WO2016178509A1 - Negative electrode active material for lithium secondary battery - Google Patents

Negative electrode active material for lithium secondary battery Download PDF

Info

Publication number
WO2016178509A1
WO2016178509A1 PCT/KR2016/004697 KR2016004697W WO2016178509A1 WO 2016178509 A1 WO2016178509 A1 WO 2016178509A1 KR 2016004697 W KR2016004697 W KR 2016004697W WO 2016178509 A1 WO2016178509 A1 WO 2016178509A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
active material
secondary battery
lithium secondary
negative electrode
Prior art date
Application number
PCT/KR2016/004697
Other languages
French (fr)
Korean (ko)
Inventor
공문규
성재욱
Original Assignee
공문규
성재욱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 공문규, 성재욱 filed Critical 공문규
Publication of WO2016178509A1 publication Critical patent/WO2016178509A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium secondary battery, and more particularly, to a negative electrode active material for a lithium secondary battery having a high charge and discharge capacity and excellent capacity retention.
  • Lithium metal is used as a negative electrode active material of a conventional lithium battery.
  • a carbon-based material is used as a negative electrode active material instead of lithium metal because a short circuit of the battery occurs due to the formation of a dendrite. .
  • Examples of the carbon-based active material include crystalline carbon such as graphite and artificial graphite, and amorphous carbon such as soft carbon and hard carbon.
  • crystalline carbon such as graphite and artificial graphite
  • amorphous carbon such as soft carbon and hard carbon.
  • Graphite is typically used as the crystalline carbon, and has a theoretical limit capacity of 372 mAh / g, which has a high capacity, and is used as a negative electrode active material.
  • the graphite or carbon-based active material has a rather high theoretical capacity, it is only about 380 mAh / g, and there is a problem in that the above-described negative electrode cannot be used in the development of a high capacity lithium battery in the future.
  • the currently active research is a negative electrode active material of the metal-based or intermetallic compounds.
  • a negative electrode active material of the metal-based or intermetallic compounds.
  • lithium batteries using metals or semimetals such as aluminum, germanium, silicon, tin, zinc, and lead as negative electrode active materials have been studied.
  • Such a material has a high energy density and high energy density, and can absorb and release more lithium ions than a negative electrode active material using a carbon-based material, thereby manufacturing a battery having a high capacity and a high energy density.
  • Pure silicon for example, is known to have a high theoretical capacity of 4017 mAh / g.
  • the cycle characteristics are deteriorated, which is still an obstacle to practical use.
  • the silicon is used as a lithium occlusion and release material as a negative electrode active material, it may be difficult to change the volume between the active materials due to the volume change during the charge and discharge process. This is because conductivity decreases or a phenomenon in which the negative electrode active material is peeled off from the negative electrode current collector occurs. That is, the silicon and the like contained in the negative electrode active material expands to about 300 to 400% by occluding lithium by charging, and when the lithium is discharged, the inorganic particles contract.
  • Japanese Laid-Open Patent Publication No. 2006-286312 discloses a lithium secondary battery using a silicon thin film formed by a dry process as a negative electrode active material.
  • the silicon thin film has the structure isolate
  • Patent document 1 attempts to mitigate expansion and contraction of silicon by the physical shape of a silicon thin film, but productivity of a thin film falls significantly, and therefore it is difficult to apply it to actual battery mass production.
  • the present invention is to provide a negative electrode active material for a lithium secondary battery that the electrical change does not occur because the volume change is small during charging and discharging.
  • the present invention is to provide an alloy composition composition method for suppressing the generation of the silicon coarse region when producing a silicon negative electrode active material using a quench solidification process.
  • the present invention is to provide a porous structure through some etching process of the matrix structure other than silicon through an additional etching process.
  • the present invention is an alloy containing silicon (Si), the alloy is made of the following formula (1),
  • an inert intermetallic compound obtained by quenching and solidifying the alloy in a molten state, an inert intermetallic compound in which a solid region and an amorphous region distributed around the solid state active silicon (Si) microparticles and the silicon (Si) microparticles can be mixed, It provides a negative electrode active material for a lithium secondary battery having a porous feature to remove some of the solid region distributed around the fine particles.
  • the present invention provides a negative electrode active material for a lithium secondary battery to suppress the volume growth of the solid phase when the inert intermetallic compound changes the state of the silicon alloy from the high-temperature liquid state to a solid phase.
  • the present invention provides a negative electrode active material for a lithium secondary battery wherein the transition metal is one or more selected from the group consisting of Al, Ni, Cu, Ti and Fe.
  • the present invention provides a negative electrode active material for a lithium secondary battery that the inert intermetallic compound may include Al 3 Ni, NiSi 2 and Al phase.
  • the present invention provides a negative electrode active material for a lithium secondary battery is further coated with a metal element or a carbon-based material on the porous structure surface.
  • the present invention provides a negative electrode active material for a lithium secondary battery, characterized in that the ratio of the X-Ray Dirrractometer (XRD) peak area of the silicon (Si) microparticles and the silicon compound (SiM) phase is 1 to 1.
  • XRD X-Ray Dirrractometer
  • the negative electrode active material significantly improves the performance and stability of the battery, and has excellent capacity and cycle characteristics of the lithium secondary battery including the negative electrode active material.
  • Fig. 1 is a diagram of a melt-spinning process, which is a type of quench solidification process.
  • Figure 2 is a schematic diagram showing the state change process of the liquid phase to a solid state through the quench solidification process of the silicon alloy.
  • TEM 3 is a result drawing of a transmission electron microscope (TEM) of the silicon alloy of Example 1;
  • 6, 8, 10 and 12 is a view showing the result after the coin-shaped secondary battery using a negative electrode active material prepared in Examples 1 to 3 and Comparative Example 1, and subjected to charge and discharge evaluation.
  • the present invention relates to a negative electrode active material for a lithium secondary battery and a lithium secondary battery comprising the same, wherein the negative electrode active material for a lithium secondary battery includes active silicon (Si) fine particles and an inert intermetallic compound distributed around the active fine particles. It is a porous structure.
  • the present invention suppresses the occurrence of the silicon coarse region when the molten silicon alloy is made into a solid phase by using a quench solidification process to produce the negative electrode active material.
  • a quench solidification process to produce the negative electrode active material.
  • an additional etching process it can effectively suppress the expansion problem of the silicon-based negative electrode active material due to the lithium insertion.
  • intermetallic compounds should be formed in a composite structure made of silicon and an intermetallic compound. Some of the two metals are to facilitate the selective removal even in weakly acidic material. In addition, the metal remaining by the etching may serve to maintain electrical conductivity between the silicon particles.
  • silicon has attracted attention as a negative electrode active material of a lithium secondary battery that requires continuous high capacity, but has a disadvantage in that its life is sharply reduced due to severe volume expansion during charge and discharge.
  • attention has been paid to composite particles composed of active silicon microparticles and inert intermetallic compounds distributed around the active silicon microparticles.
  • Fig. 1 is a diagram of a melt-spinning process, which is a type of quench solidification process.
  • the liquid silicon alloy is sent to the cooling wheel 40 through the nozzle 20 using the inert gas 30.
  • phase transformation by rapid cooling is possible at a rate of 10 4 to 10 6 K / sec.
  • the high temperature metal solution coated in a wide and thin direction in the rotational direction in contact with the cooling wheel 40 rotating at high speed is deprived of heat by the cooling wheel 40 having excellent thermal conductivity, so that the phase transformation occurs from the high temperature metal solution to the metal plate material at room temperature.
  • the phase transformation is terminated by forming a plurality of solid phase nuclei rather than growing solid phase nuclei. That is, by minimizing the phase transformation time to increase the nucleus of the solid phase it is possible to finely form the size of the silicon and intermetallic compound.
  • the present invention is quench solidified using a silicon (Si) alloy composed of the following formula.
  • the transition metal may be one or more selected from the group consisting of Al, Ni, Cu, Ti, and Fe.
  • Figure 2 is a schematic diagram showing the state change process of the liquid phase to a solid state through the quench solidification process of the silicon alloy.
  • (a) is a schematic diagram showing the process of the phase change from the liquid phase to the solid phase of the conventional silicon alloy
  • (b) is a schematic diagram of the phase change of the silicon alloy of the present invention composition.
  • (a) After the silicon solid core 50 is formed in the metal solution 60, the silicon core grows. At this time, a solid core of an intermetallic compound having a lower melting point than silicon is formed. After that, the nucleus of silicon and the nucleus of the intermetallic compound continue to grow, and the phase transformation is terminated when both liquid phases change into solid phase.
  • (b) is a schematic diagram of solid-state transformation in the presence of silicon and two or more intermetallic compounds. Initially, the solid core 50 of the high melting point silicon is formed and starts to grow. Thereafter, a plurality of nuclei 70 of two or more intermetallic compounds are formed, and the nucleus 70 of the intermetallic compound suppresses the growth of the solid silicon 50. Silicon whose phase transformation from liquid phase to solid phase is suppressed forms new solid silicon rather than growth of solid silicon to complete phase transformation.
  • the formed intermetallic compound may help the nucleus of the silicon solid phase to be easily formed.
  • the solid silicon nucleus is formed on the surface of the intermetallic compound present in the liquid phase 60, it serves to reduce the surface energy, thereby helping to form a silicon solid phase nucleus, thereby achieving a fine tissue formation .
  • the present invention which is rapidly solidified, is composed of a large number of solid state active silicon (Si) microparticles with minimized coarsening region and an inert intermetallic compound distributed around the silicon (Si) microparticles.
  • the crystalline region and the amorphous region exist in a mixed state.
  • a porous structure is formed by directly etching silicon using hydrofluoric acid, but in the present invention, a method of etching an intermetallic compound other than silicon is selected to enable commercial etching process.
  • the intermetallic oxide may be composed of Al 3 Ni so as not to be removed in an etching process as opposed to Al and NiSi 2 , which are easily etched to easily form a porous structure using a common acid.
  • the Al 3 Ni is an intermetallic compound that cannot be etched in a weak acid and is not removed even in various etching processes. Through such an etching process, a porous silicon alloy can be manufactured.
  • a silicon (Si) alloy was prepared by an arc dissolving method under argon gas to have a composition of Si 50%, Ni 9.5%, and Al 40.5%, and the prepared Si alloy was formed of Ni 3 and Al 3 Ni and NiSi using a melt spinning method.
  • a silicon (Si) alloy was prepared such that silicon (Si) microparticles were located between matrix phases (inactive intermetallic compounds) composed of 2 and Al.
  • the quenching speed rotational speed of the cooling wheel
  • the method applied in the present invention is not limited to the above method, and in addition to the melt spinning method, if a sufficient quenching speed can be obtained, the fine powder production technique (gas atomizer method, centrifugal gas atomizer method, plasma method) as described above can be obtained. It can also be manufactured by the atomizer method, the rotating electrode method, the mechanical etching method and the like.
  • an inactive intermetallic compound was etched around silicon particles to prepare a negative active material for a lithium secondary battery of a silicon alloy having a porous structure.
  • a silicon (Si) alloy was formed in the same manner as in Example 1 except that the composition was made of Si 40%, Ni 11.4%, and Al 48.6%.
  • the silicon (Si) alloy was formed in the same manner as in Example 1 except that the composition was made of Si 30%, Ni 13.3%, and Al 56.7%.
  • the silicon (Si) alloy was carried out in the same manner as in Example 1 except that the composition was made of Si 60%, Ni 15%, and Al 25%.
  • SEM Scanning Electron Microscopy
  • Examples of the anode active material before etching (a) can be confirmed that there is no coarse region and the silicon crystal of a uniform fine structure, the cathode active material after the etching (b) can be confirmed that the empty space is formed around the silicon particles. .
  • Comparative Example 1 can observe the microstructure (a) according to the thickness of the quench solidified plate and the silicon coarse region (b) as the distance from the cooling wheel.
  • Coin-shaped secondary batteries were prepared using the negative electrode active materials prepared in Examples 1 to 3 and Comparative Example 1, and after the charge and discharge evaluations, the results are shown in FIGS. 6, 8, 10, and 12.
  • the mixing ratio of the active material, the conductive agent (Super P-based conductive agent), and the binder (PI-based binder) is 77: 15: 2: 6 (active material: additive: conductive agent: binder). It was prepared as possible.
  • Example 1 it can be seen that the charge before etching (a) has a maximum capacity of 900mAh / g, and as a result of the continuous charge and discharge, the capacity is gradually reduced to fall below 250mAh / g. However, after the etching (b) it can be seen that the charge capacity of 1500 ⁇ 1800mAh / g.
  • Example 2 As in Example 1, it can be seen that the charging capacity after etching is increased by at least two times, and Example 1, which has the largest content of silicon (Si), is larger than other examples. .
  • Comparative Example 1 the charge capacity was about 1445.5 mAh / g, similar to the charge capacity after etching in Example 2, but it can be seen that the capacity decreases rapidly after several charge and discharge cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention provides a negative electrode active material for a lithium secondary battery. The negative electrode active material is a silicon-containing alloy composed of chemical formula 1 of SixMyNz, where 30≤x≤60, 1≤y≤20, 30≤z≤60, x+y+z = 100; x, y, and z each represent atomic%; and M and N each represent a transition metal, and is characterized by having a porous structure which can be obtained by rapidly solidifying the alloy in a molten state and is composed of solid active silicon fine particles and an inactive intermetallic compound which is distributed around the silicon fine particles and may have a solid region and an amorphous region, wherein some portions of the solid region distributed around the fine particles are removed.

Description

리튬 이차 전지용 음극 활물질Anode Active Material for Lithium Secondary Battery
본 발명은 리튬 이차 전지용 음극활물질에 관한 것으로 보다 상세하게는 충방전용량이 높고 및 용량 유지율이 우수한 리튬 이차 전지용 음극활물질에 관한 것이다.The present invention relates to a negative electrode active material for a lithium secondary battery, and more particularly, to a negative electrode active material for a lithium secondary battery having a high charge and discharge capacity and excellent capacity retention.
종래 리튬 전지의 음극활물질로는 리튬 금속을 사용하였으나, 리튬 금속을 사용할 경우 덴드라이트(dendrite)형성으로 인한 전지 단락이 발생하여 폭발의 위험성이 있으므로 리튬 금속 대신 탄소계 물질이 음극활물질로서 많이 사용되고 있다.Lithium metal is used as a negative electrode active material of a conventional lithium battery. However, when a lithium metal is used, a carbon-based material is used as a negative electrode active material instead of lithium metal because a short circuit of the battery occurs due to the formation of a dendrite. .
상기 탄소계 활물질로서는, 그래파이트 및 인조 흑연과 같은 결정질계 탄소와 소프트 카본(soft carbon) 및 하드 카본(hard carbon)과 같은 비정질계 탄소가 있다. 그러나 상기 비정질계 탄소는 용량이 크지만, 충방전 과정에서 비가역성이 크다는 문제점이 있다. 결정질계 탄소로는 그래파이트가 대표적으로 사용되며, 이론 한계 용량이 372㎃h/g으로서 용량이 높아 음극활물질로 이용되고 있다.Examples of the carbon-based active material include crystalline carbon such as graphite and artificial graphite, and amorphous carbon such as soft carbon and hard carbon. However, although the amorphous carbon has a large capacity, there is a problem in that irreversibility is large in the charging and discharging process. Graphite is typically used as the crystalline carbon, and has a theoretical limit capacity of 372 mAh / g, which has a high capacity, and is used as a negative electrode active material.
그러나 이러한 그래파이트나 카본계 활물질은 이론 용량이 다소 높다고 하여도 380 mAh/g 정도에 불과하여, 향후 고용량 리튬 전지의 개발시 상술한 음극을 사용할 수 없게 되는 문제점이 있다.However, even if the graphite or carbon-based active material has a rather high theoretical capacity, it is only about 380 mAh / g, and there is a problem in that the above-described negative electrode cannot be used in the development of a high capacity lithium battery in the future.
이와 같은 문제점을 개선하기 위하여 현재 활발히 연구되고 있는 물질이 금속계 또는 금속간 화합물(intermetallic compounds)계의 음극활물질이다. 예를 들어 알루미늄, 게르마늄, 실리콘, 주석, 아연, 납 등의 금속 또는 반금속을 음극활물질로서 활용한 리튬 전지가 연구되고 있다. 이러한 재료는 고용량이면서 고에너지밀도를 가지며, 탄소계 재료를 이용한 음극활물질보다 많은 리튬이온을 흡장, 방출할 수 있어 고용량 및 고에너지 밀도를 갖는 전지를 제조할 수 있다. 예를 들어 순수한 실리콘은 4017mAh/g의 높은 이론용량을 갖는 것으로 알려져 있다.In order to improve such a problem, the currently active research is a negative electrode active material of the metal-based or intermetallic compounds. For example, lithium batteries using metals or semimetals such as aluminum, germanium, silicon, tin, zinc, and lead as negative electrode active materials have been studied. Such a material has a high energy density and high energy density, and can absorb and release more lithium ions than a negative electrode active material using a carbon-based material, thereby manufacturing a battery having a high capacity and a high energy density. Pure silicon, for example, is known to have a high theoretical capacity of 4017 mAh / g.
그러나 탄소계 재료와 비교하였을 때 사이클 특성이 저하되어 아직 실용화에 걸림돌이 되고 있는데, 이는 음극활물질로서 상기 실리콘 등을 그대로 리튬 흡장 및 방출 물질로서 사용할 경우, 충방전 과정에서 부피 변화로 인해 활물질 사이의 도전성이 저하되거나, 음극 집전체로부터 음극활물질이 박리되는 현상이 발생하기 때문이다. 즉, 음극활물질에 포함된 상기 실리콘 등은 충전에 의하여 리튬을 흡장하여 부피가 약 300 내지 400%에 이를 정도로 팽창하며, 방전하는 경우에 리튬이 방출되면 무기질 입자는 수축하게 된다.However, when compared with carbon-based materials, the cycle characteristics are deteriorated, which is still an obstacle to practical use. When the silicon is used as a lithium occlusion and release material as a negative electrode active material, it may be difficult to change the volume between the active materials due to the volume change during the charge and discharge process. This is because conductivity decreases or a phenomenon in which the negative electrode active material is peeled off from the negative electrode current collector occurs. That is, the silicon and the like contained in the negative electrode active material expands to about 300 to 400% by occluding lithium by charging, and when the lithium is discharged, the inorganic particles contract.
이러한 문제점을 해결하기 위하여 일본공개특허 제2006-286312호에서는 드라이 프로세스(dry process)에 의해 형성된 규소 박막을 음극 활물질로서 이용한 리튬 이차 전지를 개시한다. 특허문헌 1에서 규소 박막은, 그 두께 방향으로 형성되는 단락에 따라서 주상으로 분리되는 구조를 가진다. 특허문헌 1은 규소 박막의 물리적 형상에 의하여 규소의 팽창 및 수축을 완화하려는 시도이나, 박막의 생산성이 크게 떨어지고, 따라서 실제 전지 양산화에는 적용되기 어렵다.In order to solve this problem, Japanese Laid-Open Patent Publication No. 2006-286312 discloses a lithium secondary battery using a silicon thin film formed by a dry process as a negative electrode active material. In patent document 1, the silicon thin film has the structure isolate | separated into a columnar phase according to the short circuit formed in the thickness direction. Patent document 1 attempts to mitigate expansion and contraction of silicon by the physical shape of a silicon thin film, but productivity of a thin film falls significantly, and therefore it is difficult to apply it to actual battery mass production.
이에 활성 실리콘 미세입자와 상기 활성 실리콘 미세입자 주위에 분포하는 비활성 금속간화합물로 구성되는 복합입자의 구조로서 이차전지에 실용화가 가능한 소재개발이 요청되고 있다. Accordingly, there is a demand for developing a material that can be used in a secondary battery as a structure of a composite particle composed of active silicon microparticles and an inert intermetallic compound distributed around the active silicon microparticles.
상기 문제점을 해결하기 위해 본 발명은 충방전시에 부피변화가 적어 전기적 절연이 잘 발생하지 않는 리튬 이차전지용 음극활물질을 제공하는 데 있다.In order to solve the above problems, the present invention is to provide a negative electrode active material for a lithium secondary battery that the electrical change does not occur because the volume change is small during charging and discharging.
또한 본 발명은 급냉응고프로세스를 사용하여 실리콘 음극활물질을 제조할 때, 실리콘 조대 영역의 발생을 억제하기 위한 합금 조성 구성법을 제공하는 데 있다.In another aspect, the present invention is to provide an alloy composition composition method for suppressing the generation of the silicon coarse region when producing a silicon negative electrode active material using a quench solidification process.
또한 본 발명은 추가적인 에칭공정을 통해서 실리콘 이외 메트릭스 구조 중 일부 에칭 공정을 통한 다공질 구조를 제공하는 데 있다.In addition, the present invention is to provide a porous structure through some etching process of the matrix structure other than silicon through an additional etching process.
상기와 같은 목적을 달성하기 위해, 본 발명은 실리콘(Si)를 포함하는 합금으로서, 상기 합금은 하기 화학식 1로 이루어지되,In order to achieve the above object, the present invention is an alloy containing silicon (Si), the alloy is made of the following formula (1),
[화학식 1][Formula 1]
SixMyNz Si x M y N z
상기 식에서 30≤x≤60, 1≤y≤20, 30≤z≤60, x+y+z = 100이며, x, y, z는 각각 원자%Where 30≤x≤60, 1≤y≤20, 30≤z≤60, x + y + z = 100, x, y, z are atomic%
M,N은 전이금속임M and N are transition metals
상기 합금을 용융상태에서 급냉응고시켜 얻을 수 있는, 고상의 활성 실리콘(Si) 미세입자 및 상기 실리콘(Si) 미세입자 주위에 분포하는 고체영역과 비정질영역이 혼재할 수 있는 비활성 금속간화합물에서, 상기 미세입자 주위에 분포하는 고체영역 중 일부를 제거한 다공성 특징이 있는 리튬이차전지용 음극활물질을 제공한다.In an inert intermetallic compound obtained by quenching and solidifying the alloy in a molten state, an inert intermetallic compound in which a solid region and an amorphous region distributed around the solid state active silicon (Si) microparticles and the silicon (Si) microparticles can be mixed, It provides a negative electrode active material for a lithium secondary battery having a porous feature to remove some of the solid region distributed around the fine particles.
또한 본 발명은 상기 비활성 금속간화합물이 실리콘합금이 고온의 액상에서 고상으로 상태변화할때 고상의 부피성장을 억제하여 미세한 다수의 실리콘 입자가 생성되도록 하는 리튬이차전지용 음극활물질을 제공한다.In another aspect, the present invention provides a negative electrode active material for a lithium secondary battery to suppress the volume growth of the solid phase when the inert intermetallic compound changes the state of the silicon alloy from the high-temperature liquid state to a solid phase.
또한 본 발명은 상기 전이금속이 Al, Ni, Cu, Ti 및 Fe로 이루어진 군에서 1이상 선택되는 리튬이차전지용 음극활물질을 제공한다.In another aspect, the present invention provides a negative electrode active material for a lithium secondary battery wherein the transition metal is one or more selected from the group consisting of Al, Ni, Cu, Ti and Fe.
또한 본 발명은 상기 비활성 금속간화합물이 Al3Ni, NiSi2 및 Al 상을 포함할 수 있는 리튬이차전지용 음극활물질을 제공한다.In another aspect, the present invention provides a negative electrode active material for a lithium secondary battery that the inert intermetallic compound may include Al 3 Ni, NiSi 2 and Al phase.
또한 본 발명은 상기 다공질 구조 표면을 금속원소 또는 카본계 물질 등으로 더 코팅된 리튬이차전지용 음극활물질을 제공한다. In another aspect, the present invention provides a negative electrode active material for a lithium secondary battery is further coated with a metal element or a carbon-based material on the porous structure surface.
또한 본 발명은 상기 실리콘(Si) 미세입자 및 실리콘 화합물(SiM)상은 XRD(X-Ray Dirrractometer) 피크 면적의 비가 1 대 1 내지 2인 것에 특징이 있는 리튬이차전지용 음극활물질을 제공한다.In another aspect, the present invention provides a negative electrode active material for a lithium secondary battery, characterized in that the ratio of the X-Ray Dirrractometer (XRD) peak area of the silicon (Si) microparticles and the silicon compound (SiM) phase is 1 to 1.
상기 음극 활물질은 전지의 성능 및 안정성을 월등히 향상시키는 바, 이러한음극 활물질을 포함하는 리튬 이차전지의 용량 및 사이클 특성이 우수하다.The negative electrode active material significantly improves the performance and stability of the battery, and has excellent capacity and cycle characteristics of the lithium secondary battery including the negative electrode active material.
도 1은 급냉응고프로세스의 한 종류인 멜트스피닝법 (Melt-spinning process)에 관한 도면이다. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram of a melt-spinning process, which is a type of quench solidification process.
도 2는 실리콘 합금을 급냉응고프로세스를 통해 액상이 고상으로 상태변화과정을 보여주는 모식도이다. Figure 2 is a schematic diagram showing the state change process of the liquid phase to a solid state through the quench solidification process of the silicon alloy.
도 3에서 실시예 1의 실리콘 합금의 투과전자현미경(TEM)의 결과도면이다.3 is a result drawing of a transmission electron microscope (TEM) of the silicon alloy of Example 1;
도 4는 실시예 1 내지 3의 XRD분석결과 도면이다.4 is a XRD analysis results of Examples 1 to 3.
도 5, 7, 9 및 도 11은 실시예 1 내지 3 과 비교예 1에서 제조된 음극활물질을 확대한 SEM 사진이다.5, 7, 9 and 11 are enlarged SEM photographs of the negative electrode active materials prepared in Examples 1 to 3 and Comparative Example 1.
도 6, 8, 10 및 12는 실시예 1 내지 3 및 비교예 1에서 제조된 음극활물질을 이용하여 코인 형상의 이차전지를 제조하고, 충방전 평가를 실시한 후, 그 결과를 에 나타낸 도면이다.6, 8, 10 and 12 is a view showing the result after the coin-shaped secondary battery using a negative electrode active material prepared in Examples 1 to 3 and Comparative Example 1, and subjected to charge and discharge evaluation.
(10: RF coil 20: 노즐 30: 비활성 가스 40: 냉각 휠 50: 실리콘 결정핵 60: 액상 금속 70: 비활성 금속간 화합물 )(10: RF coil 20: nozzle 30: inert gas 40: cooling wheel 50: silicon crystal core 60: liquid metal 70: inert intermetallic compound)
이하 본 발명에 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다. 우선, 도면들 중, 동일한 구성요소 또는 부품들은 가능한 한 동일한 참조부호를 나타내고 있음에 유의하여야 한다. 본 발명을 설명함에 있어, 관련된 공지기능 또는 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. First, it should be noted that in the drawings, the same components or parts denote the same reference numerals as much as possible. In describing the present invention, detailed descriptions of related well-known functions or configurations are omitted in order not to obscure the subject matter of the present invention.
본 명세서에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해사용된다.As used herein, the terms “about”, “substantially”, and the like, are used at, or in close proximity to, numerical values when manufacturing and material tolerances inherent in the meanings indicated are intended to aid the understanding of the invention. Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers.
본 명세서에서 사용되는 단위 「%」는 특별히 달리 규정하지 않는 한 「원자%」를 의미한다.The unit "%" used in the present specification means "atomic%" unless otherwise specified.
본 발명은 리튬이차전지용 음극활물질 및 그를 포함하는 리튬이차전지에 관한 것으로써, 상기 리튬이차전지용 음극활물질은 활성 실리콘(Si) 미세 입자와 상기 활성 미세 입자 주위에 분포하는 비활성 금속간화합물을 포함하는 다공질 구조이다. The present invention relates to a negative electrode active material for a lithium secondary battery and a lithium secondary battery comprising the same, wherein the negative electrode active material for a lithium secondary battery includes active silicon (Si) fine particles and an inert intermetallic compound distributed around the active fine particles. It is a porous structure.
본 발명은 상기 음극활물질을 제조하기 위해서 용융된 실리콘 합금을 급냉응고프로세스을 사용하여 고상으로 만들 때 실리콘 조대영역의 발생을 억제한다. 또한 추가적인 에칭 공정을 적용하여 리튬 삽입에 따른 실리콘계 음극활물질의 팽창문제를 효과적으로 억제할 수 있다.The present invention suppresses the occurrence of the silicon coarse region when the molten silicon alloy is made into a solid phase by using a quench solidification process to produce the negative electrode active material. In addition, by applying an additional etching process it can effectively suppress the expansion problem of the silicon-based negative electrode active material due to the lithium insertion.
따라서, 실리콘과 금속간화합물로 이루어진 복합구조에서 금속간화합물의 종류를 두 가지 이상 형성되도록 하여야 한다. 상기 두 종류 중 일부 금속이 약산성 물질에서도 선별적으로 제거가 용이하도록 하기 위함이다. 또한 에칭으로 남아 있는 금속은 실리콘 입자 사이의 전기전도도를 유지하는 역할을 할 수 있다. Therefore, at least two kinds of intermetallic compounds should be formed in a composite structure made of silicon and an intermetallic compound. Some of the two metals are to facilitate the selective removal even in weakly acidic material. In addition, the metal remaining by the etching may serve to maintain electrical conductivity between the silicon particles.
최근에 실리콘은 지속적인 고용량화를 요구하는 리튬이차전지의 음극활물질로 주목 받고 있는 물질이나, 충방전 시 부피팽창이 심하여 수명이 급격하게 저하되는 단점이 있다. 이런 단점을 해결하기 위하여 활성 실리콘 미세입자와 상기 활성 실리콘 미세입자 주위에 분포하는 비활성 금속간화합물로 구성되는 복합입자가 주목받고 있다. Recently, silicon has attracted attention as a negative electrode active material of a lithium secondary battery that requires continuous high capacity, but has a disadvantage in that its life is sharply reduced due to severe volume expansion during charge and discharge. In order to solve this disadvantage, attention has been paid to composite particles composed of active silicon microparticles and inert intermetallic compounds distributed around the active silicon microparticles.
도 1은 급냉응고프로세스의 한 종류인 멜트스피닝법 (Melt-spinning process)에 관한 도면이다. 보통 RF 코일(10)을 이용해 실리콘합금을 용해한 후 비활성기체(30)을 이용해서 노즐(20)을 통해 냉각휠(40)로 액상 실리콘합금을 내보낸다. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram of a melt-spinning process, which is a type of quench solidification process. Usually, after dissolving the silicon alloy using the RF coil 10, the liquid silicon alloy is sent to the cooling wheel 40 through the nozzle 20 using the inert gas 30.
급냉응고프로세스 중에 가장 냉각 속도가 높다고 알려진 상기 멜트스피닝법 (Melt-spinning process)의 경우 104~106 K/sec의 속도로 급속냉각에 의한 상변태가 가능하다. 고속으로 회전하는 냉각휠(40)에 접촉하여 회전 방향으로 넓고 얇게 도포된 고온의 금속용액은 열전도가 뛰어난 냉각휠(40)로 열을 빼앗겨 고온의 금속용액에서 상온의 금속판재로 상변태가 발생한다. 이와 같이 매우 짧은 시간 내에 액상에서 고상으로의 상변태가 종료되기 때문에 고상의 핵이 성장하기 보다 다수의 고상의 핵을 형성시킴으로써 상변태를 종료하게 된다. 즉, 상변태 시간을 최소화시켜 고상의 핵을 늘리는 것으로써 실리콘 및 금속간화합물의 크기를 미세하게 형성시킬 수 있다.In the case of the melt-spinning process, which is known to have the highest cooling rate during the quench solidification process, phase transformation by rapid cooling is possible at a rate of 10 4 to 10 6 K / sec. The high temperature metal solution coated in a wide and thin direction in the rotational direction in contact with the cooling wheel 40 rotating at high speed is deprived of heat by the cooling wheel 40 having excellent thermal conductivity, so that the phase transformation occurs from the high temperature metal solution to the metal plate material at room temperature. . Since phase transformation from the liquid phase to the solid phase is terminated in such a short time, the phase transformation is terminated by forming a plurality of solid phase nuclei rather than growing solid phase nuclei. That is, by minimizing the phase transformation time to increase the nucleus of the solid phase it is possible to finely form the size of the silicon and intermetallic compound.
그러나, 상기 급냉응고프로세스를 사용한다고 하더라도 고상의 실리콘 핵이 형성된 후 조대하게 성장하는 영역이 존재한다. 이러한 영역은 냉각휠에 접촉하는 면에서 멀어질수록 크게 발생하며 합금의 조성에 따라서도 상이하게 발생한다. 특히 실리콘과 금속간화합물의 융점이 차이가 많이 날수록 조대화 영역의 범위 및 크기도 크다. 이와 같은 미세조직의 불균일성은 이차전지의 수명에 영향을 미치며 특히 충방전이 거듭될 수록 수축과 팽창의 반복과정에서 크랙(crack)으로 인한 조직의 균열이 발생할 수 있다. However, even when the quenching and solidification process is used, there is a region in which coarse growth occurs after the solid silicon nucleus is formed. This area occurs larger away from the surface in contact with the cooling wheel and occurs differently depending on the composition of the alloy. In particular, the greater the melting point of silicon and the intermetallic compound, the greater the extent and size of the coarsening region. Such non-uniformity of the microstructure affects the life of the secondary battery, and in particular, as the charge and discharge are repeated, cracks in the tissue due to cracks may occur during repeated contraction and expansion.
본 발명은 하기 화학식으로 구성된 실리콘(Si)합금을 이용해서 급냉응고시킨다.The present invention is quench solidified using a silicon (Si) alloy composed of the following formula.
[화학식 1][Formula 1]
SixMyNz Si x M y N z
상기 식에서 30≤x≤60, 1≤y≤20, 30≤z≤60, x+y+z = 100이며, x, y, z는 각각 원자%Where 30≤x≤60, 1≤y≤20, 30≤z≤60, x + y + z = 100, x, y, z are atomic%
M,N은 전이금속임M and N are transition metals
한편 상기 전이금속은 Al,Ni, Cu, Ti 및 Fe로 이루어진 군에서 1이상 선택되는 것 일수 있다.Meanwhile, the transition metal may be one or more selected from the group consisting of Al, Ni, Cu, Ti, and Fe.
급냉응고과정에서 실리콘과 금속간화합물의 융점이 차이가 많이 날수록 조대화 영역의 범위 및 크기가 커지기 때문에 상기 화학식 조성범위의 화합물에서 조대화 영역을 최소화시킬 수 있다. The greater the melting point of the silicon and the intermetallic compound in the quench solidification process, the greater the extent and size of the coarsening region, thereby minimizing the coarsening region in the compound of the chemical composition range.
도 2는 실리콘 합금을 급냉응고프로세스를 통해 액상이 고상으로 상태변화과정을 보여주는 모식도이다. (a)는 종래의 실리콘합금의 액상에서 고상으로 상변화의 과정을 보여주는 모식도인 반면 (b)는 본 발명 조성물인 실리콘합금의 상변화 모식도이다. (a)는 금속 용액(60)에서 실리콘 고상의 핵(50)이 형성된 후, 실리콘의 핵이 성장을 한다. 이때에 실리콘보다 융점이 낮은 금속간화합물의 고상의 핵이 형성된다. 그 후 실리콘의 핵과 금속간화합물의 핵이 성장을 계속하여 액상이 모두 고상으로 변화되었을 때 상변태가 종료된다. Figure 2 is a schematic diagram showing the state change process of the liquid phase to a solid state through the quench solidification process of the silicon alloy. (a) is a schematic diagram showing the process of the phase change from the liquid phase to the solid phase of the conventional silicon alloy (b) is a schematic diagram of the phase change of the silicon alloy of the present invention composition. (a) After the silicon solid core 50 is formed in the metal solution 60, the silicon core grows. At this time, a solid core of an intermetallic compound having a lower melting point than silicon is formed. After that, the nucleus of silicon and the nucleus of the intermetallic compound continue to grow, and the phase transformation is terminated when both liquid phases change into solid phase.
(b)는 실리콘과 두상 이상의 금속간화합물이 존재하는 경우의 고액 상변태 모식도이다. 초기에는 융점이 높은 실리콘의 고상의 핵(50)이 형성되고 성장을 시작한다. 그 후, 두 종 이상의 금속간화합물의 핵(70)이 다수 형성되며, 이 금속간화합물의 핵(70)은 고상 실리콘(50)의 성장을 억제한다. 액상에서 고상으로의 상변태가 억제된 실리콘은 상변태를 완성하기 위하여 고상 실리콘의 성장보다는 새로운 고상 실리콘을 형성시키다.(b) is a schematic diagram of solid-state transformation in the presence of silicon and two or more intermetallic compounds. Initially, the solid core 50 of the high melting point silicon is formed and starts to grow. Thereafter, a plurality of nuclei 70 of two or more intermetallic compounds are formed, and the nucleus 70 of the intermetallic compound suppresses the growth of the solid silicon 50. Silicon whose phase transformation from liquid phase to solid phase is suppressed forms new solid silicon rather than growth of solid silicon to complete phase transformation.
이와 같이 실리콘 고상의 핵의 수가 증가하기 때문에 매우 치밀한 미세조직을 얻는 것이 가능하다. 또한, 형성된 금속간화합물은 실리콘 고상의 핵이 용이하게 형성될 수 있도록 도움을 줄 수 있다. 액상(60) 내에 존재하는 금속간화합물의 표면에 고상실리콘 핵이 형성되는 경우, 표면에너지를 줄여주는 역할을 하므로 실리콘 고상의 핵을 형성시키는 것에 도움을 주게 되며, 이로 인하여 미세한 조직형성을 이루도록 한다. Since the number of nuclei of the silicon solid phase increases in this way, it is possible to obtain a very dense microstructure. In addition, the formed intermetallic compound may help the nucleus of the silicon solid phase to be easily formed. When the solid silicon nucleus is formed on the surface of the intermetallic compound present in the liquid phase 60, it serves to reduce the surface energy, thereby helping to form a silicon solid phase nucleus, thereby achieving a fine tissue formation .
결과적으로 급냉응고된 본 발명은 조대화 영역이 최소화된 고상의 활성 실리콘(Si) 다수의 미세입자 및 상기 실리콘(Si) 미세입자 주위에 분포하는 비활성 금속간화합물로 이루어지며 상기 비활성 금속간화합물은 결정질영역과 비정질영역이 혼재상태로 존재한다. As a result, the present invention, which is rapidly solidified, is composed of a large number of solid state active silicon (Si) microparticles with minimized coarsening region and an inert intermetallic compound distributed around the silicon (Si) microparticles. The crystalline region and the amorphous region exist in a mixed state.
미세조직 불균일성을 극복하여도 실리콘 음극활물질의 특징인 리튬의 삽입에 따른 부피팽창 문제를 해결하는 것은 불가능한 것으로 알려져 있다. 이와 같은 문제를 해결하기 위하여 다공질 구조가 도입된 경우 충방전의 싸이클 특성이 크게 향상 될 수 있다. It is known that it is impossible to solve the problem of volume expansion due to the insertion of lithium, which is a characteristic of the silicon anode active material, even when the microstructure nonuniformity is overcome. In order to solve such a problem, when a porous structure is introduced, cycle characteristics of charge and discharge may be greatly improved.
미세조직이 제어된 균일한 합금 리본이 얻어진 후, 에칭 공정을 통하여 비활성 금속간화합물 중 일부를 제거하여 다공질 구조를 형성시킨다.After a uniform alloy ribbon with controlled microstructure is obtained, some of the inert intermetallic compounds are removed through an etching process to form a porous structure.
기존의 다공질 실리콘의 경우, 불산을 이용하여 실리콘을 직접 에칭하여 다공질 구조를 형성하였으나, 본 발명에서는 상용 에칭 공정 적용이 가능하도록 실리콘이 아닌 금속간화합물을 에칭하는 방법을 선택한다. 또한, 본 발명에서 금속간산화물은 일반적인 산을 이용해 용이하게 다공질 구조를 형성하도록 에칭이 용이한 Al과 NiSi2과 반대로 에칭공정에서 제거되지 않도록 Al3Ni로 구성될 수있다.In the case of conventional porous silicon, a porous structure is formed by directly etching silicon using hydrofluoric acid, but in the present invention, a method of etching an intermetallic compound other than silicon is selected to enable commercial etching process. In addition, in the present invention, the intermetallic oxide may be composed of Al 3 Ni so as not to be removed in an etching process as opposed to Al and NiSi 2 , which are easily etched to easily form a porous structure using a common acid.
상기 Al3Ni는 약산에서는 에칭이 불가능한 금속간화합물로 다양한 에칭공정에서도 제거되지 않는다. 이와 같은 에칭공정을 통하여 다공질 실리콘 합금을 제조할 수 있다. The Al 3 Ni is an intermetallic compound that cannot be etched in a weak acid and is not removed even in various etching processes. Through such an etching process, a porous silicon alloy can be manufactured.
이하 본 발명을 실시예에 의하여 상세히 설명한다. 단, 하기 실시예들은 본 발명을 예시하는 것으로, 본 발명의 내용이 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are illustrative of the present invention, and the content of the present invention is not limited by the examples.
실시예 1Example 1
실리콘(Si)합금을 Si 50%, Ni 9.5%, Al 40.5%의 조성을 갖도록 아르곤 가스 하에서 아크용해법으로 제조하고, 제조된 Si합금을 멜트스피닝법을 이용하여 Ni과 Al로 이루어진 Al3Ni, NiSi2, Al로 구성된 메트릭스상(비활성 금속간화합물) 사이에 실리콘(Si) 미세입자가 위치하도록 실리콘(Si)합금 제조하였다. 이때, 멜트스피닝법 (Melt-spinning process)으로 급냉 속도는(냉각휠의 회전 속도) 40m/sec로 하였다. A silicon (Si) alloy was prepared by an arc dissolving method under argon gas to have a composition of Si 50%, Ni 9.5%, and Al 40.5%, and the prepared Si alloy was formed of Ni 3 and Al 3 Ni and NiSi using a melt spinning method. A silicon (Si) alloy was prepared such that silicon (Si) microparticles were located between matrix phases (inactive intermetallic compounds) composed of 2 and Al. At this time, the quenching speed (rotational speed of the cooling wheel) was set to 40 m / sec by a melt-spinning process.
본 발명에서 적용되는 방식이 상기 방식에 제한되는 것은 아니며, 멜트스피닝법 외에도 충분한 급냉 속도가얻어질 수 있는 것이라면, 상기에서 제시한 미세 분말 제조 기법(가스아토마이져법, 원심가스아토마이져법, 프라즈마아토마이져법, 회전전극법, 메커니컬 어로잉법 등)에 의해서도 제조할 수 있다.The method applied in the present invention is not limited to the above method, and in addition to the melt spinning method, if a sufficient quenching speed can be obtained, the fine powder production technique (gas atomizer method, centrifugal gas atomizer method, plasma method) as described above can be obtained. It can also be manufactured by the atomizer method, the rotating electrode method, the mechanical etching method and the like.
상기 실리콘 합금에서 실리콘 입자 주위에 비활성 금속간화합물을 에칭을 통해 다공질 구조를 갖는 실리콘합금의 리튬 이차 전지용 음극 활물질을 제조하였다.In the silicon alloy, an inactive intermetallic compound was etched around silicon particles to prepare a negative active material for a lithium secondary battery of a silicon alloy having a porous structure.
실시예 2Example 2
실리콘(Si)합금을 Si 40%, Ni 11.4%, Al 48.6%의 조성으로 하는 것 이외에 실시예 1과 동일하게 실시하였다. A silicon (Si) alloy was formed in the same manner as in Example 1 except that the composition was made of Si 40%, Ni 11.4%, and Al 48.6%.
..
실시예 3Example 3
실리콘(Si)합금을 Si 30%, Ni 13.3%, Al 56.7%의 조성으로 하는 것 이외에 실시예 1과 동일하게 실시하였다. The silicon (Si) alloy was formed in the same manner as in Example 1 except that the composition was made of Si 30%, Ni 13.3%, and Al 56.7%.
비교예 1Comparative Example 1
실리콘(Si)합금을 Si 60%, Ni 15%, Al 25%의 조성으로 하는 것 이외에 실시예 1과 동일하게 실시하였다. The silicon (Si) alloy was carried out in the same manner as in Example 1 except that the composition was made of Si 60%, Ni 15%, and Al 25%.
◎ SEM/XRD 분석◎ SEM / XRD analysis
도 3에서 실시예 1의 실리콘 합금의 투과전자현미경(TEM)을 통한 결과 실리콘입자의 급속냉각과정에서 조대영역이 발생하지 않고 균일한 미세구조로 형성됨을 확인할 수있으며, 도 4는 실시예 1 내지 3의 XRD분석결과 피크의 발생되는 degreer가 매우 유사하며 분석결과 Al3Ni, NiSi2 및 Al 의 금속간 화합물 형성을 확인할 수 있다. As a result of the transmission electron microscope (TEM) of the silicon alloy of Example 1 in Figure 3 it can be seen that the coarse region is formed in a uniform microstructure in the rapid cooling process of the silicon particles, Figure 4 is Example 1 to XRD analysis of 3 shows that the degree of generation of peaks is very similar, and the analysis results show the formation of intermetallic compounds of Al 3 Ni, NiSi 2 and Al.
◎ SEM 분석◎ SEM analysis
제조된 음극활물질에 대하여 SEM(Scanning Electron Microscopy) 분석을 수행하였다. 도 5, 7, 9 및 도 11은 실시예 1 내지 3 과 비교예 1의 음극활물질을 확대한 SEM 사진이다.Scanning Electron Microscopy (SEM) analysis was performed on the prepared anode active material. 5, 7, 9 and 11 are enlarged SEM photographs of the negative electrode active materials of Examples 1 to 3 and Comparative Example 1.
실시예들은 에칭전(a)의 음극활물질은 조대 영역이 없고 균일한 미세 구조의 실리콘결정을 확인할 수 있으며, 에칭후(b)의 음극활물질은 실리콘입자 주위에 빈공간이 형성된 것을 확인 할 수 있다. Examples of the anode active material before etching (a) can be confirmed that there is no coarse region and the silicon crystal of a uniform fine structure, the cathode active material after the etching (b) can be confirmed that the empty space is formed around the silicon particles. .
반면에 비교예 1은 급냉응고판재의 두께에 따른 미세조직(a)과 냉각휠에서 멀어짐에 따른 실리콘 조대영역(b)을 관찰할 수 있다. On the other hand, Comparative Example 1 can observe the microstructure (a) according to the thickness of the quench solidified plate and the silicon coarse region (b) as the distance from the cooling wheel.
◎ 충·방전용량◎ Charge and discharge capacity
실시예 1 내지 3 및 비교예 1에서 제조된 음극활물질을 이용하여 코인 형상의 이차전지를 제조하고, 충방전 평가를 실시한 후, 그 결과를 도 6,8,10 및 12에 나타내었다. 코인 형상의 극판의 제조 시에 활물질, 도전제(Super P 계열 도전제) 및 바인더(PI 계열 바인더)의 혼합 비율은, 중량비 77:15:2:6 (활물질:첨가제:도전제:바인더)가 되도록 하여 제조하였다.  Coin-shaped secondary batteries were prepared using the negative electrode active materials prepared in Examples 1 to 3 and Comparative Example 1, and after the charge and discharge evaluations, the results are shown in FIGS. 6, 8, 10, and 12. In the manufacture of the coin-shaped electrode plate, the mixing ratio of the active material, the conductive agent (Super P-based conductive agent), and the binder (PI-based binder) is 77: 15: 2: 6 (active material: additive: conductive agent: binder). It was prepared as possible.
실시예 1은 에칭전(a)의 충전은 최대 900mAh/g 용량을 갖고 계속되는 충방전 결과 점차 용량이 줄어 250mAh/g이하로 떨어지고 있음을 알 수 있다. 그러나 에칭후(b)의 충전은 1500~1800mAh/g의 충전용량을 나타냄을 알 수있다. Example 1 it can be seen that the charge before etching (a) has a maximum capacity of 900mAh / g, and as a result of the continuous charge and discharge, the capacity is gradually reduced to fall below 250mAh / g. However, after the etching (b) it can be seen that the charge capacity of 1500 ~ 1800mAh / g.
실시예 2와 3도 실시예 1과 같이 에칭후의 충전용량이 최소2배이상 늘어남을 알 수 있으며 실리콘(Si)의 함량이 가장 큰 실시예 1이 충전용량이 다른 실시예 보다 더 큼을 알 수 있다 .In Examples 2 and 3, as in Example 1, it can be seen that the charging capacity after etching is increased by at least two times, and Example 1, which has the largest content of silicon (Si), is larger than other examples. .
그러나, 비교예 1은 충전용량이 1445.5mAh/g 정도로 실시예 2의 에칭후의 충전용량과 비슷한 수준을 보이나 여러번 충방전을 한 이후에는 용량이 급속히 줄어듦을 알 수 있다. However, in Comparative Example 1, the charge capacity was about 1445.5 mAh / g, similar to the charge capacity after etching in Example 2, but it can be seen that the capacity decreases rapidly after several charge and discharge cycles.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

Claims (6)

  1. 실리콘(Si)를 포함하는 합금으로서,As an alloy containing silicon (Si),
    상기 합금은 하기 화학식 1로 이루어지되,The alloy is made of the formula 1,
    [화학식 1][Formula 1]
    SixMyNz Si x M y N z
    (상기 식에서 30≤x≤60, 1≤y≤20, 30≤z≤60, x+y+z=100이며, x, y, z는 각각 원자%, M,N은 전이금속임)(Where 30 ≦ x ≦ 60, 1 ≦ y ≦ 20, 30 ≦ z ≦ 60, x + y + z = 100, x, y and z are atomic% and M and N are transition metals, respectively)
    상기 합금을 용융상태에서 급냉응고시켜 얻을 수 있는, Obtained by quenching and solidifying the alloy in a molten state,
    고상의 활성 실리콘(Si) 미세입자 및 상기 실리콘(Si) 미세입자 주위에 분포하는 고체영역과 비정질영역이 혼재할 수 있는 비활성 금속간화합물에서,In an inert intermetallic compound in which solid and amorphous regions distributed around solid active silicon (Si) microparticles and the silicon (Si) microparticles can be mixed,
    상기 미세입자 주위에 분포하는 고체영역 중 일부를 제거한 다공성 특징이 있는 리튬이차전지용 음극활물질.A negative electrode active material for a lithium secondary battery having a porous feature to remove some of the solid region distributed around the fine particles.
  2. 제1항에 있어서,The method of claim 1,
    상기 비활성 금속간화합물은 실리콘합금이 고온의 액상에서 고상으로 상태변화할때 고상의 부피성장을 억제하여 미세한 다수의 실리콘 입자가 생성되도록 하는 리튬이차전지용 음극활물질.The inert intermetallic compound is a negative electrode active material for a lithium secondary battery that generates a large number of fine silicon particles by inhibiting the volume growth of the solid phase when the silicon alloy changes from a high temperature liquid phase to a solid phase.
  3. 제1항에 있어서,The method of claim 1,
    상기 전이금속은 Al,Ni, Cu, Ti 및 Fe로 이루어진 군에서 1이상 선택되는 리튬이차전지용 음극활물질.The transition metal is an anode active material for a lithium secondary battery selected from the group consisting of Al, Ni, Cu, Ti and Fe.
  4. 제 1항에 있어서,The method of claim 1,
    상기 비활성 금속간화합물은 Al3Ni, NiSi2 및 Al 상을 포함할 수 있는 리튬이차전지용 음극활물질.The inert intermetallic compound is an anode active material for a lithium secondary battery that may include Al 3 Ni, NiSi 2 and Al phase.
  5. 제1항에 있어서,The method of claim 1,
    상기 다공질 구조 표면을 금속원소 또는 카본계 물질 등으로 더 코팅된 리튬이차전지용 음극활물질. The anode active material for a lithium secondary battery is further coated with a metal element or a carbon-based material, the porous structure surface.
  6. 제1항에 있어서,The method of claim 1,
    상기 실리콘(Si) 미세입자 및 실리콘 화합물(SiM)상은 XRD(X-Ray Dirrractometer) 피크 면적의 비가 1 대 1 내지 2인 리튬이차전지용 음극활물질.The silicon (Si) microparticles and the silicon compound (SiM) phase is a negative active material for a lithium secondary battery having a ratio of XRD (X-Ray Dirrractometer) peak area 1 to 1 to 2.
PCT/KR2016/004697 2015-05-06 2016-05-04 Negative electrode active material for lithium secondary battery WO2016178509A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150063063A KR101762773B1 (en) 2015-05-06 2015-05-06 Negative Active Material For Rechargeable Lithium Battery
KR10-2015-0063063 2015-05-06

Publications (1)

Publication Number Publication Date
WO2016178509A1 true WO2016178509A1 (en) 2016-11-10

Family

ID=57218403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004697 WO2016178509A1 (en) 2015-05-06 2016-05-04 Negative electrode active material for lithium secondary battery

Country Status (2)

Country Link
KR (1) KR101762773B1 (en)
WO (1) WO2016178509A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225971A1 (en) * 2017-06-07 2018-12-13 한국생산기술연구원 Anode active material for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising same anode

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102087134B1 (en) * 2017-06-07 2020-03-11 한국생산기술연구원 Negative active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery including the same
KR102309817B1 (en) * 2018-08-06 2021-10-07 충남대학교산학협력단 Negative electrode active material for rechargeable lithium battery and preparation method of the same
KR102166559B1 (en) * 2018-08-06 2020-10-16 충남대학교산학협력단 Negative electrode active material for rechargeable lithium battery and preparation method of the same
KR102254126B1 (en) * 2018-09-12 2021-05-20 연세대학교 산학협력단 Porous silicon structure, anode active material for rechargeable battery including the same, and method of fabricating the same
KR102218030B1 (en) * 2018-11-26 2021-02-22 한국생산기술연구원 Negative active material manufacturing method and negative active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery including the same
KR102218033B1 (en) * 2018-11-27 2021-02-22 한국생산기술연구원 Negative active material manufacturing method and negative active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery including the same
KR20230038938A (en) 2021-09-13 2023-03-21 현대자동차주식회사 Composite anode for lithium secondary battery and its manufacturing method
KR102527633B1 (en) * 2023-03-17 2023-04-28 성재욱 Anode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery comprising the anode active material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627350B2 (en) * 2000-05-26 2003-09-30 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary battery
KR20050020571A (en) * 2003-08-22 2005-03-04 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
KR100570639B1 (en) * 2003-01-06 2006-04-12 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
KR20120010211A (en) * 2010-07-23 2012-02-02 강원대학교산학협력단 Porous silicon based alloy, method of preparing the same, and negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
KR20140080578A (en) * 2012-12-12 2014-07-01 일진전기 주식회사 Negative active material and Secondary batteries prepared the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627350B2 (en) * 2000-05-26 2003-09-30 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary battery
KR100570639B1 (en) * 2003-01-06 2006-04-12 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
KR20050020571A (en) * 2003-08-22 2005-03-04 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
KR20120010211A (en) * 2010-07-23 2012-02-02 강원대학교산학협력단 Porous silicon based alloy, method of preparing the same, and negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
KR20140080578A (en) * 2012-12-12 2014-07-01 일진전기 주식회사 Negative active material and Secondary batteries prepared the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225971A1 (en) * 2017-06-07 2018-12-13 한국생산기술연구원 Anode active material for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising same anode

Also Published As

Publication number Publication date
KR101762773B1 (en) 2017-07-28
KR20160131208A (en) 2016-11-16

Similar Documents

Publication Publication Date Title
WO2016178509A1 (en) Negative electrode active material for lithium secondary battery
WO2010077100A2 (en) Active cathode substance for secondary battery
US8980428B2 (en) Porous silicon particles and complex porous silicon particles, and method for producing both
WO2015065095A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
JP2000164218A (en) Negative electrode active material for lithium secondary battery, and manufacture thereof, and lithium secondary battery including the same
KR101375455B1 (en) Electrode active material for rechargeable battery
KR20110063390A (en) Method of manufacturing nano alloy powders for anode of thin film battery
JP2001291514A (en) Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
WO2013129850A1 (en) Electrode active material for lithium secondary battery and method for manufacturing same
WO2011059251A4 (en) Negative active material for lithium secondary battery and lithium secondary battery comprising same
JP2007227328A (en) Negative electrode for lithium secondary battery, method of manufacturing the electrode, and lithium secondary battery
WO2021006704A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2020091199A1 (en) Method for preparing negative electrode active material, for lithium secondary battery, comprising silica-metal composite, and negative electrode active material prepared thereby
WO2013089365A1 (en) Anode active material for secondary battery and method for manufacturing same
WO2015099233A1 (en) Anode active material, secondary battery comprising same and method for manufacturing anode active material
WO2019112325A1 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and method for producing same
JPH10302770A (en) Negative electrode material for lithium ion secondary battery and manufacture thereof
JP2002216746A (en) Negative electrode for lithium secondary battery and its manufacturing method
WO2013168853A1 (en) Method for producing silicon-based negative electrode active material, negative electrode active material for lithium secondary battery, and lithium secondary battery containing same
WO2015122672A1 (en) Negative electrode active material for lithium secondary battery
WO2015088283A1 (en) Negative electrode material for secondary battery, and secondary battery using same
KR102309817B1 (en) Negative electrode active material for rechargeable lithium battery and preparation method of the same
JP4997706B2 (en) Anode material for non-aqueous secondary battery and method for producing the same
JP3027532B2 (en) Manufacturing method of hydrogen storage alloy
WO2015099325A1 (en) Negative active material for lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789615

Country of ref document: EP

Kind code of ref document: A1