WO2019024272A1 - 一种显示方法及显示装置 - Google Patents

一种显示方法及显示装置 Download PDF

Info

Publication number
WO2019024272A1
WO2019024272A1 PCT/CN2017/107253 CN2017107253W WO2019024272A1 WO 2019024272 A1 WO2019024272 A1 WO 2019024272A1 CN 2017107253 W CN2017107253 W CN 2017107253W WO 2019024272 A1 WO2019024272 A1 WO 2019024272A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage signal
voltage
alignment pattern
unit
preset
Prior art date
Application number
PCT/CN2017/107253
Other languages
English (en)
French (fr)
Inventor
陈猷仁
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Priority to US15/858,423 priority Critical patent/US10789898B2/en
Publication of WO2019024272A1 publication Critical patent/WO2019024272A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers

Definitions

  • the present application relates to the field of electronic technologies, and in particular, to a display method and a display device.
  • VA liquid crystal technology has higher production efficiency and lower manufacturing cost than IPS liquid crystal technology, but optical In nature, there are obvious optical defects in relation to IPS liquid crystal technology, especially large-sized panels require a large viewing angle for commercial applications, and VA-type liquid crystal drivers often fail to meet market application requirements.
  • the VA-type liquid crystal technology solves the role-biasing method by dividing the RGB sub-pixels into the main sub-pixels, and solving the defect of the visual character bias by giving different driving voltages to the primary and secondary pixels in the space, so that it is often necessary to design the metal to go.
  • Wire or thin film transistor (TFT) components drive the sub-pixels, causing the opaque open area to sacrifice, affecting the panel transmittance, and directly increasing the backlight cost.
  • the embodiment of the present application provides a display method and a display device, which can improve the light transmittance of the panel, reduce the backlight cost, and improve the color shift phenomenon.
  • the embodiment of the present application provides a display method, including:
  • the driving pixel unit responds according to the second voltage signal to display a target picture.
  • an embodiment of the present application provides a display method, including:
  • the duration of the second voltage signal is deleted according to a preset reduction ratio
  • the pixel unit surface being etched with a first alignment pattern and a second alignment pattern, the first alignment pattern and the second alignment pattern being stacked in parallel Staggered the preset distance;
  • the first voltage signal includes a voltage signal corresponding to the red, green, and blue sub-pixel units of the pixel unit, and converts a voltage signal group corresponding to the adjacent plurality of the blue or green or red sub-pixel units into a voltage signal group in which the voltage is high and low, and the voltage signal group in which the voltage is high and low is the second voltage signal, and the number of the blue sub-pixel units for each of the second voltage signals is converted. More than the number of said green or red sub-pixel units for conversion to each of said second voltage signals.
  • the embodiment of the present application provides a display device, including:
  • a receiving unit configured to receive image data of a target screen
  • An acquiring unit configured to acquire a first voltage signal corresponding to the image data
  • a conversion unit configured to convert the adjacent first voltage signal into a second voltage signal with a high voltage and a low voltage distribution
  • an execution unit configured to drive the pixel unit to respond according to the second voltage signal to display the target image.
  • the display method and the display device of the embodiment of the present invention convert the first voltage signal into a second voltage signal with a high voltage and a low voltage distribution after acquiring the first voltage signal corresponding to the image data, and then the pixel device is driven by the display device according to the first
  • the two voltage signals respond and display the target picture, so that the high and low voltage signals distributed in the adjacent space to achieve the target of the front view and the side view brightness change are improved, thereby improving the chromatic aberration phenomenon, improving the panel light transmittance and reducing the backlight. cost.
  • FIG. 1 is a schematic flowchart of a display method according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic flowchart of a display method according to Embodiment 2 of the present application.
  • FIG. 3 is a schematic flowchart of a display method according to Embodiment 3 of the present application.
  • FIG. 4 is a schematic diagram of a display area block distribution of a display method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a display area pixel unit in a display method according to an embodiment of the present disclosure
  • FIG. 6 is a diagram showing relationship between brightness and voltage of a display method according to an embodiment of the present application.
  • FIG. 7 is a partial diagram showing brightness and voltage of a display method according to an embodiment of the present application.
  • FIG. 8 is another partial relationship diagram of brightness and voltage of a display method according to an embodiment of the present application.
  • FIG. 9 is a color space diagram of a Lab and an LCH of a display method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic block diagram of a display device according to Embodiments 1 and 2 of the present application.
  • FIG. 11 is a schematic block diagram of a display device according to Embodiment 3 of the present application.
  • FIG. 12 is a flow chart of a voltage signal replacement control according to Embodiment 1 of the present application.
  • FIG. 13 is a flow chart of voltage signal replacement control according to Embodiment 2 of the present application.
  • FIG. 1 is a schematic flowchart of a display method according to Embodiment 1 of the present application. As shown in the figure, the method includes the following steps S11 to S14:
  • Step S11 Receive image data of the target screen.
  • the image data of the target image is received, specifically, the screen driving board of the display device receives the image data of the to-be-displayed image sent by the front end, because the display device display screen is a frame-by-frame display, so the screen driver board receives the front-end data.
  • the image data is received frame by frame, and the image data of 1 ⁇ 2 frames is stored in the memory of the screen driving board, and the control IC of the screen driving board analyzes and processes the image data of 1 ⁇ 2 frames to perform the subsequent steps.
  • Step S12 Acquire a voltage signal corresponding to the red, green, and blue sub-pixel units of the pixel unit corresponding to the image data as the first voltage signal.
  • the voltage signal corresponding to the red, green, and blue sub-pixel units of the pixel unit is obtained as the first voltage signal, that is, the voltage signal corresponding to driving each of the red, green, and blue sub-pixel units to display the target image is acquired.
  • the voltage signal is used as the first voltage signal for subsequent steps of conversion.
  • Step S13 Convert a voltage signal group corresponding to a plurality of adjacent blue or green or red sub-pixel units into a voltage signal group with a high and low voltage distribution, and the voltage signal group whose voltage is high and low is a second voltage signal.
  • FIG. 6 to FIG. 8 which is a curve in which the voltage (horizontal axis) is increased and the brightness (vertical axis) is changed
  • K1 is a curve in which the target voltage increases with the brightness when viewed
  • the high and low voltage signals are distributed through the phases (ie, The high and low voltage signals are spaced apart, and the adjacent two voltage signals are one high and one low) to satisfy the close ratio of the brightness change between the front view and the side view.
  • the high voltage and low voltage signals of the phase distribution are combined in various combinations.
  • the resulting side-view brightness varies with voltage.
  • curves K2 and K4 are the two sides of the high-voltage and low-voltage combination.
  • the brightness is measured with voltage. See Figure 7 and Figure 8.
  • the high voltage and low voltage curves can be found to have different degrees of difference from the target curve K1 in different combinations. A combination of high voltage and low voltage between phases can not meet the requirements of high and low voltage brightness and target brightness.
  • the high voltage and low voltage combination K4 of the phase distribution when considering the relationship between low voltage and brightness, the high voltage and low voltage combination K4 of the phase distribution, the difference between the actual brightness and the target brightness is d1(n), which is much larger than the high voltage and low when the space is divided. Voltage combination K2, The difference between the actual brightness and the target brightness is d2(n).
  • the high voltage and low voltage of the phase distribution are combined to be K4, and the difference between the actual brightness and the target brightness is d1(n), which is much smaller than the high voltage and low of the phase distribution.
  • Voltage combination K2 The combination of high voltage and low voltage of spatial segmentation is suitable for K4 to present a higher voltage signal on the image quality content.
  • the combination of high voltage and low voltage of spatial segmentation is suitable for K2 to present a lower voltage signal on the image quality content.
  • the viewing angle brightness curve generated by the combination of high and low voltages such as K4 plus K2 is K3. Its characteristics combine the advantages of K4 high gray level combination and K2 low gray level combination, so that the viewing angle curve is closer to the target curve, and the curve changes are smoother. It is easy to have a phenomenon in which the color of the image quality is abrupt or the color mixture is abnormal.
  • taking the voltage signal of the blue sub-pixel unit as an example, taking Bi, j and adjacent Bi, j+1, Bi+1, j, Bi+1, j +1 four voltage signals, converting these four voltage signals into Bn’_H1, Bn'_H2 high voltage signal and Bn'_L1, Bn'_L2 low voltage signal, where Bn'_H1, Bn'_L1 is a set of voltage combinations as shown in Figure 6, K4 curve, Bn'_H2, Bn'_L2 is another set of voltage Combining the K2 curve of Figure 3, the application will be Bn'_H1, Bn'_H2, Bn'_L1, Bn'_L2 Replace the original Bi, j
  • Equivalent search value Bn’_H1, Bn’_H2, Bn’_L1, Bn'_L2 is replaced in accordance with the judgment mode of Fig. 12.
  • search values Gn'_H1, Gn'_H2, Gn'_L1, and Gn'_L2 are determined in the same manner.
  • each divided block n There are a plurality of blue sub-pixels, and the blue sub-pixels are arranged as Bn_1, 1, Bn_1, 2, ... Bn_i, j.
  • the embodiment of the present application determines the combination mode of the high and low voltage signals of the RGB sub-pixel unit by color, as shown in the CIE shown in FIG.
  • the LCH color space map calculates the color representation of the combined pixels of RGB in the color coordinate system: L (brightness), C (saturation), H (hue).
  • H represents 0° ⁇ 360° for different hue colors, 0° is red, 90° is yellow, 180° is green, 270° is blue, C is color saturation, which represents the vividness of color, C
  • the range is expressed as 0 to 100, 100 represents the most vivid color, and the value of C reflects the level of the LCD display voltage signal to a certain extent.
  • the first voltage signal corresponding to the RGB sub-pixel unit is converted according to the specific situation in FIG. 12 to obtain a corresponding second voltage signal:
  • Each of the average signals Bn' and Rn', Gn' corresponds to a fixed R/G/B pixel Rn_s_i, j, Rn_s_i, j+1, Rn_s_i+1,j,Rn_s_i+1,j+1 /Gn_s_i,j, Gn_s_i,j+1, Gn_s_i+1,j, Gn_s_i+1, j+1/Bn_s_i, j, Bn_s_i, j+1, Bn_s_i+1, j, Bn_s_i+1, j+1 two sets of high and low voltage combinations Rn_s_H1, Rn_s_L1, Rn_s_H2, Rn_s_L2/Gn_s_H1, Gn_s_L1, Gn_s_H2
  • the new blue sub-pixel signal in the cell block is averaged by the four blue sub-pixel signals of the cell block B'n_s according to the n-block (Frame Signal of all blue sub-pixel units within N) Bn_i, j takes the average signal Bn' obtained based on the look-up table value taken by the color judgment condition.
  • Figure 12 shows two sets of high and low voltage combinations Bn_s_H1, Bn_s_L1 and Bn_s_H2, Bn_s_L2 for each group of block signal averages B'n_s.
  • Step S14 The driving pixel unit responds according to the second voltage signal and displays the target picture.
  • the RGB sub-pixel unit that drives the pixel unit responds according to the converted second voltage signal of the voltage level and displays the target picture.
  • the first voltage signal corresponding to the image data is acquired, the first voltage signal is converted into a second voltage signal with a high voltage and a low voltage, and then the pixel device is driven by the display device to respond according to the second voltage signal and display the target.
  • the second voltage signal is responded by each of the independent sub-pixel units, there is no need to divide the primary and secondary pixels on the RGB sub-pixel unit, thus avoiding re-designing the metal trace or the TFT element to drive the sub-pixel.
  • the light opening area is reduced, thereby improving the panel light transmittance and reducing the backlight cost.
  • FIG. 2 is a schematic flowchart of a display method according to Embodiment 2 of the present application. As shown in the figure, the method includes the following steps S21 to S24:
  • Step S21 Receive image data of the target screen.
  • the image data of the target image is received, specifically, the screen driving board of the display device receives the image data of the to-be-displayed image sent by the front end, because the display device display screen is a frame-by-frame display, so the screen driver board receives the front-end data.
  • the image data is received frame by frame, and the image data of 1 ⁇ 2 frames is stored in the memory of the screen driving board, and the control IC of the screen driving board analyzes and processes the image data of 1 ⁇ 2 frames to perform the subsequent steps.
  • Step S22 Acquire a voltage signal corresponding to the red, green, and blue sub-pixel units of the pixel unit corresponding to the image data as the first voltage signal.
  • the voltage signal corresponding to the red, green, and blue sub-pixel units of the pixel unit is obtained as the first voltage signal, that is, the voltage signal corresponding to driving each of the red, green, and blue sub-pixel units to display the target image is acquired.
  • the voltage signal is used as the first voltage signal for subsequent steps of conversion.
  • Step S23 Convert a voltage signal group corresponding to a plurality of adjacent blue or green or red sub-pixel units into a voltage signal group whose voltage is high and low, and the voltage signal group whose voltage is high and low is a second voltage signal.
  • the number of blue sub-pixel units for conversion to each of the second voltage signals is greater than the number of green or red sub-pixel units for conversion to each of the second voltage signals.
  • red and green take fewer sub-pixel units than blue (for example, 2 for red and green, 4 for blue) as a conversion for a set of high and low voltage signals, that is, less green than blue sub-pixel units.
  • red sub-pixel unit is converted as a group, and the green or red sub-pixel unit in each of the individual high and low voltage signal groups after conversion is less than the blue sub-pixel unit in each individual high and low voltage signal group.
  • the first voltage signal corresponding to the green and red sub-pixel units is converted according to the specific case in FIG. 13 to obtain a corresponding second voltage signal.
  • a red pixel signal in the partition n block, adjacent four sub-pixels Rn_s_i, j, Rn_s_i, j+1, Rn_s_i+1, j, Rn_s_i+1, j+1 four signals take the average signal:
  • s represents the cell block number of each of the four red sub-pixels in the block.
  • S, S+1 is 4
  • the red sub-pixels are divided into two combinations of high and low voltage signal pairs for the combined cell block number.
  • Each new red sub-pixel signal is further divided into two independent sub-pixel signal average values R'n_s, R'n_s+1 by the four sub-pixel cell blocks according to the n-block (Frame) Signal of all blue sub-pixel units within N) Bn_i, j takes the average signal Bn' according to the color judgment condition to obtain the look-up table value corresponding to the output, and then corresponds to the new cell block signal four red sub-pixel units as shown in FIG.
  • the conversion mode of the green sub-pixel unit is the same as that of the red sub-pixel unit in this embodiment, and the conversion mode of the blue sub-pixel unit is the same as in the first embodiment.
  • Step S24 The driving pixel unit responds according to the second voltage signal and displays the target picture.
  • the RGB sub-pixel unit that drives the pixel unit responds according to the converted second voltage signal of the voltage level and displays the target picture.
  • the number of blue sub-pixel units converted into each second voltage signal is larger than that for conversion to each second voltage signal green or red sub-pixel unit
  • the number is such that the resolution of the converted green and red second voltage signals is higher than the resolution of the blue second voltage signal, thereby avoiding the graininess of the picture.
  • FIG. 3 is a schematic flowchart of a display method according to Embodiment 3 of the present application. As shown in the figure, the method includes the following steps S31 to S36:
  • Step S31 Receive image data of the target screen.
  • the image data of the target image is received, specifically, the screen driving board of the display device receives the image data of the to-be-displayed image sent by the front end, because the display device display screen is a frame-by-frame display, so the screen driver board receives the front-end data.
  • the image data is received frame by frame, and the image data of 1 ⁇ 2 frames is stored in the memory of the screen driving board, and the control IC of the screen driving board analyzes and processes the image data of 1 ⁇ 2 frames to perform the subsequent steps.
  • Step S32 Acquire a first voltage signal corresponding to the image data.
  • the first voltage signal corresponding to the image data is acquired, that is, a voltage signal corresponding to driving each pixel unit to perform a display target picture is acquired.
  • Step S33 Convert the adjacent first voltage signal into a second voltage signal whose voltage is high and low.
  • the adjacent first voltage signal is converted into a second voltage signal with a high and low voltage distribution.
  • the specific conversion manner refer to Embodiment 1 or Embodiment 2.
  • Step S34 determining whether the second voltage signal exceeds a preset voltage threshold.
  • comparing the magnitude of the voltage corresponding to the second voltage signal with the magnitude of the preset voltage threshold determining whether the voltage corresponding to the second voltage signal is greater than a preset voltage threshold.
  • Step S35 If it is exceeded, the duration duration corresponding to the second voltage signal is deleted according to the preset deletion ratio.
  • the duration corresponding to the second voltage signal exceeding the preset voltage threshold is deleted according to a preset cut-off ratio, for example, The set reduction ratio is 20%, and the duration of the second voltage signal exceeding the preset voltage threshold is 100ms, then the original 100ms is subtracted by 20ms according to the cut-off ratio of 20%, and finally exceeds the preset voltage threshold by the second.
  • the duration of the voltage signal corresponds to 80 ms.
  • Step S36 The driving pixel unit responds according to the second voltage signal to display the target picture.
  • the RGB sub-pixel unit that drives the pixel unit responds according to the converted second voltage signal of the voltage level and displays the target picture.
  • the duration of the second voltage signal exceeding the preset voltage threshold the interference of the afterimage remaining after the long-time display of the high-luminance signal on the next frame is avoided, and the screen display is improved. Sharpness.
  • the surface of the pixel unit is etched with a first alignment pattern and a second alignment pattern, and the first alignment pattern and the second alignment pattern are stacked in parallel and staggered by a preset distance.
  • the first alignment pattern and the second alignment pattern etched on the surface of the pixel unit are composed of electrode slits.
  • the process width limit is assumed to be m, that is, only An electrode slit having a width m is formed.
  • the two alignment patterns are stacked and staggered according to the embodiment, and the two electrode slits partially overlap, the overlapped portion is a new electrode slit having a smaller width. In this way, the electric field strength at the slit of the electrode can be further enhanced to further reduce dark lines.
  • the display device 500 includes a display panel 590, a receiving unit 510, an obtaining unit 520, and a converting unit 530. And an execution unit 540.
  • the receiving unit 510 is configured to receive image data of a target image
  • the acquiring unit 520 is configured to acquire a first voltage signal corresponding to the image data, that is, obtain a voltage corresponding to the red, green, and blue sub-pixel units of the pixel unit.
  • the signal is used as a first voltage signal
  • the converting unit 530 is configured to convert the adjacent first voltage signal into a second voltage signal with a high and low voltage distribution.
  • the executing unit 540 is configured to drive the pixel unit on the display panel 590 according to the first The two voltage signals respond and display the target picture.
  • the acquiring unit 520 starts acquiring the first voltage signal corresponding to the image data, that is, acquiring the voltage signal corresponding to the red, green, and blue sub-pixel units of the pixel unit.
  • the converting unit 530 is configured to convert a voltage signal group corresponding to a plurality of adjacent blue or green or red sub-pixel units into a voltage signal group with a high and low voltage distribution, and the voltage signal group of the high and low voltages is The second voltage signal.
  • the number of blue, green and red sub-pixel units used for conversion to the second voltage signal in the first embodiment is the same, and the high-voltage signals distributed between the phases are used for the purpose of approaching the brightness of the front view and the side view.
  • the converting unit 530 is configured to convert a voltage signal group corresponding to a plurality of adjacent blue or green or red sub-pixel units into a voltage signal group whose voltage is high and low, but is used for converting into each of the first
  • the number of blue sub-pixel units of the two voltage signals is greater than the number of green or red sub-pixel units for conversion to each of the second voltage signals, and the execution unit 540 drives the pixel unit to respond according to the second voltage signal. And the target screen is displayed.
  • the number of blue sub-pixel units converted to each second voltage signal is greater than the number of green or red sub-pixel units used to convert to each second voltage signal.
  • the number is such that the resolution of the converted green and red second voltage signals is higher than the resolution of the blue second voltage signal, thereby avoiding the graininess of the picture.
  • FIG. 11 is a schematic block diagram of a display device 600 according to Embodiment 3 of the present application.
  • the display device 600 includes a display panel 690, a receiving unit 610, an obtaining unit 620, a converting unit 630, and a determination. Unit 650, decrement unit 660, and execution unit 640.
  • the receiving unit 610 is configured to receive image data of the target image
  • the acquiring unit 620 is configured to acquire a first voltage signal corresponding to the image data, that is, obtain a voltage signal corresponding to the red, green, and blue sub-pixel units of the pixel unit.
  • a voltage signal a conversion unit 630, configured to convert the adjacent first voltage signal into a second voltage signal whose voltage is high and low, and a determining unit 650, configured to determine whether the second voltage signal exceeds a preset voltage threshold;
  • the unit 660 is configured to: when the second voltage signal exceeds the preset voltage threshold, the duration of the second voltage signal is deleted according to the preset cut ratio;
  • the executing unit 640 is configured to drive the pixel unit on the display panel 690 according to the The second voltage signal responds and displays the target picture.
  • the acquiring unit 620 starts acquiring the first voltage signal corresponding to the image data, that is, acquiring the voltage signal corresponding to the red, green, and blue sub-pixel units of the pixel unit, and
  • the conversion unit 630 converts the adjacent first voltage signal into a second voltage signal whose voltage is high and low, and after the second voltage signal is converted into a second voltage signal, the determining unit 650 determines whether the second voltage signal exceeds the preset voltage threshold. If the preset voltage threshold is exceeded, the puncturing unit 660 deletes the duration of the second voltage signal according to the preset puncturing ratio.
  • the executing unit 640 drives the pixel unit according to the second voltage signal. Respond and display the target screen.
  • the display panel 590 or 690 may be, for example, a twisted nematic liquid crystal display panel, a planar conversion liquid crystal display panel or a multi-quadrant vertical alignment type liquid crystal display panel, an OLED display panel, a QLED display panel, and a curved surface display. Panel or other display panel.
  • the duration of the second voltage signal exceeding the preset voltage threshold the interference of the afterimage remaining after the long-time display of the high-luminance signal on the next frame is avoided, and the screen display is improved. Sharpness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种显示方法及显示装置(500,600),其中,显示方法包括:接收目标画面的图像数据(S11);获取图像数据对应的第一电压信号(S12);将相邻的第一电压信号转换为电压高低相间分布的第二电压信号(S13);驱动像素单元根据第二电压信号进行响应以显示目标画面(S14)。

Description

一种显示方法及显示装置
技术领域
本申请涉及电子技术领域,尤其涉及一种显示方法及显示装置。
背景技术
现行大尺寸液晶显示面板多半采用负型垂直配向(VA)液晶或,平面转换(IPS)液晶技术,VA型液晶技术相对于IPS液晶技术存在较高的生产效率及低制造成本的优势,但光学性质上相对于IPS液晶技术存在较明显的光学性质缺陷,尤其是大尺寸面板在商业应用方面需要较大的视角呈现,VA型液晶驱动在视角色偏往往无法符合市场应用需求。
一般VA型液晶技术解决视角色偏的方式是将RGB各子像素再划分为主次像素,通过空间上主次像素给予不同的驱动电压来解决视角色偏的缺陷,这样往往需要再设计金属走线或薄膜晶体管(TFT)元件来驱动次像素,造成可透光开口区牺牲,影响面板透率,直接造成背光成本的提升。
申请内容
本申请实施例提供一种显示方法及显示装置,可提高面板光透率,减少背光成本,改善色偏现象。
一方面,本申请实施例提供了一种显示方法,包括:
接收目标画面的图像数据;
获取所述图像数据对应的第一电压信号;
将相邻的所述第一电压信号转换为电压高低相间分布的第二电压信号;
驱动像素单元根据所述第二电压信号进行响应以显示目标画面。
另一方面,本申请实施例提供了一种显示方法,包括:
接收目标画面的图像数据;
获取所述图像数据对应的第一电压信号;
将相邻的所述第一电压信号转换为电压高低相间分布的第二电压信号;
判断所述第二电压信号是否超过预设电压阈值;
若所述第二电压信号超过预设电压阈值,根据预设删减比例对所述第二电压信号对应的持续时长进行删减;
驱动像素单元根据所述第二电压信号进行响应以显示目标画面,所述像素单元表面蚀刻有第一配向图案和第二配向图案,所述第一配向图案与所述第二配向图案平行层叠并错开预设距离;
所述第一电压信号包括所述像素单元的红色、绿色、蓝色子像素单元对应的电压信号,将相邻的多个所述蓝色或绿色或红色子像素单元对应的电压信号组转换为电压高低相间分布的电压信号组,所述电压高低相间分布的电压信号组为所述第二电压信号,用于转换成每个所述第二电压信号的所述蓝色子像素单元的个数多于用于转换成每个所述第二电压信号的所述绿色或红色子像素单元的个数。
又一方面,本申请实施例提供了一种显示装置,包括:
接收单元,用于接收目标画面的图像数据;
获取单元,用于获取所述图像数据对应的第一电压信号;
转换单元,用于将相邻的所述第一电压信号转换为电压高低相间分布的第二电压信号;
执行单元,用于驱动像素单元根据所述第二电压信号进行响应以显示目标画面。
本申请实施例的显示方法及显示装置,通过在获取图像数据对应的第一电压信号后,将第一电压信号转换为电压高低相间分布的第二电压信号,再由显示装置驱动像素单元根据第二电压信号进行响应并显示目标画面,让相邻空间上相间分布的高低电压信号来达成正视跟侧视亮度变化接近的目标,从而改善了色差现象,并提高了面板光透率,减少了背光成本。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一提供的一种显示方法的示意流程图;
图2为本申请实施例二提供的一种显示方法的示意流程图;
图3为本申请实施例三提供的一种显示方法的示意流程图;
图4为本申请实施例提供的显示方法的显示区域区块分布示意图;
图5为本申请实施例提供的显示方法的显示区域像素单元分布示意图;
图6为本申请实施例提供的显示方法的亮度与电压的关系图;
图7为本申请实施例提供的显示方法的亮度与电压的局部关系图;
图8为本申请实施例提供的显示方法的亮度与电压的另一局部关系图;
图9为本申请实施例提供的显示方法的Lab和LCH的色彩空间图;
图10为本申请实施例一和二提供的一种显示装置的示意性框图;
图11为本申请实施例三提供的一种显示装置的示意性框图;
图12为本申请实施例一提供的电压信号替换对照流程图;
图13为本申请实施例二提供的电压信号替换对照流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和 “包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
参见图1,其为本申请实施例一提供的一种显示方法的示意流程图,如图所示,该方法包括以下步骤S11~S14:
步骤S11:接收目标画面的图像数据。
具体地,接收目标画面的图像数据,具体为显示装置的屏驱动板接收前端发送的待显示画面的图像数据,因为显示装置显示画面是一帧一帧的显示,因此屏驱动板接收前端数据也是一帧一帧地接收图像数据,将其中1~2帧图像数据存储在屏驱动板的存储器中,方便屏驱动板的控制IC对该1~2帧图像数据进行分析处理,以便执行后续步骤。
步骤S12:获取图像数据对应像素单元的红色、绿色、蓝色子像素单元对应的电压信号作为第一电压信号。
具体地,获取像素单元的红色、绿色、蓝色子像素单元对应的电压信号作为第一电压信号,即为,获取对应驱动每个红色、绿色、蓝色子像素单元进行显示目标画面的电压信号,将此电压信号作为第一电压信号供后续步骤进行转换。
步骤S13:将相邻的多个蓝色或绿色或红色子像素单元对应的电压信号组转换为电压高低相间分布的电压信号组,电压高低相间分布的电压信号组为第二电压信号。
具体地,参见图6至图8,其为电压(横轴)增加与亮度(纵轴)变化的曲线,K1为正看时目标电压增加随亮度变化曲线,通过相间分布的高低电压信号(即高低电压信号间隔分布,相邻的两个电压信号为一高一低)来满足正看和侧看的亮度变化的比例接近,相间分布的高电压与低电压信号有多种组合,每种组合造成的侧看亮度随电压变化的情况不同,如图6所示,曲线K2与K4为两个高电压与低电压组合的侧看亮度随电压变化的情况,参见图7和图8,针对局部高电压及低电压曲线在不同的组合设计上可以发现与目标曲线K1会有不同的差异程度,一种相间分布的高电压与低电压组合无法同时满足高低电压亮度与目标亮度贴近的需求。
参见图7所示,当考量低电压与亮度变化关系时,相间分布的高电压与低电压组合K4,实际亮度与目标亮度的差异为d1(n),远大于当空间分割的高电压与低电压组合K2, 实际亮度与目标亮度的差异为d2(n)。参见图8所示,当考量高电压与亮度变化关系时,相间分布的高电压与低电压组合为K4,实际亮度与目标亮度的差异为d1(n),远小于相间分布的高电压与低电压组合K2。空间分割的高电压与低电压组合为K4适合当画质内容上呈现较高电压信号的时候,反之,空间分割的高电压与低电压组合为K2适合当画质内容上呈现较低电压信号的时候。运用如K4加上K2的高低电压组合产生的视角亮度曲线为K3,其特征结合了K4高灰阶组合及K2低灰阶组合的优势,让视角曲线更贴近目标曲线,曲线变化较为平滑,不容易有画质颜色突变或混色异常的现象发生。
具体地,以RGB三基色显示装置为例,每个像素单元对应有红绿蓝(RGB)三基色的子像素单元,与之对应的图像电压信号标记为Ri,j,Gi,j,Bi,j( i,j=1,2,3…),下面以蓝色子像素单元的电压信号为例,取Bi,j以及相邻的Bi,j+1,Bi+1,j,Bi+1,j+1的四个电压信号,将这四个电压信号转换成 Bn’_H1, Bn’_H2高电压信号以及Bn’_L1,Bn’_L2低电压信号,其中Bn’_H1,Bn’_L1为一组电压组合如图6的K4曲线,Bn’_H2,Bn’_L2为另一组电压组合如图3的K2曲线,本申请将Bn’_H1,Bn’_H2,Bn’_L1,Bn’_L2 取代原先的Bi,j,Bi,j+1, Bi+1,j,Bi+1,j+1 四个蓝色子像素单元的画质信号,使得视角特性附图6中K3曲线相较于原来的K4,K2曲线,在高低灰阶都可以有较接近目标视角曲线K1的特点,解决一组电压无法同时解决高低电压可以同时满足视角补偿的缺点。等效查寻值Bn’_H1, Bn’_H2,Bn’_L1, Bn’_L2依据图12的判断方式进行置换。同理查寻值Gn’_H1,Gn’_H2,Gn’_L1,Gn’_L2判断方式亦相同。
参见图4和图5,以RGB三基色显示装置为例,将全幅蓝色画质的原图分割为多个区块 n=0,1,2,…,M,如图4所示,分别为B1、B2、B3、…、BM。如图5所示,每一个分割的区块n 内包含有多个蓝色子像素,蓝色子像素排列为Bn_1,1,Bn_1,2,…Bn_i,j。对n区块内所有的蓝色子像素信号取平均值得Bn’=Average(Bn_1,1, Bn_1,2,….. Bn_2,1, Bn_2,2………, Bn_i,j)。
同理,为全幅绿色画质的原图时,n区块内所有的绿色子像素信号取平均值得Gn’=Average(Gn_1,1, Gn_1,2,….. Gn_2,1, Gn_2,2………, Gn_i,j)。为全幅红色画质的原图时,n区块内所有的红色子像素信号取平均值得Rn’=Average(Rn_1,1, Rn_1,2,….. Rn_2,1, Rn_2,2………, Rn_i,j)。
本申请实施例通过颜色来判断RGB子像素单元的高低电压信号组合方式,参见图9所示的CIE LCH色彩空间图,计算在色座标系统中RGB的组合像素的颜色代表:L(亮度)、C(饱和度)、H(色相)。其中,H由0°~360°代表不同色相的颜色,定义0°为红色,90°为黄色,180°为绿色,270°为蓝色,C为色彩饱和度,代表颜色的鲜艳程度,C的范围表示为0到100,100代表色彩最为鲜艳,C的数值一定程度上体现了LCD显示电压信号的高低。
依据图12中具体的情况对RGB子像素单元对应的第一电压信号进行转换,得到相应的第二电压信号:
(1)、依照平均信号Bn’与Rn’,Gn’计算组合像素的色相满足 0°<H≦45°和315°<H≦360°,且色彩饱和度满足CTL1 ≦C≦ CTH2的判断标准的,采用高低电压组合R_LUT_1、G_LUT_1及B_LUT_1。
(2)、依照平均信号Bn’与Rn’,Gn’计算组合像素的色相满足 45°<H≦135°且色饱和度满足CTL3 ≦C≦ CTH4的判断标准的,采用高低电压组合R_LUT_2、G_LUT_2及B_LUT_2。
(3)、依照平均信号Bn’与Rn’,Gn’计算组合像素的色相满足 135°<H≦205°且色饱和度满足CTL5 ≦C≦ CTH6的判断标准的,采用高低电压组合R_LUT_3、G_LUT_3及B_LUT_3。
(4)、依照平均信号Bn’与Rn’,Gn’计算组合像素的色相满足 205°<H≦245°且色饱和度CTL7 ≦C≦ CTH8的判断标准的,采用高低电压组合R_LUT_4、G_LUT_4及B_LUT_4。
(5)、依照平均信号Bn’与Rn’,Gn’计算组合像素的色相满足 2450<H≦2950且色饱和度CTL9 ≦C≦ CTH10的判断标准的,采用高低电压组合R_LUT_5、G_LUT_5及B_LUT_5。
(6)、依照平均信号Bn’与Rn’,Gn’计算组合像素的色相满足 295°<H≦315°且色饱和度CTL11 ≦C≦ CTH12的判断标准的,采用高低电压组合R_LUT_6、G_LUT_6及B_LUT_6。
每个平均信号Bn’与Rn’,Gn’对应固定R/G/B像素Rn_s_i,j,Rn_s_i,j+1, Rn_s_i+1,j,Rn_s_i+1,j+1 /Gn_s_i,j, Gn_s_i,j+1, Gn_s_i+1,j, Gn_s_i+1,j+1/Bn_s_i,j,Bn_s_i,j+1,Bn_s_i+1,j,Bn_s_i+1,j+1的两组高低电压组合Rn_s_H1,Rn_s_L1,Rn_s_H2,Rn_s_L2/Gn_s_H1,Gn_s_L1,Gn_s_H2,Gn_s_L2/Bn_s_H1,Bn_s_L1,Bn_s__H2,Bn_s__L2的查寻值,可以使得视角曲线更贴近目标曲线。
举例蓝色子像素单元信号,该分区n区块内,相邻四个子像素标记为Bn_s_i,j,Bn_s_i,j+1,Bn_s_i+1,j,Bn_s_i+1,j+1四个信号,取平均信号B’n_s=Average(Bn_s_i,j,Bn_s_i,j+1,Bn_s_i+1,j,Bn_s_i+1,j+1),s代表n区块内各个以四个蓝色子像素单元为组合的小区块编号。该小区块内的新的蓝色子像素信号,由该小区块四个蓝色子像素信号取平均值信号B’n_s依据由n区块(Frame N)内的所有蓝色子像素单元的信号 Bn_i,j取平均信号Bn’依据颜色判断条件取的查表值来获得。查图12得出每组小区块信号平均值B’n_s的两组高低电压组合Bn_s_H1,Bn_s_L1以及Bn_s_H2,Bn_s_L2。该两组高低电压组合Bn_s_H1,Bn_s_L1以及Bn_s_H2,Bn_s_L 2信号与FrameN+1图框对应,即为对应新的小区块信号四个蓝色子像素单元的高低电压信号Bn_s_i,j= Bn_s_H1,Bn_s_i,j+1=Bn_s_L1,Bn_s_i+1,j=Bn_s_L2,Bn_s_i+1,j+1=Bn_s_H2。
步骤S14:驱动像素单元根据第二电压信号进行响应并显示目标画面。
具体地,驱动像素单元的RGB子像素单元根据转换而来的电压高低相间分布的第二电压信号进行响应并显示目标画面。
具体地,通过在获取图像数据对应的第一电压信号后,将第一电压信号转换为电压高低相间分布的第二电压信号,再由显示装置驱动像素单元根据第二电压信号进行响应并显示目标画面,让相邻空间上相间分布的高低电压信号来达成正视跟侧视亮度变化接近的目标,从而改善了色差现象。因为第二电压信号由每个独立的子像素单元进行响应,无需在RGB子像素单元上再进行划分主次像素,如此就避免再设计金属走线或TFT元件来驱动次像素而造成的可透光开口区减少,从而提高了面板光透率,降低了背光成本。
参见图2,是本申请实施例二提供的一种显示方法的示意流程图,如图所示,该方法包括以下步骤S21~S24:
步骤S21:接收目标画面的图像数据。
具体地,接收目标画面的图像数据,具体为显示装置的屏驱动板接收前端发送的待显示画面的图像数据,因为显示装置显示画面是一帧一帧的显示,因此屏驱动板接收前端数据也是一帧一帧地接收图像数据,将其中1~2帧图像数据存储在屏驱动板的存储器中,方便屏驱动板的控制IC对该1~2帧图像数据进行分析处理,以便执行后续步骤。
步骤S22:获取图像数据对应像素单元的红色、绿色、蓝色子像素单元对应的电压信号作为第一电压信号。
具体地,获取像素单元的红色、绿色、蓝色子像素单元对应的电压信号作为第一电压信号,即为,获取对应驱动每个红色、绿色、蓝色子像素单元进行显示目标画面的电压信号,将此电压信号作为第一电压信号供后续步骤进行转换。
步骤S23:将相邻的多个蓝色或绿色或红色子像素单元对应的电压信号组转换为电压高低相间分布的电压信号组,电压高低相间分布的电压信号组为第二电压信号。用于转换成每个第二电压信号的蓝色子像素单元的个数多于用于转换成每个第二电压信号绿色或红色子像素单元的个数。
具体地,红色和绿色采取比蓝色少(例如红色和绿色2个,蓝色4个)的子像素单元来作为为一组高低电压信号的转换,即用比蓝色子像素单元少的绿色或红色子像素单元作为一组进行转换,转换后的每个单独的高低电压信号组中绿色或红色子像素单元少于每个单独的高低电压信号组中的蓝色子像素单元。
依据图13中具体的情况对绿色和红色子像素单元对应的第一电压信号进行转换,得到相应的第二电压信号。
举例Red画素信号,该分区n区块内,相邻四个子像素Rn_s_i,j, Rn_s_i,j+1, Rn_s_i+1,j,Rn_s_i+1,j+1四个信号取平均信号:
R’n_s=Average(Rn_s_i,j,Rn_s_i,j+1),R’n_s+1=Average(Rn_s_i+1,j,Rn_s_i+1,j+1)。
s代表区块内各个以4个红色子像素为组合的小区块编号。S,S+1即把4 个红色子像素为组合的小区块编号再分割成两个独立决定高低电压信号对的组合。每个新的红色子像素信号,便由该4个子像素小区块再分成两个独立子像素信号平均值R’n_s、R’n_s+1依据由n区块(Frame N)内的所有蓝色子像素单元的信号 Bn_i,j取平均信号Bn’依据颜色判断条件取的查表值来对应输出则为对应新的小区块信号四个红色子像素单元如图13:Rn_s_i,j=Rn_s_H1,Rn_s_i,j+1=Rn_s_L1,Rn_s_i+1,j=Rn_s_L2,Rn_s_i+1,j+1=Rn_s_H2。
绿色子像素单元的转换方式与本实施例中红色子像素单元的转换相同,蓝色子像素单元的转换方式与上述实施例一中相同。
步骤S24:驱动像素单元根据第二电压信号进行响应并显示目标画面。
具体地,驱动像素单元的RGB子像素单元根据转换而来的电压高低相间分布的第二电压信号进行响应并显示目标画面。
具体地,因为人眼感受绿色和红色比较敏锐,由于转换成每个第二电压信号的蓝色子像素单元的个数多于用于转换成每个第二电压信号绿色或红色子像素单元的个数,使得转换后的绿色和红色的第二电压信号的解析度会高于蓝色的第二电压信号的解析度,从而避免了画面的颗粒感。
参见图3,是本申请实施例三提供的一种显示方法的示意流程图,如图所示,该方法包括以下步骤S31~S36:
步骤S31:接收目标画面的图像数据。
具体地,接收目标画面的图像数据,具体为显示装置的屏驱动板接收前端发送的待显示画面的图像数据,因为显示装置显示画面是一帧一帧的显示,因此屏驱动板接收前端数据也是一帧一帧地接收图像数据,将其中1~2帧图像数据存储在屏驱动板的存储器中,方便屏驱动板的控制IC对该1~2帧图像数据进行分析处理,以便执行后续步骤。
步骤S32:获取图像数据对应的第一电压信号。
具体地,获取图像数据对应的第一电压信号,即为,获取对应驱动每个像素单元进行显示目标画面的电压信号。
步骤S33:将相邻的第一电压信号转换为电压高低相间分布的第二电压信号。
具体地,将相邻的第一电压信号转换为电压高低相间分布的第二电压信号,具体转换方式参见实施例一或实施例二。
步骤S34:判断第二电压信号是否超过预设电压阈值。
具体地,将第二电压信号对应的电压大小与预设电压阈值的大小进行比较,判断第二电压信号对应的电压大小是否大于预设电压阈值。
步骤S35:若超过,根据预设删减比例对第二电压信号对应的持续时长进行删减。
具体地,如果第二电压信号对应的电压大小超过了预设电压阈值,则根据预先设定的删减比例将超过预设电压阈值的第二电压信号对应的持续时长进行删减,例如,预设的删减比例为20%,超过预设电压阈值的第二电压信号对应的持续时长为100ms,则根据删减比例20%将原先的100ms减去20ms,最终超过预设电压阈值的第二电压信号对应的持续时长为80ms。
步骤S36:驱动像素单元根据第二电压信号进行响应以显示目标画面。
具体地,驱动像素单元的RGB子像素单元根据转换而来的电压高低相间分布的第二电压信号进行响应并显示目标画面。
具体地,通过减少超过了预设电压阈值的第二电压信号持续的时间,来避免高电压信号对应的高亮度画面长时间显示后留下的残影对下一帧画面的干扰,提高画面显示清晰度。
进一步地,像素单元表面蚀刻有第一配向图案和第二配向图案,第一配向图案与第二配向图案平行层叠并错开预设距离。
具体地,像素单元表面蚀刻的第一配向图案和第二配向图案由电极狭缝组成,目前曝光机的解析度与蚀刻制程能力的制程宽度有限,假设制程宽度极限为m,也就是说只能做出宽度为m的电极狭缝,但若是按照本实施例中将两个配向图案层叠错开摆放,两个电极狭缝部分重叠,则重叠的部分即为新的宽度更小的电极狭缝,如此,能进一步增强电极狭缝处的电场强度,进一步减少暗纹。
参见图10,是本申请实施例一和实施例二提供的显示装置500的示意性框图,如图所示,该显示装置500包括:显示面板590、接收单元510、获取单元520、转换单元530以及执行单元540。其中,所述接收单元510用于接收目标画面的图像数据;所述获取单元520用于获取图像数据对应的第一电压信号,即获取像素单元的红色、绿色、蓝色子像素单元对应的电压信号作为第一电压信号;所述转换单元530用于将相邻的第一电压信号转换为电压高低相间分布的第二电压信号所述执行单元540用于驱动显示面板590上的像素单元根据第二电压信号进行响应并显示目标画面。
具体地,在接收单元510接收到目标画面的图像数据后,获取单元520开始获取图像数据对应的第一电压信号,即获取像素单元的红色、绿色、蓝色子像素单元对应的电压信号,在实施例一中,转换单元530用于将相邻的多个蓝色或绿色或红色子像素单元对应的电压信号组转换为电压高低相间分布的电压信号组,电压高低相间分布的电压信号组为第二电压信号。实施例一中用于转化为第二电压信号的蓝色、绿色和红色子像素单元的个数相同,通过相间分布的高地电压信号来达到正视和侧视亮度变化接近的目的。在实施例二中,转换单元530用于将相邻的多个蓝色或绿色或红色子像素单元对应的电压信号组转换为电压高低相间分布的电压信号组,但用于转换成每个第二电压信号的蓝色子像素单元的个数多于用于转换成每个第二电压信号的绿色或红色子像素单元的个数,再由执行单元540驱动像素单元根据第二电压信号进行响应并显示目标画面。因为人眼对绿色和红色的感应更为敏锐,而转换成每个第二电压信号的蓝色子像素单元的个数多于用于转换成每个第二电压信号绿色或红色子像素单元的个数,使得转换后的绿色和红色的第二电压信号的解析度会高于蓝色的第二电压信号的解析度,从而避免了画面的颗粒感。
参见图11,是本申请实施例三提供的一种显示装置600的示意性框图,如图所示,该显示装置600包括:显示面板690、接收单元610、获取单元620、转换单元630、判断单元650、删减单元660以及执行单元640。其中接收单元610,用于接收目标画面的图像数据;获取单元620,用于获取图像数据对应的第一电压信号,即获取像素单元的红色、绿色、蓝色子像素单元对应的电压信号作为第一电压信号;转换单元630,用于将相邻的第一电压信号转换为电压高低相间分布的第二电压信号;判断单元650,用于判断第二电压信号是否超过预设电压阈值;删减单元660,用于若第二电压信号超过预设电压阈值,根据预设删减比例对第二电压信号对应的持续时长进行删减;执行单元640,用于驱动显示面板690上的像素单元根据第二电压信号进行响应并显示目标画面。
具体地,在接收单元610接收到目标画面的图像数据后,获取单元620开始获取图像数据对应的第一电压信号,即获取像素单元的红色、绿色、蓝色子像素单元对应的电压信号,并通过转换单元630将相邻的第一电压信号转换为电压高低相间分布的第二电压信号,转换成第二电压信号后,判断单元650则对第二电压信号时否超过预设电压阈值进行判断,如果超过预设电压阈值,则由删减单元660根据预设删减比例对第二电压信号对应的持续时长进行删减,删减完成后,由执行单元640驱动像素单元根据第二电压信号进行响应并显示目标画面。
在某些实施例中,上述显示面板590或690可例如为扭曲向列型液晶显示面板,平面转换型液晶显示面板或多象限垂直配向型液晶显示面板,OLED显示面板,QLED显示面板,曲面显示面板或其他显示面板。
具体地,通过减少超过了预设电压阈值的第二电压信号持续的时间,来避免高电压信号对应的高亮度画面长时间显示后留下的残影对下一帧画面的干扰,提高画面显示清晰度。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法,仅仅是示意性的,可以通过其它的方式实现。
需要说明的是,本申请实施例中的步骤可以根据实际需要进行顺序调整、合并和删减。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种显示方法,应用于显示装置,包括:
    接收目标画面的图像数据;
    获取所述图像数据对应的第一电压信号;
    将相邻的所述第一电压信号转换为电压高低相间分布的第二电压信号;
    驱动像素单元根据所述第二电压信号进行响应以显示目标画面。
  2. 根据权利要求1所述的显示方法,其中,所述获取所述图像数据对应的第一电压信号包括:
    获取所述像素单元的红色、绿色、蓝色子像素单元对应的电压信号作为所述第一电压信号。
  3. 根据权利要求2所述的显示方法,其中,所述将相邻的所述第一电压信号转换为电压高低相间分布的第二电压信号包括:
    将相邻的多个所述蓝色或绿色或红色子像素单元对应的电压信号组转换为电压高低相间分布的电压信号组,所述电压高低相间分布的电压信号组为所述第二电压信号。
  4. 根据权利要求3所述的显示方法,其中,用于转换成每个所述第二电压信号的所述蓝色子像素单元的个数多于用于转换成每个所述第二电压信号的所述绿色或红色子像素单元的个数。
  5. 根据权利要求1所述的显示方法,其中,在执行驱动像素单元根据所述第二电压信号进行响应以显示目标画面的步骤之前,还包括:
    判断所述第二电压信号是否超过预设电压阈值;
    若所述第二电压信号超过预设电压阈值,根据预设删减比例对所述第二电压信号对应的持续时长进行删减。
  6. 根据权利要求1所述的显示方法,其中,所述像素单元表面蚀刻有配向图案。
  7. 根据权利要求6所述的显示方法,其中,所述配向图案包括第一配向图案和第二配向图案,所述第一配向图案与所述第二配向图案平行层叠并错开预设距离。
  8. 根据权利要求1所述的显示方法,其中,在执行驱动像素单元根据所述第二电压信号进行响应以显示目标画面的步骤之前,还包括:
    判断所述第二电压信号是否超过预设电压阈值;
    若所述第二电压信号超过预设电压阈值,根据预设删减比例对所述第二电压信号对应的持续时长进行删减;
    所述像素单元表面蚀刻有第一配向图案和第二配向图案,所述第一配向图案与所述第二配向图案平行层叠并错开预设距离。
  9. 根据权利要求1所述的显示方法,其中,所述获取所述图像数据对应的第一电压信号包括:
    获取所述像素单元的红色、绿色、蓝色子像素单元对应的电压信号作为所述第一电压信号,所述像素单元表面蚀刻有第一配向图案和第二配向图案,所述第一配向图案与所述第二配向图案平行层叠并错开预设距离。
  10. 根据权利要求1所述的显示方法,其中,所述将相邻的所述第一电压信号转换为电压高低相间分布的第二电压信号包括:
    将相邻的多个蓝色或绿色或红色子像素单元对应的电压信号组转换为电压高低相间分布的电压信号组,所述电压高低相间分布的电压信号组为所述第二电压信号,用于转换成每个所述第二电压信号的所述蓝色子像素单元的个数多于用于转换成每个所述第二电压信号的所述绿色或红色子像素单元的个数;
    所述像素单元表面蚀刻有第一配向图案和第二配向图案,所述第一配向图案与所述第二配向图案平行层叠并错开预设距离。
  11. 一种显示方法,应用于显示装置,包括:
    接收目标画面的图像数据;
    获取所述图像数据对应的第一电压信号;
    将相邻的所述第一电压信号转换为电压高低相间分布的第二电压信号;
    判断所述第二电压信号是否超过预设电压阈值;
    若所述第二电压信号超过预设电压阈值,根据预设删减比例对所述第二电压信号对应的持续时长进行删减;
    驱动像素单元根据所述第二电压信号进行响应以显示目标画面,所述像素单元表面蚀刻有第一配向图案和第二配向图案,所述第一配向图案与所述第二配向图案平行层叠并错开预设距离;
    所述第一电压信号包括所述像素单元的红色、绿色、蓝色子像素单元对应的电压信号,将相邻的多个所述蓝色或绿色或红色子像素单元对应的电压信号组转换为电压高低相间分布的电压信号组,所述电压高低相间分布的电压信号组为所述第二电压信号,用于转换成每个所述第二电压信号的所述蓝色子像素单元的个数多于用于转换成每个所述第二电压信号的所述绿色或红色子像素单元的个数。
  12. 一种显示装置,包括:
    显示面板;以及
    接收单元,用于接收目标画面的图像数据;
    获取单元,用于获取所述图像数据对应的第一电压信号;
    转换单元,用于将相邻的所述第一电压信号转换为电压高低相间分布的第二电压信号;
    执行单元,用于驱动像素单元根据所述第二电压信号进行响应以显示目标画面。
  13. 根据权利要求12所述的显示装置,其中,所述获取单元包括:
    获取子单元,用于获取所述像素单元的红色、绿色、蓝色子像素单元对应的电压信号作为所述第一电压信号。
  14. 根据权利要求13所述的显示装置,其中,所述转换单元包括:
    转换子单元,用于将相邻的多个所述蓝色或绿色或红色子像素单元对应的电压信号组转换为电压高低相间分布的电压信号组,所述电压高低相间分布的电压信号组为所述第二电压信号。
  15. 根据权利要求14所述的显示装置,其中,用于转换成每个所述第二电压信号的所述蓝色子像素单元的个数多于用于转换成每个所述第二电压信号所述绿色或红色子像素单元的个数。
  16. 根据权利要求13所述的显示装置,还包括:
    判断单元,用于在所述执行单元执行驱动像素单元根据所述第二电压信号进行响应以显示目标画面之前,判断所述第二电压信号是否超过预设电压阈值;
    删减单元,用于若所述第二电压信号超过预设电压阈值,根据预设删减比例对所述第二电压信号对应的持续时长进行删减。
  17. 根据权利要求13所述的显示装置,其中,所述像素单元表面蚀刻有配向图案。
  18. 根据权利要求17所述的显示方法,其中,所述配向图案包括第一配向图案和第二配向图案,所述第一配向图案与所述第二配向图案平行层叠并错开预设距离。
  19. 根据权利要求13所述的显示装置,还包括:
    判断单元,用于在所述执行单元执行驱动像素单元根据所述第二电压信号进行响应以显示目标画面之前,判断所述第二电压信号是否超过预设电压阈值;
    删减单元,用于若所述第二电压信号超过预设电压阈值,根据预设删减比例对所述第二电压信号对应的持续时长进行删减;其中,
    所述像素单元表面蚀刻有第一配向图案和第二配向图案,所述第一配向图案与所述第二配向图案平行层叠并错开预设距离。
  20. 根据权利要求13所述的显示装置,其中,所述获取单元包括:
    获取子单元,用于获取所述像素单元的红色、绿色、蓝色子像素单元对应的电压信号作为所述第一电压信号,所述像素单元表面蚀刻有第一配向图案和第二配向图案,所述第一配向图案与所述第二配向图案平行层叠并错开预设距离。
PCT/CN2017/107253 2017-08-01 2017-10-23 一种显示方法及显示装置 WO2019024272A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/858,423 US10789898B2 (en) 2017-08-01 2017-12-29 Display method with voltage signal conversion based on lookup table and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710647288.5A CN107481685B (zh) 2017-08-01 2017-08-01 一种显示方法及显示装置
CN201710647288.5 2017-08-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/858,423 Continuation US10789898B2 (en) 2017-08-01 2017-12-29 Display method with voltage signal conversion based on lookup table and display device

Publications (1)

Publication Number Publication Date
WO2019024272A1 true WO2019024272A1 (zh) 2019-02-07

Family

ID=60598529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107253 WO2019024272A1 (zh) 2017-08-01 2017-10-23 一种显示方法及显示装置

Country Status (2)

Country Link
CN (1) CN107481685B (zh)
WO (1) WO2019024272A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108053796B (zh) * 2017-12-18 2020-04-07 惠科股份有限公司 显示面板的驱动方法及显示装置
CN111445827B (zh) * 2020-04-16 2022-08-23 Tcl华星光电技术有限公司 一种显示装置及其驱动方法
CN111798807A (zh) * 2020-07-02 2020-10-20 Tcl华星光电技术有限公司 一种显示驱动方法及显示驱动装置
CN116631350B (zh) * 2023-05-26 2024-04-12 惠科股份有限公司 显示器色偏优化方法、显示器驱动方法及显示器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070153146A1 (en) * 2005-05-03 2007-07-05 Hannstar Display Corporation Pixel Structure with Improved Viewing Angle
CN106531104A (zh) * 2016-12-23 2017-03-22 惠科股份有限公司 一种液晶显示器的驱动方法、装置及液晶显示器
CN106681065A (zh) * 2016-12-28 2017-05-17 惠科股份有限公司 一种曲面显示装置
CN106782375A (zh) * 2016-12-27 2017-05-31 惠科股份有限公司 液晶显示器件及其驱动方法
CN106981275A (zh) * 2017-05-10 2017-07-25 惠科股份有限公司 显示面板像素驱动方法及显示装置
CN106991983A (zh) * 2017-05-10 2017-07-28 惠科股份有限公司 显示面板的驱动方法及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070153146A1 (en) * 2005-05-03 2007-07-05 Hannstar Display Corporation Pixel Structure with Improved Viewing Angle
CN106531104A (zh) * 2016-12-23 2017-03-22 惠科股份有限公司 一种液晶显示器的驱动方法、装置及液晶显示器
CN106782375A (zh) * 2016-12-27 2017-05-31 惠科股份有限公司 液晶显示器件及其驱动方法
CN106681065A (zh) * 2016-12-28 2017-05-17 惠科股份有限公司 一种曲面显示装置
CN106981275A (zh) * 2017-05-10 2017-07-25 惠科股份有限公司 显示面板像素驱动方法及显示装置
CN106991983A (zh) * 2017-05-10 2017-07-28 惠科股份有限公司 显示面板的驱动方法及显示装置

Also Published As

Publication number Publication date
CN107481685A (zh) 2017-12-15
CN107481685B (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2013082780A1 (zh) 色彩调整装置、色彩调整方法以及显示器
WO2019024272A1 (zh) 一种显示方法及显示装置
US10446095B2 (en) Image processing method of display device, image processing structure, and display device
US8576261B2 (en) Liquid crystal display device
WO2018120609A1 (zh) 液晶显示装置及其驱动方法
US8570351B2 (en) Liquid crystal display device
WO2018170978A1 (zh) 一种像素渲染方法及像素渲染装置
WO2016183859A1 (zh) 一种灰阶补偿方法
WO2014168454A1 (en) Electronic device, display controlling apparatus and method thereof
US20130088527A1 (en) Color Liquid Crystal Display Device And Gamma Correction Method For The Same
KR102350818B1 (ko) 화상에 있어서의 고주파 성분을 검출하는 방법 및 장치
WO2018113404A1 (zh) 显示装置的驱动方法、驱动装置及显示装置
WO2014079197A1 (zh) 一种显示面板及像素结构
WO2020050522A1 (ko) 엘이디 디스플레이의 휘도 보정 방법 및 시스템
US20150138260A1 (en) Viewing angle characteristic improving method in liquid crystal display device, and liquid crystal display device
WO2014190584A1 (zh) 抗色偏显示面板
WO2017107384A1 (zh) 液晶显示器的图像显示方法及液晶显示器
WO2018161467A1 (zh) 一种显示方法及显示装置
WO2017031780A1 (zh) 一种阵列基板和液晶显示面板
WO2013161648A1 (ja) 表示制御回路、それを備えた液晶表示装置、および表示制御方法
WO2017086493A1 (ko) 액정 표시 장치 및 그 구동 방법
WO2017107386A1 (zh) 液晶显示终端色域提升方法及液晶显示终端
WO2020118924A1 (zh) 显示模组的驱动方法、驱动系统和驱动装置
CN106898320A (zh) 一种显示设备色域和视角的调节方法和系统
WO2018113342A1 (zh) 显示装置的驱动方法、装置及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17920354

Country of ref document: EP

Kind code of ref document: A1