WO2018227708A1 - 煤矿安全监测方法及装置 - Google Patents

煤矿安全监测方法及装置 Download PDF

Info

Publication number
WO2018227708A1
WO2018227708A1 PCT/CN2017/093702 CN2017093702W WO2018227708A1 WO 2018227708 A1 WO2018227708 A1 WO 2018227708A1 CN 2017093702 W CN2017093702 W CN 2017093702W WO 2018227708 A1 WO2018227708 A1 WO 2018227708A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
coal mine
detecting device
safety
corresponding area
Prior art date
Application number
PCT/CN2017/093702
Other languages
English (en)
French (fr)
Inventor
杜光东
Original Assignee
深圳市盛路物联通讯技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市盛路物联通讯技术有限公司 filed Critical 深圳市盛路物联通讯技术有限公司
Publication of WO2018227708A1 publication Critical patent/WO2018227708A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/058Safety, monitoring
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/14Plc safety
    • G05B2219/14006Safety, monitoring in general

Definitions

  • the present invention belongs to the technical field of monitoring, and in particular, to a coal mine safety monitoring method and device.
  • the traditional coal mine safety monitoring method mainly uses sensors to detect the content of dangerous gases (such as gas) in coal mine roadways, and sends the data directly to the ground server, so that the server records the current daytime and dangerous gas content.
  • dangerous gases such as gas
  • the corresponding relationship complete the safety monitoring of coal mines.
  • this kind of coal mine safety monitoring method will cause the amount of data received by the ground server to be too large, and the processing data will be delayed, which cannot truly reflect the true safety status of the current coal mine. . technical problem
  • the embodiments of the present invention provide a coal mine safety monitoring method and device, which solves the problem that the amount of data received by the server in the prior art is too large, the processing data is delayed, and the current state of the coal mine cannot be truly reflected. .
  • a first aspect of the embodiments of the present invention provides a coal mine safety monitoring method, including:
  • first safety data of the coal mine to which the detecting device of different areas of the coal mine belongs wherein the first safety data includes environmental safety data of the corresponding area of the detecting device and a position identifier of the detecting device; [0007] After the first security data meets the preset condition, generating second security data according to the pre-acquired job status data of the corresponding area of the detecting device and the first security data, where the job status data includes the operation process and the operation of the coal mine Number of people;
  • a second aspect of the embodiments of the present invention provides a coal mine safety monitoring device, including:
  • a receiving module configured to receive first safety data of the coal mine collected by the detecting device in different areas of the coal mine at the first collecting frequency, where the first safety data includes environmental safety data of the corresponding area of the detecting device And the location identifier of the detection device;
  • a generating module configured to generate second security data according to pre-acquired job status data of the corresponding area of the detecting device and the first security data, where the first security data meets a preset condition, the generating The status data includes the operation progress of the coal mine and the number of workers;
  • the first sending module is configured to send the second security data to the ground server, so that the ground server records the location identifier of the detecting device and the environment security of the corresponding area of the detecting device according to the second security data.
  • a third aspect of the embodiments of the present invention further provides a smart home lighting control apparatus, including a memory, a processor, and a computer program stored in the memory and operable on the processor, wherein The processor executes the computer program to implement the steps of the smart home lighting control method described above.
  • a fourth aspect of the embodiments of the present invention further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, wherein the computer program is executed by a processor to implement the smart home described above. The steps of the lighting control method.
  • the beneficial effects of the embodiment of the present invention compared with the prior art are: receiving the first safety data of the coal mine collected by the detecting device in different areas of the coal mine at the first collecting frequency, wherein the first safety data includes the detecting device Corresponding area environment security data and location identifier of the detecting device; after the first security data meets the preset condition, generating second security data according to the pre-acquired working state data of the corresponding area of the detecting device and the first security data; Second, secure data is sent to the ground server to enable ground services According to the second safety data, the device records the position identification of the detecting device, the corresponding relationship between the environmental safety data of the corresponding area of the detecting device and the working state data, and completes the safety monitoring of the coal mine.
  • the embodiment of the present invention Since the embodiment of the present invention generates the second security data according to the first security data and the job status data after satisfying the preset condition, and then sends the second security data to the ground server, the amount of data sent to the ground server can be reduced.
  • the problem that the amount of data received by the server in the prior art is too large, the processing data is delayed, and the current state of the coal mine cannot be truly reflected can be solved.
  • FIG. 1 is a flowchart showing an implementation of a coal mine safety monitoring method according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart showing an implementation of a coal mine safety monitoring method according to Embodiment 2 of the present invention
  • FIG. 3 is a flowchart showing an implementation of a coal mine safety monitoring method according to Embodiment 3 of the present invention.
  • FIG. 4 is a flow diagram of a process of a coal mine safety monitoring method according to Embodiment 4 of the present invention.
  • FIG. 5 is a structural block diagram of a coal mine safety monitoring device according to Embodiment 5 of the present invention.
  • FIG. 6 is a structural block diagram of a coal mine safety monitoring device according to Embodiment 6 of the present invention.
  • FIG. 7 is a structural block diagram of a coal mine safety monitoring system according to Embodiment 7 of the present invention.
  • Embodiment 8 is a structural block diagram of a relay device according to Embodiment 8 of the present invention.
  • FIG. 1 is a flowchart of implementing a coal mine safety monitoring method according to Embodiment 1 of the present invention. The details of this embodiment are as follows:
  • S101 Receive first security data of the coal mine collected by the detecting device in different areas of the coal mine at the first collecting frequency, where the first safety data includes environmental safety data of the corresponding area of the detecting device and a position identifier of the detecting device.
  • a plurality of sets of detecting devices are arranged in different areas of the coal mine, for example, a plurality of sets of detecting devices are disposed at a medium separation distance of the roadway of the coal mine;
  • the detecting device may include a gas detector, a temperature sensor, and a barometric pressure sensor;
  • the first safety data can be gas content, temperature and pressure parameters.
  • the location identifier of the detection device may be the device serial number of the detection device, and may also detect the location coordinates acquired by the positioning module in the device.
  • S102 After the first security data meets the preset condition, generating second security data according to the pre-acquired job status data of the corresponding area of the detection device and the first security data, where the job status data includes a job process of the coal mine And the number of students.
  • the first security data meets the preset condition, which may be that one of the first security data exceeds a security threshold, or each parameter respectively satisfies a certain numerical distribution, and each parameter of the numerical distribution Combined together beyond the safe state range.
  • the working state data of the corresponding area of the detecting device recorded by the engineering technician in the ground server may be obtained, or the working scene of the coal mine may be obtained from the camera device of the coal mine, and the corresponding area is generated according to the working scene.
  • Status data includes the current work schedule of the coal mine and the number of workers.
  • the work progress may be different stages of coal mining: the mining stage, the transportation stage, and the finishing stage.
  • the job status data and the first security data may be encapsulated and encoded to obtain second security data, so as to reduce the storage space occupied by the second security data, and reduce the transmission pressure of the subsequent data.
  • S103 Send the second security data to the ground server, so that the ground server records the location identifier of the detection device, the environment security data of the corresponding area of the detection device, and the job status data according to the second security data, and according to The relationship between the environmental safety data and the operation progress of the coal mine and the number of working people determines the safety state level of the coal mine, and completes the safety monitoring of the coal mine.
  • the ground server parses the detection from the second security data.
  • the location identifier of the device, the environmental security data of the corresponding area of the detection device, and the job status data and generate a data table of the location identifier of the detection device, the correspondence between the environment security data of the corresponding area of the detection device, and the job status data, and then according to the correspondence relationship
  • the data of the table is analyzed to determine the current safety status of the coal mine, which is convenient for safety technicians.
  • the current safety status of the coal mine is a dangerous state
  • the current coal mine operation process is the trimming stage and the number of working personnel exceeds one person. It can be determined that the current coal mine safety status level is a more dangerous state
  • one of the environmental safety data exceeds the safety standard value
  • the current coal mine The operation process is that the mining stage and the number of working people exceed 50. It can be determined that the current safety status of the coal mine is extremely dangerous.
  • the first safety data of the coal mine collected by the detecting device in different areas of the coal mine is collected at the first collecting frequency, wherein the first safety data includes the environmental safety data of the corresponding area of the detecting device and the detecting device Position identification; after the first security data meets the preset condition, generating second security data according to the pre-acquired job status data of the corresponding area of the detection device and the first security data; sending the second security data to the ground server, so that The ground server records the correspondence between the location identifier of the detection device, the environmental security data of the corresponding area of the detection device, and the job status data according to the second security data, and determines the security of the coal mine according to the relationship between the environmental safety data and the operation process of the coal mine and the number of workers.
  • FIG. 2 is a flowchart of implementing the coal mine safety monitoring method according to the second embodiment of the present invention.
  • the environmental safety data of the embodiment includes the air pressure and temperature of the corresponding area of the detecting device.
  • the content of hazardous gases, the method is detailed as follows:
  • S201 receiving first safety data of the coal mine collected by the detecting device in different areas of the coal mine at the first collecting frequency, where the first safety data includes environmental safety data of the corresponding area of the detecting device and the detecting device Location identifier.
  • the environmental safety data includes the air pressure, the temperature, and the content of the dangerous gas in the corresponding area of the detecting device.
  • S202 After the air pressure of the corresponding area of the detecting device exceeds a first preset threshold, or the temperature of the corresponding area of the detecting device exceeds a second preset threshold, or the content of the dangerous gas in the corresponding area of the detecting device exceeds the third
  • the preset threshold ⁇ generates second safety data according to the job status data and the first safety data of the corresponding area of the detection device that is acquired in advance, and the operation status data includes the operation progress of the coal mine and the number of workers.
  • the air pressure is too high or too low, the health of the worker is affected. Therefore, it is necessary to set a safety threshold of the air pressure (the first preset threshold), and the air pressure of the corresponding area detected by the air pressure sensor of the detecting device exceeds the first a preset threshold ⁇ , generating second security data according to job state data and first security data of the corresponding area of the detection device acquired in advance; because the temperature is too high or too low, the health of the worker is also affected, so a temperature needs to be set.
  • a safety threshold of the air pressure the first preset threshold
  • the security threshold (the second preset threshold) is generated when the air pressure of the corresponding area detected by the temperature sensor of the detecting device exceeds the first preset threshold, according to the pre-acquired working state data of the corresponding area of the detecting device and the first safety data. Second safety data.
  • the dangerous gas may be one or more of the following gases: carbon monoxide CO, methane CH 4, hydrogen sulfide H2S. It should be noted that: CO and CH4 are combustible gases, and H2S is a toxic gas.
  • S203 Send the second security data to the ground server, so that the ground server records the location identifier of the detection device, the environment security data of the corresponding area of the detection device, and the job status data according to the second security data, and according to The relationship between the environmental safety data and the operation progress of the coal mine and the number of working people determines the safety state level of the coal mine, and completes the safety monitoring of the coal mine.
  • the correspondence between the location identifier of the detection device, the environmental security data of the corresponding region of the detection device, and the job status data may be as follows:
  • the environmental safety data includes the air pressure, the temperature, and the content of the dangerous gas in the corresponding area of the detecting device, and any one of the environmental safety data exceeds the safety threshold, according to the first safety data and the number of working states.
  • the second safety data is generated, and then the second safety data is sent to the ground server to ensure that the data of the abnormal state of the coal mine is not leaked, and comprehensive monitoring of coal mine safety is achieved.
  • the environmental safety data includes the air pressure, the temperature, and the content of the dangerous gas in the corresponding area of the detecting device, and the air pressure, the temperature, and the content of the dangerous gas in the corresponding area of the detecting device satisfy a preset numerical value, according to the advance
  • the acquired job status data of the corresponding area of the detection device and the first security data generate second security data.
  • any one of the air pressure, the temperature, and the content of the dangerous gas in the corresponding area of the detecting device does not reach the preset threshold ⁇ , that is, the air pressure in the corresponding area of the detecting device does not exceed the first preset threshold. ⁇ , and the temperature of the corresponding area of the detecting device does not exceed the second preset threshold ⁇ , and the content of the dangerous gas in the corresponding area of the detecting device does not exceed the third preset threshold ⁇ , but the air pressure, temperature, and danger of the corresponding area of the detecting device Several indicators of gas content are combined to meet a certain numerical distribution. This state will cause unsafe coal mines. Therefore, it is necessary to set a preset numerical value distribution.
  • the air pressure, temperature and hazardous gas content in the corresponding area of the testing equipment satisfy the pre-measure.
  • the numerical distribution is set, and the second safety data is generated according to the job state data and the first safety data of the corresponding area of the detection device acquired in advance, thereby further ensuring the safety of the operation of the coal mine.
  • FIG. 3 is a flowchart of implementing a coal mine safety monitoring method according to Embodiment 3 of the present invention.
  • this embodiment further describes that after the second security data is generated, the sending and collecting are performed.
  • the control command controls the detecting device to increase the collecting frequency, so as to further determine the received first safety data, which is as follows:
  • S301 Receive first security data of the coal mine collected by the detecting device in different areas of the coal mine at the first collecting frequency, where the first safety data includes environmental safety data of the corresponding area of the detecting device and a position identifier of the detecting device.
  • S302 After the first security data meets the preset condition, generating second security data according to the pre-acquired job status data of the corresponding area of the detection device and the first security data.
  • S303 Send an acquisition control command to the detection device, so that the detection device collects the first safety data of the coal mine at the second acquisition frequency according to the acquisition control command, where the second acquisition frequency is greater than the first acquisition frequency.
  • S304 Receive first security data of the coal mine collected by the detecting device at the second collecting frequency.
  • the safety status of the current coal mine may be initially determined to be an abnormal state, and then an acquisition control command is sent to the detection device, and the detection device is collected according to the collection.
  • the control command collects the first safety data of the coal mine at the second acquisition frequency, wherein the second acquisition frequency is greater than the first acquisition frequency, and increases the frequency of acquiring the first safety data of the coal mine, and if the second acquisition frequency is collected first.
  • the safety data also meets the preset conditions, and it can be determined that the abnormal state of the current coal mine is an absolutely dangerous state.
  • S305 Send an alarm control command to the alarm control device after the first safety data meets the preset condition, so that the alarm control device controls the alarm to operate.
  • the alarm control device is controlled to operate the alarm by transmitting an alarm control command to the alarm control device to ensure that the worker and the technician are evacuated.
  • an alarm control command may be sent to the sound and light alarm of the coal mine roadway to enable the sound and light alarm to operate, or an alarm control command may be sent to the safety alarm device worn by the worker to remind the worker to evacuate safely.
  • an alarm control command can also be sent to the ground alarm to operate the alarm to alert the ground safety technician that the mine is in a dangerous state.
  • the safety status of the current coal mine can be initially determined to be an abnormal state, and then the acquisition control command is sent to the detection device, and the detection is performed.
  • the device collects the first safety data of the coal mine according to the acquisition control command at the second acquisition frequency, wherein the second acquisition frequency is greater than the first acquisition frequency, and increases the frequency of acquiring the first safety data of the coal mine, if the second acquisition frequency is collected.
  • the first safety data also satisfies the preset condition, and then the abnormal state of the current coal mine can be determined to be an absolutely dangerous state; while the first safety data collected at the second acquisition frequency meets the preset condition, the alarm is controlled by sending an alarm. Command to the alarm control device to enable the alarm control device to control the alarm to ensure the evacuation of workers and technicians.
  • FIG. 4 is a flow diagram of a process for monitoring a coal mine safety monitoring method according to Embodiment 4 of the present invention.
  • the present example uses a detecting device, a transit device, and a ground server as execution entities, as follows: [0065] S401: The first safety data collected by the detecting device to the coal mine at the first collecting frequency, wherein the first safety data includes environmental safety data of the corresponding area of the detecting device and a position identifier of the detecting device.
  • S402 The detecting device sends the first safety data collected by the first acquisition frequency to the relay device.
  • S403 The relay device detects whether the first security data collected by the first acquisition frequency meets a preset condition.
  • S405 The detecting device collects the first safety data of the coal mine at the second collection frequency according to the collection control command, where the second acquisition frequency is greater than the first acquisition frequency.
  • S406 The detecting device sends the first safety data of the coal mine collected at the second collection frequency to the relay device.
  • S407 The relay device acquires job status data of the corresponding area of the detection device.
  • S408 The relay device generates second security data according to the foregoing job status data and the first safety data of the coal mine collected at the second collection frequency, where the operation status data includes a work process of the coal mine and a number of jobs.
  • S409 Send the second security data to the ground server.
  • S410 The ground server records, according to the second security data, a correspondence between the location identifier of the detection device, the environmental security data of the corresponding region of the detection device, and the job status data.
  • S411 The ground server generates a work log according to the location identifier of the detection device, the correspondence between the environmental security data of the corresponding area of the detection device, and the job status data, and according to the relationship between the environmental safety data and the operation process of the coal mine and the number of workers Determine the safety status level of the coal mine for reference by coal mine safety technicians.
  • FIG. 5 is a structural block diagram of a coal mine safety monitoring device according to Embodiment 5 of the present invention. For convenience of description, only relevant embodiments of the present invention are shown. section.
  • the apparatus includes: a receiving module 501, a generating module 502, and a first sending module 503.
  • the receiving module 501 is configured to receive first security data of the coal mine collected by the detecting device in different areas of the coal mine at the first collecting frequency, where the first security data includes a corresponding area of the detecting device.
  • the generating module 502 is configured to generate second security data according to the pre-acquired job status data of the corresponding area of the detecting device and the first security data, where the first security data meets the preset condition,
  • the job status data includes the progress of the coal mine and the number of workers.
  • the first sending module 503 is configured to send the second security data to the ground server, so that the ground server records the location identifier of the detecting device and the environment of the corresponding area of the detecting device according to the second security data. Corresponding relationship between the safety data and the job status data, and determining the safety status level of the coal mine according to the relationship between the environmental safety data and the operation progress of the coal mine and the number of workers, and completing safety monitoring of the coal mine.
  • the environmental safety data includes the air pressure, the temperature, and the content of the dangerous gas in the corresponding area of the detecting device.
  • the generating module 502 is specifically configured to: the air pressure in the corresponding area of the detecting device exceeds the first Setting a threshold value ⁇ , or exceeding a second preset threshold value in the corresponding area of the device, or after the content of the dangerous gas exceeds a third preset threshold value, according to the pre-acquired job status data of the corresponding area of the detecting device And generating the second security data with the first security data.
  • the environmental safety data includes the air pressure, the temperature, and the content of the dangerous gas in the corresponding area of the detecting device. If any one of the environmental safety data exceeds the safety threshold, the second safety data and the working state number are generated according to the first safety data. Safety data, and then send the second safety data to the ground server to ensure that the data of the abnormal state of the coal mine is not leaked, and comprehensive monitoring of coal mine safety is achieved.
  • the generating module 502 is further configured to: when the content of the air pressure, the temperature, and the dangerous gas in the corresponding area of the detecting device meets a preset numerical value, according to the detection device that is acquired in advance
  • the second security data is generated by the job status data of the area and the first security data.
  • any one of the air pressure, the temperature, and the content of the dangerous gas in the corresponding area of the detecting device does not reach the preset threshold ⁇ , that is, the air pressure in the corresponding area of the detecting device does not exceed the first pre-predetermined
  • the threshold value ⁇ is set, and the temperature of the corresponding area of the detecting device does not exceed the second preset threshold ⁇ , and the content of the dangerous gas in the corresponding area of the detecting device does not exceed the third preset threshold ⁇ , but the corresponding area of the detecting device
  • the air pressure, temperature, and hazardous gas content are combined to meet a certain numerical value. This state will cause the coal mine to be unsafe.
  • the first piece of safety data is generated by first acquiring the work status data of the corresponding area of the detecting device and the first safety data, thereby further ensuring the safety of the operation of the coal mine.
  • FIG. 6 is a structural block diagram of a coal mine safety monitoring apparatus according to a sixth embodiment of the present invention. Based on the foregoing embodiment, the embodiment further includes: a second sending module 504 and a third sending module 505. .
  • the second sending module 504 is configured to send an acquisition control command after the generating module 502 generates the second security data according to the job state data of the corresponding area of the detecting device and the first security data that are acquired in advance.
  • the first detection data of the coal mine is collected by the detection device according to the acquisition control command, wherein the second acquisition frequency is greater than the first acquisition frequency;
  • the receiving module 501 is further configured to receive first security data of the coal mine collected by the detecting device at a second collecting frequency.
  • the third sending module 505 is configured to: after the receiving module 501 receives the first security data of the coal mine collected by the detecting device in different areas of the coal mine at the second collecting frequency, the first security data meets the preset Condition ⁇ , an alarm control command is sent to the alarm control device to cause the alarm control device to control the operation of the alarm.
  • FIG. 7 is a structural block diagram of a coal mine safety monitoring system according to Embodiment 7 of the present invention.
  • the embodiment further includes: a detecting device 701, a relay device 702, a ground server 703, an alarm control device 704, and an alarm device. 705, wherein the detecting device may be a plurality of groups, and the group of detecting devices may specifically include a dangerous gas detector, a temperature sensor, and a barometric pressure sensor.
  • the relay device 702 is respectively connected to the detecting device 701, the ground server 703, and the alarm control device 704, and the alarm control device 704 is coupled to an alarm 705.
  • the detecting device 701 is disposed in different areas of the coal mine, and is configured to collect first security data of the corresponding area of the detecting device of the coal mine at the first collecting frequency, where the first security data includes the corresponding area of the detecting device.
  • the hazardous gas detector is used to detect the content of dangerous gases in the coal mine.
  • the temperature sensor is used to measure the temperature of the coal mine.
  • the air pressure sensor is used to measure the pressure of the coal mine, and the first safety data is sent to the relay device 702.
  • the relay device 702 is configured to: according to the pre-acquired check, after the first security data meets the preset condition
  • the second security data is generated by the job status data of the corresponding area of the device and the first security data, and the job status data includes the operation progress of the coal mine and the number of jobs, and the second security data is transmitted to the ground server 703.
  • the ground server 703 is configured to record, according to the second security data, a location identifier of the detecting device, a correspondence between environmental security data of the corresponding area of the detecting device, and job status data, and according to the environmental security data
  • the relationship between the operation process of the coal mine and the number of workers determines the safety status level of the coal mine and completes the safety monitoring of the coal mine.
  • the environmental safety data includes the air pressure, the temperature, and the content of the dangerous gas in the corresponding area of the detecting device
  • the relay device 702 is further configured to: when the air pressure in the corresponding area of the detecting device exceeds a first preset threshold, or After the temperature of the corresponding area of the detecting device exceeds a second preset threshold ⁇ , or the content of the dangerous gas in the corresponding area of the detecting device exceeds a third preset threshold, according to the pre-acquired operation of the corresponding area of the detecting device
  • the second security data is generated by the status data and the first security data.
  • the relay device 702 is further configured to: after receiving the first security data of the coal mine collected by the detecting device in different areas of the coal mine at the first acquisition frequency, send an acquisition control command to the detecting device, so that The detecting device collects the first safety data of the coal mine at a second acquisition frequency according to the collection control command, wherein the second acquisition frequency is greater than the first acquisition frequency; and the first safety data meets the preset condition Receiving, by the detecting device, the first safety data of the coal mine collected at the second collection frequency.
  • the relay device 702 is further configured to: when the content of the air pressure, the temperature, and the dangerous gas in the corresponding area of the detecting device meets a preset value distribution, according to the pre-obtained working state data of the corresponding area of the detecting device And generating the second security data with the first security data.
  • the relay device 702 is further configured to: after generating the second security data according to the job status data of the corresponding area of the detecting device and the first security data that is acquired in advance, sending an acquisition control command to the Testing Equipment.
  • the detecting device 701 is further configured to collect, according to the collecting control command, the first safety data of the coal mine at a second collecting frequency, wherein the second collecting frequency is greater than the first collecting frequency, and the second collecting frequency is The first safety data collecting the coal mine is sent to the relay device.
  • the relay device 702 is further configured to receive the collected by the detecting device at the second collecting frequency. After the first safety data of the coal mine, after the first safety data meets the preset condition, an alarm control command is sent to the alarm control device.
  • the alarm control device 704 is configured to receive an alarm control command of the relay device, and control the alarm 705 to alarm according to the alarm control command.
  • FIG. 8 is a structural block diagram of a relay device according to Embodiment 8 of the present invention.
  • the specific embodiment of the present invention does not limit the specific implementation of the receiving end, and the urban street light state monitoring device includes: Multiple processors 801 (only one shown in Figure 8); one or more input devices 802 (only one shown in Figure 8), one or more output devices 803 (only one shown in Figure 8) and memory 804.
  • the above-described processor 801, input device 802, output device 803, and memory 804 are connected by a bus 805.
  • Memory 804 is used to store instructions, and processor 801 is used to execute instructions stored in memory 804. among them:
  • the processor 801 receives first security data of the coal mine to which the detecting device in different areas of the coal mine belongs, wherein the first security data includes environmental safety data of the corresponding area of the detecting device and a position of the detecting device Identifying, after the first security data meets the preset condition, generating second security data according to the pre-acquired job status data of the corresponding area of the detecting device and the first security data, where the job status data includes the operation of the coal mine And the number of the work, the second security data is sent to the ground server, so that the ground server records the location identifier of the detection device, the environmental security data of the corresponding area of the detection device, and the job status data according to the second security data. Corresponding relationship, and determining the safety state level of the coal mine according to the relationship between the environmental safety data and the operation process of the coal mine and the number of workers, and completing the safety monitoring of the coal mine.
  • the environmental safety data includes a gas pressure, a temperature, and a content of a dangerous gas in a corresponding area of the detecting device; and the first safety data meets a preset condition, according to the pre-acquired corresponding area of the detecting device
  • generating, by the first security data, the second security data, the method includes: the air pressure in the corresponding area of the detecting device exceeds a first preset threshold, or the temperature in the corresponding area of the detecting device exceeds a second The preset threshold ⁇ , or the content of the dangerous gas in the corresponding area of the detecting device exceeds a third preset threshold ⁇ , according to the pre-acquired working state data of the corresponding area of the detecting device and the first safety data, generating the first Second security data.
  • the first security data meets a preset condition, according to the pre-acquired detection device
  • Generating the second security data according to the job status data of the corresponding area and the first security data further comprising:: the air pressure, the temperature, and the content of the dangerous gas in the corresponding area of the detecting device satisfy a preset numerical value, according to the pre-acquisition
  • the detecting device corresponds to the job status data of the area and the first security data, and generates second security data.
  • the method further includes: sending an acquisition control command to the detection device
  • the first detection data of the coal mine is collected by the detecting device according to the collection control command, wherein the second acquisition frequency is greater than the first acquisition frequency, and the detection device is received by the second collection.
  • the method further includes: sending an alarm control command after the first security data meets the preset condition To the alarm control device, so that the alarm control device controls the alarm to operate.
  • the memory 804 is configured to store software programs, modules, units, and data information required in a server, and the processor 801 executes various programs by running software programs, modules, and units stored in the memory 804. Functional applications and data processing.
  • the so-called processor 801 may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (Digital Signal Processor) , DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the input device 802 may include a touch panel, a fingerprint collection sensor (for collecting fingerprint information of the user and direction information of the fingerprint), a microphone, a data collection device, a data receiving device, and the like, and the output device 803 may include a display (LCD, etc.) ), speakers, data transmitters, etc.
  • a fingerprint collection sensor for collecting fingerprint information of the user and direction information of the fingerprint
  • a microphone for collecting fingerprint information of the user and direction information of the fingerprint
  • the output device 803 may include a display (LCD, etc.) ), speakers, data transmitters, etc.
  • the memory 804 can include read only memory and random access memory and provides instructions and data to the processor 801.
  • a portion of memory 804 may also include non-volatile random access memory.
  • the memory 804 can also store information of the device type.
  • the processor 801, the input device 802, and the output device 80 are described in the embodiment of the present invention.
  • 3 and the memory 804 can be implemented in the implementation manner of the embodiment of the coal mine safety monitoring method provided by the embodiment of the present invention, and the implementation manner described in the embodiment of the server can also be implemented, and details are not described herein again.
  • each functional unit and module described above is exemplified. In practical applications, the above functions may be assigned differently according to needs.
  • the functional unit and the module are completed, that is, the internal structure of the device is divided into different functional units or modules to complete all or part of the functions described above.
  • Each functional unit and module in the embodiment may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit, and the integrated unit may be implemented by hardware.
  • Formal implementation can also be implemented in the form of software functional units.
  • the disclosed apparatus and method can be implemented in other ways.
  • the system embodiment described above is merely illustrative.
  • the division of the module or unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the medium includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods of the various embodiments of the embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (R 0M, Read-Only Memory), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. medium.

Abstract

一种煤矿安全监测方法,该方法包括:接收煤矿不同区域的检测设备(701)以第一采集频率采集到的煤矿的第一安全数据,其中第一安全数据包含检测设备(701)对应区域的环境安全数据和检测设备(701)的位置标识(S301);在第一安全数据满足预设条件时,根据预先获取的检测设备(701)对应区域的作业状态数据和第一安全数据,生成第二安全数据(S302);将第二安全数据发送到地面服务器(703),以使地面服务器(703)根据第二安全数据,记录检测设备(701)的位置标识、检测设备(701)对应区域的环境安全数据和作业状态数据的对应关系(S410),完成对煤矿的安全监测。本方案实能够解决现有技术中服务器接收数据量过大,处理数据发生延迟,不能真实反映当前煤矿的安全状态的问题。

Description

发明名称:煤矿安全监测方法及装置
技术领域
[0001] 本发明属于监测技术领域, 尤其涉及一种煤矿安全监测方法及装置。
背景技术
[0002] 近年来, 煤矿矿难事故屡屡发生, 煤矿安全问题日益突出, 因此对于煤矿的安 全状态进行监测以应对突发状况显得至关重要。
[0003] 传统的煤矿安全监测方式主要是通过传感器检测煤矿巷道中的危险气体 (如瓦 斯) 的含量等数据, 并将该数据直接发送到地面服务器, 以使服务器记录当前 吋间与危险气体含量的对应关系, 完成对煤矿的安全监测。 但是由于煤矿中的 传感器数量较多, 且一个服务器可能对应多个煤矿, 这种煤矿安全监测方式会 造成地面服务器接收的数据量过大, 处理数据发生延迟, 不能真实反映当前煤 矿的真实安全状态。 技术问题
[0004] 有鉴于此, 本发明实施例提供了一种煤矿安全监测方法及装置, 以解决现有技 术中服务器接收数据量过大, 处理数据发生延迟, 不能真实反映当前煤矿的安 全状态的问题。
问题的解决方案
技术解决方案
[0005] 本发明实施例的第一方面提供了一种煤矿安全监测方法, 包括:
[0006] 接收煤矿不同区域的检测设备到的所述煤矿的第一安全数据, 其中所述第一安 全数据包含所述检测设备对应区域的环境安全数据和检测设备的位置标识; [0007] 在第一安全数据满足预设条件吋, 根据预先获取的所述检测设备对应区域的作 业状态数据和所述第一安全数据, 生成第二安全数据, 所述作业状态数据包含 煤矿的作业进程和作业人数;
[0008] 将所述第二安全数据发送到地面服务器, 以使地面服务器根据所述第二安全数 据, 记录所述检测设备的位置标识、 检测设备对应区域的环境安全数据和作业 状态数据的对应关系, 并根据所述环境安全数据与煤矿的作业进程和作业人数 的关系确定所述煤矿的安全状态等级, 完成对所述煤矿的安全监测。
[0009] 本发明实施例的第二方面提供了一种煤矿安全监测装置, 包括:
[0010] 接收模块, 用于接收煤矿不同区域的检测设备以第一采集频率采集到的所述煤 矿的第一安全数据, 其中所述第一安全数据包含所述检测设备对应区域的环境 安全数据和检测设备的位置标识;
[0011] 生成模块, 用于在第一安全数据满足预设条件吋, 根据预先获取的所述检测设 备对应区域的作业状态数据和所述第一安全数据, 生成第二安全数据, 所述作 业状态数据包含煤矿的作业进程和作业人数;
[0012] 第一发送模块, 用于将所述第二安全数据发送到地面服务器, 以使地面服务器 根据所述第二安全数据, 记录所述检测设备的位置标识、 检测设备对应区域的 环境安全数据和作业状态数据的对应关系, 并根据所述环境安全数据与煤矿的 作业进程和作业人数的关系确定所述煤矿的安全状态等级, 完成对所述煤矿的 安全监测。
[0013] 本发明实施例的第三方面还提供了一种智能家居照明控制装置, 包括存储器、 处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序, 其特 征在于, 所述处理器执行所述计算机程序吋实现上述的智能家居照明控制方法 的步骤。
[0014] 本发明实施例的第四方面还提供了计算机可读存储介质, 所述计算机可读存储 介质存储有计算机程序, 其特征在于, 所述计算机程序被处理器执行吋实现上 述的智能家居照明控制方法的步骤。
发明的有益效果
有益效果
[0015] 本发明实施例与现有技术相比存在的有益效果是: 通过接收煤矿不同区域的检 测设备以第一采集频率采集到的煤矿的第一安全数据, 其中第一安全数据包含 检测设备对应区域的环境安全数据和检测设备的位置标识; 在第一安全数据满 足预设条件吋, 根据预先获取的检测设备对应区域的作业状态数据和第一安全 数据, 生成第二安全数据; 将第二安全数据发送到地面服务器, 以使地面服务 器根据第二安全数据, 记录检测设备的位置标识、 检测设备对应区域的环境安 全数据和作业状态数据的对应关系, 完成对煤矿的安全监测。 由于本发明实施 例是在满足预设条件吋才根据第一安全数据和作业状态数据生成第二安全数据 , 然后再将第二安全数据发送给地面服务器, 可达到减少发送到地面服务器的 数据量, 能够解决现有技术中服务器接收数据量过大, 处理数据发生延迟, 不 能真实反映当前煤矿的安全状态的问题。
对附图的简要说明
附图说明
[0016] 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例或现有技术描 述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其他的附图。
[0017] 图 1是本发明实施例一提供的煤矿安全监测方法的实现流程图;
[0018] 图 2是本发明实施例二提供的煤矿安全监测方法的实现流程图;
[0019] 图 3是本发明实施例三提供的煤矿安全监测方法的实现流程图;
[0020] 图 4是本发明实施例四提供的煤矿安全监测方法的流程交互图;
[0021] 图 5是本发明实施例五提供的煤矿安全监测装置的结构框图;
[0022] 图 6是本发明实施例六提供的煤矿安全监测装置的结构框图;
[0023] 图 7是本发明实施例七提供的煤矿安全监测系统的结构框图;
[0024] 图 8是本发明实施例八提供的中转设备的结构框图。
本发明的实施方式
[0025] 以下描述中, 为了说明而不是为了限定, 提出了诸如特定系统结构、 技术之类 的具体细节, 以便透彻理解本发明实施例。 然而, 本领域的技术人员应当清楚 , 在没有这些具体细节的其它实施例中也可以实现本发明。 在其它情况中, 省 略对众所周知的系统、 装置、 电路以及方法的详细说明, 以免不必要的细节妨 碍本发明的描述。
[0026] 实施例一 [0027] 参考图 1, 图 1是本发明实施例一提供的煤矿安全监测方法的实现流程图, 本实 施例详述如下:
[0028] S101 : 接收煤矿不同区域的检测设备以第一采集频率采集到的煤矿的第一安全 数据, 其中第一安全数据包含检测设备对应区域的环境安全数据和检测设备的 位置标识。
[0029] 其中, 煤矿不同区域设置多组检测设备, 例如在煤矿的巷道中等间隔距离的设 置有多组检测设备; 该检测设备可以包括气体检测仪、 温度传感器和气压传感 器; 检测设备采集的煤矿的第一安全数据可以是气体含量、 温度和压力参数。 检测设备的位置标识可以是检测设备的设备序列号, 也可以检测设备中定位模 块获取的位置坐标。
[0030] S102: 在第一安全数据满足预设条件吋, 根据预先获取的检测设备对应区域的 作业状态数据和第一安全数据, 生成第二安全数据, 所述作业状态数据包含煤 矿的作业进程和作业人数。
[0031] 具体地, 第一安全数据满足预设条件可以是第一安全数据中某一个参数中的一 种超出安全阈值, 也可以是各个参数分别满足一定的数值分布, 该数值分布的 各参数结合到一起超出安全状态范围。
[0032] 具体地, 可以从地面服务器中由工程技术人员录入的检测设备对应区域的作业 状态数据, 也可以从煤矿的摄像装置实吋获取煤矿的工作场景, 根据该工作场 景生成对应区域的作业状态数据。 其中, 该作业状态数据包含当前煤矿的工作 进度和工人人数, 例如, 工作进度可以是煤矿幵采的不同阶段: 幵采阶段、 运 输阶段、 修整阶段等。
[0033] 具体地, 可以将作业状态数据和第一安全数据进行封装、 编码压缩得到第二安 全数据, 以减小第二安全数据的占用的存储空间, 降低后续数据的传输压力。
[0034] S103: 将第二安全数据发送到地面服务器, 以使地面服务器根据第二安全数据 , 记录检测设备的位置标识、 检测设备对应区域的环境安全数据和作业状态数 据的对应关系, 并根据所述环境安全数据与煤矿的作业进程和作业人数的关系 确定所述煤矿的安全状态等级, 完成对煤矿的安全监测。
[0035] 具体地, 地面服务器接收到第二安全数据之后, 从第二安全数据中解析出检测 设备的位置标识、 检测设备对应区域的环境安全数据和作业状态数据, 并生成 检测设备的位置标识、 检测设备对应区域的环境安全数据和作业状态数据的对 应关系的数据表, 然后根据该对应关系表的数据进行分析确定当前煤矿的安全 状态等级, 便于安全技术人员参考。
[0036] 具体地, 在环境安全数据中的某一项指标超出安全标准值吋, 可以确定当前煤 矿的安全状态等级为危险状态; 在环境安全数据中的某一项指标超出安全标准 值吋, 且当前煤矿的作业进程为修整阶段和作业人数超出 1人吋, 可以确定当前 煤矿的安全状态等级为较危险状态; 在环境安全数据中的某一项指标超出安全 标准值吋, 且当前煤矿的作业进程为幵采阶段和作业人数超出 50人吋, 可以确 定当前煤矿的安全状态等级为极端危险状态。
[0037] 从本实施例可知, 通过接收煤矿不同区域的检测设备以第一采集频率采集到的 煤矿的第一安全数据, 其中第一安全数据包含检测设备对应区域的环境安全数 据和检测设备的位置标识; 在第一安全数据满足预设条件吋, 根据预先获取的 检测设备对应区域的作业状态数据和第一安全数据, 生成第二安全数据; 将第 二安全数据发送到地面服务器, 以使地面服务器根据第二安全数据, 记录检测 设备的位置标识、 检测设备对应区域的环境安全数据和作业状态数据的对应关 系, 并根据环境安全数据与煤矿的作业进程和作业人数的关系确定煤矿的安全 状态等级, 完成对煤矿的安全监测。 由于本发明实施例是在满足预设条件吋才 根据第一安全数据和作业状态数生成第二安全数据, 然后再将第二安全数据发 送给地面服务器, 可达到减少发送到地面服务器的数据量, 能够解决现有技术 中服务器接收数据量过大, 处理数据发生延迟, 不能真实反映当前煤矿的真实 安全状态的问题。
[0038] 实施例二
[0039] 参考图 2, 图 2是本发明实施例二提供的煤矿安全监测方法的实现流程图, 在上 述实施例的基础上, 本实施例的环境安全数据包含检测设备对应区域的气压、 温度、 危险气体的含量, 方法详述如下:
[0040] S201 : 接收煤矿不同区域的检测设备以第一采集频率采集到的煤矿的第一安全 数据, 其中第一安全数据包含检测设备对应区域的环境安全数据和检测设备的 位置标识。
[0041] 其中, 环境安全数据包含检测设备对应区域的气压、 温度、 危险气体的含量。
[0042] S202: 在检测设备对应区域的气压超出第一预设阈值吋, 或在检测设备对应区 域的温度超出第二预设阈值吋, 或在检测设备对应区域的危险气体的含量超出 第三预设阈值吋, 根据预先获取的检测设备对应区域的作业状态数据和第一安 全数据, 生成第二安全数据, 所述作业状态数据包含煤矿的作业进程和作业人 数。
[0043] 具体地, 由于气压过高或过低会影响工人的身体健康, 因此需要设置一个气压 的安全阈值 (第一预设阈值) , 当检测设备的气压传感器检测到的对应区域气 压超出第一预设阈值吋, 根据预先获取的检测设备对应区域的作业状态数据和 第一安全数据, 生成第二安全数据; 由于温度过高或过低同样会影响工人的身 体健康, 因此需要设置一个温度的安全阈值 (第二预设阈值) , 当检测设备的 温度传感器检测到的对应区域气压超出第一预设阈值吋, 根据预先获取的检测 设备对应区域的作业状态数据和第一安全数据, 生成第二安全数据。
[0044] 其中, 可以危险气体可以是以下气体中的一种或多种: 一氧化碳 CO、 甲烷 CH 4、 硫化氢 H2S。 需要说明的是: CO、 CH4是可燃气体, H2S是有毒气体。
[0045] 举例来说, 在 CO和 CH4的混合气体含量达到爆炸极限吋, 或者 H2S的含量达到 lOppm (国家标准) 吋, 根据预先获取的检测设备对应区域的作业状态数据和第 一安全数据, 生成第二安全数据。
[0046] S203: 将第二安全数据发送到地面服务器, 以使地面服务器根据第二安全数据 , 记录检测设备的位置标识、 检测设备对应区域的环境安全数据和作业状态数 据的对应关系, 并根据所述环境安全数据与煤矿的作业进程和作业人数的关系 确定所述煤矿的安全状态等级, 完成对煤矿的安全监测。
[0047] 举例来说, 检测设备的位置标识、 检测设备对应区域的环境安全数据和作业状 态数据的对应关系可以如下表所示:
[0048] 举例来说, 当危险气体含量超过 30%、 温度超过 40°C、 作业进程为幵采阶段、 作业人数超过 10人吋, 为极端危险状态, 应及吋通知技术人员进行报警处理以 进行疏散; 当危险气体含量超过 30%、 温度超过 40°C、 作业进程为幵采阶段、 作 业人数为 0人吋, 为危险状态, 应禁止工人进入煤矿。
[0049] 从本实施例可知, 环境安全数据包含检测设备对应区域的气压、 温度、 危险气 体的含量在环境安全数据中的任一项数据超过安全阈值吋, 根据第一安全数据 和作业状态数生成第二安全数据, 然后再将第二安全数据发送给地面服务器, 以保证煤矿异常状态的数据不被漏发, 达到对煤矿安全的全面监测。
[0050] 在一个例子中, 环境安全数据包含检测设备对应区域的气压、 温度、 危险气体 的含量, 在检测设备对应区域的气压、 温度、 危险气体的含量满足预设的数值 分布吋, 根据预先获取的检测设备对应区域的作业状态数据和第一安全数据, 生成第二安全数据。
[0051] 具体地, 在检测设备对应区域的气压、 温度、 危险气体的含量中的任意一项都 没达到预设阈值吋, 也就是, 在检测设备对应区域的气压未超出第一预设阈值 吋, 且在检测设备对应区域的温度未超出第二预设阈值吋, 且在检测设备对应 区域的危险气体的含量未超出第三预设阈值吋, 但是检测设备对应区域的气压 、 温度、 危险气体的含量几项指标综合在一起满足一定的数值分布吋, 该状态 会造成煤矿的不安全, 因此需要设置预设数值分布, 在检测设备对应区域的气 压、 温度、 危险气体的含量满足该预设数值分布吋, 根据预先获取的检测设备 对应区域的作业状态数据和第一安全数据, 生成第二安全数据, 可进一步保证 煤矿的作业安全。
[0052] 实施例三
[0053] 参考图 3, 图 3是本发明实施例三提供的煤矿安全监测方法的实现流程图, 在上 述实施例的基础上, 本实施例还详细描述了生成第二安全数据之后, 发送采集 控制命令控制检测设备增大采集频率, 以实现进一步对接收到的第一安全数据 进行判断, 详述如下:
[0054] S301 : 接收煤矿不同区域的检测设备以第一采集频率采集到的煤矿的第一安全 数据, 其中第一安全数据包含检测设备对应区域的环境安全数据和检测设备的 位置标识。
[0055] S302: 在第一安全数据满足预设条件吋, 根据预先获取的检测设备对应区域的 作业状态数据和第一安全数据, 生成第二安全数据。 [0056] S303: 发送采集控制命令到检测设备, 以使检测设备根据采集控制命令以第二 采集频率采集煤矿的第一安全数据, 其中第二采集频率大于第一采集频率。
[0057] S304: 接收检测设备以第二采集频率采集到的煤矿的第一安全数据。
[0058] 具体地, 通过在接收到第一采集频率采集到的煤矿的第一安全数据之后, 可以 初步判定当前煤矿的安全状态为异常状态, 然后发送采集控制命令到检测设备 , 检测设备根据采集控制命令以第二采集频率采集煤矿的第一安全数据, 其中 第二采集频率大于第一采集频率, 增大了获取煤矿的第一安全数据的频率, 若 以第二采集频率采集到的第一安全数据同样满足预设条件, 则可以确定当前煤 矿的异常状态为绝对危险的状态。
[0059] S305: 在第一安全数据满足预设条件吋, 发送警报控制命令到警报控制装置, 以使警报控制装置控制报警器工作。
[0060] 具体地, 通过发送警报控制命令到警报控制装置, 以使警报控制装置控制报警 器工作, 保证工人和技术人员及吋撤离。
[0061] 具体地, 可以发送警报控制命令到煤矿巷道的声光报警器, 以使声光报警器工 作, 也可以发送警报控制命令到工人随吋佩戴的安全警报装置, 提醒工人安全 撤离。 优选地, 还可以发送警报控制命令到地面的报警器, 以使该报警器工作 , 提醒地面安全技术人员煤矿处于危险状态。
[0062] 从本实施例可知, 通过在接收到第一采集频率采集到的煤矿的第一安全数据之 后, 可以初步判定当前煤矿的安全状态为异常状态, 然后发送采集控制命令到 检测设备, 检测设备根据采集控制命令以第二采集频率采集煤矿的第一安全数 据, 其中第二采集频率大于第一采集频率, 增大了获取煤矿的第一安全数据的 频率, 若以第二采集频率采集到的第一安全数据同样满足预设条件, 则可以确 定当前煤矿的异常状态为绝对危险的状态; 同吋在以第二采集频率采集到的第 一安全数据满足预设条件吋, 通过发送警报控制命令到警报控制装置, 以使警 报控制装置控制报警器工作, 保证工人和技术人员及吋撤离。
[0063] 实施例四
[0064] 参考图 4, 图 4是本发明实施例四提供的煤矿安全监测方法的流程交互图, 本实 例以检测设备、 中转设备和地面服务器为执行主体, 详述如下: [0065] S401 : 检测设备以第一采集频率采集到煤矿的第一安全数据, 其中第一安全数 据包含检测设备对应区域的环境安全数据和检测设备的位置标识。
[0066] S402: 检测设备发送上述以第一采集频率采集到的第一安全数据到中转设备。
[0067] S403: 中转设备检测第一采集频率采集到的第一安全数据是否满足预设条件。
[0068] S404: 在上述第一安全数据满足预设条件吋, 中转设备发送采集控制命令到检 测设备。
[0069] S405: 检测设备根据采集控制命令以第二采集频率采集煤矿的第一安全数据, 其中第二采集频率大于第一采集频率。
[0070] S406: 检测设备发送以第二采集频率采集到的煤矿的第一安全数据到中转设备
[0071] S407: 中转设备获取检测设备对应区域的作业状态数据。
[0072] S408: 中转设备根据上述作业状态数据和以第二采集频率采集到的煤矿的第一 安全数据, 生成第二安全数据, 所述作业状态数据包含煤矿的作业进程和作业 人数。
[0073] S409: 将第二安全数据发送到地面服务器。
[0074] S410: 地面服务器根据第二安全数据, 记录检测设备的位置标识、 检测设备对 应区域的环境安全数据和作业状态数据的对应关系。
[0075] S411 : 地面服务器根据检测设备的位置标识、 检测设备对应区域的环境安全数 据和作业状态数据的对应关系生成工作日志, 并根据所述环境安全数据与煤矿 的作业进程和作业人数的关系确定所述煤矿的安全状态等级, 以便煤矿安全技 术人员参考。
[0076] 实施例五
[0077] 对应于上文实施例所述的煤矿安全监测方法, 图 5是本发明实施例五提供的煤 矿安全监测装置的结构框图, 为了便于说明, 仅示出了与本发明实施例相关的 部分。
[0078] 参照图 5该装置包括: 接收模块 501、 生成模块 502、 第一发送模块 503。
[0079] 接收模块 501, 用于接收煤矿不同区域的检测设备以第一采集频率采集到的所 述煤矿的第一安全数据, 其中所述第一安全数据包含所述检测设备对应区域的 环境安全数据和检测设备的位置标识。
[0080] 生成模块 502, 用于在第一安全数据满足预设条件吋, 根据预先获取的所述检 测设备对应区域的作业状态数据和所述第一安全数据, 生成第二安全数据, 所 述作业状态数据包含煤矿的作业进程和作业人数。
[0081] 第一发送模块 503, 用于将所述第二安全数据发送到地面服务器, 以使地面服 务器根据所述第二安全数据, 记录所述检测设备的位置标识、 检测设备对应区 域的环境安全数据和作业状态数据的对应关系, 并根据所述环境安全数据与煤 矿的作业进程和作业人数的关系确定所述煤矿的安全状态等级, 完成对所述煤 矿的安全监测。
[0082] 在一个例子中, 所述环境安全数据包含检测设备对应区域的气压、 温度、 危险 气体的含量; 所述生成模块 502, 具体用于在所述检测设备对应区域的气压超出 第一预设阈值吋, 或在所述设备对应区域的超出第二预设阈值吋, 或在所述危 险气体的含量超出第三预设阈值吋, 根据预先获取的所述检测设备对应区域的 作业状态数据和所述第一安全数据, 生成第二安全数据。
[0083] 具体地, 环境安全数据包含检测设备对应区域的气压、 温度、 危险气体的含量 在环境安全数据中的任一项数据超过安全阈值吋, 根据第一安全数据和作业状 态数生成第二安全数据, 然后再将第二安全数据发送给地面服务器, 以保证煤 矿异常状态的数据不被漏发, 达到对煤矿安全的全面监测。
[0084] 在一个例子中, 所述生成模块 502, 还用于在所述检测设备对应区域的气压、 温度、 危险气体的含量满足预设的数值分布吋, 根据预先获取的所述检测设备 对应区域的作业状态数据和所述第一安全数据, 生成第二安全数据。
[0085] 具体地, 在检测设备对应区域的气压、 温度、 危险气体的含量中的任意一项都 没达到预设阈值吋, 也就是, 在所述检测设备对应区域的气压未超出第一预设 阈值吋, 且在所述检测设备对应区域的温度未超出第二预设阈值吋, 且在所述 检测设备对应区域的危险气体的含量未超出第三预设阈值吋, 但是检测设备对 应区域的气压、 温度、 危险气体的含量几项指标综合在一起满足一定的数值分 布吋, 该状态会造成煤矿的不安全, 因此需要设置预设数值分布, 在所述检测 设备对应区域的气压、 温度、 危险气体的含量满足该预设数值分布吋, 根据预 先获取的所述检测设备对应区域的作业状态数据和所述第一安全数据, 生成第 二安全数据, 可进一步保证煤矿的作业安全。
[0086] 实施例六
[0087] 参考图 6, 图 6是本发明实施例六提供的煤矿安全监测装置的结构框图, 在上述 实施例的基础上, 本实施例还包括: 第二发送模块 504、 第三发送模块 505。
[0088] 第二发送模块 504, 用于在所述生成模块 502根据预先获取的所述检测设备对应 区域的作业状态数据和所述第一安全数据, 生成第二安全数据之后, 发送采集 控制命令到所述检测设备, 以使所述检测设备根据所述采集控制命令以第二采 集频率采集所述煤矿的第一安全数据, 其中所述第二采集频率大于第一采集频 率;
[0089] 所述接收模块 501, 还用于接收所述检测设备以第二采集频率采集到的所述煤 矿的第一安全数据。
[0090] 第三发送模块 505, 用于在所述接收模块 501接收煤矿不同区域的检测设备以第 二采集频率采集到的所述煤矿的第一安全数据之后, 在第一安全数据满足预设 条件吋, 发送警报控制命令到警报控制装置, 以使所述警报控制装置控制报警 器工作。
[0091] 实施例七
[0092] 参考图 7, 图 7是本发明实施例七提供的煤矿安全监测系统的结构框图, 本实施 例还包括: 检测设备 701、 中转设备 702和地面服务器 703、 警报控制装置 704、 报警器 705, 其中检测设备可以是多组, 一组检测设备可以具体包括危险气体检 测仪、 温度传感器、 气压传感器, 中转设备 702分别与检测设备 701、 地面服务 器 703和警报控制装置 704连接, 警报控制装置 704与报警器 705连接。
[0093] 其中, 检测设备 701, 设置在煤矿的不同区域, 用于以第一采集频率采集煤矿 的检测设备对应区域的第一安全数据, 其中所述第一安全数据包含所述检测设 备对应区域的环境安全数据和检测设备的位置标识。 危险气体检测仪用于检测 煤矿的危险气体的含量, 温度传感器用于测量煤矿的温度, 气压传感器用于测 量煤矿的气压, 并将第一安全数据发送到中转设备 702。
[0094] 中转设备 702, 用于在第一安全数据满足预设条件吋, 根据预先获取的所述检 测设备对应区域的作业状态数据和所述第一安全数据, 生成第二安全数据, 所 述作业状态数据包含煤矿的作业进程和作业人数, 并将第二安全数据发送到地 面服务器 703。
[0095] 地面服务器 703, 用于根据所述第二安全数据, 记录所述检测设备的位置标识 、 检测设备对应区域的环境安全数据和作业状态数据的对应关系, 并根据所述 环境安全数据与煤矿的作业进程和作业人数的关系确定所述煤矿的安全状态等 级, 完成对所述煤矿的安全监测。
[0096] 优选地, 所述环境安全数据包含检测设备对应区域的气压、 温度、 危险气体的 含量, 中转设备 702还用于在所述检测设备对应区域的气压超出第一预设阈值吋 , 或在所述检测设备对应区域的温度超出第二预设阈值吋, 或在所述检测设备 对应区域的危险气体的含量超出第三预设阈值吋, 根据预先获取的所述检测设 备对应区域的作业状态数据和所述第一安全数据, 生成第二安全数据。
[0097] 优选地, 中转设备 702还用于在接收煤矿不同区域的检测设备以第一采集频率 采集到的所述煤矿的第一安全数据之后, 发送采集控制命令到所述检测设备, 以使所述检测设备根据所述采集控制命令以第二采集频率采集所述煤矿的第一 安全数据, 其中所述第二采集频率大于第一采集频率; 在第一安全数据满足所 述预设条件吋, 接收所述检测设备以第二采集频率采集到的所述煤矿的第一安 全数据。
[0098] 优选地, 中转设备 702还用于在所述检测设备对应区域的气压、 温度、 危险气 体的含量满足预设的数值分布吋, 根据预先获取的所述检测设备对应区域的作 业状态数据和所述第一安全数据, 生成第二安全数据。
[0099] 优选地, 中转设备 702还用于所述根据预先获取的所述检测设备对应区域的作 业状态数据和所述第一安全数据, 生成第二安全数据之后, 发送采集控制命令 到所述检测设备。
[0100] 检测设备 701还用于根据所述采集控制命令以第二采集频率采集所述煤矿的第 一安全数据, 其中所述第二采集频率大于第一采集频率, 并将以第二采集频率 采集所述煤矿的第一安全数据发送到中转设备。
[0101] 优选地, 中转设备 702还用于接收所述检测设备以第二采集频率采集到的所述 煤矿的第一安全数据之后, 在第一安全数据满足预设条件吋, 发送警报控制命 令到警报控制装置。
[0102] 警报控制装置 704, 用于接收中转设备的警报控制命令, 并根据警报控制命令 控制报警器 705报警。
[0103] 实施例八
[0104] 参考图 8, 图 8是本发明实施例八提供的中转设备的结构框图, 本发明具体实施 例并不对所述接收端的具体实现做限定, 所述城市路灯状态监测装置包括: 一 个或多个处理器 801 (图 8中仅示出一个) ; 一个或多个输入设备 802 (图 8中仅 示出一个) , 一个或多个输出设备 803 (图 8中仅示出一个) 和存储器 804。 上述 处理器 801、 输入设备 802、 输出设备 803和存储器 804通过总线 805连接。 存储器 804用于存储指令, 处理器 801用于执行存储器 804存储的指令。 其中:
[0105] 所述处理器 801, 接收煤矿不同区域的检测设备到的所述煤矿的第一安全数据 , 其中所述第一安全数据包含所述检测设备对应区域的环境安全数据和检测设 备的位置标识, 在第一安全数据满足预设条件吋, 根据预先获取的所述检测设 备对应区域的作业状态数据和所述第一安全数据, 生成第二安全数据, 所述作 业状态数据包含煤矿的作业进程和作业人数, 将所述第二安全数据发送到地面 服务器, 以使地面服务器根据所述第二安全数据, 记录所述检测设备的位置标 识、 检测设备对应区域的环境安全数据和作业状态数据的对应关系, 并根据所 述环境安全数据与煤矿的作业进程和作业人数的关系确定所述煤矿的安全状态 等级, 完成对所述煤矿的安全监测。
[0106] 可选地, 所述环境安全数据包含检测设备对应区域的气压、 温度、 危险气体的 含量; 所述在第一安全数据满足预设条件吋, 根据预先获取的所述检测设备对 应区域的作业状态数据和所述第一安全数据, 生成第二安全数据, 包括: 在所 述检测设备对应区域的气压超出第一预设阈值吋, 或在所述检测设备对应区域 的温度超出第二预设阈值吋, 或在所述检测设备对应区域的危险气体的含量超 出第三预设阈值吋, 根据预先获取的所述检测设备对应区域的作业状态数据和 所述第一安全数据, 生成第二安全数据。
[0107] 可选地, 所述在第一安全数据满足预设条件吋, 根据预先获取的所述检测设备 对应区域的作业状态数据和所述第一安全数据, 生成第二安全数据, 还包括: 在所述检测设备对应区域的气压、 温度、 危险气体的含量满足预设的数值分布 吋, 根据预先获取的所述检测设备对应区域的作业状态数据和所述第一安全数 据, 生成第二安全数据。
[0108] 可选地, 所述根据预先获取的所述检测设备对应区域的作业状态数据和所述第 一安全数据, 生成第二安全数据之后, 还包括: 发送采集控制命令到所述检测 设备, 以使所述检测设备根据所述采集控制命令以第二采集频率采集所述煤矿 的第一安全数据, 其中所述第二采集频率大于第一采集频率, 接收所述检测设 备以第二采集频率采集到的所述煤矿的第一安全数据。
[0109] 可选地, 所述接收所述检测设备以第二采集频率采集到的所述煤矿的第一安全 数据之后, 还包括: 在第一安全数据满足预设条件吋, 发送警报控制命令到警 报控制装置, 以使所述警报控制装置控制报警器工作。
[0110] 所述存储器 804, 用于存储软件程序、 模块、 单元以及服务器中需要的数据信 息, 所述处理器 801通过运行存储在所述存储器 804的软件程序、 模块以及单元 , 从而执行各种功能应用以及数据处理。
[0111] 应当理解, 在本发明实施例中, 所称处理器 801可以是中央处理单元 (Central Processing Unit, CPU) , 该处理器还可以是其他通用处理器、 数字信号处理器 (Digital Signal Processor, DSP)、 专用集成电路 (Application Specific Integrated Circuit, ASIC)、 现成可编程门阵列(Field-Programmable Gate Array, FPGA)或 者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用 处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
[0112] 输入设备 802可以包括触控板、 指纹采集传感器 (用于采集用户的指纹信息和 指纹的方向信息) 、 麦克风、 数据采集装置、 数据接收装置等, 输出设备 803可 以包括显示器 (LCD等) 、 扬声器、 数据发送装置等。
[0113] 该存储器 804可以包括只读存储器和随机存取存储器, 并向处理器 801提供指 令和数据。 存储器 804的一部分还可以包括非易失性随机存取存储器。 例如, 存 储器 804还可以存储设备类型的信息。
[0114] 具体实现中, 本发明实施例中所描述的处理器 801、 输入设备 802、 输出设备 80 3和存储器 804可执行本发明实施例提供的煤矿安全监测方法的实施例中所描述 的实现方式, 也可执行服务器的实施例中所描述的实现方式, 在此不再赘述。
[0115] 所属领域的技术人员可以清楚地了解到, 为了描述的方便和简洁, 仅以上述各 功能单元、 模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功 能分配由不同的功能单元、 模块完成, 即将所述装置的内部结构划分成不同的 功能单元或模块, 以完成以上描述的全部或者部分功能。 实施例中的各功能单 元、 模块可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可 以两个或两个以上单元集成在一个单元中, 上述集成的单元既可以采用硬件的 形式实现, 也可以采用软件功能单元的形式实现。 另外, 各功能单元、 模块的 具体名称也只是为了便于相互区分, 并不用于限制本申请的保护范围。 上述系 统中单元、 模块的具体工作过程, 可以参考前述方法实施例中的对应过程, 在 此不再赘述。
[0116] 本领域普通技术人员可以意识到, 结合本文中所公幵的实施例描述的各示例的 单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结合来实现 。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特定应用和设 计约束条件。 专业技术人员可以对每个特定的应用来使用不同方法来实现所描 述的功能, 但是这种实现不应认为超出本发明的范围。
[0117] 在本发明所提供的实施例中, 应该理解到, 所揭露的装置和方法, 可以通过其 它的方式实现。 例如, 以上所描述的系统实施例仅仅是示意性的, 例如, 所述 模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实现吋可以有另外的划分 方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征 可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦合或 通讯连接可以是通过一些接口, 装置或单元的间接耦合或通讯连接, 可以是电 性, 机械或其它的形式。
[0118] 所述作为分离部件说明的单元可以是或者也可以不是物理上分幵的, 作为单元 显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可 以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或者全部单元 来实现本实施例方案的目的。 [0119] 另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可 以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功能单元的形式 实现。
[0120] 所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用 吋, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明实施 例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部 或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介 质中, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等) 或处理器 (processor) 执行本发明实施例各个实施例所述方法 的全部或部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 (R 0M, Read-Only Memory) 、 随机存取存储器 (RAM, Random Access Memory ) 、 磁碟或者光盘等各种可以存储程序代码的介质。
[0121] 本领域技术人员在考虑说明书及实践这里公幵的发明后, 将容易想到本发明的 其它实施方案。 本申请旨在涵盖本发明的任何变型、 用途或者适应性变化, 这 些变型、 用途或者适应性变化遵循本发明的一般性原理并包括本发明未公幵的 本技术领域中的公知常识或惯用技术手段。 说明书和实施例仅被视为示例性的 , 本发明的真正范围和精神由下面的权利要求指出。
[0122] 应当理解的是, 本发明并不局限于上面已经描述并在附图中示出的精确结构, 并且可以在不脱离其范围进行各种修改和改变。 本发明的范围仅由所附的权利 要求来限制。

Claims

权利要求书
[权利要求 1] 一种煤矿安全监测方法, 其特征在于, 包括:
接收煤矿不同区域的检测设备以第一采集频率采集到的所述煤矿的第 一安全数据, 其中所述第一安全数据包含所述检测设备对应区域的环 境安全数据和检测设备的位置标识;
在第一安全数据满足预设条件吋, 根据预先获取的所述检测设备对应 区域的作业状态数据和所述第一安全数据, 生成第二安全数据, 所述 作业状态数据包含煤矿的作业进程和作业人数; 将所述第二安全数据发送到地面服务器, 以使所述地面服务器根据所 述第二安全数据, 记录所述检测设备的位置标识、 检测设备对应区域 的环境安全数据和作业状态数据的对应关系, 并根据所述环境安全数 据与煤矿的作业进程和作业人数的关系确定所述煤矿的安全状态等级
, 完成对所述煤矿的安全监测。
[权利要求 2] 根据权利要求 1所述的煤矿安全监测方法, 其特征在于, 所述环境安 全数据包含检测设备对应区域的气压、 温度、 危险气体的含量; 所述在第一安全数据满足预设条件吋, 根据预先获取的所述检测设备 对应区域的作业状态数据和所述第一安全数据, 生成第二安全数据, 包括:
在所述检测设备对应区域的气压超出第一预设阈值吋, 或在所述检测 设备对应区域的温度超出第二预设阈值吋, 或在所述检测设备对应区 域的危险气体的含量超出第三预设阈值吋, 根据预先获取的所述检测 设备对应区域的作业状态数据和所述第一安全数据, 生成第二安全数 据。
[权利要求 3] 根据权利要求 2所述的煤矿安全监测方法, 其特征在于, 所述在第一 安全数据满足预设条件吋, 根据预先获取的所述检测设备对应区域的 作业状态数据和所述第一安全数据, 生成第二安全数据, 还包括: 在所述检测设备对应区域的气压、 温度、 危险气体的含量满足预设的 数值分布吋, 根据预先获取的所述检测设备对应区域的作业状态数据 和所述第一安全数据, 生成第二安全数据。
[权利要求 4] 根据权利要求 1所述的煤矿安全监测方法, 其特征在于, 所述根据预 先获取的所述检测设备对应区域的作业状态数据和所述第一安全数据 , 生成第二安全数据之后, 还包括:
发送采集控制命令到所述检测设备, 以使所述检测设备根据所述采集 控制命令以第二采集频率采集所述煤矿的第一安全数据, 其中所述第 二采集频率大于第一采集频率;
接收所述检测设备以第二采集频率采集到的所述煤矿的第一安全数据
[权利要求 5] 根据权利要求 4所述的煤矿安全监测方法, 其特征在于, 所述接收所 述检测设备以第二采集频率采集到的所述煤矿的第一安全数据之后, 还包括:
在第一安全数据满足预设条件吋, 发送警报控制命令到警报控制装置 , 以使所述警报控制装置控制报警器工作。
[权利要求 6] —种煤矿安全监测装置, 其特征在于, 包括:
接收模块, 用于接收煤矿不同区域的检测设备以第一采集频率采集到 的所述煤矿的第一安全数据, 其中所述第一安全数据包含所述检测设 备对应区域的环境安全数据和检测设备的位置标识;
生成模块, 用于在第一安全数据满足预设条件吋, 根据预先获取的所 述检测设备对应区域的作业状态数据和所述第一安全数据, 生成第二 安全数据, 所述作业状态数据包含煤矿的作业进程和作业人数; 第一发送模块, 用于将所述第二安全数据发送到地面服务器, 以使地 面服务器根据所述第二安全数据, 记录所述检测设备的位置标识、 检 测设备对应区域的环境安全数据和作业状态数据的对应关系, 并根据 所述环境安全数据与煤矿的作业进程和作业人数的关系确定所述煤矿 的安全状态等级, 完成对所述煤矿的安全监测。
[权利要求 7] 根据权利要求 6所述的煤矿安全监测装置, 其特征在于, 所述环境安 全数据包含检测设备对应区域的气压、 温度、 危险气体的含量; 所述生成模块, 具体用于在所述检测设备对应区域的气压超出第一预 设阈值吋, 或在所述设备对应区域的超出第二预设阈值吋, 或在所述 危险气体的含量超出第三预设阈值吋, 根据预先获取的所述检测设备 对应区域的作业状态数据和所述第一安全数据, 生成第二安全数据。
[权利要求 8] 根据权利要求 7所述的煤矿安全监测装置, 其特征在于,
所述生成模块, 还用于在所述检测设备对应区域的气压、 温度、 危险 气体的含量满足预设的数值分布吋, 根据预先获取的所述检测设备对 应区域的作业状态数据和所述第一安全数据, 生成第二安全数据。
[权利要求 9] 一种煤矿安全监测装置, 包括存储器、 处理器以及存储在所述存储器 中并可在所述处理器上运行的计算机程序, 其特征在于, 所述处理器 执行所述计算机程序吋实现如权利要求 1至 5任一项所述煤矿安全监测 方法的步骤。
[权利要求 10] —种计算机可读存储介质, 所述计算机可读存储介质存储有计算机程 序, 其特征在于, 所述计算机程序被处理器执行吋实现如权利要求 1 至 5任一项所述煤矿安全监测方法的步骤。
PCT/CN2017/093702 2017-06-16 2017-07-20 煤矿安全监测方法及装置 WO2018227708A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710461669.4A CN107255991B (zh) 2017-06-16 2017-06-16 煤矿安全监测方法及装置
CN201710461669.4 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018227708A1 true WO2018227708A1 (zh) 2018-12-20

Family

ID=60023167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093702 WO2018227708A1 (zh) 2017-06-16 2017-07-20 煤矿安全监测方法及装置

Country Status (2)

Country Link
CN (1) CN107255991B (zh)
WO (1) WO2018227708A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115242695A (zh) * 2022-07-22 2022-10-25 高新兴物联科技有限公司 服务器的环境状态监测方法、设备及计算机可读存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110503749A (zh) * 2018-05-18 2019-11-26 黄暐皓 门锁装置
CN112614312A (zh) * 2020-12-24 2021-04-06 无锡扬晟科技股份有限公司 一种基于图像监控的作业安全防护系统
CN113128866A (zh) * 2021-04-16 2021-07-16 深圳市艾赛克科技有限公司 矿山企业的安全生产管理方法及系统
CN113311778A (zh) * 2021-05-18 2021-08-27 广州金燃智能系统有限公司 一种燃气表的控制方法、装置及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004102692A (ja) * 2002-09-10 2004-04-02 Mitsubishi Heavy Ind Ltd プラント安全管理システム、および同システムにおけるガス濃度監視方法、ならびにガス濃度監視プログラム
WO2013115438A1 (ko) * 2012-02-01 2013-08-08 주식회사 미리코 스마트폰을 이용한 가스검출 시스템 및 가스검출 방법
CN104765304A (zh) * 2015-03-26 2015-07-08 江西理工大学 一种用于传感器数据采集、处理、传输的系统
CN105137948A (zh) * 2015-09-15 2015-12-09 泰山医学院 一种可视化智能监控数据安防控制分站系统
CN106640198A (zh) * 2016-12-28 2017-05-10 河南工业和信息化职业学院 一种煤矿井下巷道通风报警装置
CN106768652A (zh) * 2016-12-16 2017-05-31 中国石油天然气集团公司 油库监测方法和系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101581932A (zh) * 2009-06-23 2009-11-18 北京旺斯达科技有限公司 一种煤矿安全监控系统
CN201804235U (zh) * 2010-03-15 2011-04-20 张斌 可改变采集速率的数据采集器
US20130271286A1 (en) * 2012-04-14 2013-10-17 Zhi Quan Methods and Systems for Monitoring Environmental Conditions Using Wireless Sensor Devices and Actuator Networks
CN102705008A (zh) * 2012-05-18 2012-10-03 解波 一种基于无线网络的煤矿安全监测系统
CN103778687B (zh) * 2014-01-08 2016-07-13 广西鑫朗通信技术有限公司 一种车辆无线视频监控的高效传输系统
CN204827532U (zh) * 2015-06-23 2015-12-02 张帆 一种基于物联网的煤矿井下报警监控系统
CN105141922B (zh) * 2015-09-02 2018-10-02 广东美的制冷设备有限公司 基于空调的安防监控方法和空调器
CN106300660B (zh) * 2016-08-13 2019-01-18 广州特为电力科技有限公司 一种输电线路设备远程监控方法及系统
CN106194263B (zh) * 2016-08-29 2019-04-02 中煤科工集团重庆研究院有限公司 煤矿瓦斯灾害监控预警系统及预警方法
CN106376048A (zh) * 2016-11-03 2017-02-01 中国矿业大学(北京) 一种基于事件驱动的煤矿井下无线传感器网络系统
CN106761928A (zh) * 2016-11-25 2017-05-31 中原工学院 一种煤矿安全监控系统的数据采集方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004102692A (ja) * 2002-09-10 2004-04-02 Mitsubishi Heavy Ind Ltd プラント安全管理システム、および同システムにおけるガス濃度監視方法、ならびにガス濃度監視プログラム
WO2013115438A1 (ko) * 2012-02-01 2013-08-08 주식회사 미리코 스마트폰을 이용한 가스검출 시스템 및 가스검출 방법
CN104765304A (zh) * 2015-03-26 2015-07-08 江西理工大学 一种用于传感器数据采集、处理、传输的系统
CN105137948A (zh) * 2015-09-15 2015-12-09 泰山医学院 一种可视化智能监控数据安防控制分站系统
CN106768652A (zh) * 2016-12-16 2017-05-31 中国石油天然气集团公司 油库监测方法和系统
CN106640198A (zh) * 2016-12-28 2017-05-10 河南工业和信息化职业学院 一种煤矿井下巷道通风报警装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115242695A (zh) * 2022-07-22 2022-10-25 高新兴物联科技有限公司 服务器的环境状态监测方法、设备及计算机可读存储介质
CN115242695B (zh) * 2022-07-22 2023-08-15 高新兴物联科技股份有限公司 服务器的环境状态监测方法、设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN107255991B (zh) 2019-12-31
CN107255991A (zh) 2017-10-17

Similar Documents

Publication Publication Date Title
WO2018227708A1 (zh) 煤矿安全监测方法及装置
AU2016380948B2 (en) Gas leak detection and location determination
CN108107780B (zh) 智能家电的断电方法、装置、系统及计算机可读存储介质
WO2018227717A1 (zh) 城市路灯状态监测方法及装置
CN109859431B (zh) 一种火灾安全隐患的检测方法、系统、设备及介质
CN102938187A (zh) 公共安全事件监测系统
CN106764459A (zh) 管网振动预警装置、系统及方法
CN112447028A (zh) 一种报警方法、系统及传感器设备
JP2017111532A (ja) 制御装置及び統合生産システム
CN107270968A (zh) 一种室内无尘环境监测的一体机系统
CN106781173A (zh) 智能消防报警装置
KR20170024975A (ko) 지역 공단별 위험 요소 모니터링 시스템 및 이를 이용한 위험 요소 모니터링 방법
CN109102144B (zh) 作业风险可能性等级的确定方法、装置及存储介质
CN114238330A (zh) 一种数据处理方法、装置、电子设备和存储介质
CN104217524A (zh) 一种烟雾监控系统及方法
CN108731731A (zh) 一种防雷型安监系统及防雷型安监方法
JP5089716B2 (ja) データ収集装置、空気調和装置、データ収集システム、データ収集方法及びプログラム
KR102436590B1 (ko) 재난 대응 시스템 및 방법
JP6238849B2 (ja) プラント計装システム
CN103061811A (zh) 矿井安全监测系统
KR20100037370A (ko) 센서 네트워크의 데이터 통합 관리방법
JP7243530B2 (ja) 管理方法及び管理装置
JP7226192B2 (ja) 管理方法及び移動端末
EP3889934A1 (en) Management system, management method, and program
KR20210101677A (ko) 스마트 폰을 이용한 응급 상황 감지 및 알람 장치,시스템과 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17913214

Country of ref document: EP

Kind code of ref document: A1