WO2018227652A1 - 一种压缩空气涡轮直流发电机系统 - Google Patents

一种压缩空气涡轮直流发电机系统 Download PDF

Info

Publication number
WO2018227652A1
WO2018227652A1 PCT/CN2017/089874 CN2017089874W WO2018227652A1 WO 2018227652 A1 WO2018227652 A1 WO 2018227652A1 CN 2017089874 W CN2017089874 W CN 2017089874W WO 2018227652 A1 WO2018227652 A1 WO 2018227652A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
power
power generation
generator
direct current
Prior art date
Application number
PCT/CN2017/089874
Other languages
English (en)
French (fr)
Inventor
吴德平
Original Assignee
苏州达思灵新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州达思灵新能源科技有限公司 filed Critical 苏州达思灵新能源科技有限公司
Priority to RU2019107034A priority Critical patent/RU2714894C1/ru
Priority to EP17913718.7A priority patent/EP3496244B1/en
Priority to JP2019538295A priority patent/JP6824421B2/ja
Priority to US16/331,937 priority patent/US10797627B2/en
Priority to KR1020197006507A priority patent/KR102187194B1/ko
Publication of WO2018227652A1 publication Critical patent/WO2018227652A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/146Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by throttling the volute inlet of radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • F05D2220/762Application in combination with an electrical generator of the direct current (D.C.) type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/304Spool rotational speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/25Special adaptation of control arrangements for generators for combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present disclosure relates to the field of electrical technology, and more particularly to a compressed air turbine DC generator system.
  • a compressed air turbine DC generator system comprising:
  • a direct current generator for generating a direct current using a power output of the aerodynamic turbine engine as a drive input
  • control unit for controlling a rotational speed of the aerodynamic turbine engine to generate the power output and adjusting an output current and/or an output voltage of the direct current generator.
  • the aerodynamic turbine engine includes a turbine chamber, a turbine, a power output shaft, an intake regulating valve, an intake port, and an exhaust port, wherein
  • the air inlet and the air outlet are respectively connected to the turbine chamber;
  • the intake regulating valve is disposed at the air inlet
  • the turbine is disposed in the turbine chamber
  • the turbine is coupled to the power take-off shaft.
  • control unit is further configured to send a control signal to the air intake adjusting valve
  • the intake air regulating valve is configured to introduce high-pressure air from the air inlet according to a switch of the control signal and dynamically adjust a flow rate of the air inlet of the air inlet when the control signal is received
  • the turbine chamber expands to perform work to propel the turbine to rotate, thereby adjusting the speed and torque of the power take-off shaft.
  • the power output shaft simultaneously serves as a rotor shaft of the direct current generator, and two high speed bearings on the rotor shaft are respectively located at a power output end of the aerodynamic turbine engine and The rear end of the DC generator.
  • the housing of the aerodynamic turbine engine and the housing of the direct current generator are integrated, and the stator of the direct current generator is fixed to the housing of the aerodynamic turbine engine. together.
  • the turbine of the aerodynamic turbine engine may also be a two-stage turbine structure, including a primary turbine and a secondary turbine.
  • the primary turbine and the secondary turbine are located on the same drive shaft that delivers the discharged low pressure air output to the secondary turbine.
  • control unit is further configured to receive a start power generation command from the CAN bus, where the start power generation command is used to instruct the control unit to control the air intake control valve to open and close, and determine
  • the power generation mode of the system includes at least one of a constant current power generation mode, a constant voltage power generation mode, a constant power generation mode, and a power reduction mode.
  • control unit is further configured to determine an operating state of the aerodynamic turbine engine according to a ratio of power reduction when the system enters the power-down power generation mode; When the power generation power is less than 30% of the rated power, it enters the idle state; when the power generation power is lower than the rated power of 50%, it enters the low speed state; otherwise, it enters the rated power state. state.
  • control unit is further configured to perform excitation control on the DC generator.
  • system further includes:
  • An external excitation unit is coupled to the DC generator for performing excitation control of the DC generator.
  • the DC generator is further configured to directly connect the power generation output to the DC power bus through rectification, and feed back the output current and/or the output voltage to the control unit.
  • the disclosure has the characteristics of miniaturization and high integration, and effectively overcomes the shortcomings of low power density and high vibration noise of the internal combustion engine power generation system, and has high industrial utilization value.
  • the present disclosure can be used as an auxiliary power source for the development of an electric vehicle, and effectively solves the problem of mileage anxiety of the pure electric vehicle.
  • FIG. 1 shows a block diagram of a compressed air turbine DC generator system in accordance with an embodiment of the present disclosure.
  • FIG. 2 shows a circuit block diagram of a compressed air turbine DC generator system in accordance with an embodiment of the present disclosure.
  • FIG. 3 shows a main control software flow diagram of a compressed air turbine DC generator system in accordance with an embodiment of the present disclosure.
  • Turbine chamber 1. Turbine chamber; 2. Double salient pole generator; 3. Power generation/system control unit; 4. Turbine;
  • the present disclosure proposes a completely new solution for generating a direct current generator by using a compressed air power to form an aerodynamic turbine engine through a turbine.
  • the power generation system uses the constant-pressure compressed air output from the on-board high-pressure air reservoir bottle to power the turbine engine to drive the doubly salient DC generator to generate electricity.
  • Turbine conversion efficiency is high.
  • the ultra-high speed of the turbine makes the power density high, the volume is small, the vibration and noise are low, and the exhaust gas is air-free (zero emission), which is very suitable for use as an auxiliary power source on a pure electric vehicle.
  • the low temperatures created by the expansion of the compressed air eliminate the need for any external cooling of the entire turbine and generator. There is also no lubrication problem with the turbine.
  • the high speed bearings of the engine also do not require any external cooling system. Therefore, the whole system has a simple structure and high reliability.
  • the compressed air turbine direct current generator system may include: an aerodynamic turbine engine (which may be simply referred to as a turbine engine, an engine); a direct current generator (which may be referred to as a generator) for using the aerodynamic turbine engine Power output as a drive input to generate DC current; control a unit for controlling a rotational speed of the aerodynamic turbine engine to generate the power output and adjusting an output current and/or an output voltage of the direct current generator.
  • the input shaft of the doubly salient generator is directly connected to the output shaft of the turbine engine for generating a direct current, and outputting direct current constant current or constant voltage power.
  • the power generation/system control unit 3 is directly electrically connected to the doubly salient generator 2, and can receive a power generation command via a CAN (Controller Area Network) bus to adjust the output current or voltage power of the doubly salient generator 2.
  • the power generation/system control unit 3 is capable of managing and controlling the rotational speed of the aerodynamic turbine engine while continuously adjusting the output current or voltage of the doubly salient generator 2.
  • the aerodynamic turbine engine may include a turbine chamber 1, a turbine 4 (also referred to as a turbine), an exhaust port 5 (or an air outlet), an air inlet 6, and a power output shaft 7 And an intake regulator valve 8.
  • the DC generator can be a doubly salient generator 2 (or a doubly salient DC generator).
  • the control unit can also be referred to as a power generation/system control unit 3.
  • the air inlet 6 and the exhaust port 5 are respectively in communication with the turbine chamber 1.
  • the intake regulator valve 8 is disposed at the intake port 6.
  • the turbine 4 is disposed within the turbine chamber 1.
  • the turbine 4 is connected to the power take-off shaft 7.
  • control unit is further configured to send a control signal to the air intake adjusting valve.
  • the intake air regulating valve is configured to introduce high-pressure air from the air inlet according to a switch of the control signal and dynamically adjust a flow rate of the air inlet of the air inlet when the control signal is received.
  • the turbine chamber expands to perform work to propel the turbine to rotate, thereby adjusting the speed and torque of the power take-off shaft.
  • the aerodynamic turbine engine can directly introduce high pressure air into the turbine to expand work, push the turbine to rotate, and the released low pressure air is exhausted by the exhaust port.
  • the intake regulator valve receives a control signal from the power generation/system control unit to adjust the flow rate of the intake air to adjust the speed and torque of the turbine engine output shaft.
  • the power generation/system control unit controls an intake valve of the turbine engine to regulate engine intake air flow and flow rate, which may be at a generator in a DC load such as a drive motor controller,
  • the dynamic resistance, etc. maintains a constant rotational speed when changing, and can be controlled by a closed loop to perform constant current power generation or constant voltage power generation.
  • the aerodynamic turbine engine can increase the secondary turbine.
  • the turbine of the aerodynamic turbine engine may be a two-stage turbine structure including a primary turbine and a secondary turbine.
  • the primary turbine and the secondary turbine are located on the same drive shaft that delivers the discharged low pressure air output to the secondary turbine.
  • the energy in the remaining low-pressure air of the first stage can be further converted into a power output. This further improves the conversion efficiency of the turbine and significantly increases the power output of the system.
  • control unit is further configured to perform excitation control on the DC generator.
  • the DC generator is further configured to directly connect the power generation output to the DC power bus through rectification, and feed back the output current and/or the output voltage back to the control unit.
  • the doubly salient generator 2 receives excitation control from a power generation/system control unit 3 (for example, its power generation drive unit), rectifies the output voltage or current, and delivers it to a DC power bus, and generates a current and a direct current. The voltage is fed back to the power generation/system control unit 3.
  • the three-phase high-frequency power output of the doubly salient generator 2 is directly rectified and directly outputs a direct current.
  • the turbine 4 is coaxial with the generator.
  • the power output shaft simultaneously serves as a rotor shaft of the direct current generator, and two high speed bearings on the rotor shaft are respectively located at a power output end of the aerodynamic turbine engine and The rear end of the DC generator.
  • the rear end of the direct current generator refers to an end close to the power generation/system control unit 3.
  • the entire power generation system in this embodiment is an integral integrated module. Referring to FIG. 1, the whole installation and disassembly can be performed.
  • the compressed air turbine DC Because the generator system has no vibration components, it is not necessary to consider the vibration-damping structure when installing, which is convenient for integrated vehicle installation and design.
  • the housing of the aerodynamic turbine engine is integral with the housing of the direct current generator.
  • the stator of the direct current generator is fixed to the housing of the aerodynamic turbine engine.
  • the aerodynamic turbine engine absorbs heat during high pressure air expansion and provides cooling to the generator stator directly through the generator housing. Therefore, the generator does not need to add a heat dissipation structure, which reduces the volume and weight of the generator.
  • the doubly salient DC generator has a low rotor inertia and is suitable for matching the ultra-high output speed of the aero-turbine engine for power generation, high power generation efficiency, and high volume power density.
  • the present embodiment is different from the above embodiment in that the power generation system may further include an external excitation unit connected to the DC generator for performing excitation control on the DC generator.
  • the DC generator is further configured to directly connect the power generation output to the DC power bus through rectification, and feed back the output current and/or the output voltage back to the control unit.
  • the power generation/system control unit 3 is built in the doubly salient generator 2, and the power output of the external power battery is used as the excitation source for excitation control, and the power generation current can be actively and dynamically adjusted according to the power demand (also It is called output current, DC current, etc.) or power generation voltage (also called output voltage, DC voltage, etc.).
  • the power demand also It is called output current, DC current, etc.
  • power generation voltage also called output voltage, DC voltage, etc.
  • control mode of the power generation/system control unit 3 includes constant current power generation, constant voltage power generation, constant power power generation, and the like.
  • control unit is further configured to receive a start power generation command from the CAN bus, where the start power generation command is used to instruct the control unit to control the air intake control valve to open and close, and determine
  • the power generation mode of the system includes at least one of a constant current power generation mode, a constant voltage power generation mode, a constant power generation mode, and a power reduction mode.
  • control unit is further configured to determine an operating state of the aerodynamic turbine engine according to a ratio of power reduction when the system enters the power-down power generation mode. Wherein, when the power generation power is less than 30% of the rated power, the vehicle enters the idle state; when the power generation power is lower than the rated power of 50%, it enters the low speed state; in other cases, it enters the rated power state.
  • the power generation/system control unit can perform constant current power generation or constant voltage power generation in a closed loop control.
  • the power generation control process may be a PID (Proportion Integration Differentiation) closed-loop control process.
  • the PID control In the constant current power generation control mode, the PID control consists of the generator current outer loop and the excitation current inner loop control, and the target generator current from the CAN command received from the CAN bus is the control target, with the system output voltage change and current change. , quickly adjust the actual generated current.
  • the PID control In the constant voltage power generation control mode, the PID control consists of the generator voltage outer loop and the excitation current inner loop control. The target power generation voltage from the CAN command is used as the control target, and the actual power generation is quickly adjusted as the DC current changes and the voltage changes. Voltage.
  • the PID control consists of the power generation outer loop and the excitation current inner loop control, with the target power generated from the CAN command as the control target, and the actual power generation is quickly adjusted as the DC voltage changes and the current changes. power.
  • the present disclosure provides a compressed air turbine DC generator system having a miniaturized, highly integrated feature. Therefore, the pure electric vehicle can select the system as an auxiliary power source during the development process, effectively solving the problem of pure electric vehicle mileage anxiety.
  • the disclosure effectively overcomes the shortcomings of low power density and high vibration noise of the internal combustion engine power generation system and has high industrial utilization value.
  • an example of a workflow of the main control software of the present disclosure is as follows:
  • the status of the CAN command is checked to determine whether there is a start power generation command (301). If the power generation command is not activated, the excitation is turned off, and the throttle valve (also referred to as a compressed air regulator valve, intake regulator valve, regulator valve, etc.) (303) is closed to put the system in standby mode.
  • a start power generation command also referred to as a compressed air regulator valve, intake regulator valve, regulator valve, etc.
  • the system can immediately open The intake air regulating valve (302) is activated and the speed of the turbine is monitored. Determine if the speed reaches the target value (305). If the speed cannot reach the set target, judge whether to open the intake regulator to the maximum (306). With the intake regulator valve open to maximum, check the intake pressure (307). If the turbine intake pressure still fails to meet the requirements (308), the compressed air pressure in the turbine chamber is insufficient and the system enters the reduced power generation mode (309). When the intake regulating valve is not open to the maximum, the intake regulating valve is faulty, and the regulating valve fault flag (310) can be set. At this time, the system stops working and enters the shutdown state.
  • the system determines the power generation mode (312) according to the CAN command, and includes, for example, a constant current power generation mode, a constant voltage power generation mode, and a constant power generation mode.
  • the operational state of the aerodynamic turbine engine is determined based on the ratio of the reduced power. For example, the idle state is entered when the generated power is less than, for example, 30% of the rated power. When the power generation is lower than the rated power, for example, 50%, the system enters a low speed state; in other cases, it enters the rated power state.
  • the present disclosure can use compressed air as a power to drive a double salient DC generator to generate electricity through an aerodynamic turbine engine, including constant current power generation or constant voltage power generation, etc., and is suitable as an auxiliary power source for a pure electric drive electric vehicle or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Eletrric Generators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)

Abstract

一种压缩空气涡轮直流发电机系统,包括:空气动力涡轮发动机;直流发电机(2),用于以所述空气动力涡轮发动机的动力输出作为驱动输入产生直流电流;控制单元(3),用于控制所述空气动力涡轮发动机的转速以产生所述动力输出,并调节所述直流发电机(2)的输出电流和/或输出电压。该压缩空气涡轮直流发电机系统具有小型化高度集成特征,有效克服了内燃机发电系统功率密度低、振动噪声高等缺点,具有高度产业利用价值,可以作为电动汽车在开发过程中的辅助电源,有效的解决纯电动车里程焦虑问题。

Description

一种压缩空气涡轮直流发电机系统
交叉引用
本申请主张2017年6月15日提交的中国专利申请号为201710447309.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及电气技术领域,尤其涉及一种压缩空气涡轮直流发电机系统。
背景技术
目前,世界上纯电动车使用的各种辅助电源都是采用传统活塞式燃油/燃气发动机作为动力进行发电的。发动机技术成熟、产品多样化。但是这种发动机始终无法克服燃油效率低、振动和噪声高、冷却系统复杂的基本问题。
发明内容
有鉴于此,本公开提出了一种压缩空气涡轮直流发电机系统,包括:
空气动力涡轮发动机;
直流发电机,用于以所述空气动力涡轮发动机的动力输出作为驱动输入产生直流电流;
控制单元,用于控制所述空气动力涡轮发动机的转速以产生所述动力输出,并调节所述直流发电机的输出电流和/或输出电压。
在一种可能的实现方式中,所述空气动力涡轮发动机包括涡轮室、涡轮、动力输出轴、进气调节阀、进气口和排气口,其中,
所述进气口和所述排气口分别与所述涡轮室连通;
所述进气调节阀设置于所述进气口;
所述涡轮设置于所述涡轮室内;
所述涡轮与所述动力输出轴连接。
在一种可能的实现方式中,所述控制单元,还用于向所述进气调节阀发送控制信号;
所述进气调节阀,用于在收到所述控制信号的情况下,根据所述控制信号的开关以及动态调节所述进气口进气的流速,将高压空气从所述进气口引入所述涡轮室中膨胀做功,以推动所述涡轮旋转,进而调节所述动力输出轴的转速和扭矩。
在一种可能的实现方式中,所述动力输出轴同时作为所述直流发电机的转子轴,所述转子轴上的两个高速轴承分别位于所述空气动力涡轮发动机的动力输出端和所述直流发电机的后端。
在一种可能的实现方式中,所述空气动力涡轮发动机的壳体与所述直流发电机的壳体为一体结构,所述直流发电机的定子与所述空气动力涡轮发动机的壳体固定在一起。
在一种可能的实现方式中,所述空气动力涡轮发动机的涡轮还可以是两级涡轮结构,包括一级涡轮和二级涡轮。所述一级涡轮和所述二级涡轮位于同一个驱动轴上,所述一级涡轮将排出的低压空气输出传送至所述二级涡轮。
在一种可能的实现方式中,所述控制单元,还用于从CAN总线接收启动发电命令,所述启动发电命令用于指示所述控制单元控制所述进气调节阀开闭,并确定所述系统的发电模式,所述发电模式包括恒流发电模式、恒压发电模式、恒功率发电模式、降功率发电模式中的至少一种。
在一种可能的实现方式中,所述控制单元,还用于在所述系统进入所述降功率发电模式的情况下,根据降功率的比例,确定所述空气动力涡轮发动机的工作状态;其中,在发电功率小于额定功率的30%时进入怠速状态;在发电功率低于额定功率50%时,进入低转速状态;其他情况进入额定功率状 态。
在一种可能的实现方式中,所述控制单元,还用于对所述直流发电机进行励磁控制。
在一种可能的实现方式中,该系统还包括:
外部励磁单元,与所述直流发电机连接,用于对所述直流发电机进行励磁控制。
在一种可能的实现方式中,所述直流发电机,还用于将发电输出通过整流直接连接在直流动力总线上,并将输出电流和/或输出电压反馈回所述控制单元。
本公开具有小型化高度集成特征,有效克服了内燃机发电系统功率密度低、振动噪声高等缺点而具高度产业利用价值。本公开可以作为电动汽车在开发过程中的辅助电源,有效的解决纯电动车里程焦虑问题。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1示出根据本公开一实施例的压缩空气涡轮直流发电机系统的结构图。
图2示出根据本公开一实施例的压缩空气涡轮直流发电机系统的电路原理框图。
图3示出根据本公开一实施例的压缩空气涡轮直流发电机系统的主控制软件流程图。
附图标记列表
1、涡轮室;2、双凸极发电机;3、发电/系统控制单元;4、涡轮;
5、出气口;6、进气口;7、动力输出轴;8、进气调节阀。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
随着汽车发动机涡轮增压技术的不断完善,涡轮机的技术不断进步使得转换效率显著提高。本公开提出了一种全新的采用压缩空气动力通过涡轮机形成空气动力涡轮发动机驱动直流发电机的方案。这种发电系统可使用车载高压空气储器瓶输出的恒压压缩空气作为动力,为涡轮发动机提供动力进而推动双凸极直流发电机进行发电。涡轮机转换效率高。涡轮机超高转速使得功率密度高、体积小、振动及噪音低,尾气为空气无排放(零排放),非常适合在纯电动车上作为辅助电源使用。尤其是压缩空气膨胀产生的低温使得整个涡轮机和发电机无需任何外部冷却。涡轮机也没有润滑问题。发动机的高速轴承也无需任何外部冷却系统。因此,整套系统结构简洁,可靠性高。
实施例1
图1示出根据本公开一实施例的压缩空气涡轮直流发电机系统的结构图。如图1所示,该压缩空气涡轮直流发电机系统可以包括:空气动力涡轮发动机(可简称为涡轮发动机、发动机);直流发电机(可简称发电机),用于以所述空气动力涡轮发动机的动力输出作为驱动输入产生直流电流;控制 单元,用于控制所述空气动力涡轮发动机的转速以产生所述动力输出,并调节所述直流发电机的输出电流和/或输出电压。
例如,双凸极发电机的输入轴与涡轮发动机输出轴直接连接,用于产生直流电流,输出直流恒流电力或恒压电力。发电/系统控制单元3与双凸极发电机2直接电气连接,可以通过CAN(Controller Area Network,控制器局域网)总线接收发电命令,对双凸极发电机2的输出电流或电压动力调节。发电/系统控制单元3能够对空气动力涡轮发动机的转速进行管理和控制,同时对双凸极发电机2的输出电流或电压进行连续调节。
在一种可能的实现方式中,空气动力涡轮发动机可以包括涡轮室1、涡轮4(也可以称为涡轮机)、排气口5(或称为出气口)、进气口6、动力输出轴7和进气调节阀8。直流发电机可以为双凸极发电机2(或称为双凸极直流发电机)。控制单元也可以称为发电/系统控制单元3。
其中,所述进气口6和所述排气口5分别与所述涡轮室1连通。所述进气调节阀8设置于所述进气口6。所述涡轮4设置于所述涡轮室1内。所述涡轮4与所述动力输出轴7连接。
在一种可能的实现方式中,所述控制单元,还用于向所述进气调节阀发送控制信号。所述进气调节阀,用于在收到所述控制信号的情况下,根据所述控制信号的开关以及动态调节所述进气口进气的流速,将高压空气从所述进气口引入所述涡轮室中膨胀做功,以推动所述涡轮旋转,进而调节所述动力输出轴的转速和扭矩。
具体地,空气动力涡轮发动机可以将高压空气直接引入涡轮机中膨胀做功,推动涡轮旋转,释放的低压空气由排气口排出。进气调节阀接收来自发电/系统控制单元的控制信号对进气的流速进行调节,进而调节涡轮发动机输出轴的转速和扭矩。所述发电/系统控制单元控制涡轮发动机的进气调节阀调节发动机进气流量和流速,可以在发电机在直流负载例如驱动电机控制器、 动力电阻等,变化时保持恒定的转速,同时可以闭环控制进行恒流发电或者恒压发电。
以提高压缩空气转换效率为目标,所述空气动力涡轮发动机可以增加二级涡轮。在一种可能的实现方式中,所述空气动力涡轮发动机的涡轮可以是两级涡轮结构,包括一级涡轮和二级涡轮。所述一级涡轮和所述二级涡轮位于同一个驱动轴上,所述一级涡轮将排出的低压空气输出传送至所述二级涡轮。采用二级涡轮结构,可以将第一级剩余的低压空气中的能量进一步转换为动力输出。这使得涡轮机的转换效率得到进一步提高、可显著提高系统发电输出功率。
实施例2
本实施例与上述实施例的不同之处在于,所述控制单元,还用于对所述直流发电机进行励磁控制。所述直流发电机,还用于将发电输出通过整流直接连接在直流动力总线上,并将输出电流和/或输出电压反馈回所述控制单元。
例如:所述双凸极发电机2接受来自发电/系统控制单元3(例如其发电驱动单元)的励磁控制,将输出的电压或电流整流后输送至直流动力总线上,并将发电电流和直流电压反馈回发电/系统控制单元3。本实施例中双凸极发电机2的三相高频动力输出经整流后直接输出直流电流。
本实施例中,涡轮4与发电机同轴。在一种可能的实现方式中,所述动力输出轴同时作为所述直流发电机的转子轴,所述转子轴上的两个高速轴承分别位于所述空气动力涡轮发动机的动力输出端和所述直流发电机的后端。所述直流发电机的后端是指靠近发电/系统控制单元3的一端。
实施例3
本实施例与上述实施例的不同之处在于,本实施例中整个发电系统是一个整体集成模块,参考图1,可以整体安装和拆卸。所述压缩空气涡轮直流 发电机系统由于无振动部件因此安装时无需考虑减振结构,方便整车集成机械安装和设计。
在一种可能的实现方式中,所述空气动力涡轮发动机的壳体与所述直流发电机的壳体为一体结构。所述直流发电机的定子与所述空气动力涡轮发动机的壳体固定在一起。所述空气动力涡轮发动机在高压空气膨胀过程中吸收热量,通过发电机壳体直接为发电机定子提供冷却。因此发电机无需加散热结构,减小了发电机整机体积和重量。此外,所述双凸极直流发电机由于转子转动惯量低,适合匹配空气动力涡轮发动机的超高输出转速进行发电,发电效率高,可实现高体积功率密度。
实施例4
本实施例与上述实施例的不同之处在于,该发电系统还可以包括外部励磁单元,与所述直流发电机连接,用于对所述直流发电机进行励磁控制。所述直流发电机,还用于将发电输出通过整流直接连接在直流动力总线上,并将输出电流和/或输出电压反馈回所述控制单元。
例如,本实施例中所述发电/系统控制单元3内置于双凸极发电机2,以外部动力电池的动力输出作为励磁源进行励磁控制,可根据动力需求直接动态主动调节发电电流(也可以称为输出电流、直流电流等)或者发电电压(也可以称为输出电压、直流电压等)。
实施例5
本实施例与上述实施例的不同之处在于,发电/系统控制单元3的控制模式包括恒流发电、恒压发电、恒功率发电等。
在一种可能的实现方式中,所述控制单元,还用于从CAN总线接收启动发电命令,所述启动发电命令用于指示所述控制单元控制所述进气调节阀开闭,并确定所述系统的发电模式,所述发电模式包括恒流发电模式、恒压发电模式、恒功率发电模式、降功率发电模式中的至少一种。
在一种可能的实现方式中,所述控制单元,还用于在所述系统进入所述降功率发电模式的情况下,根据降功率的比例,确定所述空气动力涡轮发动机的工作状态。其中,在发电功率小于额定功率的30%时进入怠速状态;在发电功率低于额定功率50%时,进入低转速状态;其他情况进入额定功率状态。
所述发电/系统控制单元可以闭环控制进行恒流发电或者恒压发电。例如,发电控制过程可以是一个PID(Proportion Integration Differentiation,比例积分微分)闭环控制过程。在恒流发电控制模式下,PID控制由发电电流外环和励磁电流内环控制组成,以接收的来自于CAN总线的CAN命令的目标发电电流为控制目标,随着系统输出电压变化和电流变化,快速调节实际发电电流。在恒压发电控制模式下,PID控制由发电电压外环和励磁电流内环控制组成,以来自于CAN命令的目标发电电压为控制目标,随着直流电流变化和电压的变化,快速调节实际发电电压。在恒功率发电控制模式下,PID控制由发电功率外环和励磁电流内环控制组成,以来自于CAN命令的目标发电功率为控制目标,随着直流电压的变化和电流变化,快速调节实际发电功率。
如上所述,本公开提供的一种压缩空气涡轮直流发电机系统,其具有小型化高度集成特征。因此,使得纯电动汽车可以在开发过程中选择本系统作为辅助电源,有效的解决纯电动车里程焦虑问题。本公开有效克服了内燃机发电系统功率密度低、振动噪声高等缺点而具高度产业利用价值。
参考图3,本公开主控软件的一种工作流程示例如下:
首先,系统上电后即检查CAN命令状态,判断是否有启动发电命令(301)。如果没有启动发电命令,关闭励磁,关闭节气阀(也可以称为压缩空气调节阀、进气调节阀、调节阀等)(303),使系统处于待机模式。
第二,在收到启动发电命令(可以简称启动命令)后,系统可以立即开 启进气调节阀(302)并监控涡轮的转速。判断转速是否达到目标值(305)。如果转速无法达到设定目标,判断是否将进气调节阀开启到最大(306)。在进气调节阀开启到最大的情况下,检查进气压力(307)。如果涡轮机进气压力仍无法满足要求(308)时,说明涡轮室内的压缩空气压力不足,系统进入降功率发电模式(309)。在进气调节阀没有开到最大时,说明进气调节阀故障,可以置调节阀故障标志(310)。这时,系统停止工作进入停机状态。
第三,如果转速达到设定目标,则系统进入正常工作状态。对发电机进行励磁控制(311)。系统根据CAN命令确定发电模式(312),例如包括恒流发电模式、恒压发电模式和恒功率发电模式。
第四,如果确定系统需要进入降功率发电模式(313),则根据降功率的比例,确定所述空气动力涡轮发动机的工作状态。例如,在发电功率小于额定功率的例如30%时进入怠速状态。在发电功率低于额定功率例如50%时,系统进入低转速状态;其他情况进入额定功率状态。
本公开可根据应用需要采用压缩空气作为动力通过空气动力涡轮发动机驱动双凸极直流发电机进行发电,包括恒流发电或者恒压发电等,适合作为纯电驱动电动车等的辅助电源。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (11)

  1. 一种压缩空气涡轮直流发电机系统,其特征在于,包括:
    空气动力涡轮发动机;
    直流发电机,用于以所述空气动力涡轮发动机的动力输出作为驱动输入产生直流电流;
    控制单元,用于控制所述空气动力涡轮发动机的转速以产生所述动力输出,并调节所述直流发电机的输出电流和/或输出电压。
  2. 根据权利要求1所述的系统,其特征在于,所述空气动力涡轮发动机包括涡轮室、涡轮、动力输出轴、进气调节阀、进气口和排气口,其中,
    所述进气口和所述排气口分别与所述涡轮室连通;
    所述进气调节阀设置于所述进气口;
    所述涡轮设置于所述涡轮室内;
    所述涡轮与所述动力输出轴连接。
  3. 根据权利要求2所述的系统,其特征在于,
    所述控制单元,还用于向所述进气调节阀发送控制信号;
    所述进气调节阀,用于在收到所述控制信号的情况下,根据所述控制信号的开关以及动态调节所述进气口进气的流速,将高压空气从所述进气口引入所述涡轮室中膨胀做功,以推动所述涡轮旋转,进而调节所述动力输出轴的转速和扭矩。
  4. 根据权利要求2或3所述的系统,其特征在于,所述动力输出轴同时作为所述直流发电机的转子轴,所述转子轴上的两个高速轴承分别位于所述空气动力涡轮发动机的动力输出端和所述直流发电机的后端。
  5. 根据权利要求1至3中任一项所述的系统,其特征在于,所述空气动力涡轮发动机的壳体与所述直流发电机的壳体为一体结构,所述直流发电机的定子与所述空气动力涡轮发动机的壳体固定在一起。
  6. 根据权利要求2或3所述的系统,其特征在于,所述空气动力涡轮发 动机的涡轮还可以是两级涡轮结构,包括一级涡轮和二级涡轮。所述一级涡轮和所述二级涡轮位于同一个驱动轴上,所述一级涡轮将排出的低压空气输出传送至所述二级涡轮。
  7. 根据权利要求2或3所述的系统,其特征在于,
    所述控制单元,还用于从CAN总线接收启动发电命令,所述启动发电命令用于指示所述控制单元控制所述进气调节阀开闭,并确定所述系统的发电模式,所述发电模式包括恒流发电模式、恒压发电模式、恒功率发电模式、降功率发电模式中的至少一种。
  8. 根据权利要求7所述的系统,其特征在于,
    所述控制单元,还用于在所述系统进入所述降功率发电模式的情况下,根据降功率的比例,确定所述空气动力涡轮发动机的工作状态;其中,在发电功率小于额定功率的30%时进入怠速状态;在发电功率低于额定功率50%时,进入低转速状态;其他情况进入额定功率状态。
  9. 根据权利要求1所述的系统,其特征在于,
    所述控制单元,还用于对所述直流发电机进行励磁控制。
  10. 根据权利要求1所述的系统,其特征在于,还包括:
    外部励磁单元,与所述直流发电机连接,用于对所述直流发电机进行励磁控制。
  11. 根据权利要求9或10所述的系统,其特征在于,
    所述直流发电机,还用于将发电输出通过整流直接连接在直流动力总线上,并将输出电流和/或输出电压反馈回所述控制单元。
PCT/CN2017/089874 2017-06-15 2017-06-23 一种压缩空气涡轮直流发电机系统 WO2018227652A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2019107034A RU2714894C1 (ru) 2017-06-15 2017-06-23 Система электрического генератора постоянного тока турбины, приводимой в действие сжатым воздухом
EP17913718.7A EP3496244B1 (en) 2017-06-15 2017-06-23 Compressed air turbine direct current generator system
JP2019538295A JP6824421B2 (ja) 2017-06-15 2017-06-23 圧縮空気タービン直流発電機システム
US16/331,937 US10797627B2 (en) 2017-06-15 2017-06-23 Compressed air turbine DC power generator system
KR1020197006507A KR102187194B1 (ko) 2017-06-15 2017-06-23 압축 공기 터빈 직류발전기 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710447309.9 2017-06-15
CN201710447309.9A CN107171494B (zh) 2017-06-15 2017-06-15 一种压缩空气涡轮直流发电机系统

Publications (1)

Publication Number Publication Date
WO2018227652A1 true WO2018227652A1 (zh) 2018-12-20

Family

ID=59819390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089874 WO2018227652A1 (zh) 2017-06-15 2017-06-23 一种压缩空气涡轮直流发电机系统

Country Status (7)

Country Link
US (1) US10797627B2 (zh)
EP (1) EP3496244B1 (zh)
JP (1) JP6824421B2 (zh)
KR (1) KR102187194B1 (zh)
CN (1) CN107171494B (zh)
RU (1) RU2714894C1 (zh)
WO (1) WO2018227652A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110275111B (zh) * 2019-07-12 2024-03-19 贵州航天林泉电机有限公司 一种超高速交流发电机高速测试系统及其控制方法
CN112943457A (zh) * 2021-01-29 2021-06-11 安徽应流航空科技有限公司 一种起发一体式燃气轮机发电系统
CN114934814A (zh) * 2022-07-21 2022-08-23 江苏友诚数控科技有限公司 一种智能单点喷射气体膨胀发电装置
WO2024019633A1 (ru) * 2022-07-22 2024-01-25 Дмитрий Александрович ЛАШИН Водное мобильное устройство для зарядки электрических транспортных средств

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054838A (en) * 1998-07-23 2000-04-25 Tsatsis; Constantinos Pressurized electric charging
CN101005222A (zh) * 2007-01-09 2007-07-25 山东理工大学 废气涡轮驱动无刷发电机
US20100326749A1 (en) * 2009-06-24 2010-12-30 Rexford David Mensah Compressed air powered vehicle
CN102320237A (zh) * 2011-06-28 2012-01-18 陈明军 一种新型电动车
CN102358285A (zh) * 2011-08-19 2012-02-22 北京汽车新能源汽车有限公司 一种增程式电动汽车控制系统及其控制方法
CN203383889U (zh) * 2013-06-07 2014-01-08 德州学院 汽车废气涡轮发电机
CN104309494A (zh) * 2014-10-23 2015-01-28 苏州赛帕太阳能科技有限公司 空气动力汽车

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229661A (en) * 1979-02-21 1980-10-21 Mead Claude F Power plant for camping trailer
US4311917A (en) * 1980-03-31 1982-01-19 Thomas R. Hencey, Jr. Non-pollution motor
JP2513221B2 (ja) 1987-04-07 1996-07-03 いすゞ自動車株式会社 高速タ−ビン交流機の制御装置
DE69409984T2 (de) 1993-02-03 1999-01-28 Nartron Corp Einlassluftgetriebener Wechselstromgenerator und Verfahren zum Verwandeln von Einlassluftenergie in elektrische Energie
JP3625583B2 (ja) 1996-07-11 2005-03-02 日揮株式会社 高圧ガスからの圧力エネルギー回収設備
RU2224352C2 (ru) * 1996-12-03 2004-02-20 Эллиотт Энерджи Системс, Инк. Электрическая система для турбины/генератора переменного тока на общем валу
US6963802B2 (en) * 2001-10-05 2005-11-08 Enis Ben M Method of coordinating and stabilizing the delivery of wind generated energy
WO2003031813A1 (en) * 2001-10-05 2003-04-17 Ben Enis Method and apparatus for using wind turbines to generates and supply uninterrupted power to locations remote from the power grid
KR100558575B1 (ko) * 2002-05-16 2006-03-13 혼다 기켄 고교 가부시키가이샤 발전 장치
US7254951B2 (en) * 2003-01-07 2007-08-14 Lockwood Jr Hanford N High compression gas turbine with superheat enhancement
KR20070020365A (ko) * 2003-08-27 2007-02-21 티티엘 다이나믹스 리미티드 에너지 회수 시스템
JP2007503546A (ja) 2003-08-27 2007-02-22 ティーティーエル ダイナミクス リミッテッド エネルギ回収システム
US7719127B2 (en) * 2004-06-15 2010-05-18 Hamilton Sundstrand Wind power system for energy production
US7454911B2 (en) * 2005-11-04 2008-11-25 Tafas Triantafyllos P Energy recovery system in an engine
DE502007004025D1 (de) 2007-10-04 2010-07-15 Siemens Ag Generator-Dampfturbine-Turboverdichter-Strang und Verfahren zum Betreiben desselben
US8225900B2 (en) * 2008-04-26 2012-07-24 Domes Timothy J Pneumatic mechanical power source
USRE47647E1 (en) * 2008-04-26 2019-10-15 Timothy Domes Pneumatic mechanical power source
US8659185B2 (en) 2008-09-29 2014-02-25 General Electric Company Method and apparatus for an electrical bus leveling unit
US20100244461A1 (en) 2009-03-27 2010-09-30 Thingap Automotive, Llc System for increasing electrical output power of an exhaust gas turbine generator system
CA2756827C (en) * 2009-04-21 2016-06-14 Gen-Tech Llc Power generator system
US8245517B2 (en) * 2009-05-19 2012-08-21 Hamilton Sundstrand Corporation Gas turbine starting with stepping speed control
US20120038157A1 (en) * 2010-02-25 2012-02-16 Skala James A Synchronous Induced Wind Power Generation System
US20110204634A1 (en) * 2010-02-25 2011-08-25 Skala James A Synchronous Induced Wind Power Generation System
US8571830B2 (en) * 2010-06-28 2013-10-29 General Electric Company Method and system for detection of collector flashover
EP2486274B1 (en) * 2010-11-30 2016-01-20 MITSUBISHI HEAVY INDUSTRIES, Ltd. Power generating apparatus of renewable energy type and operation method thereof
US8803461B2 (en) * 2010-12-22 2014-08-12 Arvind Kumar Tiwari System and method for synchronous machine health monitoring
DK2660954T3 (en) 2010-12-27 2019-04-23 Mitsubishi Heavy Ind Ltd GENERATOR AND POWER PLANT
US8723352B2 (en) * 2011-05-04 2014-05-13 Nanda Gopal Kumjula Reddy Systems for optimizing wave energy for renewable energy generation
DE102012106543A1 (de) * 2011-07-28 2013-01-31 General Electric Company Verfahren und System zur Überwachung einer Synchronmaschine
ITFI20120245A1 (it) 2012-11-08 2014-05-09 Nuovo Pignone Srl "gas turbine in mechanical drive applications and operating methods"
FR3016005B1 (fr) * 2013-12-26 2016-02-19 Commissariat Energie Atomique Dispositif de production d'energie a gazogene
US10590842B2 (en) * 2015-06-25 2020-03-17 Pratt & Whitney Canada Corp. Compound engine assembly with bleed air
US10710738B2 (en) * 2015-06-25 2020-07-14 Pratt & Whitney Canada Corp. Auxiliary power unit with intercooler
US10696417B2 (en) * 2015-06-25 2020-06-30 Pratt & Whitney Canada Corp. Auxiliary power unit with excess air recovery
JP6963450B2 (ja) * 2017-09-22 2021-11-10 三菱パワー株式会社 回転機械の制御装置、回転機械設備、回転機械の制御方法、及び回転機械の制御プログラム
JP7179492B2 (ja) * 2018-05-25 2022-11-29 三菱重工業株式会社 過給システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054838A (en) * 1998-07-23 2000-04-25 Tsatsis; Constantinos Pressurized electric charging
CN101005222A (zh) * 2007-01-09 2007-07-25 山东理工大学 废气涡轮驱动无刷发电机
US20100326749A1 (en) * 2009-06-24 2010-12-30 Rexford David Mensah Compressed air powered vehicle
CN102320237A (zh) * 2011-06-28 2012-01-18 陈明军 一种新型电动车
CN102358285A (zh) * 2011-08-19 2012-02-22 北京汽车新能源汽车有限公司 一种增程式电动汽车控制系统及其控制方法
CN203383889U (zh) * 2013-06-07 2014-01-08 德州学院 汽车废气涡轮发电机
CN104309494A (zh) * 2014-10-23 2015-01-28 苏州赛帕太阳能科技有限公司 空气动力汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3496244A4 *

Also Published As

Publication number Publication date
RU2714894C1 (ru) 2020-02-20
EP3496244A4 (en) 2020-04-29
US20200169201A1 (en) 2020-05-28
EP3496244B1 (en) 2024-03-13
CN107171494B (zh) 2018-07-20
EP3496244A1 (en) 2019-06-12
KR20190035862A (ko) 2019-04-03
JP6824421B2 (ja) 2021-02-03
CN107171494A (zh) 2017-09-15
US10797627B2 (en) 2020-10-06
JP2019537421A (ja) 2019-12-19
KR102187194B1 (ko) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2018227652A1 (zh) 一种压缩空气涡轮直流发电机系统
CN106532086B (zh) 车辆电气系统和操作涡轮组件的方法
US10205369B2 (en) Power generation system and method
US10323567B2 (en) Air charging apparatus driven by rotating magnetic field
EP2436888A1 (en) Rankine cycle system
US20010049571A1 (en) Control apparatus for hybrid vehicle
JP2003314291A (ja) 排気駆動エンジン冷却システム
US11661197B2 (en) Cabin outflow air energy optimized cabin pressurizing system
CN110985215B (zh) 用于微小型涡喷发动机的起发一体系统
CN105229275B (zh) 具有可变负载的涡轮复合引擎的涡轮及其控制器
US20030232231A1 (en) Device and method for supplying air to a fuel cell
US20190363381A1 (en) Device For The Air Supply Of A Fuel Cell, Preferentially Of A Fuel Cell Operated With Hydrogen
US20120169130A1 (en) Internal-combustion engine system and ship
Fröhlich Development of an oil free turbo compressor for mobile fuel cell applications–challenges and results
US20210199044A1 (en) Method for controlling an electrified turbocharger of an internal combustion engine, and a motor vehicle with an internal combustion engine
CN211174361U (zh) 用于微小型涡喷发动机的起发一体系统
CN112459904A (zh) 提高燃气轮机发电机组功率的系统及方法
CN113394430B (zh) 可调式氢燃料电池卡车用散热系统及其散热方法
CN216894624U (zh) 一种新型航空增程器系统
US20220260008A1 (en) Supercharging system
US20220001723A1 (en) Compressor systems and methods for use by vehicle heating, ventilating, and airconditioning systems
CN218368157U (zh) 一种电助力车驱动组件及电助力车
CN106285918A (zh) 双电机涡轮增压发电装置及其控制方法
JP2012167634A (ja) 過給システム及び過給システムの制御回路
JP2022123695A (ja) 過給システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197006507

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017913718

Country of ref document: EP

Effective date: 20190306

ENP Entry into the national phase

Ref document number: 2019538295

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE