WO2018225971A1 - Anode active material for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising same anode - Google Patents

Anode active material for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising same anode Download PDF

Info

Publication number
WO2018225971A1
WO2018225971A1 PCT/KR2018/006043 KR2018006043W WO2018225971A1 WO 2018225971 A1 WO2018225971 A1 WO 2018225971A1 KR 2018006043 W KR2018006043 W KR 2018006043W WO 2018225971 A1 WO2018225971 A1 WO 2018225971A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
silicon
active material
secondary battery
lithium secondary
Prior art date
Application number
PCT/KR2018/006043
Other languages
French (fr)
Korean (ko)
Inventor
김향연
오민석
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180050575A external-priority patent/KR102087134B1/en
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2018225971A1 publication Critical patent/WO2018225971A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium secondary battery, a negative electrode for a lithium secondary battery and a lithium secondary battery comprising the same. More particularly, the present invention relates to a negative active material for a lithium secondary battery, an anode for a lithium secondary battery, and a lithium secondary battery including the same, including active silicon nanoparticles uniformly dispersed and precipitated in an inactive matrix including silicon, aluminum, iron, copper, and nickel. will be.
  • wireless charging technology that can charge the battery anytime and anywhere without a power connection by cable is being applied with IT. Accordingly, it is expected to be widely applied to wearable devices that can be worn or attached to a body as well as home appliances such as televisions and refrigerators or electric vehicles.
  • lithium secondary batteries are energy storage media applied to portable information devices such as smart phones, laptops, digital cameras, small home appliances and medical devices, electric vehicles, and large-capacity power storage systems.
  • portable information devices such as smart phones, laptops, digital cameras, small home appliances and medical devices, electric vehicles, and large-capacity power storage systems.
  • performance improvements such as high power, long life and high safety.
  • Lithium secondary batteries are manufactured by using a material capable of intercalation and deintercalation of lithium ions as a cathode and an anode, and injecting an electrolyte after installing porous separators between the electrodes.
  • electricity is generated or consumed by a redox reaction by insertion and desorption of lithium ions in the cathode and the anode.
  • the performance improvement of the lithium secondary battery can be attributed to the technology development of four core materials: positive electrode, negative electrode, electrolyte, and separator which have a decisive influence on various characteristics such as capacity and output. Since the capacity of the positive electrode active material and the negative electrode active material used in the lithium secondary battery has already approached the theoretical capacity, the need for a new negative electrode active material is increasing to realize a high capacity and high output battery suitable for wireless charging energy storage. .
  • graphite which is a negative electrode active material widely used in lithium secondary batteries, has a layered structure and thus has very useful characteristics for insertion and desorption of lithium ions.
  • Graphite theoretically has a capacity of 372 mAh / g, but as the demand for high-capacity lithium batteries increases recently, new electrodes are required to replace graphite. Accordingly, active research for commercialization of electrode active materials forming an electrochemical alloy with lithium ions such as silicon (Si), tin (Sn), antimony (Sb), and aluminum (Al) as a high capacity negative electrode active material is actively conducted. It is becoming.
  • Patent Document 1 Republic of Korea Patent No. 10-1385602
  • the technical problem to be achieved by the present invention is to improve the deterioration of the life characteristics due to the volume change when using a conventional silicon (Si) as a negative electrode active material, silicon (Si), aluminum (Al), iron (Fe), copper (Life time does not decrease even after repeated charging and discharging by using a negative electrode active material containing 1 nm to 30 nm of active silicon nanoparticles uniformly dispersed and deposited on an inert matrix including Cu) and nickel (Ni).
  • An object of the present invention is to provide a lithium secondary battery.
  • an embodiment of the present invention comprises the steps of preparing a melt by dissolving a mother alloy containing silicon; Preparing a silicon-based amorphous alloy by solidifying the melt by liquid quenching and solidification; And heat-treating the silicon-based amorphous alloy to produce a silicon-based composite metal, wherein the silicon-based composite metal comprises active silicon nanoparticles uniformly dispersed and precipitated in an inactive matrix. It provides a metal manufacturing method.
  • the silicon-based composite metal is silicon (Si) 30 at% to 60 at%, aluminum (Al) 15 at% to 50 at%, iron (Fe) 5 at% to 25 at%, copper ( Cu) 0.1 at% to 5 at% and nickel (Ni) 1 at% to 25 at%.
  • another embodiment of the present invention is silicon (Si) 30 at% to 60 at%, aluminum (Al) 15 at% to 50 at%, iron (Fe) 5 at% to 25 at%, Lithium secondary, characterized in that it comprises an inert matrix comprising 0.1 at% to 5 at% of copper (Cu) and 1 to 25 at% of nickel (Ni) and active silicon nanoparticles uniformly dispersed and precipitated in the inactive matrix It provides a battery negative electrode active material.
  • the inert matrix may be formed of at least 0.1 of zirconium (Zr), niobium (Nb), titanium (Ti), chromium (Cr), germanium (Ge), and calcium (Ca). It may be an anode active material for a lithium secondary battery, characterized in that it further comprises at% to 5 at%.
  • the inactive matrix may be a negative electrode active material for a lithium secondary battery, characterized in that it comprises any one or more of a crystalline matrix and an amorphous matrix.
  • the active silicon nanoparticles may be a negative electrode active material for a lithium secondary battery, characterized in that uniformly dispersed precipitation in the inactive matrix by copper clustering (Cu clustering) of the inactive matrix.
  • Cu clustering copper clustering
  • the active silicon nanoparticles may be a negative electrode active material for a lithium secondary battery, characterized in that the crystalline.
  • the particle size of the active silicon nanoparticles may be a negative electrode active material for a lithium secondary battery, characterized in that 1 nm to 30 nm.
  • another embodiment of the present invention includes a negative electrode active material layer and a negative electrode active material layer formed on at least one surface of the negative electrode current collector, the negative electrode active material layer 75 wt% to 92 wt %, 1 wt% to 10 wt% of a conductive material, and 7 wt% to 15 wt% of a binder, wherein the anode active material includes an inert matrix and active silicon nanoparticles uniformly dispersed and precipitated in the inactive matrix. It provides a negative electrode for a lithium secondary battery.
  • the inert matrix may be a negative electrode for a lithium secondary battery, characterized in that it comprises a five-component or more silicon alloy.
  • the five-component or more silicon alloy is silicon (Si) 30 at% to 60 at%, aluminum (Al) 15 at% to 50 at%, iron (Fe) 5 at% to 25 at%, It may be a negative electrode for a lithium secondary battery comprising 0.1 to 5 at% of copper (Cu) and 1 to 25 at% of nickel (Ni).
  • the five-component or more silicon alloy is made of one or more of zirconium (Zr), niobium (Nb), titanium (Ti), chromium (Cr), germanium (Ge) and calcium (Ca). It may be a negative electrode for a lithium secondary battery characterized in that it further comprises 0.1 to 5 at% of the material.
  • the active silicon nanoparticles may be a negative electrode for a lithium secondary battery, characterized in that uniformly dispersed precipitation in the inactive matrix by copper clustering (Cu clustering) of the inactive matrix.
  • Cu clustering copper clustering
  • the particle size of the active silicon nanoparticles may be a negative electrode for a lithium secondary battery, characterized in that 1 nm to 30 nm.
  • another embodiment of the present invention is a lithium secondary battery including a positive electrode, a negative electrode, an electrolyte and a separator, wherein the negative electrode is a negative electrode current collector and a negative electrode formed on at least one surface of the negative electrode current collector
  • An active material layer wherein the negative electrode active material layer comprises 75 wt% to 92 wt% of a negative electrode active material, 1 wt% to 10 wt% of a conductive material, and 7 wt% to 15 wt% of a binder; It provides a lithium secondary battery comprising the active silicon nanoparticles uniformly dispersed in the inert matrix.
  • the inactive matrix may be a lithium secondary battery comprising a silicon alloy of five or more components.
  • the five-component or more silicon alloy is silicon (Si) 30 at% to 60 at%, aluminum (Al) 15 at% to 50 at%, iron (Fe) 5 at% to 25 at%,
  • the lithium secondary battery may include 0.1 at% to 5 at% of copper (Cu) and 1 to 25 at% of nickel (Ni).
  • the five-component or more silicon alloy is made of one or more of zirconium (Zr), niobium (Nb), titanium (Ti), chromium (Cr), germanium (Ge) and calcium (Ca).
  • the lithium secondary battery may further include 0.1 at% to 5 at% of the material.
  • the active silicon nanoparticles may be a lithium secondary battery, characterized in that uniformly dispersed precipitation in the inactive matrix by copper clustering (Cu clustering) of the inactive matrix.
  • Cu clustering copper clustering
  • the particle size of the active silicon nanoparticles may be a lithium secondary battery, characterized in that 1 nm to 30 nm.
  • an anode comprising active silicon nanoparticles uniformly dispersed and precipitated in an inert matrix containing silicon (Si), aluminum (Al), iron (Fe), copper (Cu) and nickel (Ni) Since the active material tends to separate iron (Fe) and copper (Cu) in the inactive matrix, copper clustering may occur.
  • the Si-rich region having a low crystallization temperature is formed by the copper clustering phenomenon so that the active silicon particles are preferentially finely deposited during the heat treatment, and the inactive matrix has a crystalline structure or an amorphous structure. Can be formed.
  • the inactive matrix in the negative electrode active material may serve to suppress the volume expansion of the negative electrode active material while forming a structure that does not react with the lithium ions, the active silicon nanoparticles may be reversible reaction with lithium ions Therefore, the capacity of the negative electrode active material may be directly related to the capacity of the negative electrode active material.
  • the inactive matrix has a yield strength that can withstand the expansion stress of the silicon particles due to the intercalation of lithium ions during the charging and discharging of the negative electrode active material, thereby expanding the volume of the negative electrode active material during the charging and discharging process. And particle differentiation due to shrinkage can be suppressed.
  • the initial coulombic efficiency is excellent at 80% or more, and the capacity is maintained even after 30 cycles. It may have a lifetime characteristic.
  • FIG. 1 is a flow chart of a composite metal manufacturing method for a lithium secondary battery negative electrode active material according to an embodiment of the present invention.
  • FIG. 2 is a graph showing relative exothermic energy according to temperature with a differential scanning calorimetry (DSC) of a negative active material for a lithium secondary battery according to an exemplary embodiment of the present invention.
  • DSC differential scanning calorimetry
  • FIG. 3 is a diffraction pattern illustrating crystallinity of a negative electrode active material for a lithium secondary battery according to an exemplary embodiment of the present invention.
  • FIG. 4 is TEM-EDS images showing the distribution of components of the negative electrode active material for a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 5 is a graph showing the charge and discharge cycle life of the lithium secondary battery according to an embodiment of the present invention.
  • silicon amorphous alloy design considering the microstructure of Cu clustering effect after heat treatment.
  • the 100 nm-class silicon phase is transformed into a matrix phase having a yield strength capable of withstanding the expansion stress of the silicon particles due to the intercalation of lithium ions during the charge and discharge cycle.
  • a uniformly dispersed precipitated microstructure it is intended to suppress the particle micronization due to volume expansion and contraction of silicon particles generated by the insertion and desorption reaction of lithium ions.
  • the present invention comprises the steps of preparing a melt by dissolving a mother alloy containing silicon (S100); Preparing a silicon-based amorphous alloy by solidifying the melt by liquid quenching and solidification (S200); And preparing a silicon-based composite metal by heat-treating the silicon-based amorphous alloy (S300), wherein the silicon-based composite metal includes active silicon nanoparticles uniformly dispersed and precipitated in an inactive matrix. It provides a method for producing a composite metal for an active material.
  • the silicon-based composite metal may include silicon at 30 to 60 at%, aluminum at 15 to 50 at%, iron at 5 to 25 at%, and copper at 0.1 to 5 at. % And 1 at% to 25 at% of nickel (Ni).
  • the anode active material for a lithium secondary battery of the present invention is silicon (Si) 30 at% to 60 at%, aluminum (Al) 15 at% to 50 at%, iron (Fe) 5 at% to 25 at%, copper (Cu) 0.1 at It may include an inert matrix including% to 5 at% and 1 at% to 25 at% of nickel (Ni) and active silicon nanoparticles uniformly dispersed and precipitated in the inactive matrix.
  • Silicon (Si) constituting the negative electrode active material is mixed with silicon (Si) and active silicon nanoparticles in an inactive matrix. Since the active silicon nanoparticles can be reversibly reacted with lithium ions, the active silicon nanoparticles are directly related to the capacity of the negative electrode active material, and the inactive matrix may serve to suppress the volume expansion of the negative electrode active material while forming a structure that does not react with the lithium ions. .
  • the active silicon nanoparticles may be uniformly dispersed and precipitated in an inactive matrix.
  • silicon (Si) may be involved in occlusion and release of lithium ions when the negative electrode active material is used as a negative electrode of a lithium secondary battery. Therefore, the amount of silicon (Si) included in the negative electrode active material for a lithium secondary battery is related to the capacity and life characteristics of the negative electrode active material. Specifically, the more silicon (Si) is included in the alloy, the capacity of the negative electrode active material may be improved, but the life characteristics may be somewhat lowered. Therefore, the content of silicon (Si) in the negative electrode active material is 30 to 60 at% level in order to improve the life characteristics rather than to improve the capacity of the negative electrode active material of the present invention.
  • the content of the silicon (Si) is less than 30 at%, it is not preferable to exhibit an excessively small capacity to implement the capacity as a negative electrode active material for a lithium secondary battery, the content of the silicon (Si) is greater than 60 at% In this case, since the content of components other than silicon (Si) constituting the inert matrix is small, the life improvement effect of the negative electrode active material for a lithium secondary battery may be difficult to appear, which is not preferable.
  • copper (Cu) and iron (Fe) are difficult to be dissolved in silicon (Si) when in a solid state at room temperature.However, using a manufacturing method such as liquid rapid solidification such as melt spinning, copper (Cu) may be converted into silicon (Si). Can be forcibly hired). Forced solid solution copper (Cu) tends to be separated from iron (Fe), which causes copper clustering (Cu clustering) phenomenon.
  • the active silicon nanoparticles may be uniformly dispersed and precipitated at a portion where the copper clustering phenomenon occurs, and the cathode active material of the present invention may include the active silicon nanoparticles uniformly dispersed and precipitated in an inactive matrix. have.
  • the content of copper (Cu) is preferably 0.1 at% to 5 at% when the content of the silicon (Si) is 30 at% to 60 at%. This is because when the content of copper (Cu) is less than 0.1 at%, the above-mentioned copper clustering phenomenon is insignificant and dispersion precipitation of active silicon nanoparticles may not occur, which is undesirable.
  • the copper (Cu) content is more than 5 at%, rather than copper (Cu) may act as an impurity, the content of the copper (Cu) is 0.1 at% to 5 at% is preferred level to be.
  • nickel (Ni) and iron (Fe) included in the inactive matrix can play a role of improving the capacity of the negative electrode active material, the capacity characteristics can be improved.
  • the inactive matrix may include a five-component silicon-based alloy including silicon (Si), aluminum (Al), iron (Fe), copper (Cu), and nickel (Ni).
  • Zirconium (Zr) may include a six-component silicon-based alloy further comprising 0.1 at% to 5 at%. At this time, zirconium (Zr) may serve to make the structure of the negative electrode active material fine, and improve the life characteristics.
  • a material consisting of at least one of niobium (Nb), titanium (Ti), chromium (Cr), germanium (Ge), and calcium (Ca) is further included. It is possible to use a silicon-based alloy containing a six-component or more as the inert matrix, it can be used as a component for improving the capacity characteristics or life characteristics.
  • the inert matrix may include any one or more of a crystalline matrix and an amorphous matrix, and the active silicon nanoparticles uniformly dispersed in the inactive matrix may be in a crystalline phase, and the particle size of the active silicon nanoparticles may be 1 nm. It may be from 30 nm, more preferably from 10 nm to 20 nm.
  • the negative electrode for a lithium secondary battery of the present invention includes a negative electrode current collector and a negative electrode active material layer formed on at least one surface of the negative electrode current collector, and the negative electrode active material layer is 75 wt% to 92 wt% of a negative electrode active material, and 1 wt% to conductive material. 10 wt% and 7 wt% to 15 wt% of the binder, wherein the negative electrode active material may include an inert matrix and active silicon nanoparticles uniformly dispersed in the inactive matrix.
  • the negative electrode current collector may include a conductive material, and specifically, may be a thin conductive foil or foam.
  • the negative electrode current collector may include, but is not limited to, copper, gold, nickel, stainless, or titanium.
  • the negative electrode active material layer may be prepared by mixing a negative electrode active material, a conductive material, and a binder in a solvent to prepare a composition for forming a negative electrode active material layer, and then coating the composition on a negative electrode current collector. Since such a negative electrode manufacturing method is well known in the art, detailed description thereof will be omitted.
  • the negative electrode active material may include an inert matrix and active silicon nanoparticles uniformly dispersed in the inactive matrix, and the inert matrix may include a five-component or more silicon alloy. More specifically, the five-component or more silicon alloy is silicon (Si) 30 at% to 60 at%, aluminum (Al) 15 at% to 50 at%, iron (Fe) 5 at% to 25 at%, copper (Cu) 0.1 at% to 5 at% and nickel (Ni) 1 at% to 25 at%.
  • Silicon (Si) constituting the negative electrode active material is mixed with silicon (Si) and active silicon nanoparticles in an inactive matrix. Since the active silicon nanoparticles can be reversibly reacted with lithium ions, the active silicon nanoparticles are directly related to the capacity of the negative electrode active material, and the inactive matrix may serve to suppress the volume expansion of the negative electrode active material while forming a structure that does not react with the lithium ions. .
  • the active silicon nanoparticles may be uniformly dispersed and precipitated in an inactive matrix.
  • silicon (Si) may be involved in occlusion and release of lithium ions when the negative electrode active material is used as a negative electrode of a lithium secondary battery. Therefore, the amount of silicon (Si) included in the negative electrode active material for a lithium secondary battery is related to the capacity and life characteristics of the negative electrode active material. Specifically, the more silicon (Si) is included in the alloy, the capacity of the negative electrode active material may be improved, but the life characteristics may be somewhat lowered. Therefore, the content of silicon (Si) in the negative electrode active material is 30 to 60 at% level in order to improve the life characteristics rather than to improve the capacity of the negative electrode active material of the present invention.
  • the content of the silicon (Si) is less than 30 at%, it is not preferable to exhibit an excessively small capacity to implement the capacity as a negative electrode active material for a lithium secondary battery, the content of the silicon (Si) is greater than 60 at% In this case, since the content of components other than silicon (Si) constituting the inert matrix is small, the life improvement effect of the negative electrode active material for a lithium secondary battery may be difficult to appear, which is not preferable.
  • copper (Cu) and iron (Fe) are difficult to be dissolved in silicon (Si) when in a solid state at room temperature.However, using a manufacturing method such as liquid rapid solidification such as melt spinning, copper (Cu) may be converted into silicon (Si). Can be forcibly hired). Forced solid solution copper (Cu) tends to be separated from iron (Fe), which causes copper clustering (Cu clustering) phenomenon. Active silicon nanoparticles may be uniformly dispersed and precipitated at a portion where copper clustering appears, and due to this phenomenon, the negative active material of the present invention may include active silicon nanoparticles uniformly dispersed and precipitated in an inactive matrix. .
  • the content of copper (Cu) is preferably 0.1 at% to 5 at% when the content of the silicon (Si) is 30 at% to 60 at%. This is because when the content of copper (Cu) is less than 0.1 at%, the above-mentioned copper clustering phenomenon is insignificant and dispersion precipitation of active silicon nanoparticles may not occur, which is undesirable.
  • the copper (Cu) content is more than 5 at%, rather than copper (Cu) may act as an impurity, the content of the copper (Cu) is 0.1 at% to 5 at% is preferred level to be.
  • nickel (Ni) and iron (Fe) included in the inactive matrix can play a role of improving the capacity of the negative electrode active material, the capacity characteristics can be improved.
  • the inactive matrix may include a five-component silicon-based alloy including silicon (Si), aluminum (Al), iron (Fe), copper (Cu), and nickel (Ni).
  • Zirconium (Zr) may include a six-component silicon-based alloy further comprising 0.1 at% to 5 at%. At this time, zirconium (Zr) may serve to make the structure of the negative electrode active material fine, and improve the life characteristics.
  • a material consisting of at least one of niobium (Nb), titanium (Ti), chromium (Cr), germanium (Ge), and calcium (Ca) is further included. It is possible to use a silicon-based alloy containing a six-component or more as the inert matrix, it can be used as a component for improving the capacity characteristics or life characteristics.
  • the inert matrix may include any one or more of a crystalline matrix and an amorphous matrix, and the active silicon nanoparticles uniformly dispersed in the inactive matrix may be in a crystalline phase, and the particle size of the active silicon nanoparticles may be 1 nm. It may be from 30 nm, more preferably from 10 nm to 20 nm.
  • the negative electrode active material layer may include 75 wt% to 92 wt% of the negative electrode active material, 1 wt% to 10 wt% of the conductive material, and 7 wt% to 15 wt% of the binder.
  • the conductive material is used to impart conductivity, and any lithium secondary battery configured may be used as long as it is an electron conductive material without causing chemical change.
  • any one or more of conductive polymer materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder such as copper, nickel, aluminum, silver, metal fiber and polyphenylene derivatives Can be used, but is not limited thereto.
  • the content of the conductive material is less than 1 wt%, the effect of improving the conductivity and the lifespan characteristics according to the use of the conductive material is insignificant, and when the conductive material content is more than 5 wt%, the conductive material due to the increase in the specific surface area of the conductive material It is not preferable because the reaction between the electrolyte and the electrolyte may be increased to reduce the life characteristics. More specifically, the content of the conductive material may be 1 wt% to 3 wt%.
  • the binder adheres the particles of the negative electrode active material to each other well, and adheres the negative electrode active material to the negative electrode current collector, and specifically, polyimide, polyamideimide, polybenzimidazole, polyvinyl alcohol, carboxymethylcellulose, and hydroxide.
  • the binder content may be 7 wt% to 10 wt%.
  • the content of the conductive material is preferably 1 wt% to 10 wt%, and the content of the binder is preferably 7 wt% to 15 wt%, the content of the negative electrode active material in the negative electrode active material layer is 75 wt% to 92 wt%. Is the preferred level.
  • N-methylpyrrolidone or n-hexane may be used as a solvent for mixing the negative electrode active material, the conductive material and the binder, but is not limited thereto.
  • the lithium secondary battery of the present invention may include a positive electrode, a negative electrode, an electrolyte, and a separator, and the negative electrode may include a negative electrode current collector and a negative electrode active material layer formed on at least one surface of the negative electrode current collector.
  • the negative electrode current collector may include a conductive material, and specifically, may be a thin conductive foil or foam.
  • the negative electrode current collector may include, but is not limited to, copper, gold, nickel, stainless, or titanium.
  • the negative electrode active material layer may be prepared by mixing a negative electrode active material, a conductive material, and a binder in a solvent to prepare a composition for forming a negative electrode active material layer, and then coating the composition on a negative electrode current collector. Since such a negative electrode manufacturing method is well known in the art, detailed description thereof will be omitted.
  • the negative electrode active material may include an inert matrix and active silicon nanoparticles uniformly dispersed in the inactive matrix, and the inert matrix may include a five-component or more silicon alloy. More specifically, the five-component or more silicon alloy is silicon (Si) 30 at% to 60 at%, aluminum (Al) 15 at% to 50 at%, iron (Fe) 5 at% to 25 at%, copper (Cu) 0.1 at% to 5 at% and nickel (Ni) 1 at% to 25 at%.
  • Silicon (Si) constituting the negative electrode active material is mixed with silicon (Si) and active silicon nanoparticles in an inactive matrix. Since the active silicon nanoparticles can be reversibly reacted with lithium ions, the active silicon nanoparticles are directly related to the capacity of the negative electrode active material, and the inactive matrix may serve to suppress the volume expansion of the negative electrode active material while forming a structure that does not react with the lithium ions. .
  • the active silicon nanoparticles may be uniformly dispersed and precipitated in an inactive matrix.
  • silicon (Si) may be involved in occlusion and release of lithium ions when the negative electrode active material is used as a negative electrode of a lithium secondary battery. Therefore, the amount of silicon (Si) included in the negative electrode active material for a lithium secondary battery is related to the capacity and life characteristics of the negative electrode active material. Specifically, the more silicon (Si) is included in the alloy, the capacity of the negative electrode active material may be improved, but the life characteristics may be somewhat lowered. Therefore, the content of silicon (Si) in the negative electrode active material is 30 to 60 at% level in order to improve the life characteristics rather than to improve the capacity of the negative electrode active material of the present invention.
  • the content of the silicon (Si) is less than 30 at%, it is not preferable to exhibit an excessively small capacity to implement the capacity as a negative electrode active material for a lithium secondary battery, the content of the silicon (Si) is greater than 60 at% In this case, since the content of components other than silicon (Si) constituting the inert matrix is small, the life improvement effect of the negative electrode active material for a lithium secondary battery may be difficult to appear, which is not preferable.
  • copper (Cu) and iron (Fe) are difficult to be dissolved in silicon (Si) when in a solid state at room temperature.However, using a manufacturing method such as liquid rapid solidification such as melt spinning, copper (Cu) may be converted into silicon (Si). Can be forcibly hired). Forced solid solution copper (Cu) tends to be separated from iron (Fe), which causes copper clustering (Cu clustering) phenomenon. Active silicon nanoparticles may be uniformly dispersed and precipitated at a portion where copper clustering appears, and due to this phenomenon, the negative active material of the present invention may include active silicon nanoparticles uniformly dispersed and precipitated in an inactive matrix. .
  • the content of copper (Cu) is preferably 0.1 at% to 5 at% when the content of the silicon (Si) is 30 at% to 60 at%. This is because when the content of copper (Cu) is less than 0.1 at%, the above-mentioned copper clustering phenomenon is insignificant and dispersion precipitation of active silicon nanoparticles may not occur, which is undesirable.
  • the copper (Cu) content is more than 5 at%, rather than copper (Cu) may act as an impurity, the content of the copper (Cu) is 0.1 at% to 5 at% is preferred level to be.
  • nickel (Ni) and iron (Fe) included in the inactive matrix can play a role of improving the capacity of the negative electrode active material, the capacity characteristics can be improved.
  • the inactive matrix may include a five-component silicon-based alloy including silicon (Si), aluminum (Al), iron (Fe), copper (Cu), and nickel (Ni).
  • Zirconium (Zr) may include a six-component silicon-based alloy further comprising 0.1 at% to 5 at%. At this time, zirconium (Zr) may serve to make the structure of the negative electrode active material fine, and improve the life characteristics.
  • a material consisting of at least one of niobium (Nb), titanium (Ti), chromium (Cr), germanium (Ge), and calcium (Ca) is further included. It is possible to use a silicon-based alloy containing a six-component or more as the inert matrix, it can be used as a component for improving the capacity characteristics or life characteristics.
  • the inert matrix may include any one or more of a crystalline matrix and an amorphous matrix, and the active silicon nanoparticles uniformly dispersed in the inactive matrix may be in a crystalline phase, and the particle size of the active silicon nanoparticles may be 1 nm. It may be from 30 nm, more preferably from 10 nm to 20 nm.
  • the negative electrode active material layer may include 75 wt% to 92 wt% of the negative electrode active material, 1 wt% to 10 wt% of the conductive material, and 7 wt% to 15 wt% of the binder.
  • the conductive material is used to impart conductivity, and any lithium secondary battery configured may be used as long as it is an electron conductive material without causing chemical change.
  • any one or more of conductive polymer materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder such as copper, nickel, aluminum, silver, metal fiber and polyphenylene derivatives Can be used, but is not limited thereto.
  • the content of the conductive material is less than 1 wt%, the effect of improving the conductivity and the lifespan characteristics according to the use of the conductive material is insignificant, and when the conductive material content is more than 5 wt%, the conductive material due to the increase in the specific surface area of the conductive material It is not preferable because the reaction between the electrolyte and the electrolyte may be increased to reduce the life characteristics. More specifically, the content of the conductive material may be 1 wt% to 3 wt%.
  • the binder adheres the particles of the negative electrode active material to each other well, and adheres the negative electrode active material to the negative electrode current collector, and specifically, polyimide, polyamideimide, polybenzimidazole, polyvinyl alcohol, carboxymethylcellulose, and hydroxide.
  • the binder content may be 7 wt% to 10 wt%.
  • the content of the conductive material is preferably 1 wt% to 10 wt%, and the content of the binder is preferably 7 wt% to 15 wt%, the content of the negative electrode active material in the negative electrode active material layer is 75 wt% to 92 wt%. Is the preferred level.
  • N-methylpyrrolidone or n-hexane may be used as a solvent for mixing the negative electrode active material, the conductive material and the binder, but is not limited thereto.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector, and the positive electrode active material layer is mixed with a positive electrode active material, a binder and a conductive material in a solvent to form a positive electrode active material layer
  • the composition may be in a form coated on a positive electrode current collector. Since such a method for manufacturing a positive electrode is well known in the art, detailed description thereof will be omitted.
  • the cathode active material may include a material capable of reversibly inserting and detaching lithium ions.
  • the cathode active material may include a lithium-containing transition metal oxide, a lithium-containing transition metal sulfide, and the like.
  • the binder serves to adhere the positive electrode active material particles to each other and to adhere the positive electrode active material to the positive electrode current collector, and specifically, to polyimide, polyamideimide, polybenzimidazole, polyvinyl alcohol, carboxymethyl cellulose, and hydroxide.
  • the conductive material is used to impart conductivity, and any lithium secondary battery configured may be used as long as it is an electron conductive material without causing chemical change.
  • any one or more of conductive polymer materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder such as copper, nickel, aluminum, silver, metal fiber and polyphenylene derivatives Can be used, but is not limited thereto.
  • N-methylpyrrolidone or n-hexane may be used as the solvent, but is not limited thereto.
  • the positive electrode current collector may include a conductive material, and specifically, may be a thin conductive foil or foam.
  • the positive electrode current collector may include, but is not limited to, aluminum, nickel or an alloy thereof.
  • the electrolyte may include a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent may be any one or more of a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based and aprotic solvent.
  • the non-aqueous organic solvent is dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), n-methyl acetate, dibutyl ether , Cyclohexanone, isopropyl alcohol and sulfolane (sulfolane) may include one or more selected from the group consisting of solvents. These non-aqueous organic solvents may be used alone or in combination of two or more thereof.
  • the lithium salt may be LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 2 C 2 F 5 ) 2 , Li (CF 3 SO 2 ) 2 N, LiN (SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (x and y are natural numbers), LiCl, LiI and LiB (C 2 O 4 ) 2 It may include one or two or more selected from the group consisting of. These electrolyte salts may be used alone or in combination of two or more thereof.
  • the separator may be polyethylene, polypropylene, or polyvinylidene fluoride as a single layer, or two or more multilayer films thereof may be used.
  • Alloys containing silicon (Si), aluminum (Al), iron (Fe), copper (Cu) and nickel (Ni) are melted by an arc melting method to prepare a melt, and then the melt is rotated at a speed of 40 m / s.
  • the amorphous alloy having the composition of Si 56 Al 25 Fe 16 Cu 1 Ni 2 was prepared by applying to a single roll quench solidification method sprayed onto a copper roll.
  • Coin-shaped electrode plates were prepared by using the amorphous alloy as a negative electrode active material, and Ketjen Black as a negative electrode active material and a conductive material and PAI as a binder were mixed at a weight ratio of 87: 3: 10, and heat-treated at 400 ° C. for 1 hour in an Ar atmosphere. A negative electrode was prepared.
  • Alloys containing silicon (Si), aluminum (Al), iron (Fe), copper (Cu) and nickel (Ni) are melted by an arc melting method to prepare a melt, and then the melt is rotated at a speed of 40 m / s.
  • the amorphous alloy having the composition of Si 56 Al 25 Fe 16 Cu 1 Ni 2 was prepared by applying to a single roll quench solidification method sprayed onto a copper roll. The amorphous alloy was heat-treated at 450 ° C. to produce a silicon-based composite metal.
  • a coin-shaped electrode plate was manufactured by using the silicon-based composite metal as a negative electrode active material, and Ketjen Black as a negative electrode active material and a conductive material and PAI as a binder were mixed at a weight ratio of 87: 3: 10, and heat treated at 400 ° C. for 1 hour in an Ar atmosphere. To prepare a negative electrode.
  • An anode was prepared in the same manner as in Example 2 except that the amorphous alloy was heat-treated at 500 ° C. to produce a silicon-based composite metal.
  • a negative electrode was prepared in the same manner as in Example 2 except that the amorphous alloy was heat-treated at 550 ° C. to produce a silicon-based composite metal.
  • a negative electrode was prepared in the same manner as in Example 2 except that the amorphous alloy was heat-treated at 650 ° C. to produce a silicon-based composite metal.
  • FIG. 2 is a graph showing relatively exothermic energy according to temperature with a differential scanning calorimetry (DSC) of a negative active material for a lithium secondary battery of Example 1;
  • Figure 2 shows the crystallization behavior according to the temperature change of the amorphous negative electrode active material.
  • FIG. 3 is a diffraction pattern showing the crystallinity of the negative electrode active material for a lithium secondary battery of Example 1.
  • FIG. 4 is TEM-EDS images showing the component distribution of the negative electrode active material for a lithium secondary battery of Example 1.
  • Example 1 is an amorphous alloy having an amorphous phase.
  • Example 1 56 25 16 One 2 Amorphous Pristine 236.2 91.5 38.7
  • Example 2 56 25 16 One 2 Amorphous + crystalline 450 °C, 1hr 278.4 155.1 55.7
  • Example 3 56 25 16 One 2 Amorphous + crystalline 500 °C, 1hr 1100.9 943.5 85.7
  • Example 4 56 25 16 One 2 Crystalline 550 °C, 1hr 1192.3 1021.4 85.6
  • Example 5 56 25 16 One 2 Crystalline 650 °C, 1hr 1309.8 1144.9 87.4
  • 5 is a graph showing charge and discharge cycle lifetimes of Examples 1 to 5.
  • a lithium secondary battery using a negative electrode active material having a crystalline structure has a high initial Coulomb efficiency but a decrease in cycle life, and a lithium secondary battery using a negative electrode active material having an amorphous structure has a low initial Coulomb efficiency. It can be seen that the cycle life is maintained.
  • Embodiment of the present invention can produce amorphous alloy reproducibly in the range of 30 m / s to 60 m / s rotational linear velocity of the copper wheel in the melt spinning is a liquid quenching solidification method, more preferably 40 m / s It is possible to produce amorphous alloys reproducibly at speed.
  • the heat treatment is performed at a constant temperature to produce a cathode active material in which reproducible active silicon particles are uniformly dispersed and precipitated in a nano size in an inert matrix, and the capacity of the reproducible anode active material is maintained even after 30 cycles. It can be determined that it can have excellent life characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides an anode active material for a lithium secondary battery, the anode active material comprising: an inactive matrix including a 30 at% to 60 at% of silicon (Si), 15 at% to 50 at% of aluminum (A), 5 at% to 25 at% of iron (Fe), 0.1 at% to 5 at% of copper (Cu), and 1 at% to 25 at% of nickel (Ni); and active silicon nanoparticles uniformly dispersed and deposited on the inactive matrix, a fabrication method therefor, and a lithium secondary battery comprising the same anode active material. Accordingly, the lithium secondary battery of the present invention has a yield strength sufficient to endure the expansion stress of the silicon particles caused by the intercalation of lithium ions during charging and discharging and thus can restrain the particle refinement caused by the volume expansion and shrinkage of the anode active material during charging and discharging and thus has an improved property in the service life thereof.

Description

리튬이차전지용 음극활물질, 리튬이차전지용 음극 및 이를 포함하는 리튬이차전지Anode active material for lithium secondary battery, anode for lithium secondary battery and lithium secondary battery comprising same
본 발명은 리튬이차전지용 음극활물질, 리튬이차전지용 음극 및 이를 포함하는 리튬이차전지에 관한 것이다. 더욱 상세하게는 실리콘, 알루미늄, 철, 구리 및 니켈을 포함하는 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함하는 리튬이차전지용 음극활물질, 리튬이차전지용 음극 및 이를 포함하는 리튬이차전지에 관한 것이다.The present invention relates to a negative electrode active material for a lithium secondary battery, a negative electrode for a lithium secondary battery and a lithium secondary battery comprising the same. More particularly, the present invention relates to a negative active material for a lithium secondary battery, an anode for a lithium secondary battery, and a lithium secondary battery including the same, including active silicon nanoparticles uniformly dispersed and precipitated in an inactive matrix including silicon, aluminum, iron, copper, and nickel. will be.
최근 전 세계적으로 무선전력전송기술을 이용한 무선충전 기능이 스마트폰에 적용되기 시작하면서, 케이블에 의한 전원 연결 없이 언제 어디에서나 베터리를 충전할 수 있는 무선충전 기술이 IT와 접목되고 있다. 이에 따라, 텔레비전, 냉장고와 같은 가전기기나 전기 자동차뿐만 아니라 신체에 착용 또는 부착이 가능한 웨어러블 디바이스 분야에까지 확대 적용될 것으로 예상되고 있다.Recently, as the wireless charging function using the wireless power transmission technology has been applied to smart phones all over the world, wireless charging technology that can charge the battery anytime and anywhere without a power connection by cable is being applied with IT. Accordingly, it is expected to be widely applied to wearable devices that can be worn or attached to a body as well as home appliances such as televisions and refrigerators or electric vehicles.
이러한 산업 환경에서 리튬이차전지는 스마트폰, 노트북, 디지털 카메라와 같은 휴대용 정보기기, 소형가전·의료기기, 전기자동차 및 대용량 전력저장 시스템에 적용되는 에너지저장 매체로서 그 적용범위가 점차 확대되어, 고용량, 고출력, 장수명, 고안전성과 같은 성능 향상에 대한 요구가 증대되고 있다.In this industrial environment, lithium secondary batteries are energy storage media applied to portable information devices such as smart phones, laptops, digital cameras, small home appliances and medical devices, electric vehicles, and large-capacity power storage systems. There is an increasing demand for performance improvements such as high power, long life and high safety.
리튬이차전지는 리튬 이온의 인터칼레이션(intercalation) 및 디인터칼레이션(deintercalation)가 가능한 물질을 음극 및 양극으로 사용하고, 상기 전극들 사이에 다공성 분리막을 설치한 후 전해액을 주입시켜 제조되는 것이 일반적이며, 상기 음극 및 양극에서 리튬 이온의 삽입 및 탈리에 의한 산화 환원 반응에 의하여 전기가 생성되거나 소비된다.Lithium secondary batteries are manufactured by using a material capable of intercalation and deintercalation of lithium ions as a cathode and an anode, and injecting an electrolyte after installing porous separators between the electrodes. In general, electricity is generated or consumed by a redox reaction by insertion and desorption of lithium ions in the cathode and the anode.
리튬이차전지의 성능 향상은 용량, 출력 등의 제반 특성에 결정적인 영향을 미치는 양극, 음극, 전해질, 분리막의 4가지 핵심 소재의 기술 개발에 의한 것이라고 할 수 있다. 현재 리튬이차전지에 사용되고 있는 양극활물질 및 음극활물질의 용량은 이미 이론용량에 근접한 상태에 도달하였기 때문에, 무선충전 에너지저장에 적합한 고용량 및 고출력의 전지 구현을 위해서 신규 음극활물질에 대한 필요성이 증대되고 있다.The performance improvement of the lithium secondary battery can be attributed to the technology development of four core materials: positive electrode, negative electrode, electrolyte, and separator which have a decisive influence on various characteristics such as capacity and output. Since the capacity of the positive electrode active material and the negative electrode active material used in the lithium secondary battery has already approached the theoretical capacity, the need for a new negative electrode active material is increasing to realize a high capacity and high output battery suitable for wireless charging energy storage. .
통상적으로, 리튬이차전지에 널리 사용되고 있는 음극활물질인 흑연(graphite)은 층상 구조를 가지고 있어 리튬 이온의 삽입 및 탈리에 매우 유용한 특징을 지닌다. 흑연은 이론적으로 372 mAh/g의 용량을 나타내지만 최근의 고용량의 리튬 전지에 대한 수요가 증가함에 따라 흑연을 대체할 수 있는 새로운 전극이 요구되고 있다. 이에 따라, 고용량의 음극 활물질로 실리콘(Si), 주석(Sn), 안티몬(Sb), 알루미늄(Al) 등과 같이 리튬 이온과 전기화학적인 합금을 형성하는 전극 활물질에 대하여 상용화를 위한 연구가 활발히 진행되고 있다.Generally, graphite, which is a negative electrode active material widely used in lithium secondary batteries, has a layered structure and thus has very useful characteristics for insertion and desorption of lithium ions. Graphite theoretically has a capacity of 372 mAh / g, but as the demand for high-capacity lithium batteries increases recently, new electrodes are required to replace graphite. Accordingly, active research for commercialization of electrode active materials forming an electrochemical alloy with lithium ions such as silicon (Si), tin (Sn), antimony (Sb), and aluminum (Al) as a high capacity negative electrode active material is actively conducted. It is becoming.
실리콘(Si)을 음극활물질로 사용할 경우, 반복적인 충·방전에 의해 리튬 이온이 삽입 및 탈리되는 과정에서 체적 변화로 인한 실리콘 입자의 균열 및 깨짐이 발생하는 문제점이 있었다. 이러한 문제점으로 인해 음극활물질 입자의 표면적이 증가하고, 이로 인하여 비수전해질의 분해 생성물로 이루어지는 피막층이 음극활물질 표면에 두껍게 형성되어 음극활물질과 비수전해질 사이의 계면 저항이 증가하여 충·방전 수명 특성이 저하되는 문제점이 있었다.When silicon (Si) is used as a negative electrode active material, there is a problem that cracks and cracks of silicon particles occur due to volume change during the process of inserting and detaching lithium ions due to repeated charging and discharging. Due to this problem, the surface area of the negative electrode active material particles increases, and thus, a coating layer formed of the decomposition product of the nonaqueous electrolyte is formed on the surface of the negative electrode active material to increase the interfacial resistance between the negative electrode active material and the nonaqueous electrolyte, thereby degrading the charge and discharge life characteristics. There was a problem.
현재, 이러한 음극활물질로서의 실리콘(Si)의 문제점을 극복하기 위하여, 실리콘 재료의 형상과 입자 크기를 제어하거나 합금화, 산화물화 및 탄소 재료와의 복합화 등의 다양한 방법이 시도되고 있으나 근본적인 문제점은 해결하지 못하는 실정이다.At present, in order to overcome the problems of silicon (Si) as a negative electrode active material, various methods such as controlling the shape and particle size of the silicon material or alloying, oxide, and complexing with a carbon material have been attempted, but fundamental problems are not solved. I can't.
[선행기술문헌][Preceding technical literature]
(특허문헌 1) 대한민국 등록특허 제10-1385602호(Patent Document 1) Republic of Korea Patent No. 10-1385602
본 발명이 이루고자 하는 기술적 과제는 종래의 실리콘(Si)을 음극활물질로 사용하였을 때의 체적 변화로 인한 수명 특성 저하를 개선하고자, 실리콘(Si), 알루미늄(Al), 철(Fe), 구리(Cu) 및 니켈(Ni)을 포함하는 비활성 매트릭스에 균일하게 분산 석출된 1 nm 내지 30 nm 급의 활성 실리콘 나노입자를 포함하는 음극활물질을 이용하여 반복적인 충·방전이 진행되어도 수명이 저하되지 않는 리튬이차전지를 제공하는 것을 일목적으로 한다.The technical problem to be achieved by the present invention is to improve the deterioration of the life characteristics due to the volume change when using a conventional silicon (Si) as a negative electrode active material, silicon (Si), aluminum (Al), iron (Fe), copper ( Life time does not decrease even after repeated charging and discharging by using a negative electrode active material containing 1 nm to 30 nm of active silicon nanoparticles uniformly dispersed and deposited on an inert matrix including Cu) and nickel (Ni). An object of the present invention is to provide a lithium secondary battery.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned above may be clearly understood by those skilled in the art from the following description. There will be.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일실시예는 실리콘을 포함하는 모합금을 용해시켜 용융액을 제조하는 단계; 상기 용융액을 액체급냉응고법으로 고체화하여 실리콘계 비정질 합금을 제조하는 단계; 및 상기 실리콘계 비정질 합금을 열처리하여 실리콘계 복합 금속을 제조하는 단계를 포함하고, 상기 실리콘계 복합 금속은 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함하는 것을 특징으로 하는 리튬이차전지 음극활물질용 복합금속 제조방법을 제공한다.In order to achieve the above technical problem, an embodiment of the present invention comprises the steps of preparing a melt by dissolving a mother alloy containing silicon; Preparing a silicon-based amorphous alloy by solidifying the melt by liquid quenching and solidification; And heat-treating the silicon-based amorphous alloy to produce a silicon-based composite metal, wherein the silicon-based composite metal comprises active silicon nanoparticles uniformly dispersed and precipitated in an inactive matrix. It provides a metal manufacturing method.
본 발명의 실시예에 있어서, 상기 실리콘계 복합 금속은 실리콘(Si) 30 at% 내지 60at%, 알루미늄(Al) 15 at% 내지 50 at%, 철(Fe) 5 at% 내지 25 at%, 구리(Cu) 0.1 at% 내지 5 at% 및 니켈(Ni) 1at% 내지 25 at% 를 포함할 수 있다.In an embodiment of the present invention, the silicon-based composite metal is silicon (Si) 30 at% to 60 at%, aluminum (Al) 15 at% to 50 at%, iron (Fe) 5 at% to 25 at%, copper ( Cu) 0.1 at% to 5 at% and nickel (Ni) 1 at% to 25 at%.
상기 기술적 과제를 달성하기 위하여, 본 발명의 다른 실시예는 실리콘(Si) 30 at% 내지 60at%, 알루미늄(Al) 15 at% 내지 50 at%, 철(Fe) 5 at% 내지 25 at%, 구리(Cu) 0.1 at% 내지 5 at% 및 니켈(Ni) 1at% 내지 25 at%를 포함하는 비활성 매트릭스 및 상기 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질을 제공한다.In order to achieve the above technical problem, another embodiment of the present invention is silicon (Si) 30 at% to 60 at%, aluminum (Al) 15 at% to 50 at%, iron (Fe) 5 at% to 25 at%, Lithium secondary, characterized in that it comprises an inert matrix comprising 0.1 at% to 5 at% of copper (Cu) and 1 to 25 at% of nickel (Ni) and active silicon nanoparticles uniformly dispersed and precipitated in the inactive matrix It provides a battery negative electrode active material.
본 발명의 실시예에 있어서, 상기 비활성 매트릭스는 지르코늄(Zr), 니오븀(Nb), 티타늄(Ti), 크롬(Cr), 게르마늄(Ge) 및 칼슘(Ca) 중 어느 하나 이상으로 이루어진 물질을 0.1 at% 내지 5 at% 더 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질일 수 있다.In an embodiment of the present invention, the inert matrix may be formed of at least 0.1 of zirconium (Zr), niobium (Nb), titanium (Ti), chromium (Cr), germanium (Ge), and calcium (Ca). It may be an anode active material for a lithium secondary battery, characterized in that it further comprises at% to 5 at%.
본 발명의 실시예에 있어서, 상기 비활성 매트릭스는 결정질 매트릭스 및 비정질 매트릭스 중 어느 하나 이상을 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질일 수 있다.In an embodiment of the present invention, the inactive matrix may be a negative electrode active material for a lithium secondary battery, characterized in that it comprises any one or more of a crystalline matrix and an amorphous matrix.
본 발명의 실시예에 있어서, 상기 활성 실리콘 나노입자는 비활성 매트릭스의 구리 클러스터링(Cu clustering)에 의해 비활성 매트릭스에 균일하게 분산 석출되는 것을 특징으로 하는 리튬이차전지용 음극활물질일 수 있다.In an embodiment of the present invention, the active silicon nanoparticles may be a negative electrode active material for a lithium secondary battery, characterized in that uniformly dispersed precipitation in the inactive matrix by copper clustering (Cu clustering) of the inactive matrix.
본 발명의 실시예에 있어서, 상기 활성 실리콘 나노입자는 결정질인 것을 특징으로 하는 리튬이차전지용 음극활물질일 수 있다.In an embodiment of the present invention, the active silicon nanoparticles may be a negative electrode active material for a lithium secondary battery, characterized in that the crystalline.
본 발명의 실시예에 있어서, 상기 활성 실리콘 나노입자의 입경은 1 nm 내지 30 nm인 것을 특징으로 하는 리튬이차전지용 음극활물질일 수 있다.In an embodiment of the present invention, the particle size of the active silicon nanoparticles may be a negative electrode active material for a lithium secondary battery, characterized in that 1 nm to 30 nm.
상기 기술적 과제를 달성하기 위하여, 본 발명의 또 다른 실시예는 음극 집전체 및 상기 음극 집전체의 적어도 일면 이상에 형성된 음극활물질층을 포함하고, 상기 음극활물질층은 음극활물질 75 wt% 내지 92 wt%, 도전재 1 wt% 내지 10 wt% 및 바인더 7 wt% 내지 15 wt%를 포함하며, 상기 음극활물질은 비활성 매트릭스 및 상기 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함하는 것을 특징으로 하는 리튬이차전지용 음극을 제공한다.In order to achieve the above technical problem, another embodiment of the present invention includes a negative electrode active material layer and a negative electrode active material layer formed on at least one surface of the negative electrode current collector, the negative electrode active material layer 75 wt% to 92 wt %, 1 wt% to 10 wt% of a conductive material, and 7 wt% to 15 wt% of a binder, wherein the anode active material includes an inert matrix and active silicon nanoparticles uniformly dispersed and precipitated in the inactive matrix. It provides a negative electrode for a lithium secondary battery.
본 발명의 실시예에 있어서, 상기 비활성 매트릭스는 5성분계 이상의 실리콘 합금을 포함하는 것을 특징으로 하는 리튬이차전지용 음극일 수 있다.In an embodiment of the present invention, the inert matrix may be a negative electrode for a lithium secondary battery, characterized in that it comprises a five-component or more silicon alloy.
본 발명의 실시예에 있어서, 상기 5성분계 이상의 실리콘 합금은 실리콘(Si) 30 at% 내지 60at%, 알루미늄(Al) 15 at% 내지 50 at%, 철(Fe) 5 at% 내지 25 at%, 구리(Cu) 0.1 at% 내지 5 at% 및 니켈(Ni) 1at% 내지 25 at%를 포함하는 것을 특징으로 하는 리튬이차전지용 음극일 수 있다.In an embodiment of the present invention, the five-component or more silicon alloy is silicon (Si) 30 at% to 60 at%, aluminum (Al) 15 at% to 50 at%, iron (Fe) 5 at% to 25 at%, It may be a negative electrode for a lithium secondary battery comprising 0.1 to 5 at% of copper (Cu) and 1 to 25 at% of nickel (Ni).
본 발명의 실시예에 있어서, 상기 5성분계 이상의 실리콘 합금은 지르코늄(Zr), 니오븀(Nb), 티타늄(Ti), 크롬(Cr), 게르마늄(Ge) 및 칼슘(Ca) 중 어느 하나 이상으로 이루어진 물질을 0.1 at% 내지 5 at% 더 포함하는 것을 특징으로 하는 리튬이차전지용 음극일 수 있다.In an embodiment of the present invention, the five-component or more silicon alloy is made of one or more of zirconium (Zr), niobium (Nb), titanium (Ti), chromium (Cr), germanium (Ge) and calcium (Ca). It may be a negative electrode for a lithium secondary battery characterized in that it further comprises 0.1 to 5 at% of the material.
본 발명의 실시예에 있어서, 상기 활성 실리콘 나노입자는 비활성 매트릭스의 구리 클러스터링(Cu clustering)에 의해 비활성 매트릭스에 균일하게 분산 석출되는 것을 특징으로 하는 리튬이차전지용 음극일 수 있다.In an embodiment of the present invention, the active silicon nanoparticles may be a negative electrode for a lithium secondary battery, characterized in that uniformly dispersed precipitation in the inactive matrix by copper clustering (Cu clustering) of the inactive matrix.
본 발명의 실시예에 있어서, 상기 활성 실리콘 나노입자의 입경은 1 nm 내지 30 nm인 것을 특징으로 하는 리튬이차전지용 음극일 수 있다.In an embodiment of the present invention, the particle size of the active silicon nanoparticles may be a negative electrode for a lithium secondary battery, characterized in that 1 nm to 30 nm.
상기 기술적 과제를 달성하기 위하여, 본 발명의 또 다른 실시예는 양극, 음극, 전해질 및 분리막을 포함하는 리튬이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체의 적어도 일면 이상에 형성된 음극활물질층을 포함하고, 상기 음극활물질층은 음극활물질 75 wt% 내지 92 wt%, 도전재 1 wt% 내지 10 wt% 및 바인더 7 wt% 내지 15 wt%를 포함하고, 상기 음극활물질은 비활성 매트릭스 및 상기 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함하는 것을 특징으로 하는 리튬이차전지를 제공한다.In order to achieve the above technical problem, another embodiment of the present invention is a lithium secondary battery including a positive electrode, a negative electrode, an electrolyte and a separator, wherein the negative electrode is a negative electrode current collector and a negative electrode formed on at least one surface of the negative electrode current collector An active material layer, wherein the negative electrode active material layer comprises 75 wt% to 92 wt% of a negative electrode active material, 1 wt% to 10 wt% of a conductive material, and 7 wt% to 15 wt% of a binder; It provides a lithium secondary battery comprising the active silicon nanoparticles uniformly dispersed in the inert matrix.
본 발명의 실시예에 있어서, 상기 비활성 매트릭스는 5성분계 이상의 실리콘 합금을 포함하는 것을 특징으로 하는 리튬이차전지일 수 있다.In an embodiment of the present invention, the inactive matrix may be a lithium secondary battery comprising a silicon alloy of five or more components.
본 발명의 실시예에 있어서, 상기 5성분계 이상의 실리콘 합금은 실리콘(Si) 30 at% 내지 60at%, 알루미늄(Al) 15 at% 내지 50 at%, 철(Fe) 5 at% 내지 25 at%, 구리(Cu) 0.1 at% 내지 5 at% 및 니켈(Ni) 1at% 내지 25 at%를 포함하는 것을 특징으로 하는 리튬이차전지일 수 있다.In an embodiment of the present invention, the five-component or more silicon alloy is silicon (Si) 30 at% to 60 at%, aluminum (Al) 15 at% to 50 at%, iron (Fe) 5 at% to 25 at%, The lithium secondary battery may include 0.1 at% to 5 at% of copper (Cu) and 1 to 25 at% of nickel (Ni).
본 발명의 실시예에 있어서, 상기 5성분계 이상의 실리콘 합금은 지르코늄(Zr), 니오븀(Nb), 티타늄(Ti), 크롬(Cr), 게르마늄(Ge) 및 칼슘(Ca) 중 어느 하나 이상으로 이루어진 물질을 0.1 at% 내지 5 at% 더 포함하는 것을 특징으로 하는 리튬이차전지일 수 있다.In an embodiment of the present invention, the five-component or more silicon alloy is made of one or more of zirconium (Zr), niobium (Nb), titanium (Ti), chromium (Cr), germanium (Ge) and calcium (Ca). The lithium secondary battery may further include 0.1 at% to 5 at% of the material.
본 발명의 실시예에 있어서, 상기 활성 실리콘 나노입자는 비활성 매트릭스의 구리 클러스터링(Cu clustering)에 의해 비활성 매트릭스에 균일하게 분산 석출되는 것을 특징으로 하는 리튬이차전지일 수 있다.In an embodiment of the present invention, the active silicon nanoparticles may be a lithium secondary battery, characterized in that uniformly dispersed precipitation in the inactive matrix by copper clustering (Cu clustering) of the inactive matrix.
본 발명의 실시예에 있어서, 상기 활성 실리콘 나노입자의 입경은 1 nm 내지 30 nm인 것을 특징으로 하는 리튬이차전지일 수 있다.In an embodiment of the present invention, the particle size of the active silicon nanoparticles may be a lithium secondary battery, characterized in that 1 nm to 30 nm.
본 발명의 일 효과로서, 실리콘(Si), 알루미늄(Al), 철(Fe), 구리(Cu) 및 니켈(Ni)을 포함하는 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함하는 음극활물질은 비활성 매트릭스 내의 철(Fe)과 구리(Cu)가 분리되는 경향이 있기 때문에 구리 클러스터링(Cu clustering) 현상이 발생할 수 있다.As an effect of the present invention, an anode comprising active silicon nanoparticles uniformly dispersed and precipitated in an inert matrix containing silicon (Si), aluminum (Al), iron (Fe), copper (Cu) and nickel (Ni) Since the active material tends to separate iron (Fe) and copper (Cu) in the inactive matrix, copper clustering may occur.
이에 따라, 상기 구리 클러스터링(Cu clustering) 현상에 의해 결정화 온도가 낮은 과실리콘(Si-rich) 영역이 형성되어 열처리 시 활성 실리콘 입자가 우선적으로 미세하게 석출되고, 비활성 매트릭스는 결정질 구조 또는 비정질 구조를 형성할 수 있다.Accordingly, the Si-rich region having a low crystallization temperature is formed by the copper clustering phenomenon so that the active silicon particles are preferentially finely deposited during the heat treatment, and the inactive matrix has a crystalline structure or an amorphous structure. Can be formed.
본 발명의 다른 효과로서, 음극활물질 내의 비활성 매트릭스는 리튬 이온과 반응하지 않는 구조를 형성하면서 음극활물질의 부피 팽창을 억제하는 역할을 할 수 있고, 상기 활성 실리콘 나노입자는 리튬 이온과 가역 반응할 수 있으므로 음극활물질의 용량과 직접적인 관련이 있어, 음극활물질의 용량 특성을 나타낼 수 있다.As another effect of the present invention, the inactive matrix in the negative electrode active material may serve to suppress the volume expansion of the negative electrode active material while forming a structure that does not react with the lithium ions, the active silicon nanoparticles may be reversible reaction with lithium ions Therefore, the capacity of the negative electrode active material may be directly related to the capacity of the negative electrode active material.
따라서, 상기 음극활물질의 충·방전 진행 시 상기 비활성 매트릭스가 리튬 이온의 인터칼레이션(intercalation)에 의한 실리콘 입자의 팽창응력을 견딜 수 있는 항복강도를 가져서, 충·방전 진행 시 음극활물질의 부피 팽창 및 수축에 의한 입자 미분화가 억제될 수 있다.Therefore, the inactive matrix has a yield strength that can withstand the expansion stress of the silicon particles due to the intercalation of lithium ions during the charging and discharging of the negative electrode active material, thereby expanding the volume of the negative electrode active material during the charging and discharging process. And particle differentiation due to shrinkage can be suppressed.
따라서, 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함하는 리튬이차전지용 음극활물질을 이용하여 리튬이차전지를 제조하면, 초기 쿨롱 효율이 80 % 이상으로 우수하며, 30 사이클 후에도 용량이 유지되는 수명 특성을 가질 수 있다.Therefore, when a lithium secondary battery is manufactured using a negative electrode active material for lithium secondary batteries including the active silicon nanoparticles uniformly dispersed in an inactive matrix, the initial coulombic efficiency is excellent at 80% or more, and the capacity is maintained even after 30 cycles. It may have a lifetime characteristic.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above-described effects, but should be understood to include all the effects deduced from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명의 일 실시예에 따른 리튬이차전지 음극활물질용 복합금속 제조방법의 순서도이다.1 is a flow chart of a composite metal manufacturing method for a lithium secondary battery negative electrode active material according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 리튬이차전지용 음극활물질을 시차주사열량분석기(DSC, Differential scanning Calorimetry)로 온도에 따른 발열에너지를 상대적으로 나타낸 그래프이다.FIG. 2 is a graph showing relative exothermic energy according to temperature with a differential scanning calorimetry (DSC) of a negative active material for a lithium secondary battery according to an exemplary embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 리튬이차전지용 음극활물질의 결정성을 나타낸 회절패턴이다.3 is a diffraction pattern illustrating crystallinity of a negative electrode active material for a lithium secondary battery according to an exemplary embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 리튬이차전지용 음극활물질의 성분 분포를 나타낸 TEM-EDS 이미지들이다.4 is TEM-EDS images showing the distribution of components of the negative electrode active material for a lithium secondary battery according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 리튬이차전지의 충방전 사이클 수명을 나타낸 그래프이다.5 is a graph showing the charge and discharge cycle life of the lithium secondary battery according to an embodiment of the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the accompanying drawings will be described the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected (connected, contacted, coupled)" with another part, it is not only "directly connected" but also "indirectly connected" with another member in between. "Includes the case. In addition, when a part is said to "include" a certain component, this means that it may further include other components, without excluding the other components unless otherwise stated.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, “포함하다” 또는 “가지다” 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, the terms “comprise” or “have” are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명에서는 액체급냉응고법(Rapidly Solidification Process)과 합금설계 기술을 이용하여, 무선충전 에너지저장에 적합한 고용량, 고출력의 실리콘 합금계 음극활물질을 제조하고자 한다.In the present invention, using a rapid solidification process (Rapidly Solidification Process) and alloy design technology, to manufacture a high capacity, high output silicon alloy-based negative electrode active material suitable for wireless charging energy storage.
현재까지 기계적 합금화법인 볼밀링(Ball Milling)이나 액체급냉응고법(Rapidly Solidification Process)을 이용하여 실리콘 합금계 음극활물질 제조에 대한 연구는 계속 진행되고 있으나, 제조공정변수(볼밀링 시간, 분말 입자의 크기, 용탕의 냉각속도) 제어의 어려움으로 실리콘 상(Si phase)만의 크기를 100nm 이하 급으로 균일하고 재현성 있게 매트릭스 상(matrix phase)에 분산 석출시켜, 실리콘 재료의 부피팽창 문제를 해결한 실리콘 합금계 음극활물질에 대한 연구보고는 없으며, 본 발명에서는 다음의 세가지 방법순으로 이러한 문제를 해결하고자 한다.Until now, research on the production of silicon alloy-based anode active materials by using a mechanical alloying method, such as ball milling or a rapidly solidification process, has been conducted, but manufacturing process variables (ball milling time, size of powder particles) The silicon alloy system solves the volume expansion problem of silicon materials by dispersing and depositing the size of the silicon phase in the matrix phase with uniformity and reproducibility at a level of 100 nm or less due to the difficulty of controlling the cooling rate of the melt. There is no research report on the negative electrode active material, and the present invention intends to solve these problems in the following three methods.
첫째, 열처리 후 Cu Clustering 효과의 미세조직을 고려한 실리콘계 아몰퍼스 합금 설계.First, silicon amorphous alloy design considering the microstructure of Cu clustering effect after heat treatment.
둘째, 액체급냉응고법(Rapidly Solidification Process)을 이용한 실리콘계 아몰퍼스 합금 제조.Second, silicon-based amorphous alloy manufacturing using the Rapidly Solidification Process.
셋째, 실리콘계 아몰퍼스 합금의 열처리를 통한 활성금속만이 매트릭스에 균일 분산 석출된 미세조직 구현.Third, only the active metal through the heat treatment of the silicon-based amorphous alloy to implement a microstructure uniformly dispersed in the matrix.
상기 과정을 통하여 최종적으로, 충·방전 사이클 진행 시 리튬 이온의 인터컬렉션(intercalation)에 의한 실리콘 입자의 팽창응력을 견뎌낼 수 있는 항복강도를 갖는 매트릭스 상(matrix phase)에 100nm급 크기의 실리콘 상이 균일 분산 석출된 미세조직을 구현하여, 리튬이온의 삽입·탈리 반응으로 발생하는 실리콘 입자의 부피 팽창·수축에 의한 입자 미분화를 억제하고자 한다.Finally, the 100 nm-class silicon phase is transformed into a matrix phase having a yield strength capable of withstanding the expansion stress of the silicon particles due to the intercalation of lithium ions during the charge and discharge cycle. By implementing a uniformly dispersed precipitated microstructure, it is intended to suppress the particle micronization due to volume expansion and contraction of silicon particles generated by the insertion and desorption reaction of lithium ions.
도 1을 참조하면, 본 발명은 실리콘을 포함하는 모합금을 용해시켜 용융액을 제조하는 단계(S100); 상기 용융액을 액체급냉응고법으로 고체화하여 실리콘계 비정질 합금을 제조하는 단계(S200); 및 상기 실리콘계 비정질 합금을 열처리하여 실리콘계 복합 금속을 제조하는 단계(S300)를 포함하고, 상기 실리콘계 복합 금속은 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함하는 것을 특징으로 하는 리튬이차전지 음극활물질용 복합금속 제조방법을 제공한다.Referring to Figure 1, the present invention comprises the steps of preparing a melt by dissolving a mother alloy containing silicon (S100); Preparing a silicon-based amorphous alloy by solidifying the melt by liquid quenching and solidification (S200); And preparing a silicon-based composite metal by heat-treating the silicon-based amorphous alloy (S300), wherein the silicon-based composite metal includes active silicon nanoparticles uniformly dispersed and precipitated in an inactive matrix. It provides a method for producing a composite metal for an active material.
상기 실리콘계 복합 금속은 실리콘(Si) 30 at% 내지 60at%, 알루미늄(Al) 15 at% 내지 50 at%, 철(Fe) 5 at% 내지 25 at%, 구리(Cu) 0.1 at% 내지 5 at% 및 니켈(Ni) 1at% 내지 25 at% 를 포함할 수 있다.The silicon-based composite metal may include silicon at 30 to 60 at%, aluminum at 15 to 50 at%, iron at 5 to 25 at%, and copper at 0.1 to 5 at. % And 1 at% to 25 at% of nickel (Ni).
본 발명의 리튬이차전지용 음극활물질은 실리콘(Si) 30 at% 내지 60at%, 알루미늄(Al) 15 at% 내지 50 at%, 철(Fe) 5 at% 내지 25 at%, 구리(Cu) 0.1 at% 내지 5 at% 및 니켈(Ni) 1at% 내지 25 at% 를 포함하는 비활성 매트릭스 및 상기 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함할 수 있다.The anode active material for a lithium secondary battery of the present invention is silicon (Si) 30 at% to 60 at%, aluminum (Al) 15 at% to 50 at%, iron (Fe) 5 at% to 25 at%, copper (Cu) 0.1 at It may include an inert matrix including% to 5 at% and 1 at% to 25 at% of nickel (Ni) and active silicon nanoparticles uniformly dispersed and precipitated in the inactive matrix.
상기 음극활물질을 구성하는 실리콘(Si)은 비활성 매트릭스 내의 실리콘(Si)과 활성 실리콘 나노입자가 혼합되어 있다. 상기 활성 실리콘 나노입자는 리튬 이온과 가역 반응할 수 있으므로 음극활물질의 용량과 직접적인 관련이 있고, 비활성 매트릭스는 리튬 이온과 반응하지 않는 구조를 형성하면서 음극활물질의 부피 팽창을 억제하는 역할을 할 수 있다. 상기 활성 실리콘 나노입자는 비활성 매트릭스 내에 균일하게 분산 석출될 수 있다.Silicon (Si) constituting the negative electrode active material is mixed with silicon (Si) and active silicon nanoparticles in an inactive matrix. Since the active silicon nanoparticles can be reversibly reacted with lithium ions, the active silicon nanoparticles are directly related to the capacity of the negative electrode active material, and the inactive matrix may serve to suppress the volume expansion of the negative electrode active material while forming a structure that does not react with the lithium ions. . The active silicon nanoparticles may be uniformly dispersed and precipitated in an inactive matrix.
상기 리튬이차전지용 음극활물질에서 실리콘(Si)은 음극활물질이 리튬이차전지의 음극으로서 이용될 때에 리튬 이온의 흡장 및 방출에 관여할 수 있다. 따라서, 실리콘(Si)이 리튬이차전지용 음극활물질에 포함되는 양은 상기 음극활물질의 용량 및 수명 특성과 관계가 있다. 구체적으로, 실리콘(Si)이 합금에 더 많이 포함될수록, 음극활물질의 용량이 향상될 수 있으나, 수명 특성은 다소 저하될 수 있다. 따라서, 본 발명의 음극활물질은 용량을 향상시키기 보다는 수명 특성을 향상시키기 위해 상기 음극활물질 내의 실리콘(Si)의 함량은 30 at% 내지 60 at% 수준이 바람직하다. 상기 실리콘(Si)의 함량이 30 at% 미만일 경우, 리튬이차전지용 음극활물질로서 용량을 구현하기에 과도하게 적은 용량을 나타낼 수 있어 바람직하지 않고, 상기 실리콘(Si)의 함량이 60 at% 초과일 경우, 비활성 매트릭스를 구성하는 실리콘(Si) 이외의 성분의 함량이 적어 리튬이차전지용 음극활물질의 수명 개선 효과가 나타나기 어려울 수 있어 바람직하지 않다.In the negative electrode active material for a lithium secondary battery, silicon (Si) may be involved in occlusion and release of lithium ions when the negative electrode active material is used as a negative electrode of a lithium secondary battery. Therefore, the amount of silicon (Si) included in the negative electrode active material for a lithium secondary battery is related to the capacity and life characteristics of the negative electrode active material. Specifically, the more silicon (Si) is included in the alloy, the capacity of the negative electrode active material may be improved, but the life characteristics may be somewhat lowered. Therefore, the content of silicon (Si) in the negative electrode active material is 30 to 60 at% level in order to improve the life characteristics rather than to improve the capacity of the negative electrode active material of the present invention. When the content of the silicon (Si) is less than 30 at%, it is not preferable to exhibit an excessively small capacity to implement the capacity as a negative electrode active material for a lithium secondary battery, the content of the silicon (Si) is greater than 60 at% In this case, since the content of components other than silicon (Si) constituting the inert matrix is small, the life improvement effect of the negative electrode active material for a lithium secondary battery may be difficult to appear, which is not preferable.
일반적으로 구리(Cu) 및 철(Fe)은 상온에서 고체 상태일 때 실리콘(Si)에 고용되기 어려우나, 멜트 스피닝 등의 액체급냉응고법과 같은 제조방법을 이용하면, 구리(Cu)를 실리콘(Si)에 강제로 고용시킬 수 있다. 강제로 고용된 구리(Cu)는 철(Fe)과 분리되려는 경향이 있는데, 이러한 경향으로 인해 구리 클러스터링(Cu clustering) 현상이 발생하게 된다. 구리 클러스터링(Cu clustering) 현상이 나타나는 부분에 활성 실리콘 나노입자가 균일하게 분산 석출될 수 있으며, 이러한 현상으로 인해 본 발명의 음극활물질은 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함할 수 있다.In general, copper (Cu) and iron (Fe) are difficult to be dissolved in silicon (Si) when in a solid state at room temperature.However, using a manufacturing method such as liquid rapid solidification such as melt spinning, copper (Cu) may be converted into silicon (Si). Can be forcibly hired). Forced solid solution copper (Cu) tends to be separated from iron (Fe), which causes copper clustering (Cu clustering) phenomenon. The active silicon nanoparticles may be uniformly dispersed and precipitated at a portion where the copper clustering phenomenon occurs, and the cathode active material of the present invention may include the active silicon nanoparticles uniformly dispersed and precipitated in an inactive matrix. have.
상기 구리(Cu)의 함량은 상기 실리콘(Si)의 함량이 30 at% 내지 60 at%일 때, 0.1 at% 내지 5 at%인 것이 바람직하다. 이는 상기 구리(Cu)의 함량이 0.1 at% 미만일 경우, 전술한 구리 클러스터링(Cu clustering) 현상이 미미하여 활성 실리콘 나노입자의 분산 석출이 일어나지 않을 수 있어 바람직하지 않기 때문이다. 또한, 상기 구리(Cu) 함량이 5 at% 초과일 경우, 오히려 구리(Cu)가 불순물로 작용할 수 있어 바람직하지 않기 때문에, 상기 구리(Cu)의 함량은 0.1 at% 내지 5 at%가 바람직한 수준이다.The content of copper (Cu) is preferably 0.1 at% to 5 at% when the content of the silicon (Si) is 30 at% to 60 at%. This is because when the content of copper (Cu) is less than 0.1 at%, the above-mentioned copper clustering phenomenon is insignificant and dispersion precipitation of active silicon nanoparticles may not occur, which is undesirable. In addition, when the copper (Cu) content is more than 5 at%, rather than copper (Cu) may act as an impurity, the content of the copper (Cu) is 0.1 at% to 5 at% is preferred level to be.
본 발명에서는 비활성 매트릭스에 포함되는 니켈(Ni) 및 철(Fe)이 음극활물질의 용량을 향상시키는 역할을 할 수 있기 때문에, 용량 특성의 개선할 수 있다.In the present invention, since nickel (Ni) and iron (Fe) included in the inactive matrix can play a role of improving the capacity of the negative electrode active material, the capacity characteristics can be improved.
상기 비활성 매트릭스는 전술한 바와 같이, 실리콘(Si), 알루미늄(Al), 철(Fe), 구리(Cu) 및 니켈(Ni)을 포함하는 5성분계 실리콘계 합금을 포함할 수 있지만, 상기 5성분계에 지르코늄(Zr) 0.1 at% 내지 5 at%를 더 포함하여 6성분계 실리콘계 합금을 포함할 수 있다. 이때, 지르코늄(Zr)은 음극활물질의 조직을 미세하게 만들고, 수명 특성을 개선시키는 역할을 할 수 있다.As described above, the inactive matrix may include a five-component silicon-based alloy including silicon (Si), aluminum (Al), iron (Fe), copper (Cu), and nickel (Ni). Zirconium (Zr) may include a six-component silicon-based alloy further comprising 0.1 at% to 5 at%. At this time, zirconium (Zr) may serve to make the structure of the negative electrode active material fine, and improve the life characteristics.
또한, 상기 지르코늄(Zr) 이외에도, 니오븀(Nb), 티타늄(Ti), 크롬(Cr), 게르마늄(Ge) 및 칼슘(Ca) 중 어느 하나 이상으로 이루어진 물질을 0.1 at% 내지 5 at% 더 포함할 수 있어, 6성분계 이상을 포함하는 실리콘계 합금을 상기 비활성 매트릭스로 사용할 수 있으며, 용량 특성 또는 수명 특성을 개선시키기 위한 성분으로 사용될 수 있다.In addition to the zirconium (Zr), 0.1 at% to 5 at% of a material consisting of at least one of niobium (Nb), titanium (Ti), chromium (Cr), germanium (Ge), and calcium (Ca) is further included. It is possible to use a silicon-based alloy containing a six-component or more as the inert matrix, it can be used as a component for improving the capacity characteristics or life characteristics.
상기 비활성 매트릭스는 결정질 매트릭스 및 비정질 매트릭스 중 어느 하나 이상을 포함할 수 있고, 및 상기 비활성 매트릭스에 균일하게 분산 석출된 상기 활성 실리콘 나노입자는 결정질 상일 수 있으며, 상기 활성 실리콘 나노입자의 입경은 1 nm 내지 30 nm일 수 있으며, 보다 바람직하게는 10 nm 내지 20 nm일 수 있다.The inert matrix may include any one or more of a crystalline matrix and an amorphous matrix, and the active silicon nanoparticles uniformly dispersed in the inactive matrix may be in a crystalline phase, and the particle size of the active silicon nanoparticles may be 1 nm. It may be from 30 nm, more preferably from 10 nm to 20 nm.
이하, 리튬이차전지용 음극에 대하여 설명한다.Hereinafter, the negative electrode for lithium secondary batteries is demonstrated.
본 발명의 리튬이차전지용 음극은 음극 집전체 및 상기 음극 집전체의 적어도 일면 이상에 형성된 음극활물질층을 포함하고, 상기 음극활물질층은 음극활물질 75 wt% 내지 92 wt%, 도전재 1 wt% 내지 10 wt% 및 바인더 7 wt% 내지 15 wt%를 포함하며, 상기 음극활물질은 비활성 매트릭스 및 상기 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함할 수 있다.The negative electrode for a lithium secondary battery of the present invention includes a negative electrode current collector and a negative electrode active material layer formed on at least one surface of the negative electrode current collector, and the negative electrode active material layer is 75 wt% to 92 wt% of a negative electrode active material, and 1 wt% to conductive material. 10 wt% and 7 wt% to 15 wt% of the binder, wherein the negative electrode active material may include an inert matrix and active silicon nanoparticles uniformly dispersed in the inactive matrix.
본 발명의 실시예에 있어서, 상기 음극 집전체로는 전도성 물질을 포함할 수 있고, 구체적으로 얇은 전도성 호일(foil) 또는 발포체(foam)일 수 있다. 예를 들어, 상기 음극 집전체는 구리, 금, 니켈, 스테인레스 또는 티타늄을 포함할 수 있으나, 이에 제한되는 것은 아님을 명시한다.In an embodiment of the present invention, the negative electrode current collector may include a conductive material, and specifically, may be a thin conductive foil or foam. For example, the negative electrode current collector may include, but is not limited to, copper, gold, nickel, stainless, or titanium.
상기 음극활물질층은 음극활물질, 도전재 및 바인더를 용매 중에서 혼합하여 음극활물질층 형성용 조성물을 제조한 후 상기 조성물이 음극 집전체 상에 도포된 형태일 수 있다. 이와 같은 음극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서는 상세한 설명을 생략하기로 한다.The negative electrode active material layer may be prepared by mixing a negative electrode active material, a conductive material, and a binder in a solvent to prepare a composition for forming a negative electrode active material layer, and then coating the composition on a negative electrode current collector. Since such a negative electrode manufacturing method is well known in the art, detailed description thereof will be omitted.
본 발명의 실시예에 있어서, 상기 음극활물질은 비활성 매트릭스 및 상기 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함할 수 있으며, 상기 비활성 매트릭스는 5성분계 이상의 실리콘 합금을 포함할 수 있다. 보다 구체적으로, 상기 5성분계 이상의 실리콘 합금은 실리콘(Si) 30 at% 내지 60at%, 알루미늄(Al) 15 at% 내지 50 at%, 철(Fe) 5 at% 내지 25 at%, 구리(Cu) 0.1 at% 내지 5 at% 및 니켈(Ni) 1at% 내지 25 at% 를 포함할 수 있다.In an embodiment of the present invention, the negative electrode active material may include an inert matrix and active silicon nanoparticles uniformly dispersed in the inactive matrix, and the inert matrix may include a five-component or more silicon alloy. More specifically, the five-component or more silicon alloy is silicon (Si) 30 at% to 60 at%, aluminum (Al) 15 at% to 50 at%, iron (Fe) 5 at% to 25 at%, copper (Cu) 0.1 at% to 5 at% and nickel (Ni) 1 at% to 25 at%.
상기 음극활물질을 구성하는 실리콘(Si)은 비활성 매트릭스 내의 실리콘(Si)과 활성 실리콘 나노입자가 혼합되어 있다. 상기 활성 실리콘 나노입자는 리튬 이온과 가역 반응할 수 있으므로 음극활물질의 용량과 직접적인 관련이 있고, 비활성 매트릭스는 리튬 이온과 반응하지 않는 구조를 형성하면서 음극활물질의 부피 팽창을 억제하는 역할을 할 수 있다. 상기 활성 실리콘 나노입자는 비활성 매트릭스 내에 균일하게 분산 석출될 수 있다.Silicon (Si) constituting the negative electrode active material is mixed with silicon (Si) and active silicon nanoparticles in an inactive matrix. Since the active silicon nanoparticles can be reversibly reacted with lithium ions, the active silicon nanoparticles are directly related to the capacity of the negative electrode active material, and the inactive matrix may serve to suppress the volume expansion of the negative electrode active material while forming a structure that does not react with the lithium ions. . The active silicon nanoparticles may be uniformly dispersed and precipitated in an inactive matrix.
상기 리튬이차전지용 음극활물질에서 실리콘(Si)은 음극활물질이 리튬이차전지의 음극으로서 이용될 때에 리튬 이온의 흡장 및 방출에 관여할 수 있다. 따라서, 실리콘(Si)이 리튬이차전지용 음극활물질에 포함되는 양은 상기 음극활물질의 용량 및 수명 특성과 관계가 있다. 구체적으로, 실리콘(Si)이 합금에 더 많이 포함될수록, 음극활물질의 용량이 향상될 수 있으나, 수명 특성은 다소 저하될 수 있다. 따라서, 본 발명의 음극활물질은 용량을 향상시키기 보다는 수명 특성을 향상시키기 위해 상기 음극활물질 내의 실리콘(Si)의 함량은 30 at% 내지 60 at% 수준이 바람직하다. 상기 실리콘(Si)의 함량이 30 at% 미만일 경우, 리튬이차전지용 음극활물질로서 용량을 구현하기에 과도하게 적은 용량을 나타낼 수 있어 바람직하지 않고, 상기 실리콘(Si)의 함량이 60 at% 초과일 경우, 비활성 매트릭스를 구성하는 실리콘(Si) 이외의 성분의 함량이 적어 리튬이차전지용 음극활물질의 수명 개선 효과가 나타나기 어려울 수 있어 바람직하지 않다.In the negative electrode active material for a lithium secondary battery, silicon (Si) may be involved in occlusion and release of lithium ions when the negative electrode active material is used as a negative electrode of a lithium secondary battery. Therefore, the amount of silicon (Si) included in the negative electrode active material for a lithium secondary battery is related to the capacity and life characteristics of the negative electrode active material. Specifically, the more silicon (Si) is included in the alloy, the capacity of the negative electrode active material may be improved, but the life characteristics may be somewhat lowered. Therefore, the content of silicon (Si) in the negative electrode active material is 30 to 60 at% level in order to improve the life characteristics rather than to improve the capacity of the negative electrode active material of the present invention. When the content of the silicon (Si) is less than 30 at%, it is not preferable to exhibit an excessively small capacity to implement the capacity as a negative electrode active material for a lithium secondary battery, the content of the silicon (Si) is greater than 60 at% In this case, since the content of components other than silicon (Si) constituting the inert matrix is small, the life improvement effect of the negative electrode active material for a lithium secondary battery may be difficult to appear, which is not preferable.
일반적으로 구리(Cu) 및 철(Fe)은 상온에서 고체 상태일 때 실리콘(Si)에 고용되기 어려우나, 멜트 스피닝 등의 액체급냉응고법과 같은 제조방법을 이용하면, 구리(Cu)를 실리콘(Si)에 강제로 고용시킬 수 있다. 강제로 고용된 구리(Cu)는 철(Fe)과 분리되려는 경향이 있는데, 이러한 경향으로 인해 구리 클러스터링(Cu clustering) 현상이 발생하게 된다. 구리 클러스터링(Cu clustering)이 나타나는 부분에 활성 실리콘 나노입자가 균일하게 분산 석출될 수 있으며, 이러한 현상으로 인해 본 발명의 음극활물질은 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함할 수 있다.In general, copper (Cu) and iron (Fe) are difficult to be dissolved in silicon (Si) when in a solid state at room temperature.However, using a manufacturing method such as liquid rapid solidification such as melt spinning, copper (Cu) may be converted into silicon (Si). Can be forcibly hired). Forced solid solution copper (Cu) tends to be separated from iron (Fe), which causes copper clustering (Cu clustering) phenomenon. Active silicon nanoparticles may be uniformly dispersed and precipitated at a portion where copper clustering appears, and due to this phenomenon, the negative active material of the present invention may include active silicon nanoparticles uniformly dispersed and precipitated in an inactive matrix. .
상기 구리(Cu)의 함량은 상기 실리콘(Si)의 함량이 30 at% 내지 60 at%일 때, 0.1 at% 내지 5 at%인 것이 바람직하다. 이는 상기 구리(Cu)의 함량이 0.1 at% 미만일 경우, 전술한 구리 클러스터링(Cu clustering) 현상이 미미하여 활성 실리콘 나노입자의 분산 석출이 일어나지 않을 수 있어 바람직하지 않기 때문이다. 또한, 상기 구리(Cu) 함량이 5 at% 초과일 경우, 오히려 구리(Cu)가 불순물로 작용할 수 있어 바람직하지 않기 때문에, 상기 구리(Cu)의 함량은 0.1 at% 내지 5 at%가 바람직한 수준이다.The content of copper (Cu) is preferably 0.1 at% to 5 at% when the content of the silicon (Si) is 30 at% to 60 at%. This is because when the content of copper (Cu) is less than 0.1 at%, the above-mentioned copper clustering phenomenon is insignificant and dispersion precipitation of active silicon nanoparticles may not occur, which is undesirable. In addition, when the copper (Cu) content is more than 5 at%, rather than copper (Cu) may act as an impurity, the content of the copper (Cu) is 0.1 at% to 5 at% is preferred level to be.
본 발명에서는 비활성 매트릭스에 포함되는 니켈(Ni) 및 철(Fe)이 음극활물질의 용량을 향상시키는 역할을 할 수 있기 때문에, 용량 특성의 개선할 수 있다.In the present invention, since nickel (Ni) and iron (Fe) included in the inactive matrix can play a role of improving the capacity of the negative electrode active material, the capacity characteristics can be improved.
상기 비활성 매트릭스는 전술한 바와 같이, 실리콘(Si), 알루미늄(Al), 철(Fe), 구리(Cu) 및 니켈(Ni)을 포함하는 5성분계 실리콘계 합금을 포함할 수 있지만, 상기 5성분계에 지르코늄(Zr) 0.1 at% 내지 5 at%를 더 포함하여 6성분계 실리콘계 합금을 포함할 수 있다. 이때, 지르코늄(Zr)은 음극활물질의 조직을 미세하게 만들고, 수명 특성을 개선시키는 역할을 할 수 있다.As described above, the inactive matrix may include a five-component silicon-based alloy including silicon (Si), aluminum (Al), iron (Fe), copper (Cu), and nickel (Ni). Zirconium (Zr) may include a six-component silicon-based alloy further comprising 0.1 at% to 5 at%. At this time, zirconium (Zr) may serve to make the structure of the negative electrode active material fine, and improve the life characteristics.
또한, 상기 지르코늄(Zr) 이외에도, 니오븀(Nb), 티타늄(Ti), 크롬(Cr), 게르마늄(Ge) 및 칼슘(Ca) 중 어느 하나 이상으로 이루어진 물질을 0.1 at% 내지 5 at% 더 포함할 수 있어, 6성분계 이상을 포함하는 실리콘계 합금을 상기 비활성 매트릭스로 사용할 수 있으며, 용량 특성 또는 수명 특성을 개선시키기 위한 성분으로 사용될 수 있다.In addition to the zirconium (Zr), 0.1 at% to 5 at% of a material consisting of at least one of niobium (Nb), titanium (Ti), chromium (Cr), germanium (Ge), and calcium (Ca) is further included. It is possible to use a silicon-based alloy containing a six-component or more as the inert matrix, it can be used as a component for improving the capacity characteristics or life characteristics.
상기 비활성 매트릭스는 결정질 매트릭스 및 비정질 매트릭스 중 어느 하나 이상을 포함할 수 있고, 및 상기 비활성 매트릭스에 균일하게 분산 석출된 상기 활성 실리콘 나노입자는 결정질 상일 수 있으며, 상기 활성 실리콘 나노입자의 입경은 1 nm 내지 30 nm일 수 있으며, 보다 바람직하게는 10 nm 내지 20 nm일 수 있다.The inert matrix may include any one or more of a crystalline matrix and an amorphous matrix, and the active silicon nanoparticles uniformly dispersed in the inactive matrix may be in a crystalline phase, and the particle size of the active silicon nanoparticles may be 1 nm. It may be from 30 nm, more preferably from 10 nm to 20 nm.
본 발명의 실시예에 있어서, 상기 음극활물질층은 음극활물질 75 wt% 내지 92 wt%, 도전재 1 wt% 내지 10 wt% 및 바인더 7 wt% 내지 15 wt%를 포함할 수 있다.In an embodiment of the present invention, the negative electrode active material layer may include 75 wt% to 92 wt% of the negative electrode active material, 1 wt% to 10 wt% of the conductive material, and 7 wt% to 15 wt% of the binder.
상기 도전재는 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 리튬이차전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 구체적으로, 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말, 금속 섬유 및 폴리페닐렌 유도체 등의 전도성 폴리머 물질 중 어느 하나 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.The conductive material is used to impart conductivity, and any lithium secondary battery configured may be used as long as it is an electron conductive material without causing chemical change. Specifically, any one or more of conductive polymer materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder such as copper, nickel, aluminum, silver, metal fiber and polyphenylene derivatives Can be used, but is not limited thereto.
상기 도전재의 함량이 1 wt% 미만일 경우, 도전재 사용에 따른 전도성 개선 및 그에 따른 수명 특성 개선 효과가 미미하고, 상기 도전재 함량이 5 wt% 초과일 경우, 도전재의 비표면적 증가로 인해 도전재 및 전해액 간의 반응이 증가하여 수명 특성이 저하될 수 있어 바람직하지 않다. 보다 구체적으로, 상기 도전재의 함량은 1 wt% 내지 3 wt%가 바람직할 수 있다.When the content of the conductive material is less than 1 wt%, the effect of improving the conductivity and the lifespan characteristics according to the use of the conductive material is insignificant, and when the conductive material content is more than 5 wt%, the conductive material due to the increase in the specific surface area of the conductive material It is not preferable because the reaction between the electrolyte and the electrolyte may be increased to reduce the life characteristics. More specifically, the content of the conductive material may be 1 wt% to 3 wt%.
상기 바인더는 음극활물질 입자들을 서로 잘 부착시키고, 음극활물질을 음극 집전체에 잘 부착시키는 역할을 하며, 구체적으로, 폴리이미드, 폴리아미드이미드, 폴리벤즈이미다졸, 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔, 아크릴레이티드 스티렌-부타디엔 및 에폭시 수지 중 어느 하나 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.The binder adheres the particles of the negative electrode active material to each other well, and adheres the negative electrode active material to the negative electrode current collector, and specifically, polyimide, polyamideimide, polybenzimidazole, polyvinyl alcohol, carboxymethylcellulose, and hydroxide. Oxypropylcellulose, polyvinylchloride, carboxylated polyvinylchloride, polyvinylfluoride, ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, Any one or more of styrene-butadiene, acrylated styrene-butadiene, and an epoxy resin may be used, but is not limited thereto.
상기 바인더의 함량이 7 wt% 미만일 경우, 음극 내에 충분한 접착력을 나타내기 어려워 바람직하지 않고, 상기 바인더의 함량이 15 wt% 초과일 경우, 리튬이차전지의 용량 특성 저하의 우려가 있어서 바람직하지 않다. 보다 구체적으로, 상기 바인더의 함량은 7 wt% 내지 10 wt%가 바람직할 수 있다.When the content of the binder is less than 7 wt%, it is not preferable to exhibit sufficient adhesive strength in the negative electrode, and when the content of the binder is more than 15 wt%, it is not preferable because there is a fear of deterioration in capacity characteristics of the lithium secondary battery. More specifically, the binder content may be 7 wt% to 10 wt%.
상기 도전재의 함량이 1 wt% 내지 10 wt%가 바람직하고, 상기 바인더의 함량이 7 wt% 내지 15 wt%가 바람직하기 때문에, 상기 음극활물질 층에서 음극활물질의 함량은 75 wt% 내지 92 wt%가 바람직한 수준이다.Since the content of the conductive material is preferably 1 wt% to 10 wt%, and the content of the binder is preferably 7 wt% to 15 wt%, the content of the negative electrode active material in the negative electrode active material layer is 75 wt% to 92 wt%. Is the preferred level.
상기 음극활물질, 도전재 및 바인더를 혼합시키기 위한 용매로는 N-메틸피롤리돈 또는 n-헥산 등을 사용할 수 있으나 이에 한정되는 것은 아니다.N-methylpyrrolidone or n-hexane may be used as a solvent for mixing the negative electrode active material, the conductive material and the binder, but is not limited thereto.
이하, 리튬이차전지에 대하여 설명한다.Hereinafter, a lithium secondary battery will be described.
본 발명의 리튬이차전지는 양극, 음극, 전해질 및 분리막을 포함하고, 상기 음극은 음극 집전체 및 상기 음극 집전체의 적어도 일면 이상에 형성된 음극활물질층을 포함할 수 있다.The lithium secondary battery of the present invention may include a positive electrode, a negative electrode, an electrolyte, and a separator, and the negative electrode may include a negative electrode current collector and a negative electrode active material layer formed on at least one surface of the negative electrode current collector.
본 발명의 실시예에 있어서, 상기 음극 집전체로는 전도성 물질을 포함할 수 있고, 구체적으로 얇은 전도성 호일(foil) 또는 발포체(foam)일 수 있다. 예를 들어, 상기 음극 집전체는 구리, 금, 니켈, 스테인레스 또는 티타늄을 포함할 수 있으나, 이에 제한되는 것은 아님을 명시한다.In an embodiment of the present invention, the negative electrode current collector may include a conductive material, and specifically, may be a thin conductive foil or foam. For example, the negative electrode current collector may include, but is not limited to, copper, gold, nickel, stainless, or titanium.
상기 음극활물질층은 음극활물질, 도전재 및 바인더를 용매 중에서 혼합하여 음극활물질층 형성용 조성물을 제조한 후 상기 조성물이 음극 집전체 상에 도포된 형태일 수 있다. 이와 같은 음극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서는 상세한 설명을 생략하기로 한다.The negative electrode active material layer may be prepared by mixing a negative electrode active material, a conductive material, and a binder in a solvent to prepare a composition for forming a negative electrode active material layer, and then coating the composition on a negative electrode current collector. Since such a negative electrode manufacturing method is well known in the art, detailed description thereof will be omitted.
본 발명의 실시예에 있어서, 상기 음극활물질은 비활성 매트릭스 및 상기 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함할 수 있으며, 상기 비활성 매트릭스는 5성분계 이상의 실리콘 합금을 포함할 수 있다. 보다 구체적으로, 상기 5성분계 이상의 실리콘 합금은 실리콘(Si) 30 at% 내지 60at%, 알루미늄(Al) 15 at% 내지 50 at%, 철(Fe) 5 at% 내지 25 at%, 구리(Cu) 0.1 at% 내지 5 at% 및 니켈(Ni) 1at% 내지 25 at%를 포함할 수 있다.In an embodiment of the present invention, the negative electrode active material may include an inert matrix and active silicon nanoparticles uniformly dispersed in the inactive matrix, and the inert matrix may include a five-component or more silicon alloy. More specifically, the five-component or more silicon alloy is silicon (Si) 30 at% to 60 at%, aluminum (Al) 15 at% to 50 at%, iron (Fe) 5 at% to 25 at%, copper (Cu) 0.1 at% to 5 at% and nickel (Ni) 1 at% to 25 at%.
상기 음극활물질을 구성하는 실리콘(Si)은 비활성 매트릭스 내의 실리콘(Si)과 활성 실리콘 나노입자가 혼합되어 있다. 상기 활성 실리콘 나노입자는 리튬 이온과 가역 반응할 수 있으므로 음극활물질의 용량과 직접적인 관련이 있고, 비활성 매트릭스는 리튬 이온과 반응하지 않는 구조를 형성하면서 음극활물질의 부피 팽창을 억제하는 역할을 할 수 있다. 상기 활성 실리콘 나노입자는 비활성 매트릭스 내에 균일하게 분산 석출될 수 있다.Silicon (Si) constituting the negative electrode active material is mixed with silicon (Si) and active silicon nanoparticles in an inactive matrix. Since the active silicon nanoparticles can be reversibly reacted with lithium ions, the active silicon nanoparticles are directly related to the capacity of the negative electrode active material, and the inactive matrix may serve to suppress the volume expansion of the negative electrode active material while forming a structure that does not react with the lithium ions. . The active silicon nanoparticles may be uniformly dispersed and precipitated in an inactive matrix.
상기 리튬이차전지용 음극활물질에서 실리콘(Si)은 음극활물질이 리튬이차전지의 음극으로서 이용될 때에 리튬 이온의 흡장 및 방출에 관여할 수 있다. 따라서, 실리콘(Si)이 리튬이차전지용 음극활물질에 포함되는 양은 상기 음극활물질의 용량 및 수명 특성과 관계가 있다. 구체적으로, 실리콘(Si)이 합금에 더 많이 포함될수록, 음극활물질의 용량이 향상될 수 있으나, 수명 특성은 다소 저하될 수 있다. 따라서, 본 발명의 음극활물질은 용량을 향상시키기 보다는 수명 특성을 향상시키기 위해 상기 음극활물질 내의 실리콘(Si)의 함량은 30 at% 내지 60 at% 수준이 바람직하다. 상기 실리콘(Si)의 함량이 30 at% 미만일 경우, 리튬이차전지용 음극활물질로서 용량을 구현하기에 과도하게 적은 용량을 나타낼 수 있어 바람직하지 않고, 상기 실리콘(Si)의 함량이 60 at% 초과일 경우, 비활성 매트릭스를 구성하는 실리콘(Si) 이외의 성분의 함량이 적어 리튬이차전지용 음극활물질의 수명 개선 효과가 나타나기 어려울 수 있어 바람직하지 않다.In the negative electrode active material for a lithium secondary battery, silicon (Si) may be involved in occlusion and release of lithium ions when the negative electrode active material is used as a negative electrode of a lithium secondary battery. Therefore, the amount of silicon (Si) included in the negative electrode active material for a lithium secondary battery is related to the capacity and life characteristics of the negative electrode active material. Specifically, the more silicon (Si) is included in the alloy, the capacity of the negative electrode active material may be improved, but the life characteristics may be somewhat lowered. Therefore, the content of silicon (Si) in the negative electrode active material is 30 to 60 at% level in order to improve the life characteristics rather than to improve the capacity of the negative electrode active material of the present invention. When the content of the silicon (Si) is less than 30 at%, it is not preferable to exhibit an excessively small capacity to implement the capacity as a negative electrode active material for a lithium secondary battery, the content of the silicon (Si) is greater than 60 at% In this case, since the content of components other than silicon (Si) constituting the inert matrix is small, the life improvement effect of the negative electrode active material for a lithium secondary battery may be difficult to appear, which is not preferable.
일반적으로 구리(Cu) 및 철(Fe)은 상온에서 고체 상태일 때 실리콘(Si)에 고용되기 어려우나, 멜트 스피닝 등의 액체급냉응고법과 같은 제조방법을 이용하면, 구리(Cu)를 실리콘(Si)에 강제로 고용시킬 수 있다. 강제로 고용된 구리(Cu)는 철(Fe)과 분리되려는 경향이 있는데, 이러한 경향으로 인해 구리 클러스터링(Cu clustering) 현상이 발생하게 된다. 구리 클러스터링(Cu clustering)이 나타나는 부분에 활성 실리콘 나노입자가 균일하게 분산 석출될 수 있으며, 이러한 현상으로 인해 본 발명의 음극활물질은 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함할 수 있다.In general, copper (Cu) and iron (Fe) are difficult to be dissolved in silicon (Si) when in a solid state at room temperature.However, using a manufacturing method such as liquid rapid solidification such as melt spinning, copper (Cu) may be converted into silicon (Si). Can be forcibly hired). Forced solid solution copper (Cu) tends to be separated from iron (Fe), which causes copper clustering (Cu clustering) phenomenon. Active silicon nanoparticles may be uniformly dispersed and precipitated at a portion where copper clustering appears, and due to this phenomenon, the negative active material of the present invention may include active silicon nanoparticles uniformly dispersed and precipitated in an inactive matrix. .
상기 구리(Cu)의 함량은 상기 실리콘(Si)의 함량이 30 at% 내지 60 at%일 때, 0.1 at% 내지 5 at%인 것이 바람직하다. 이는 상기 구리(Cu)의 함량이 0.1 at% 미만일 경우, 전술한 구리 클러스터링(Cu clustering) 현상이 미미하여 활성 실리콘 나노입자의 분산 석출이 일어나지 않을 수 있어 바람직하지 않기 때문이다. 또한, 상기 구리(Cu) 함량이 5 at% 초과일 경우, 오히려 구리(Cu)가 불순물로 작용할 수 있어 바람직하지 않기 때문에, 상기 구리(Cu)의 함량은 0.1 at% 내지 5 at%가 바람직한 수준이다.The content of copper (Cu) is preferably 0.1 at% to 5 at% when the content of the silicon (Si) is 30 at% to 60 at%. This is because when the content of copper (Cu) is less than 0.1 at%, the above-mentioned copper clustering phenomenon is insignificant and dispersion precipitation of active silicon nanoparticles may not occur, which is undesirable. In addition, when the copper (Cu) content is more than 5 at%, rather than copper (Cu) may act as an impurity, the content of the copper (Cu) is 0.1 at% to 5 at% is preferred level to be.
본 발명에서는 비활성 매트릭스에 포함되는 니켈(Ni) 및 철(Fe)이 음극활물질의 용량을 향상시키는 역할을 할 수 있기 때문에, 용량 특성의 개선할 수 있다.In the present invention, since nickel (Ni) and iron (Fe) included in the inactive matrix can play a role of improving the capacity of the negative electrode active material, the capacity characteristics can be improved.
상기 비활성 매트릭스는 전술한 바와 같이, 실리콘(Si), 알루미늄(Al), 철(Fe), 구리(Cu) 및 니켈(Ni)을 포함하는 5성분계 실리콘계 합금을 포함할 수 있지만, 상기 5성분계에 지르코늄(Zr) 0.1 at% 내지 5 at%를 더 포함하여 6성분계 실리콘계 합금을 포함할 수 있다. 이때, 지르코늄(Zr)은 음극활물질의 조직을 미세하게 만들고, 수명 특성을 개선시키는 역할을 할 수 있다.As described above, the inactive matrix may include a five-component silicon-based alloy including silicon (Si), aluminum (Al), iron (Fe), copper (Cu), and nickel (Ni). Zirconium (Zr) may include a six-component silicon-based alloy further comprising 0.1 at% to 5 at%. At this time, zirconium (Zr) may serve to make the structure of the negative electrode active material fine, and improve the life characteristics.
또한, 상기 지르코늄(Zr) 이외에도, 니오븀(Nb), 티타늄(Ti), 크롬(Cr), 게르마늄(Ge) 및 칼슘(Ca) 중 어느 하나 이상으로 이루어진 물질을 0.1 at% 내지 5 at% 더 포함할 수 있어, 6성분계 이상을 포함하는 실리콘계 합금을 상기 비활성 매트릭스로 사용할 수 있으며, 용량 특성 또는 수명 특성을 개선시키기 위한 성분으로 사용될 수 있다.In addition to the zirconium (Zr), 0.1 at% to 5 at% of a material consisting of at least one of niobium (Nb), titanium (Ti), chromium (Cr), germanium (Ge), and calcium (Ca) is further included. It is possible to use a silicon-based alloy containing a six-component or more as the inert matrix, it can be used as a component for improving the capacity characteristics or life characteristics.
상기 비활성 매트릭스는 결정질 매트릭스 및 비정질 매트릭스 중 어느 하나 이상을 포함할 수 있고, 및 상기 비활성 매트릭스에 균일하게 분산 석출된 상기 활성 실리콘 나노입자는 결정질 상일 수 있으며, 상기 활성 실리콘 나노입자의 입경은 1 nm 내지 30 nm일 수 있으며, 보다 바람직하게는 10 nm 내지 20 nm일 수 있다.The inert matrix may include any one or more of a crystalline matrix and an amorphous matrix, and the active silicon nanoparticles uniformly dispersed in the inactive matrix may be in a crystalline phase, and the particle size of the active silicon nanoparticles may be 1 nm. It may be from 30 nm, more preferably from 10 nm to 20 nm.
본 발명의 실시예에 있어서, 상기 음극활물질층은 음극활물질 75 wt% 내지 92 wt%, 도전재 1 wt% 내지 10 wt% 및 바인더 7 wt% 내지 15 wt%를 포함할 수 있다.In an embodiment of the present invention, the negative electrode active material layer may include 75 wt% to 92 wt% of the negative electrode active material, 1 wt% to 10 wt% of the conductive material, and 7 wt% to 15 wt% of the binder.
상기 도전재는 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 리튬이차전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 구체적으로, 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말, 금속 섬유 및 폴리페닐렌 유도체 등의 전도성 폴리머 물질 중 어느 하나 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.The conductive material is used to impart conductivity, and any lithium secondary battery configured may be used as long as it is an electron conductive material without causing chemical change. Specifically, any one or more of conductive polymer materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder such as copper, nickel, aluminum, silver, metal fiber and polyphenylene derivatives Can be used, but is not limited thereto.
상기 도전재의 함량이 1 wt% 미만일 경우, 도전재 사용에 따른 전도성 개선 및 그에 따른 수명 특성 개선 효과가 미미하고, 상기 도전재 함량이 5 wt% 초과일 경우, 도전재의 비표면적 증가로 인해 도전재 및 전해액 간의 반응이 증가하여 수명 특성이 저하될 수 있어 바람직하지 않다. 보다 구체적으로, 상기 도전재의 함량은 1 wt% 내지 3 wt%가 바람직할 수 있다.When the content of the conductive material is less than 1 wt%, the effect of improving the conductivity and the lifespan characteristics according to the use of the conductive material is insignificant, and when the conductive material content is more than 5 wt%, the conductive material due to the increase in the specific surface area of the conductive material It is not preferable because the reaction between the electrolyte and the electrolyte may be increased to reduce the life characteristics. More specifically, the content of the conductive material may be 1 wt% to 3 wt%.
상기 바인더는 음극활물질 입자들을 서로 잘 부착시키고, 음극활물질을 음극 집전체에 잘 부착시키는 역할을 하며, 구체적으로, 폴리이미드, 폴리아미드이미드, 폴리벤즈이미다졸, 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔, 아크릴레이티드 스티렌-부타디엔 및 에폭시 수지 중 어느 하나 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.The binder adheres the particles of the negative electrode active material to each other well, and adheres the negative electrode active material to the negative electrode current collector, and specifically, polyimide, polyamideimide, polybenzimidazole, polyvinyl alcohol, carboxymethylcellulose, and hydroxide. Oxypropylcellulose, polyvinylchloride, carboxylated polyvinylchloride, polyvinylfluoride, ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, Any one or more of styrene-butadiene, acrylated styrene-butadiene, and an epoxy resin may be used, but is not limited thereto.
상기 바인더의 함량이 7 wt% 미만일 경우, 음극 내에 충분한 접착력을 나타내기 어려워 바람직하지 않고, 상기 바인더의 함량이 15 wt% 초과일 경우, 리튬이차전지의 용량 특성 저하의 우려가 있어서 바람직하지 않다. 보다 구체적으로, 상기 바인더의 함량은 7 wt% 내지 10 wt%가 바람직할 수 있다.When the content of the binder is less than 7 wt%, it is not preferable to exhibit sufficient adhesive strength in the negative electrode, and when the content of the binder is more than 15 wt%, it is not preferable because there is a fear of deterioration in capacity characteristics of the lithium secondary battery. More specifically, the binder content may be 7 wt% to 10 wt%.
상기 도전재의 함량이 1 wt% 내지 10 wt%가 바람직하고, 상기 바인더의 함량이 7 wt% 내지 15 wt%가 바람직하기 때문에, 상기 음극활물질 층에서 음극활물질의 함량은 75 wt% 내지 92 wt%가 바람직한 수준이다.Since the content of the conductive material is preferably 1 wt% to 10 wt%, and the content of the binder is preferably 7 wt% to 15 wt%, the content of the negative electrode active material in the negative electrode active material layer is 75 wt% to 92 wt%. Is the preferred level.
상기 음극활물질, 도전재 및 바인더를 혼합시키기 위한 용매로는 N-메틸피롤리돈 또는 n-헥산 등을 사용할 수 있으나 이에 한정되는 것은 아니다.N-methylpyrrolidone or n-hexane may be used as a solvent for mixing the negative electrode active material, the conductive material and the binder, but is not limited thereto.
본 발명의 실시예에 있어서, 상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성된 양극활물질층을 포함하며, 상기 양극활물질층은 양극활물질, 바인더 및 도전재를 용매 중에서 혼합하여 양극활물질층 형성용 조성물을 제조한 후 상기 조성물이 양극 집전체 상에 도포된 형태일 수 있다. 이와 같은 양극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서는 상세한 설명을 생략하기로 한다.In an embodiment of the present invention, the positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector, and the positive electrode active material layer is mixed with a positive electrode active material, a binder and a conductive material in a solvent to form a positive electrode active material layer After the composition is prepared, the composition may be in a form coated on a positive electrode current collector. Since such a method for manufacturing a positive electrode is well known in the art, detailed description thereof will be omitted.
상기 양극활물질은 리튬 이온을 가역적으로 삽입 및 탈리할 수 있는 물질을 포함할 수 있다. 구체적으로, 상기 양극활물질은 리튬 함유 전이금속 산화물, 리튬 함유 전이금속 황화물 등을 포함할 수 있다. 예를 들어, LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2(0<y<1), LiCo1-yMnyO2(0<y<1), LiNi1-yMnyO2(0<y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4(0<Z<2), LiMn2-zCozO4(0<Z<2), LiCoPO4, 및 LiFePO4 중 어느 하나 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.The cathode active material may include a material capable of reversibly inserting and detaching lithium ions. Specifically, the cathode active material may include a lithium-containing transition metal oxide, a lithium-containing transition metal sulfide, and the like. For example, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (Ni a Co b Mn c ) O 2 (0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1), LiNi 1-y Co y O 2 (0 <y <1), LiCo 1-y Mn y O 2 (0 <y <1), LiNi 1-y Mn y O 2 (0 < y <1), Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), LiMn 2-z Ni z One or more of O 4 (0 <Z <2), LiMn 2-z Co z O 4 (0 <Z <2), LiCoPO 4 , and LiFePO 4 may be used, but is not limited thereto.
상기 바인더는 양극활물질 입자들을 서로 잘 부착시키고, 양극활물질을 양극 집전체에 잘 부착시키는 역할을 하며, 구체적으로, 폴리이미드, 폴리아미드이미드, 폴리벤즈이미다졸, 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔, 아크릴레이티드 스티렌-부타디엔 및 에폭시 수지 중 어느 하나 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.The binder serves to adhere the positive electrode active material particles to each other and to adhere the positive electrode active material to the positive electrode current collector, and specifically, to polyimide, polyamideimide, polybenzimidazole, polyvinyl alcohol, carboxymethyl cellulose, and hydroxide. Oxypropylcellulose, polyvinylchloride, carboxylated polyvinylchloride, polyvinylfluoride, ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, Any one or more of styrene-butadiene, acrylated styrene-butadiene, and an epoxy resin may be used, but is not limited thereto.
상기 도전재는 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 리튬이차전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 구체적으로, 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말, 금속 섬유 및 폴리페닐렌 유도체 등의 전도성 폴리머 물질 중 어느 하나 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.The conductive material is used to impart conductivity, and any lithium secondary battery configured may be used as long as it is an electron conductive material without causing chemical change. Specifically, any one or more of conductive polymer materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder such as copper, nickel, aluminum, silver, metal fiber and polyphenylene derivatives Can be used, but is not limited thereto.
상기 용매로는 N-메틸피롤리돈 또는 n-헥산 등을 사용할 수 있으나 이에 한정되는 것은 아니다.N-methylpyrrolidone or n-hexane may be used as the solvent, but is not limited thereto.
상기 양극 집전체로는 전도성 물질을 포함할 수 있고, 구체적으로 얇은 전도성 호일(foil) 또는 발포체(foam)일 수 있다. 예를 들어, 상기 양극 집전체는 알루미늄, 니켈 또는 이들의 합금을 포함할 수 있으나, 이에 제한되는 것은 아님을 명시한다.The positive electrode current collector may include a conductive material, and specifically, may be a thin conductive foil or foam. For example, the positive electrode current collector may include, but is not limited to, aluminum, nickel or an alloy thereof.
본 발명의 실시예에 있어서, 상기 전해질은 비수성 유기용매 및 리튬염을 포함할 수 있다. 구체적으로, 상기 비수성 유기용매는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 및 비양성자성 용매 중 어느 하나 이상을 사용할 수 있다. 예를 들어, 상기 비수성 유기용매는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 에틸메틸카보네이트(EMC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), n-메틸 아세테이트, 디부틸 에테르, 시클로헥사논, 이소프로필알코올 및 설포란(sulfolane)류 용매로 이루어진 군에서 선택되는 하나 또는 둘 이상을 포함할 수 있다. 이러한 비수성 유기용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.In an embodiment of the present invention, the electrolyte may include a non-aqueous organic solvent and a lithium salt. Specifically, the non-aqueous organic solvent may be any one or more of a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based and aprotic solvent. For example, the non-aqueous organic solvent is dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), n-methyl acetate, dibutyl ether , Cyclohexanone, isopropyl alcohol and sulfolane (sulfolane) may include one or more selected from the group consisting of solvents. These non-aqueous organic solvents may be used alone or in combination of two or more thereof.
또한, 상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(x 및 y는 자연수임), LiCl, LiI 및 LiB(C2O4)2로 이루어진 군에서 선택되는 하나 또는 둘 이상을 포함할 수 있다. 이러한 전해질 염은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.In addition, the lithium salt may be LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 2 C 2 F 5 ) 2 , Li (CF 3 SO 2 ) 2 N, LiN (SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (x and y are natural numbers), LiCl, LiI and LiB (C 2 O 4 ) 2 It may include one or two or more selected from the group consisting of. These electrolyte salts may be used alone or in combination of two or more thereof.
본 발명의 실시예에 있어서, 상기 분리막은 단층막으로 폴리에틸렌, 폴리프로필렌 또는 폴리비닐리덴 플루오라이드를 사용하거나, 이들의 2층 이상의 다층막이 사용될 수 있다.In an embodiment of the present invention, the separator may be polyethylene, polypropylene, or polyvinylidene fluoride as a single layer, or two or more multilayer films thereof may be used.
이하, 본 발명의 제조예 및 실험예를 기재한다. 그러나, 이들 제조예 및 실험예는 본 발명의 구성 및 효과를 보다 구체적으로 설명하기 위한 것으로 본 발명의 범위가 이에 한정되는 것은 아님을 명시한다.Hereinafter, the preparation examples and experimental examples of the present invention. However, these preparation examples and experimental examples are intended to explain the configuration and effects of the present invention in more detail, and the scope of the present invention is not limited thereto.
[실시예 1]Example 1
실리콘 (Si), 알루미늄(Al), 철(Fe), 구리(Cu) 및 니켈(Ni)을 포함한 합금을 아크 용해법 등으로 용융시켜 용융액을 제조한 다음, 상기 용융액을 40 m/s 속도로 회전하는 구리롤에 분사시키는 단롤 급냉 응고법에 적용하여, Si56Al25Fe16Cu1Ni2 조성을 가지는 비정질 합금을 제조하였다.Alloys containing silicon (Si), aluminum (Al), iron (Fe), copper (Cu) and nickel (Ni) are melted by an arc melting method to prepare a melt, and then the melt is rotated at a speed of 40 m / s. The amorphous alloy having the composition of Si 56 Al 25 Fe 16 Cu 1 Ni 2 was prepared by applying to a single roll quench solidification method sprayed onto a copper roll.
상기 비정질 합금을 음극활물질로 하여 코인 형상의 극판을 제조하고, 음극활물질, 도전재로서 Ketjen Black 및 바인더로서 PAI를 87:3:10의 중량 비율로 혼합하여 400℃, Ar분위기에서 1시간 열처리하여 음극을 제조하였다.Coin-shaped electrode plates were prepared by using the amorphous alloy as a negative electrode active material, and Ketjen Black as a negative electrode active material and a conductive material and PAI as a binder were mixed at a weight ratio of 87: 3: 10, and heat-treated at 400 ° C. for 1 hour in an Ar atmosphere. A negative electrode was prepared.
[실시예 2]Example 2
실리콘 (Si), 알루미늄(Al), 철(Fe), 구리(Cu) 및 니켈(Ni)을 포함한 합금을 아크 용해법 등으로 용융시켜 용융액을 제조한 다음, 상기 용융액을 40 m/s 속도로 회전하는 구리롤에 분사시키는 단롤 급냉 응고법에 적용하여, Si56Al25Fe16Cu1Ni2 조성을 가지는 비정질 합금을 제조하였다. 상기 비정질 합금을 450℃에서 열처리하여 실리콘계 복합 금속을 제조하였다.Alloys containing silicon (Si), aluminum (Al), iron (Fe), copper (Cu) and nickel (Ni) are melted by an arc melting method to prepare a melt, and then the melt is rotated at a speed of 40 m / s. The amorphous alloy having the composition of Si 56 Al 25 Fe 16 Cu 1 Ni 2 was prepared by applying to a single roll quench solidification method sprayed onto a copper roll. The amorphous alloy was heat-treated at 450 ° C. to produce a silicon-based composite metal.
상기 실리콘계 복합 금속을 음극활물질로 하여 코인 형상의 극판을 제조하고, 음극활물질, 도전재로서 Ketjen Black 및 바인더로서 PAI를 87:3:10의 중량 비율로 혼합하여 400℃, Ar분위기에서 1시간 열처리하여 음극을 제조하였다.A coin-shaped electrode plate was manufactured by using the silicon-based composite metal as a negative electrode active material, and Ketjen Black as a negative electrode active material and a conductive material and PAI as a binder were mixed at a weight ratio of 87: 3: 10, and heat treated at 400 ° C. for 1 hour in an Ar atmosphere. To prepare a negative electrode.
[실시예 3]Example 3
비정질 합금을 500℃에서 열처리하여 실리콘계 복합 금속을 제조한 것을 제외하고는 상기 실시예 2와 동일하게 음극을 제조하였다.An anode was prepared in the same manner as in Example 2 except that the amorphous alloy was heat-treated at 500 ° C. to produce a silicon-based composite metal.
[실시예 4]Example 4
비정질 합금을 550℃에서 열처리 열처리하여 실리콘계 복합 금속을 제조한 것을 제외하고는 상기 실시예 2와 동일하게 음극을 제조하였다.A negative electrode was prepared in the same manner as in Example 2 except that the amorphous alloy was heat-treated at 550 ° C. to produce a silicon-based composite metal.
[실시예 5]Example 5
비정질 합금을 650℃에서 열처리 열처리하여 실리콘계 복합 금속을 제조한 것을 제외하고는 상기 실시예 2와 동일하게 음극을 제조하였다.A negative electrode was prepared in the same manner as in Example 2 except that the amorphous alloy was heat-treated at 650 ° C. to produce a silicon-based composite metal.
도 2는 실시예 1의 리튬이차전지용 음극활물질을 시차주사열량분석기(DSC, Differential scanning Calorimetry)로 온도에 따른 발열에너지를 상대적으로 나타낸 그래프이다. 도 2는 비정질 음극활물질의 온도변화에 따른 결정화 거동을 나타낸다.FIG. 2 is a graph showing relatively exothermic energy according to temperature with a differential scanning calorimetry (DSC) of a negative active material for a lithium secondary battery of Example 1; Figure 2 shows the crystallization behavior according to the temperature change of the amorphous negative electrode active material.
도 3은 실시예 1의 리튬이차전지용 음극활물질의 결정성을 나타낸 회절패턴이다. 도 4는 실시예 1의 리튬이차전지용 음극활물질의 성분 분포를 나타낸 TEM-EDS 이미지들이다.3 is a diffraction pattern showing the crystallinity of the negative electrode active material for a lithium secondary battery of Example 1. FIG. 4 is TEM-EDS images showing the component distribution of the negative electrode active material for a lithium secondary battery of Example 1.
도 3 내지 도 4를 참조하면, 실시예 1은 비정질 상(phase)을 갖는 비정질 합금임을 확인하였다.3 to 4, it was confirmed that Example 1 is an amorphous alloy having an amorphous phase.
실시예 1 내지 실시예 5의 음극을 이용하여 리튬이차전지를 제조한 후 충방전을 1회 실시하였을 때의 음극활물질의 충전 용량, 방전 용량 및 초기 쿨롱 효율(초기 방전 용량을 초기 충전용량으로 나눈 값)에 대한 결과를 하기 표 1에 도시하였다.Charge capacity, discharge capacity, and initial coulombic efficiency of the negative electrode active material when charging and discharging was performed once after manufacturing a lithium secondary battery using the negative electrodes of Examples 1 to 5 (initial discharge capacity divided by initial charge capacity) Values) are shown in Table 1 below.
구분division 합금 조성Alloy composition 결정구조Crystal structure 비정질 합금열처리 조건Amorphous alloy heat treatment condition 전극특성평가 결과Electrode characteristic evaluation result
구분division Si(at%)Si (at%) Al(at%)Al (at%) Fe(at%)Fe (at%) Cu(at%)Cu (at%) Ni(at%)Ni (at%) 결정상Crystal phase 온도, 시간Temperature, time 초기 충전(mAh/g)Initial charge (mAh / g) 초기 방전(mAh/g)Initial discharge (mAh / g) 초기 쿨룽효율(%)Initial Coulomb Efficiency (%)
실시예1Example 1 5656 2525 1616 1One 2 2 비정질Amorphous PristinePristine 236.2236.2 91.591.5 38.738.7
실시예2Example 2 5656 2525 1616 1One 22 비정질+결정질Amorphous + crystalline 450℃, 1hr450 ℃, 1hr 278.4278.4 155.1155.1 55.755.7
실시예3Example 3 5656 2525 1616 1One 22 비정질+결정질Amorphous + crystalline 500℃, 1hr500 ℃, 1hr 1100.91100.9 943.5943.5 85.785.7
실시예4Example 4 5656 2525 1616 1One 22 결정질 Crystalline 550℃, 1hr550 ℃, 1hr 1192.31192.3 1021.41021.4 85.685.6
실시예5Example 5 5656 2525 1616 1One 22 결정질Crystalline 650℃, 1hr650 ℃, 1hr 1309.81309.8 1144.91144.9 87.487.4
도 5는 실시예 1 내지 실시예 5의 충방전 사이클 수명을 그래프로 나타낸 것이다.5 is a graph showing charge and discharge cycle lifetimes of Examples 1 to 5.
표 1 및 도 5를 참조하면, 결정질 구조를 가지는 음극활물질을 사용한 리튬이차전지는 초기 쿨룽 효율은 높으나 사이클 수명 감소가 두드러지고, 비정질 구조를 가지는 음극활물질을 사용한 리튬이차전지는 초기 쿨룽 효율은 낮으나, 사이클 수명이 유지되는 것을 확인할 수 있다.Referring to Table 1 and FIG. 5, a lithium secondary battery using a negative electrode active material having a crystalline structure has a high initial Coulomb efficiency but a decrease in cycle life, and a lithium secondary battery using a negative electrode active material having an amorphous structure has a low initial Coulomb efficiency. It can be seen that the cycle life is maintained.
본 발명의 실시예는 액체급랭응고법인 멜트 스피닝에 있어 구리휠의 회전 선속도를 30 m/s 내지 60 m/s 범위에서 재현성 있게 비정질 합금을 제조할 수 있으며, 더 바람직하게는 40 m/s 속도에서 재현성 있게 비정질 합금을 제조할 수 있다.Embodiment of the present invention can produce amorphous alloy reproducibly in the range of 30 m / s to 60 m / s rotational linear velocity of the copper wheel in the melt spinning is a liquid quenching solidification method, more preferably 40 m / s It is possible to produce amorphous alloys reproducibly at speed.
비정질 합금 제조 후 일정한 온도에서 열처리를 진행하면 재현성 있는 활성 실리콘 입자가 비활성 매트릭스 내에 나노 크기로 균일하게 분산 석출된 형태의 음극활물질을 제조할 수 있으며, 상기 재현성 있는 음극활물질은 30 사이클 후에도 용량이 유지되는 우수한 수명 특성을 가질 수 있는 것으로 판단할 수 있다.After the amorphous alloy is manufactured, the heat treatment is performed at a constant temperature to produce a cathode active material in which reproducible active silicon particles are uniformly dispersed and precipitated in a nano size in an inert matrix, and the capacity of the reproducible anode active material is maintained even after 30 cycles. It can be determined that it can have excellent life characteristics.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is represented by the following claims, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention.

Claims (20)

  1. 실리콘을 포함하는 모합금을 용해시켜 용융액을 제조하는 단계;Preparing a melt by dissolving a mother alloy including silicon;
    상기 용융액을 액체급냉응고법으로 고체화하여 실리콘계 비정질 합금을 제조하는 단계; 및Preparing a silicon-based amorphous alloy by solidifying the melt by liquid quenching and solidification; And
    상기 실리콘계 비정질 합금을 열처리하여 실리콘계 복합 금속을 제조하는 단계를 포함하고,Heat treating the silicon-based amorphous alloy to produce a silicon-based composite metal,
    상기 실리콘계 복합 금속은 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함하는 것을 특징으로 하는 리튬이차전지 음극활물질용 복합금속 제조방법.The silicon-based composite metal manufacturing method of a composite metal for a lithium secondary battery negative electrode active material, characterized in that it comprises active silicon nanoparticles dispersed uniformly in an inert matrix.
  2. 제1항에 있어서,The method of claim 1,
    상기 실리콘계 복합 금속은 실리콘(Si) 30 at% 내지 60at%, 알루미늄(Al) 15 at% 내지 50 at%, 철(Fe) 5 at% 내지 25 at%, 구리(Cu) 0.1 at% 내지 5 at% 및 니켈(Ni) 1at% 내지 25 at% 를 포함하는 것을 특징으로하는 리튬이차전지 음극활물질용 복합 금속 재조방법.The silicon-based composite metal may include silicon at 30 to 60 at%, aluminum at 15 to 50 at%, iron at 5 to 25 at%, and copper at 0.1 to 5 at. % And nickel (Ni) 1 at% to 25 at% of a composite metal manufacturing method for a lithium secondary battery negative electrode active material.
  3. 실리콘(Si) 30 at% 내지 60at%, 알루미늄(Al) 15 at% 내지 50 at%, 철(Fe) 5 at% 내지 25 at%, 구리(Cu) 0.1 at% 내지 5 at% 및 니켈(Ni) 1at% 내지 25 at%를 포함하는 비활성 매트릭스; 및Silicon (Si) 30 at% to 60 at%, aluminum (Al) 15 at% to 50 at%, iron (Fe) 5 at% to 25 at%, copper (Cu) 0.1 at% to 5 at% and nickel (Ni ) Inert matrix comprising 1 at% to 25 at%; And
    상기 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질.An anode active material for a lithium secondary battery, characterized in that it comprises active silicon nanoparticles uniformly dispersed in the inert matrix.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 비활성 매트릭스는 지르코늄(Zr), 니오븀(Nb), 티타늄(Ti), 크롬(Cr), 게르마늄(Ge) 및 칼슘(Ca) 중 어느 하나 이상으로 이루어진 물질을 0.1 at% 내지 5 at% 더 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질.The inert matrix further comprises 0.1 at% to 5 at% of a material consisting of at least one of zirconium (Zr), niobium (Nb), titanium (Ti), chromium (Cr), germanium (Ge), and calcium (Ca). An anode active material for a lithium secondary battery, characterized in that.
  5. 제 3항에 있어서,The method of claim 3, wherein
    상기 비활성 매트릭스는 결정질 매트릭스 및 비정질 매트릭스 중 어느 하나 이상을 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질.The inert matrix is a negative electrode active material for a lithium secondary battery, characterized in that it comprises any one or more of a crystalline matrix and an amorphous matrix.
  6. 제 3항에 있어서,The method of claim 3, wherein
    상기 활성 실리콘 나노입자는 비활성 매트릭스의 구리 클러스터링(Cu clustering)에 의해 비활성 매트릭스에 균일하게 분산 석출되는 것을 특징으로 하는 리튬이차전지용 음극활물질.The active silicon nanoparticles are anode active material for lithium secondary battery, characterized in that uniformly dispersed precipitation in the inert matrix by copper clustering (Cu clustering) of the inert matrix.
  7. 제 3항에 있어서,The method of claim 3, wherein
    상기 활성 실리콘 나노입자는 결정질인 것을 특징으로 하는 리튬이차전지용 음극활물질.The active silicon nanoparticles are negative electrode active material for lithium secondary battery, characterized in that the crystalline.
  8. 제 3항에 있어서,The method of claim 3, wherein
    상기 활성 실리콘 나노입자의 입경은 1 nm 내지 30 nm인 것을 특징으로 하는 리튬이차전지용 음극활물질.The particle size of the active silicon nanoparticles is a lithium active battery negative electrode active material, characterized in that 1 nm to 30 nm.
  9. 음극 집전체; 및Negative electrode current collector; And
    상기 음극 집전체의 적어도 일면 이상에 형성된 음극활물질층을 포함하고,It includes a negative electrode active material layer formed on at least one surface of the negative electrode current collector,
    상기 음극활물질층은 음극활물질 75 wt% 내지 92 wt%, 도전재 1 wt% 내지 10 wt% 및 바인더 7 wt% 내지 15 wt%를 포함하며,The negative electrode active material layer includes 75 wt% to 92 wt% of the negative electrode active material, 1 wt% to 10 wt% of the conductive material, and 7 wt% to 15 wt% of the binder,
    상기 음극활물질은 비활성 매트릭스 및 상기 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함하는 것을 특징으로 하는 리튬이차전지용 음극.The negative electrode active material is a negative electrode for a lithium secondary battery, characterized in that it comprises an inert matrix and active silicon nanoparticles uniformly dispersed in the inactive matrix.
  10. 제 9항에 있어서,The method of claim 9,
    상기 비활성 매트릭스는 5성분계 이상의 실리콘 합금을 포함하는 것을 특징으로 하는 리튬이차전지용 음극.The inert matrix is a negative electrode for a lithium secondary battery, characterized in that containing a five-component or more silicon alloy.
  11. 제 10항에 있어서,The method of claim 10,
    상기 5성분계 이상의 실리콘 합금은 실리콘(Si) 30 at% 내지 60at%, 알루미늄(Al) 15 at% 내지 50 at%, 철(Fe) 5 at% 내지 25 at%, 구리(Cu) 0.1 at% 내지 5 at% 및 니켈(Ni) 1at% 내지 25 at%를 포함하는 것을 특징으로 하는 리튬이차전지용 음극.The five-component or more silicon alloy may include at least 30 at% to 60 at% of silicon (Si), at least 15 at% to 50 at% of aluminum (Al), at least 5 to 25 at% of iron (Fe), and at least 0.1 at% of copper (Cu). A negative electrode for a lithium secondary battery comprising 5 at% and 1 at% to 25 at% nickel (Ni).
  12. 제 10항에 있어서,The method of claim 10,
    상기 5성분계 이상의 실리콘 합금은 지르코늄(Zr), 니오븀(Nb), 티타늄(Ti), 크롬(Cr), 게르마늄(Ge) 및 칼슘(Ca) 중 어느 하나 이상으로 이루어진 물질을 0.1 at% 내지 5 at% 더 포함하는 것을 특징으로 하는 리튬이차전지용 음극.The five-component or more silicon alloy is 0.1 at% to 5 at% of a material consisting of at least one of zirconium (Zr), niobium (Nb), titanium (Ti), chromium (Cr), germanium (Ge), and calcium (Ca). A negative electrode for a lithium secondary battery, characterized in that it further comprises%.
  13. 제 9항에 있어서,The method of claim 9,
    상기 활성 실리콘 나노입자는 비활성 매트릭스의 구리 클러스터링(Cu clustering)에 의해 비활성 매트릭스에 균일하게 분산 석출되는 것을 특징으로 하는 리튬이차전지용 음극.The active silicon nanoparticles are uniformly dispersed precipitated in the inactive matrix by copper clustering (Cu clustering) of the inert matrix, characterized in that the lithium secondary battery negative electrode.
  14. 제 9항에 있어서,The method of claim 9,
    상기 활성 실리콘 나노입자의 입경은 1 nm 내지 30 nm인 것을 특징으로 하는 리튬이차전지용 음극.The particle size of the active silicon nanoparticles is a lithium secondary battery negative electrode, characterized in that 1 nm to 30 nm.
  15. 양극, 음극, 전해질 및 분리막을 포함하는 리튬이차전지에 있어서,In a lithium secondary battery comprising a positive electrode, a negative electrode, an electrolyte and a separator,
    상기 음극은 음극 집전체 및 상기 음극 집전체의 적어도 일면 이상에 형성된 음극활물질층을 포함하고,The negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on at least one surface of the negative electrode current collector,
    상기 음극활물질층은 음극활물질 75 wt% 내지 92 wt%, 도전재 1 wt% 내지 10 wt% 및 바인더 7 wt% 내지 15 wt%를 포함하고,The negative electrode active material layer includes 75 wt% to 92 wt% of the negative electrode active material, 1 wt% to 10 wt% of the conductive material, and 7 wt% to 15 wt% of the binder,
    상기 음극활물질은 비활성 매트릭스 및 상기 비활성 매트릭스에 균일하게 분산 석출된 활성 실리콘 나노입자를 포함하는 것을 특징으로 하는 리튬이차전지.The negative electrode active material is a lithium secondary battery comprising an inert matrix and active silicon nanoparticles uniformly dispersed in the inert matrix.
  16. 제 15항에 있어서,The method of claim 15,
    상기 비활성 매트릭스는 5성분계 이상의 실리콘 합금을 포함하는 것을 특징으로 하는 리튬이차전지.The inert matrix is a lithium secondary battery, characterized in that containing a five-component or more silicon alloy.
  17. 제 16항에 있어서,The method of claim 16,
    상기 5성분계 이상의 실리콘 합금은 실리콘(Si) 30 at% 내지 60at%, 알루미늄(Al) 15 at% 내지 50 at%, 철(Fe) 5 at% 내지 25 at%, 구리(Cu) 0.1 at% 내지 5 at% 및 니켈(Ni) 1at% 내지 25 at%를 포함하는 것을 특징으로 하는 리튬이차전지.The five-component or more silicon alloy may include at least 30 at% to 60 at% of silicon (Si), at least 15 at% to 50 at% of aluminum (Al), at least 5 to 25 at% of iron (Fe), and at least 0.1 at% of copper (Cu). A lithium secondary battery comprising 5 at% and 1 at% to 25 at% of nickel (Ni).
  18. 제 17항에 있어서,The method of claim 17,
    상기 5성분계 이상의 실리콘 합금은 지르코늄(Zr), 니오븀(Nb), 티타늄(Ti), 크롬(Cr), 게르마늄(Ge) 및 칼슘(Ca) 중 어느 하나 이상으로 이루어진 물질을 0.1 at% 내지 5 at% 더 포함하는 것을 특징으로 하는 리튬이차전지.The five-component or more silicon alloy is 0.1 at% to 5 at% of a material consisting of at least one of zirconium (Zr), niobium (Nb), titanium (Ti), chromium (Cr), germanium (Ge), and calcium (Ca). Lithium secondary battery, characterized in that it further comprises.
  19. 제 15항에 있어서,The method of claim 15,
    상기 활성 실리콘 나노입자는 비활성 매트릭스의 구리 클러스터링(Cu clustering)에 의해 비활성 매트릭스에 균일하게 분산 석출되는 것을 특징으로 하는 리튬이차전지.The active silicon nanoparticles are uniformly dispersed precipitated in the inactive matrix by copper clustering (Cu clustering) of the inert matrix.
  20. 제 15항에 있어서,The method of claim 15,
    상기 활성 실리콘 나노입자의 입경은 1 nm 내지 30 nm인 것을 특징으로 하는 리튬이차전지.The particle size of the active silicon nanoparticles is a lithium secondary battery, characterized in that 1 nm to 30 nm.
PCT/KR2018/006043 2017-06-07 2018-05-28 Anode active material for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising same anode WO2018225971A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170070921 2017-06-07
KR10-2017-0070921 2017-06-07
KR10-2018-0050575 2018-05-02
KR1020180050575A KR102087134B1 (en) 2017-06-07 2018-05-02 Negative active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery including the same

Publications (1)

Publication Number Publication Date
WO2018225971A1 true WO2018225971A1 (en) 2018-12-13

Family

ID=64567133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006043 WO2018225971A1 (en) 2017-06-07 2018-05-28 Anode active material for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising same anode

Country Status (1)

Country Link
WO (1) WO2018225971A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048770A (en) * 2019-12-27 2020-04-21 中国科学院化学研究所 Ternary doped silicon-based composite material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050090220A (en) * 2004-03-08 2005-09-13 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
KR20130114007A (en) * 2012-04-06 2013-10-16 삼성에스디아이 주식회사 Negative active material, lithium battery including the material, and method for manufacturing the material
WO2014092347A1 (en) * 2012-12-12 2014-06-19 일진전기(주) Negative electrode active material for lithium secondary battery and secondary battery using same
WO2014092348A1 (en) * 2012-12-12 2014-06-19 일진전기(주) Negative electrode active material for lithium secondary battery
WO2016178509A1 (en) * 2015-05-06 2016-11-10 공문규 Negative electrode active material for lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050090220A (en) * 2004-03-08 2005-09-13 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
KR20130114007A (en) * 2012-04-06 2013-10-16 삼성에스디아이 주식회사 Negative active material, lithium battery including the material, and method for manufacturing the material
WO2014092347A1 (en) * 2012-12-12 2014-06-19 일진전기(주) Negative electrode active material for lithium secondary battery and secondary battery using same
WO2014092348A1 (en) * 2012-12-12 2014-06-19 일진전기(주) Negative electrode active material for lithium secondary battery
WO2016178509A1 (en) * 2015-05-06 2016-11-10 공문규 Negative electrode active material for lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048770A (en) * 2019-12-27 2020-04-21 中国科学院化学研究所 Ternary doped silicon-based composite material and preparation method and application thereof
CN111048770B (en) * 2019-12-27 2020-12-08 中国科学院化学研究所 Ternary doped silicon-based composite material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2016175597A1 (en) Cathode active material for secondary battery, preparation method therefor, and secondary battery comprising same
WO2019182364A1 (en) Separator having a coating layer of lithium-containing composite, lithium secondary battery comprising same, and method for manufacturing same secondary battery
WO2019103363A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2021006704A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2017222113A1 (en) Negative electrode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2014010973A1 (en) Bimodal-type anode active material and lithium secondary battery including same
WO2020040613A1 (en) Anode active material, anode comprising same, and lithium secondary battery
WO2013168853A1 (en) Method for producing silicon-based negative electrode active material, negative electrode active material for lithium secondary battery, and lithium secondary battery containing same
WO2020080800A1 (en) Method for preparing cathode additive for lithium secondary battery, and cathode additive for lithium secondary battery, prepared thereby
WO2018194345A1 (en) Anode for lithium secondary battery, lithium secondary battery comprising same, and manufacturing method therefor
WO2022191639A1 (en) Composite cathode active material, cathode and lithium battery employing same, and method for manufacturing same
WO2019235886A1 (en) Method for manufacturing positive electrode active material for secondary battery
WO2018074684A1 (en) Lithium secondary battery
WO2019066129A2 (en) Composite anode active material, manufacturing method therefor, and lithium secondary battery having anode including same
WO2015088283A1 (en) Negative electrode material for secondary battery, and secondary battery using same
WO2019078685A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2018135929A1 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same
KR102087134B1 (en) Negative active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery including the same
WO2015088248A1 (en) Negative electrode material for secondary battery, and secondary battery using same
WO2018225971A1 (en) Anode active material for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising same anode
WO2022080809A1 (en) Positive electrode for lithium secondary battery, and lithium secondary battery including same
WO2019066585A1 (en) Method for preparing cathode active material for secondary battery, cathode active material prepared thereby, and lithium secondary battery comprising same
KR102218033B1 (en) Negative active material manufacturing method and negative active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery including the same
WO2013137510A1 (en) Method for manufacturing anode active material for lithium secondary battery, anode active material for lithium secondary battery, and lithium secondary battery
WO2021080066A1 (en) Anode active material comprising silicon composite formed by network of conductive fibers, preparation method therefor, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18812960

Country of ref document: EP

Kind code of ref document: A1