in the pixels, the liquid crystal display module generates corresponding pulse signals according to the gray values of the primary colors, and each pulse signal can perform the opening degree of the thin film transistor switches.
  • the current in the thin film transistor is a set current value
  • the liquid crystal molecules are in the induced electric field of the set voltage, thereby causing the liquid crystal molecules to twist the corresponding angle to determine the transmittance of the primary color light
  • the primary color light of the liquid crystal molecular layer is a preset gray value composite color.
  • Step S40 sending a pulse signal to the driving circuit, so that the driving circuit loads the corresponding pulse current thin film transistor according to the pulse signal;
  • the driving circuit is provided with a signal electrode and a wire electrode, and the wire electrode is a closed circuit.
  • a current flows through the wire electrode.
  • the driving circuit receives the pulse signal, the liquid crystal display module turns on the thin film transistor switch corresponding to the pulse signal, so that the thin film transistor corresponding to the thin film transistor switch forms a small closed loop, thereby making the trace electrode.
  • the current can flow into the thin film transistor through the thin film transistor switch, and the thin film transistor switch controls the opening degree of the switch according to the pulse signal to control the current flowing into the thin film transistor, so that the voltage value of the induced electric field of the liquid crystal molecule is the set voltage value. , to achieve the purpose of controlling the adjustment of the primary color gray value.
  • the color generation method of the existing liquid crystal display module adopts the spatial color mixing method, and the spatial color mixing method utilizes the characteristics of poor resolution of the human eye space, and the three primary colors of light are sufficiently close to each other in the same plane, as long as three primary colors of light are used. The point is small enough and close enough that the human eye will feel the color of the three primary colors after mixing away from the display screen.
  • the liquid crystal display module needs white light containing three primary colors as a backlight, in order to remove White light outside the three primary colors, the liquid crystal display module needs to filter the white light using a filter film, so the filter film is an indispensable important component in the liquid crystal display module that uses the spatial color mixing method to generate color, and the filter The cost of the film is high, so that the overall cost of the liquid crystal display module is increased.
  • the color generation method of the liquid crystal display module in the present embodiment adopts a time color mixing method, that is, the liquid crystal display module sequentially displays three different primary colors on one pixel to generate a color, which can be understood as a liquid crystal display.
  • a pixel of the module display screen can generate a color
  • the liquid crystal display module adopts the color mixing method of the spatial color mixing method, and the three pixels with similar positions can generate a color in the display of the liquid crystal display module.
  • the resolution of the display of the liquid crystal display module using the time color mixing method is three times that of the display screen of the liquid crystal display module using the spatial color mixing method.
  • the liquid crystal display module uses three primary color light sources to sequentially display different primary colors at corresponding display positions of the pixel points to generate colors, and control display time of different primary colors at the display position, so that the liquid crystal display mode The group can generate the set color, so that the liquid crystal display module can generate the set color without using the filter film for color filtering, thereby reducing the cost of the liquid crystal display module.
  • FIG. 4 is a second embodiment of a method for generating a color of a liquid crystal display module according to the present invention. After the step S40, the method further includes:
  • Step S50 when detecting that the light source of the three primary color light sources is faulty, controlling all the thin film transistor switches in the liquid crystal display module to be turned on, and controlling the three primary color light sources to continuously emit the set primary color light;
  • the liquid crystal display module After the corresponding color is generated at the corresponding display position of the pixel, the liquid crystal display module detects whether the amount of the primary color of the color is consistent with the preset color of the primary color. When there is a problem with the light source in the three primary color light sources, the color generated by the corresponding display position of the pixel points may be inconsistent with the pixel unit of the set color color, so that the liquid crystal display module determines that the light source of the three primary color light sources has a problem.
  • the display module controls the opening and closing of all the thin film transistors, and controls the three primary color light sources to stop switching the light source, and continuously emits the set primary color light, and the set primary color light can be red light (the red light source of the three primary color light sources has no problem). In case of), to remind the user to repair the LCD TV.
  • the embodiment when a problem occurs in the light source of the three primary color light sources, all the thin film transistor switches are turned on, and the three primary color light sources are controlled to continuously emit the set primary color light, so that the set primary color is displayed on the full screen of the liquid crystal screen. The color of the light to remind the user to repair the LCD module.
  • the color generating device of the liquid crystal display module includes: an acquisition program 100, a control program 200, a generation program 300, and a transmission program 400;
  • the obtaining program 100 is configured to sequentially acquire gray values of each pixel to be displayed according to a preset order;
  • the obtaining program 100 sequentially acquires gray values of each pixel to be displayed in a preset order
  • the invention utilizes the method of time color mixing to image the liquid crystal display module, and the method utilizes the visual inertia of the human eye (for medium-intensity light stimulation, the visual retention time is about 0.05 s to 0.2 s, and the visual retention time is For the reaction time of the optic nerve of the retina, as long as the liquid crystal display module sequentially displays the three primary colors in the same place on the same surface of the display screen, the human eye will feel that the three primary colors are simultaneously present and three types are captured. The color of the base color is added.
  • the display screen of the liquid crystal display module (the second glass substrate) can be divided into a plurality of display areas, each of which corresponds to a thin film transistor.
  • the liquid crystal display module will follow the number of display areas of the display screen.
  • the color generating method of the liquid crystal display module divides the display surface into corresponding pixel points, and the color generating method of the liquid crystal display module in the present embodiment adopts a time color changing method, and each pixel point corresponds to a display area of the display screen. That is, each pixel corresponds to a corresponding display position.
  • Each pixel represents a color, and each color is composed of three primary colors of red, green and yellow, and each primary color has a corresponding gray value, and the gray value of the primary color is determined by the transmittance of the primary color through the liquid crystal molecules. That is to say, according to the picture to be displayed by the liquid crystal display module, the color displayed by each pixel is determined, and the basic color of the color to be displayed by the pixel has a corresponding gray value, which means that the liquid crystal display module needs The transmittance of the primary color light that penetrates the liquid crystal molecules is adjusted a plurality of times. In order to avoid the disorderly display of the display screen, the liquid crystal display module must sort the gray value adjustment of the primary colors.
  • the display positions corresponding to the pixels on the display screen can be sorted, so that the display screen can display the images consecutively, and when the color of one display position is generated, the color generation of the next sequential display position is performed immediately.
  • the picture can be presented in a regular and consistent manner.
  • the preset order in this embodiment refers to the color generation order of the pixel points corresponding to the display position.
  • the liquid crystal display module divides the display screen into corresponding areas according to the display area of the display screen, and each area of the screen is a pixel point, and the liquid crystal display module obtains corresponding colors according to the pixel points. Then, the primary color composition of the color is analyzed according to the color, and the gray value of each primary color in the color is determined.
  • the control program 200 is configured to control the three primary color light sources to emit different primary color lights at a preset switching frequency after acquiring the gray value of each pixel point, and control the thin film transistor switch corresponding to the display position of the pixel points to be turned on;
  • the three primary color light source refers to the primary color light of three kinds of red, green and yellow light sources, and the three primary color light sources sequentially emit only a single primary color light at a time, and the three primary color light sources continuously switch the emitted primary color light, for example, the three primary color light sources.
  • the color generation method adopted by the liquid crystal display module in this embodiment is a time color mixing method, and the duration of the primary color light of each of the three primary color light sources (red, green, and blue primary light) should be less than or equal to the residual of the human eye.
  • the primary color of the three primary color light source The preset switching frequency is 180 Hz, and the duration of switching the primary light of the three primary color light sources is about 0.0112S, which is much smaller than the residual image length of the human eye by 0.05s-0.2s.
  • the primary color switching frequency of the three primary color light sources can be any other. The appropriate value.
  • each display position of the display screen corresponds to one thin film transistor, and the color of the display position is generated in an orderly manner, when a color is generated at a certain display position, the thin film transistor switch corresponding to the display position is required. On, the other thin film transistor switches are turned off (the switch is in the off state).
  • each primary light needs to be adjusted in gray value, that is, the color generation in each pixel needs to be adjusted by the primary primary gray value.
  • the adjustment frequency of the primary color gray value corresponds to the opening frequency of the thin film transistor switch
  • the adjustment frequency of the primary color gray level corresponds to the preset switching frequency of the primary color of the three primary color light source, so the opening frequency of the thin film transistor switch and the primary color of the three primary color light source can be The preset switching frequency is synchronized.
  • the thin film crystal switch is turned on, the three primary color light sources emit the primary color light.
  • the thin film transistor switch can be always turned on, and only the thin film transistor switch is adjusted according to the pulse signal. The opening of the primary color can be adjusted.
  • the control program 200 is further configured to: when detecting a failure of the light source of the three primary color light sources, control all the thin film transistor switches in the liquid crystal display module to be turned on, and control the three primary color light sources to continuously emit the set primary color light;
  • the liquid crystal display module After the corresponding color is generated at the corresponding display position of the pixel, the liquid crystal display module detects whether the amount of the primary color of the color is consistent with the preset color of the primary color. When there is a problem with the light source in the three primary color light sources, the color generated by the corresponding display position of the pixel points may be inconsistent with the pixel unit of the set color color, so that the liquid crystal display module determines that the light source of the three primary color light sources has a problem.
  • the display module controls the opening and closing of all the thin film transistors, and controls the three primary color light sources to stop switching the light source, and continuously emits the set primary color light, and the set primary color light can be red light (the red light source of the three primary color light sources has no problem). In case of), to remind the user to repair the LCD TV.
  • the generating program 300 is configured to generate a corresponding pulse signal according to a gray value of a pixel point currently to be displayed;
  • the liquid crystal of the liquid crystal display module refers to a liquid crystal molecular layer, and the liquid crystal is in a material state between a liquid state and a crystalline state, and is a rod-shaped molecule.
  • the liquid crystal molecules have polarities at both ends and can be twisted at different voltages. Different angles, and the liquid crystal molecules have the function of refracting light, so the liquid crystal molecular layer is twisted at different angles under different electric fields to determine the transmittance of light, so the liquid crystal molecular layer adjusts the basic color of the display screen by adjusting the transmittance of the primary light. Degree value.
  • the liquid crystal display module After the liquid crystal display module obtains the gray values of the respective primary colors of the colors in the pixels, the liquid crystal display module generates corresponding pulse signals according to the gray values of the primary colors, and each pulse signal can perform the opening degree of the thin film transistor switches.
  • the current in the thin film transistor is a set current value
  • the liquid crystal molecules are in the induced electric field of the set voltage, thereby causing the liquid crystal molecules to twist the corresponding angle to determine the transmittance of the primary color light
  • the primary color light of the liquid crystal molecular layer is a preset gray value composite color.
  • the transmitting program 400 is configured to send a pulse signal to the driving circuit, so that the driving circuit loads the corresponding pulse current thin film transistor according to the pulse signal;
  • the driving circuit is provided with a signal electrode and a wire electrode, and the wire electrode is a closed circuit.
  • a current flows through the wire electrode.
  • the driving circuit receives the pulse signal, the liquid crystal display module turns on the thin film transistor switch corresponding to the pulse signal, so that the thin film transistor corresponding to the thin film transistor switch forms a small closed loop, thereby making the trace electrode.
  • the current can flow into the thin film transistor through the thin film transistor switch, and the thin film transistor switch controls the opening degree of the switch according to the pulse signal to control the current flowing into the thin film transistor, so that the voltage value of the induced electric field of the liquid crystal molecule is the set voltage value. , to achieve the purpose of controlling the adjustment of the primary color gray value.
  • the color generation method of the existing liquid crystal display module adopts the spatial color mixing method, and the spatial color mixing method utilizes the characteristics of poor resolution of the human eye space, and the three primary colors of light are sufficiently close to each other in the same plane, as long as three primary colors of light are used. The point is small enough and close enough that the human eye will feel the color of the three primary colors after mixing away from the display screen.
  • the liquid crystal display module needs white light containing three primary colors as a backlight, in order to remove White light outside the three primary colors, the liquid crystal display module needs to filter the white light using a filter film, so the filter film is an indispensable important component in the liquid crystal display module that uses the spatial color mixing method to generate color, and the filter The cost of the film is high, so that the overall cost of the liquid crystal display module is increased.
  • the color generation method of the liquid crystal display module in the present embodiment adopts a time color mixing method, that is, the liquid crystal display module sequentially displays three different primary colors on one pixel to generate a color, which can be understood as a liquid crystal display.
  • a pixel of the module display screen can generate a color
  • the liquid crystal display module adopts the color mixing method of the spatial color mixing method, and the three pixels with similar positions can generate a color in the display of the liquid crystal display module.
  • the resolution of the display of the liquid crystal display module using the time color mixing method is three times that of the display screen of the liquid crystal display module using the spatial color mixing method.
  • the present invention also provides a readable storage medium, wherein the readable storage medium stores a color generation program of a liquid crystal display module, and the color generation program of the liquid crystal display module is executed by the processor to implement the above embodiment. Each step of the color generating method of the liquid crystal display module.
  • portions of the technical solution of the present invention that contribute substantially or to the prior art may be embodied in the form of a software product stored in a storage medium (such as a ROM/RAM as described above). , a disk, an optical disk, including a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a terminal device which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示模组的色彩生成方法,液晶显示模组的色彩生成方法包括以下步骤:按照预设的顺序依次获取像素点的灰度值(S10);控制三基色光源(10)以预设切换频率依次发射不同的基色光,并控制像素点的显示位置对应的薄膜晶体管开关(42)开启(S20);根据当前像素点的灰度值以及像素点的显示位置生成对应的脉冲信号(S30);将脉冲信号发送至驱动电路,驱动电路根据脉冲信号加载对应的脉冲电流至对应的薄膜晶体管(41)(S40)。还提供一种液晶显示模组的色彩生成装置、液晶显示模组和可读存储介质,可降低液晶显示模组的生产成本。

Description

液晶显示模组及其色彩生成方法、装置和可读存储介质
技术领域
本发明涉及电视机技术领域,尤其涉及一种液晶显示模组及其色彩生成方法、装置和可读存储介质。
背景技术
随着人们生活水平的提高,无辐射和无闪烁的液晶电视已逐渐成为每个家庭的标配家电。
液晶显示屏是液晶电视的重要组成部分,它主要由背光源、偏光片、液晶屏、玻璃基板、滤光膜和透明电极组成。液晶显示屏采用的背光源为白光背光源,所以液晶显示屏需要用滤光膜将穿过液晶屏的白光进行过滤以得到基色光源,从而在玻璃基板上显示设定的颜色。但由于滤光膜的制作成本较高,使得液晶显示屏的成本较高。
发明内容
本发明的主要目的在于提供一种液晶显示模组及其色彩生成方法、装置和可读存储介质,旨在解决液晶显示屏的成本较高的问题。
为实现上述目的,本发明提供的液晶显示模组的色彩生成方法,所述液晶显示模组的色彩生成方法包括以下步骤:
按照预设的顺序依次获取各个待显示像素点的灰度值;
在获取到每个像素点的灰度值后,控制三基色光源以预设切换频率依次发射不同的基色光,并控制像素点的显示位置对应的薄膜晶体管开关开启;
根据当前待显示的像素点的灰度值以及所述像素点的显示位置生成对应的脉冲信号;
将所述脉冲信号发送至驱动电路,以供驱动电路根据所述脉冲信号加载对应的脉冲电流至对应的薄膜晶体管。
优选地,所述控制薄膜晶体管开关开启的步骤包括:
控制所述薄膜晶体管开关的开启频率与所述三基色光源的基色光在预设时间内的切换频率同步,在所述薄膜晶体开关开启时,所述三基色光源发射基色光。
优选地,所述根据当前待显示的像素点的灰度值以及所述像素点的的显示位置生成对应的脉冲信号的步骤包括:
根据待显示的像素点的灰度值以及所述像素点的显示位置获取液晶屏之间的电压值;
根据液晶屏之间的电压值生成对应的脉冲信号,所述扫描信号的切换频率与所述三基色光源的基色光在预设时间内的切换频率同步。
优选地,所述将所述脉冲信号发送至驱动电路,以供驱动电路根据所述脉冲信号加载对应的脉冲电流至对应的薄膜晶体管的步骤包括:
根据所述薄膜晶体管确定所述脉冲信号对应的薄膜晶体管开关;
根据所述脉冲信号控制所述薄膜晶体管开关的开度,以将所述脉冲信号对应的脉冲电流加载至所述薄膜晶体管。
优选地,所述液晶显示模组的色彩生成方法还包括:
在检测到三基色光源的光源出现故障时,控制所述液晶显示模组中的所有薄膜晶体管开关开启,且控制所述三基色光源持续发射设定的基色光。
为实现上述目的,本发明还提供一种液晶显示模组的色彩生成装置,所述液晶显示模组的色彩生成装置包括:
获取程序,用于按照预设的顺序依次获取各个待显示像素点的灰度值;
控制程序,用于在获取到每个像素点的灰度值后,控制三基色光源以预设切换频率依次发射不同的基色光,并控制像素点的显示位置对应的薄膜晶体管开关开启;
生成程序,用于根据当前待显示的像素点的灰度值以及所述像素点的显示位置生成对应的脉冲信号;
发送程序,用于将所述脉冲信号发送至驱动电路,以供驱动电路根据所述脉冲信号加载对应的脉冲电流至对应的薄膜晶体管。
优选地,所述控制程序,还用于控制所述薄膜晶体管开关的开启频率与所述三基色光源的基色光在预设时间内的切换频率同步,在所述薄膜晶体开关开启时,所述三基色光源发射基色光。
优选地,所述控制程序,还用于根据所述薄膜晶体管确定所述脉冲信号对应的薄膜晶体管开关;
所述控制程序,还用于根据所述脉冲信号控制所述薄膜晶体管开关的开度,以将所述脉冲信号对应的脉冲电流加载至所述薄膜晶体管。
优选地,所述获取程序,还用于根据待显示的像素点的灰度值以及所述像素点的显示位置获取液晶屏之间的电压值;
所述生成程序,还用于根据液晶屏之间的电压值生成对应的脉冲信号,所述扫描信号的切换频率与所述三基色光源的基色光在预设时间内的切换频率同步。优选地,所述控制程序,还用于在检测到三基色光源的光源出现故障时,控制所述液晶显示模组中的所有薄膜晶体管开关开启,且控制所述三基色光源持续发射设定的基色光。
为实现上述目的,本发明还提供一种可读存储介质,所述可读存储介质上存储有液晶显示模组的色彩生成程序,所述液晶显示模组的色彩生成程序被处理器执行时实现如上所述的液晶显示模组的色彩生成方法的步骤。
为实现上述目的,本发明还提供一种液晶显示模组,所述液晶显示模组包括平行放置的三基色光源、下偏光片、第一玻璃基板、第一透明电极、液晶、第二透明电极、第二玻璃基板和上偏光片。
优选地,靠近所述液晶的所述第一透明电极的一侧设置走线电极与信号电极,所述走线电极与所述信号电极相互交错构成多个封闭区域,每个所述封闭区域设置有薄膜晶体管,所述薄膜晶体管通过薄膜晶体管开关可与所述走线电极、所述信号电极连通。
本发明提供的液晶显示模组及其色彩生成方法、装置和可读存储介质,液晶显示模组采用三基色光源在像素点对应的显示位置上顺序的显示不同的基色以生成色彩,并且控制不同基色在显示位置的显示时间,使得液晶显示模组能够生成设定的色彩,使得液晶显示模组无需采用滤光膜进行色彩的过滤即可生成设定的色彩,从而降低了液晶显示模组的成本。
附图说明
图1为液晶显示模组的爆炸图;
图2为液晶显示模组的第一透明电极的正视图;
图3为本发明液晶显示模组的色彩生成方法的第一实施例的流程示意图;
图4为本发明液晶显示模组的色彩生成方法的第二实施例的流程示意图;
图5为本发明液晶显示模组的色彩生成装置的程序模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例的主要解决方案是:液晶显示模组的色彩生成装置先按照预设的顺序依次获取各个待显示像素点的灰度值;然后,在获取到每个像素点的灰度值后,控制三基色光源以预设切换频率依次发射不同的基色光,并控制像素点的显示位置对应的薄膜晶体管开关开启;再根据当前待显示的像素点的灰度值以及像素点的显示位置生成对应的脉冲信号;最后,将脉冲信号发送至驱动电路,以供驱动电路根脉冲信号加载对应的脉冲电流至对应的薄膜晶体管中。
由于现有技术中,液晶显示屏中含有滤光膜,而滤光膜的制作成本较高,使得液晶显示屏的制作成本较高。
本发明提供一种解决方案,液晶显示模组通过控制三基色光源的不同基色在一定时间内依次显示在显示屏的同一点,使得液晶屏不需要滤光膜即能生成设定的色彩,从而使得液晶显示模组的成本降低。
如图1和图2,图1为液晶显示模组的爆炸图,图2为第一透明电极40的正视图。
参照图1、图2和图3,对液晶显示模组进行详细的说明。
液晶显示模组由N走向(竖直方向)的三基色光源10、下偏光片20、第一玻璃基板30、第一透明电极40、液晶50、第二透明电极60、第二玻璃基板70和上偏光片80依次连接构成的。
靠近液晶50的第一透明电极40的一侧设置走线电极43与信号电极44,走线电极43与信号电极44相互交错构成多个封闭区域,每个封闭区域设置有薄膜晶体管41,薄膜晶体管41通过薄膜晶体管开关42可与走线电极43、信号电极44连通,走线电极43与信号电极44构成驱动电路的一部分。
当薄膜晶体管开关42开启时(开关处于闭合状态),该薄膜晶体管开关42对应的薄膜晶体管41中产生电流,使得该薄膜晶体管41对应的封闭区域与第二透明电极60之间产生感应电场,使得感应电场内的液晶分子(液晶分子处于第一透明电极40与第二透明电极60之间)进行定向排列,从而使得光在液晶分子中的折射角度改变,进而改变光穿透液晶分子的透射率。
参照图3,图3为本发明液晶显示模组的色彩生成方法的第一实施例,所述液晶显示模组的色彩生成方法包括以下步骤:
步骤S10,按照预设的顺序依次获取各个待显示像素点的灰度值;
本发明是利用时间混色法的方法使得液晶显示模组成像的,该方法利用人眼的视觉惰性(对于中等亮度的光刺激,视觉暂留时间约为0.05s至0.2s,视觉暂留时间即为视网膜的视神经的反应时间),只要液晶显示模组将三种基色光顺序的出现在显示屏的同一表面的同一处,人眼会感觉这三种基色光是同时出现,并捕获到三种基色光相加所得的色彩。
液晶显示模组的显示屏(第二玻璃基板)可分为多个显示区域,每个显示区域对应一个薄膜晶体管,当显示屏需要显示画面时,液晶显示模组会按照显示屏的显示区域数量以及液晶显示模组的色彩生成方法将显示换面划分为对应的像素点,而本实施中液晶显示模组的色彩生成方法采用时间换色法,每一个像素点对应一个显示屏的显示区域,即每个像素点对应相应的显示位置。每一个像素点代表一个色彩,而每个色彩由红、绿和黄三种基色组成,而且每种基色都具有相应的灰度值,基色的灰度值由基色通过液晶分子的透射率决定,也就是说根据液晶显示模组所需显示的画面决定了每个像素点显示的色彩,而像素点所需显示的色彩的组成基色具有对应的灰度值,这就意味着液晶显示模组需要多次调节穿透液晶分子的基色光的透射率,为了避免显示屏杂乱无章的显示画面,液晶显示模组必须对基色的灰度值调整进行排序。此,显示屏上的与像素点对应的显示位置可以进行排序,使得显示屏能够连贯的显示画面,在当一个显示位置的色彩生成之后,立刻进行下一个顺序的显示位置的色彩生成,这样的话可以画面能够有规则的连贯呈现出来。本实施例中预设顺序指的是像素点对应显示位置的色彩生成顺序。
在显示屏需要显示画面时,液晶显示模组会将显示画面按照显示屏的显示区域划分为相应的区域,画面每个区域为一个像素点,液晶显示模组会根据像素点获取相应的色彩,然后根据色彩分析出色彩的基色组成,并确定色彩中各个基色的灰度值。
步骤S20,在获取到每个像素点的灰度值后,控制三基色光源以预设切换频率发射不同的基色光,并控制像素点的显示位置对应的薄膜晶体管开关开启;
三基色光源指的是红、绿和黄三种光源的基色光,三基色光源会依次且每次只发射单一的基色光,并且三基色光源会持续切换发射的基色光,比如,三基色光源有红、绿和蓝三种基色光。
本实施例中的液晶显示模组采用的色彩生成方法为时间混色法,那么三基色光源每切换一轮(红、绿、蓝三种基色光)基色光的时长应该是小于或等于人眼残留影像的时间,但是为了使得像素点对应的显示位置生成的色彩具有连贯性,那么三基色光源每切换一轮基色光的时长应该远远小于人眼残留影像,在本实施中三基色光源的基色的预设切换频率为180Hz,三基色光源切换一轮基色光的时长约为0.0112S,远小于人眼残留影像时长0.05s-0.2s,当然,三基色光源的基色切换频率还可以是其他任意合适的数值。
需要说明的是,因显示屏的每一个显示位置对应一个薄膜晶体管,而显示位置的色彩时有序的生成,所以在某一显示位置进行色彩的生成时,与该显示位置对应的薄膜晶体管开关开启,其他的薄膜晶体管开关关闭(开关处于断开状态)。
因为每一个像素点的色彩生成需要三种基色光的合成,每种基色光都需要进行灰度值的调节,即每个像素点中的色彩的生成需要历经三次基色灰度值的调节,可将基色灰度值的调节频率对应薄膜晶体管开关的开启频率,而基色灰度至的调节频率对应三基色光源的基色预设切换频率,所以可将薄膜晶体管开关的开启频率与三基色光源的基色预设切换频率同步,在薄膜晶体开关开启时,三基色光源发射基色光,当然在某一显示位置的色彩生成过程中,薄膜晶体管开关可以一直处于开启状态,只需根据脉冲信号调节薄膜晶体管开关的开度即可完成基色灰度值的调节。
步骤S30,根据当前待显示的像素点的灰度值以及像素点的显示位置生成对应的脉冲信号;
液晶显示模组的液晶指的是液晶分子层,液晶介于液态与结晶态之间的一种物质状态,是一种棒状分子,液晶分子的二端具有极性,可以在不同的电压下扭转不同的角度,而且液晶分子具有折射光的作用,所以液晶分子层在不同电压的电场下扭转不同角度决定光的透射率,所以液晶分子层通过调节基色光的透射率来调节显示屏的基色灰度值。
在液晶显示模组获取到像素点中的色彩的各个基色灰度值后,液晶显示模组会依据基色的灰度值生成对应的脉冲信号,每个脉冲信号可对薄膜晶体管开关的开度进行相应的调整,使得薄膜晶体管内的电流为设定的电流值,从而使得液晶分子处于设定电压的感应电场内,进而使得液晶分子扭转相应的角度以确定基色光的透射率,最终使得穿透液晶分子层的基色光为预设的灰度值合成色彩。
步骤S40,将脉冲信号发送至驱动电路,以供驱动电路根据脉冲信号加载对应的脉冲电流薄膜晶体管;
驱动电路上设有信号电极和走线电极,走线电极为闭合回路,在液晶显示模组工作时,走线电极内有电流流经。当在驱动电路接收到脉冲信号的同时,液晶显示模组会将与脉冲信号对应的薄膜晶体管开关开启,从而使得与薄膜晶体管开关对应的薄膜晶体管形成一个小的闭合回路,从而使得走线电极的电流可以通过薄膜晶体管开关流入薄膜晶体管,薄膜晶体管开关会根据脉冲信号控制其开关的开度从而控制流入薄膜晶体管电流的大小,从而使得液晶分子所处的感应电场的电压值为设定的电压值,达到控制基色灰度值调节的目的。
现有的液晶显示模组的色彩生成方法采用空间混色法,空间混色法时利用人眼空间细节分辨能力差的特点,将三种基色光在同一平面的对应位置充分靠近,只要三个基色光点足够小且充分接近,人眼在离开显示屏一定距离后,会感觉三种基色光混合后的所具有的颜色,因而液晶显示模组需要含有三种基色的白色光作为背光源,为了去除白色光的三种基色外的光,液晶显示模组需要使用滤光膜对白光进行过滤,所以滤光膜是采用空间混色法生成色彩的液晶显示模组中不可缺少的重要组件,而滤光膜的成本较高,从而使得液晶显示模组的整体成本提高。
需要说明的是,本实施中液晶显示模组的色彩生成方法采用的是时间混色法,即液晶显示模组在一个像素点上顺序显示三种不同的基色以生成色彩,可以理解为,液晶显示模组显示屏的一个像素点即可生成一个色彩,不同于而液晶显示模组采用空间混色法的色彩生成方法,位置相近的三个像素点才能够生成一个色彩,在液晶显示模组的显示屏像素点数量相同的情况下,采用时间混色法的液晶显示模组的显示屏的分辨率是采用空间混色法的液晶显示模组的显示屏的分辨率的三倍。
本实施例提供的技术方案中,液晶显示模组采用三基色光源在像素点对应的显示位置上顺序的显示不同的基色以生成色彩,并且控制不同基色在显示位置的显示时间,使得液晶显示模组能够生成设定的色彩,使得液晶显示模组无需采用滤光膜进行色彩的过滤即可生成设定的色彩,从而降低了液晶显示模组的成本。
参照图4,图4为本发明液晶显示模组的色彩生成方法的第二实施例,上述实施例,所述步骤S40之后,还包括:
步骤S50,在检测到三基色光源的光源出现故障时,控制液晶显示模组中的所有薄膜晶体管开关开启,且控制三基色光源持续发射设定的基色光;
在像素点对应的显示位置生成相应的色彩后,液晶显示模组会检测该色彩的基色光数量是否与预设色彩基色光数量一致。当三基色光源中光源出现问题时,像素点对应的显示位置生成的色彩会与设定的色彩颜色的像素单元不一致,从而使得液晶显示模组判定三基色光源的光源出现问题,此时,液晶显示模组会控制全部的薄膜晶体管的开关开启,并控制三基色光源停止切换光源,并持续发射设定的基色光,设定的基色光可为红光(三基色光源的红色光源未出现问题的情况下),以提醒用户对液晶电视进行维修。
本实施例提供的技术方案中,当三基色光源的光源出现问题时,通过控制所有薄膜晶体管开关开启,并控制三基色光源持续发射设定的基色光,使得液晶屏的全屏显示该设定基色光的颜色,以提醒用户对液晶显示模组进行维修。
参照图5,图5为本发明液晶显示模组的色彩生成装置程序模块是示意图,所述液晶显示模组的色彩生成装置包括:获取程序100、控制程序200、生成程序300和发送程序400;所述获取程序100,用于按照预设的顺序依次获取各个待显示像素点的灰度值;
所述获取程序100,按照预设的顺序依次获取各个待显示像素点的灰度值;
本发明是利用时间混色法的方法使得液晶显示模组成像的,该方法利用人眼的视觉惰性(对于中等亮度的光刺激,视觉暂留时间约为0.05s至0.2s,视觉暂留时间即为视网膜的视神经的反应时间),只要液晶显示模组将三种基色光顺序的出现在显示屏的同一表面的同一处,人眼会感觉这三种基色光是同时出现,并捕获到三种基色光相加所得的色彩。
液晶显示模组的显示屏(第二玻璃基板)可分为多个显示区域,每个显示区域对应一个薄膜晶体管,当显示屏需要显示画面时,液晶显示模组会按照显示屏的显示区域数量以及液晶显示模组的色彩生成方法将显示换面划分为对应的像素点,而本实施中液晶显示模组的色彩生成方法采用时间换色法,每一个像素点对应一个显示屏的显示区域,即每个像素点对应相应的显示位置。每一个像素点代表一个色彩,而每个色彩由红、绿和黄三种基色组成,而且每种基色都具有相应的灰度值,基色的灰度值由基色通过液晶分子的透射率决定,也就是说根据液晶显示模组所需显示的画面决定了每个像素点显示的色彩,而像素点所需显示的色彩的组成基色具有对应的灰度值,这就意味着液晶显示模组需要多次调节穿透液晶分子的基色光的透射率,为了避免显示屏杂乱无章的显示画面,液晶显示模组必须对基色的灰度值调整进行排序。此,显示屏上的与像素点对应的显示位置可以进行排序,使得显示屏能够连贯的显示画面,在当一个显示位置的色彩生成之后,立刻进行下一个顺序的显示位置的色彩生成,这样的话可以画面能够有规则的连贯呈现出来。本实施例中预设顺序指的是像素点对应显示位置的色彩生成顺序。
在显示屏需要显示画面时,液晶显示模组会将显示画面按照显示屏的显示区域划分为相应的区域,画面每个区域为一个像素点,液晶显示模组会根据像素点获取相应的色彩,然后根据色彩分析出色彩的基色组成,并确定色彩中各个基色的灰度值。
所述控制程序200,用于在获取到每个像素点的灰度值后,控制三基色光源以预设切换频率发射不同的基色光,并控制像素点的显示位置对应的薄膜晶体管开关开启;
三基色光源指的是红、绿和黄三种光源的基色光,三基色光源会依次且每次只发射单一的基色光,并且三基色光源会持续切换发射的基色光,比如,三基色光源有红、绿和蓝三种基色光。
本实施例中的液晶显示模组采用的色彩生成方法为时间混色法,那么三基色光源每切换一轮(红、绿、蓝三种基色光)基色光的时长应该是小于或等于人眼残留影像的时间,但是为了使得像素点对应的显示位置生成的色彩具有连贯性,那么三基色光源每切换一轮基色光的时长应该远远小于人眼残留影像,在本实施中三基色光源的基色的预设切换频率为180Hz,三基色光源切换一轮基色光的时长约为0.0112S,远小于人眼残留影像时长0.05s-0.2s,当然,三基色光源的基色切换频率还可以是其他任意合适的数值。
需要说明的是,因显示屏的每一个显示位置对应一个薄膜晶体管,而显示位置的色彩时有序的生成,所以在某一显示位置进行色彩的生成时,与该显示位置对应的薄膜晶体管开关开启,其他的薄膜晶体管开关关闭(开关处于断开状态)。
因为每一个像素点的色彩生成需要三种基色光的合成,每种基色光都需要进行灰度值的调节,即每个像素点中的色彩的生成需要历经三次基色灰度值的调节,可将基色灰度值的调节频率对应薄膜晶体管开关的开启频率,而基色灰度至的调节频率对应三基色光源的基色预设切换频率,所以可将薄膜晶体管开关的开启频率与三基色光源的基色预设切换频率同步,在薄膜晶体开关开启时,三基色光源发射基色光,当然在某一显示位置的色彩生成过程中,薄膜晶体管开关可以一直处于开启状态,只需根据脉冲信号调节薄膜晶体管开关的开度即可完成基色灰度值的调节。
所述控制程序200,还用于在检测到三基色光源的光源出现故障时,控制液晶显示模组中的所有薄膜晶体管开关开启,且控制三基色光源持续发射设定的基色光;
在像素点对应的显示位置生成相应的色彩后,液晶显示模组会检测该色彩的基色光数量是否与预设色彩基色光数量一致。当三基色光源中光源出现问题时,像素点对应的显示位置生成的色彩会与设定的色彩颜色的像素单元不一致,从而使得液晶显示模组判定三基色光源的光源出现问题,此时,液晶显示模组会控制全部的薄膜晶体管的开关开启,并控制三基色光源停止切换光源,并持续发射设定的基色光,设定的基色光可为红光(三基色光源的红色光源未出现问题的情况下),以提醒用户对液晶电视进行维修。
所述生成程序300,用于根据当前待显示的像素点的灰度值生成对应的脉冲信号;
液晶显示模组的液晶指的是液晶分子层,液晶介于液态与结晶态之间的一种物质状态,是一种棒状分子,液晶分子的二端具有极性,可以在不同的电压下扭转不同的角度,而且液晶分子具有折射光的作用,所以液晶分子层在不同电压的电场下扭转不同角度决定光的透射率,所以液晶分子层通过调节基色光的透射率来调节显示屏的基色灰度值。
在液晶显示模组获取到像素点中的色彩的各个基色灰度值后,液晶显示模组会依据基色的灰度值生成对应的脉冲信号,每个脉冲信号可对薄膜晶体管开关的开度进行相应的调整,使得薄膜晶体管内的电流为设定的电流值,从而使得液晶分子处于设定电压的感应电场内,进而使得液晶分子扭转相应的角度以确定基色光的透射率,最终使得穿透液晶分子层的基色光为预设的灰度值合成色彩。
所述发送程序400,用于将脉冲信号发送至驱动电路,以供驱动电路根据脉冲信号加载对应的脉冲电流薄膜晶体管;
驱动电路上设有信号电极和走线电极,走线电极为闭合回路,在液晶显示模组工作时,走线电极内有电流流经。当在驱动电路接收到脉冲信号的同时,液晶显示模组会将与脉冲信号对应的薄膜晶体管开关开启,从而使得与薄膜晶体管开关对应的薄膜晶体管形成一个小的闭合回路,从而使得走线电极的电流可以通过薄膜晶体管开关流入薄膜晶体管,薄膜晶体管开关会根据脉冲信号控制其开关的开度从而控制流入薄膜晶体管电流的大小,从而使得液晶分子所处的感应电场的电压值为设定的电压值,达到控制基色灰度值调节的目的。
现有的液晶显示模组的色彩生成方法采用空间混色法,空间混色法时利用人眼空间细节分辨能力差的特点,将三种基色光在同一平面的对应位置充分靠近,只要三个基色光点足够小且充分接近,人眼在离开显示屏一定距离后,会感觉三种基色光混合后的所具有的颜色,因而液晶显示模组需要含有三种基色的白色光作为背光源,为了去除白色光的三种基色外的光,液晶显示模组需要使用滤光膜对白光进行过滤,所以滤光膜是采用空间混色法生成色彩的液晶显示模组中不可缺少的重要组件,而滤光膜的成本较高,从而使得液晶显示模组的整体成本提高。
需要说明的是,本实施中液晶显示模组的色彩生成方法采用的是时间混色法,即液晶显示模组在一个像素点上顺序显示三种不同的基色以生成色彩,可以理解为,液晶显示模组显示屏的一个像素点即可生成一个色彩,不同于而液晶显示模组采用空间混色法的色彩生成方法,位置相近的三个像素点才能够生成一个色彩,在液晶显示模组的显示屏像素点数量相同的情况下,采用时间混色法的液晶显示模组的显示屏的分辨率是采用空间混色法的液晶显示模组的显示屏的分辨率的三倍。
本发明还提供一种可读存储介质,所述可读存储介质上存储有液晶显示模组的色彩生成程序,所述液晶显示模组的色彩生成程序程序被处理器执行时实现如以上实施例所述的液晶显示模组的色彩生成方法的各个步骤。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种液晶显示模组的色彩生成方法,其特征在于,所述液晶显示模组的色彩生成方法包括以下步骤:
    按照预设的顺序依次获取各个待显示像素点的灰度值;
    在获取到每个像素点的灰度值后,控制三基色光源以预设切换频率依次发射不同的基色光,并控制像素点的显示位置对应的薄膜晶体管开关开启;
    根据当前待显示的像素点的灰度值以及所述像素点的显示位置生成对应的脉冲信号;
    将所述脉冲信号发送至驱动电路,以供驱动电路根据所述脉冲信号加载对应的脉冲电流至对应的薄膜晶体管。
  2. 如权利要求1所述的液晶显示模组的色彩生成方法,其特征在于,所述控制薄膜晶体管开关开启的步骤包括:
    控制所述薄膜晶体管开关的开启频率与所述三基色光源的基色光在预设时间内的切换频率同步,在所述薄膜晶体开关开启时,所述三基色光源发射基色光。
  3. 如权利要求1所述的液晶显示模组的色彩生成方法,其特征在于,所述根据当前待显示的像素点的灰度值以及所述像素点的显示位置生成对应的脉冲信号的步骤包括:
    根据待显示的像素点的灰度值以及所述像素点的显示位置获取液晶屏之间的电压值;
    根据液晶屏之间的电压值生成对应的脉冲信号,所述扫描信号的切换频率与所述三基色光源的基色光在预设时间内的切换频率同步。
  4. 如权利要求2所述的液晶显示模组的色彩生成方法,其特征在于,所述将所述脉冲信号发送至驱动电路,以供驱动电路根据所述脉冲信号加载对应的脉冲电流至对应的薄膜晶体管的步骤包括:
    根据所述薄膜晶体管确定所述脉冲信号对应的薄膜晶体管开关;
    根据所述脉冲信号控制所述薄膜晶体管开关的开度,以将所述脉冲信号对应的脉冲电流加载至所述薄膜晶体管。
  5. 如权利要求3所述的液晶显示模组的色彩生成方法,其特征在于,所述液晶显示模组的色彩生成方法还包括:
    在检测到三基色光源的光源出现故障时,控制所述液晶显示模组中的所有薄膜晶体管开关开启,且控制所述三基色光源持续发射设定的基色光。
  6. 一种液晶显示模组的色彩生成装置,其特征在于,所述液晶显示模组的色彩生成装置包括:
    获取程序,用于按照预设的顺序依次获取各个待显示像素点的灰度值;
    控制程序,用于在获取到每个像素点的灰度值后,控制三基色光源以预设切换频率依次发射不同的基色光,并控制像素点的显示位置对应的薄膜晶体管开关开启;
    生成程序,用于根据当前待显示的像素点的灰度值以及所述像素点的显示位置生成对应的脉冲信号;
    发送程序,用于将所述脉冲信号发送至驱动电路,以供驱动电路根据所述脉冲信号加载对应的脉冲电流至对应的薄膜晶体管。
  7. 如权利要求6所述的液晶显示模组的色彩生成装置,其特征在于,所述控制程序,还用于控制所述薄膜晶体管开关的开启频率与所述三基色光源的基色光在预设时间内的切换频率同步,在所述薄膜晶体开关开启时,所述三基色光源发射基色光。
  8. 如权利要求6所述的液晶显示模组的色彩生成装置,其特征在于,所述获取程序,还用于根据待显示的像素点的灰度值以及所述像素点的显示位置获取液晶屏之间的电压值;
    所述生成程序,还用于根据液晶屏之间的电压值生成对应的脉冲信号,所述扫描信号的切换频率与所述三基色光源的基色光在预设时间内的切换频率同步。
  9. 如权利要求6所述的液晶显示模组的色彩生成装置,其特征在于,
    所述控制程序,还用于根据所述薄膜晶体管确定所述脉冲信号对应的薄膜晶体管开关;
    所述控制程序,还用于根据所述脉冲信号控制所述薄膜晶体管开关的开度,以将所述脉冲信号对应的脉冲电流加载至所述薄膜晶体管。
  10. 如权利要求6所述的液晶显示模组的色彩生成装置,其特征在于,所述控制程序,还用于在检测到三基色光源的光源出现故障时,控制所述液晶显示模组中的所有薄膜晶体管开关开启,且控制所述三基色光源持续发射设定的基色光。
  11. 一种可读存储介质,其特征在于,所述可读存储介质上存储有液晶显示模组的色彩生成程序,所述液晶显示模组的色彩生成程序被处理器执行时实现如权利要求1至5中任一项所述的液晶显示模组的色彩生成方法的步骤。
  12. 一种液晶显示模组,其特征在于,所述液晶显示模组包括平行放置的三基色光源、下偏光片、第一玻璃基板、第一透明电极、液晶、第二透明电极、第二玻璃基板和上偏光片。
  13. 如权利要求12所述的液晶显示模组,其特征在于,靠近所述液晶的所述第一透明电极的一侧设置走线电极与信号电极,所述走线电极与所述信号电极相互交错构成多个封闭区域,每个所述封闭区域设置有薄膜晶体管,所述薄膜晶体管通过薄膜晶体管开关可与所述走线电极、所述信号电极连通。
PCT/CN2017/110371 2017-06-12 2017-11-10 液晶显示模组及其色彩生成方法、装置和可读存储介质 WO2018227865A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710441143.X 2017-06-12
CN201710441143.XA CN107086029B (zh) 2017-06-12 2017-06-12 基于液晶显示模组的色彩生成方法、装置和可读存储介质

Publications (1)

Publication Number Publication Date
WO2018227865A1 true WO2018227865A1 (zh) 2018-12-20

Family

ID=59606646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110371 WO2018227865A1 (zh) 2017-06-12 2017-11-10 液晶显示模组及其色彩生成方法、装置和可读存储介质

Country Status (2)

Country Link
CN (1) CN107086029B (zh)
WO (1) WO2018227865A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107086029B (zh) * 2017-06-12 2020-07-14 深圳Tcl新技术有限公司 基于液晶显示模组的色彩生成方法、装置和可读存储介质
CN110488534A (zh) * 2019-08-21 2019-11-22 惠州市慧联智显工业系统有限公司 一种时间混色专用blu
CN113035140A (zh) * 2021-03-19 2021-06-25 维沃移动通信有限公司 显示屏驱动方法、装置、电子设备及存储介质
CN113035141A (zh) * 2021-03-19 2021-06-25 维沃移动通信有限公司 显示屏、显示屏驱动方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102044220A (zh) * 2009-10-09 2011-05-04 深圳市长运通集成电路设计有限公司 一种液晶显示装置的驱动方法
CN102081257A (zh) * 2010-12-17 2011-06-01 信利半导体有限公司 液晶光栅及立体显示装置
US20110298832A1 (en) * 2010-06-02 2011-12-08 Himax Display, Inc. Color sequential display and light source control method thereof
CN104299575A (zh) * 2013-12-13 2015-01-21 天津三星电子有限公司 一种时序混色的显示控制方法、装置及显示器
CN104932143A (zh) * 2015-06-17 2015-09-23 衷健 一种彩色视觉效果装置及其生成方法
CN107086029A (zh) * 2017-06-12 2017-08-22 深圳Tcl新技术有限公司 基于液晶显示模组的色彩生成方法、装置和可读存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4409152B2 (ja) * 2002-06-27 2010-02-03 株式会社ルネサステクノロジ 表示制御駆動装置および表示システム
KR100565810B1 (ko) * 2004-06-16 2006-03-29 삼성전자주식회사 색신호 처리장치 및 방법
US7928944B2 (en) * 2005-01-20 2011-04-19 Koninklijke Philips Electronics N.V. Color-sequential display device
WO2006102769A1 (en) * 2005-04-01 2006-10-05 Dolby Canada Corporation 3-d color synthesis displays and methods
CN1866344A (zh) * 2005-05-18 2006-11-22 深圳大学 色序法液晶显示器
WO2011148842A1 (en) * 2010-05-25 2011-12-01 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and driving method thereof
KR20110137606A (ko) * 2010-06-17 2011-12-23 삼성전자주식회사 액정 표시 장치 및 그 구동 방법
CN101980332A (zh) * 2010-10-21 2011-02-23 周建军 场序液晶显示装置的驱动方法
CN102163401B (zh) * 2011-02-25 2013-11-06 福建华映显示科技有限公司 色序显示器的色场切换频率的控制方法
CN202125824U (zh) * 2011-06-03 2012-01-25 北京京东方光电科技有限公司 一种背光源及液晶显示器
CN202394504U (zh) * 2011-11-15 2012-08-22 深圳市华星光电技术有限公司 色序液晶显示装置
WO2014185109A1 (ja) * 2013-05-13 2014-11-20 シャープ株式会社 液晶表示装置、および液晶表示装置におけるデータ補正方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102044220A (zh) * 2009-10-09 2011-05-04 深圳市长运通集成电路设计有限公司 一种液晶显示装置的驱动方法
US20110298832A1 (en) * 2010-06-02 2011-12-08 Himax Display, Inc. Color sequential display and light source control method thereof
CN102081257A (zh) * 2010-12-17 2011-06-01 信利半导体有限公司 液晶光栅及立体显示装置
CN104299575A (zh) * 2013-12-13 2015-01-21 天津三星电子有限公司 一种时序混色的显示控制方法、装置及显示器
CN104932143A (zh) * 2015-06-17 2015-09-23 衷健 一种彩色视觉效果装置及其生成方法
CN107086029A (zh) * 2017-06-12 2017-08-22 深圳Tcl新技术有限公司 基于液晶显示模组的色彩生成方法、装置和可读存储介质

Also Published As

Publication number Publication date
CN107086029B (zh) 2020-07-14
CN107086029A (zh) 2017-08-22

Similar Documents

Publication Publication Date Title
WO2018227865A1 (zh) 液晶显示模组及其色彩生成方法、装置和可读存储介质
WO2018124784A1 (en) Display apparatus and display method
WO2020085768A1 (en) Display apparatus and method for driving same
WO2016200025A1 (ko) 디스플레이 장치
WO2011025114A1 (ko) 디스플레이 장치
WO2014104802A1 (en) Transparent display apparatus and method for controlling the same
WO2011025115A1 (ko) 디스플레이 장치
JP2008299145A (ja) 表示装置および表示方法
WO2017028371A1 (zh) 一种液晶显示面板及其制作方法
EP3750149A1 (en) Display panel and method for driving the display panel
WO2014180309A1 (zh) 显示均匀补偿方法、光调制装置、信号处理器和投影系统
WO2020050522A1 (ko) 엘이디 디스플레이의 휘도 보정 방법 및 시스템
WO2021033796A1 (ko) 디스플레이 장치 및 그의 동작 방법
WO2017181503A1 (zh) 显示终端背光亮度调节方法、装置及电视机
WO2017107384A1 (zh) 液晶显示器的图像显示方法及液晶显示器
WO2017028613A1 (zh) 基于遥控器app控制终端的方法及装置
WO2017096769A1 (zh) 显示设备的色彩校准方法及色彩校准系统
WO2018113404A1 (zh) 显示装置的驱动方法、驱动装置及显示装置
CN111373315A (zh) 显示器自动调节亮度的方法、装置及存储介质
WO2019024272A1 (zh) 一种显示方法及显示装置
WO2017059686A1 (zh) 桌面显示方法及装置
WO2017049667A1 (zh) 显示装置及其显示图像的方法
WO2017086493A1 (ko) 액정 표시 장치 및 그 구동 방법
WO2019088481A1 (ko) 전자 장치 및 그의 영상 보정 방법
WO2017016308A1 (zh) 菜单背景颜色处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913598

Country of ref document: EP

Kind code of ref document: A1