WO2014092347A1 - Negative electrode active material for lithium secondary battery and secondary battery using same - Google Patents

Negative electrode active material for lithium secondary battery and secondary battery using same Download PDF

Info

Publication number
WO2014092347A1
WO2014092347A1 PCT/KR2013/010438 KR2013010438W WO2014092347A1 WO 2014092347 A1 WO2014092347 A1 WO 2014092347A1 KR 2013010438 W KR2013010438 W KR 2013010438W WO 2014092347 A1 WO2014092347 A1 WO 2014092347A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
active material
negative electrode
electrode active
alloy
Prior art date
Application number
PCT/KR2013/010438
Other languages
French (fr)
Korean (ko)
Inventor
김향연
배영산
임혜민
성민석
Original Assignee
일진전기(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진전기(주) filed Critical 일진전기(주)
Publication of WO2014092347A1 publication Critical patent/WO2014092347A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium secondary battery and a secondary battery using the same, and more particularly, to a negative electrode active material for a lithium secondary battery having a high charge and discharge capacity and an excellent capacity retention rate, and a secondary battery using the same.
  • Lithium metal is used as a negative electrode active material of a conventional lithium battery.
  • a carbon-based material is used as a negative electrode active material instead of lithium metal because a short circuit of the battery occurs due to dendrite formation. .
  • Examples of the carbon-based active material include crystalline carbon such as graphite and artificial graphite, and amorphous carbon such as soft carbon and hard carbon.
  • crystalline carbon such as graphite and artificial graphite
  • amorphous carbon such as soft carbon and hard carbon.
  • Graphite is typically used as the crystalline carbon, and has a theoretical limit capacity of 372 mAh / g, which has a high capacity, and is used as a negative electrode active material.
  • the graphite or carbon-based active material has a rather high theoretical capacity, it is only about 380 mAh / g, and there is a problem in that the above-described negative electrode cannot be used in the development of a high capacity lithium battery in the future.
  • a negative electrode active material based on metals or intermetallic compounds.
  • lithium batteries using metals or semimetals such as aluminum, germanium, silicon, tin, zinc, and lead as negative electrode active materials have been studied.
  • Such a material has a high energy density and high energy density, and can absorb and release more lithium ions than a negative electrode active material using a carbon-based material, thereby manufacturing a battery having a high capacity and a high energy density.
  • Pure silicon for example, is known to have a high theoretical capacity of 4017 mAh / g.
  • the cycle characteristics are deteriorated, and it is still an obstacle to practical use.
  • the silicon is used as a lithium occlusion and emission material as a negative electrode active material, it is interposed between the active materials due to the volume change in the charging and discharging process. This is because a decrease in conductivity or a phenomenon in which the negative electrode active material peels from the negative electrode current collector occurs. That is, the silicon, etc. included in the negative electrode active material occludes lithium by charging and expands to about 300 to 400% by volume, and when lithium is discharged, the inorganic particles shrink.
  • Repeating such a charge / discharge cycle may cause electrical insulation due to cracking of the negative electrode active material, and thus has a problem in that it is used in a lithium battery because the life is sharply reduced.
  • Korean Laid-Open Patent Publication No. 2004-0063802 relates to a "negative active material for lithium secondary batteries, a manufacturing method thereof, and a lithium secondary battery", which uses a method of eluting a metal after alloying another metal such as silicon and nickel.
  • Patent No. 2004-0082876 relates to "Method for Producing Porous Silicon and Nano-Sized Silicon Particles and Application to Cathode Material for Lithium Secondary Battery", and heat treatment by mixing a silicon precursor such as alkali metal or alkaline earth metal in powder state and silicon dioxide. Later, the technique of eluting with an acid was disclosed.
  • the patents may improve the initial capacity retention rate due to the buffering effect due to the porous structure.
  • the porous silicon particles having low conductivity are used, if the particles are not nano-sized, the conductivity between the particles may be lowered at the time of manufacturing the electrode. There is a problem that the retention characteristics are lowered.
  • a negative electrode active material for a lithium secondary battery in which the electrical change does not easily occur due to a small volume change during charge and discharge.
  • Another object of the present invention is to provide a negative electrode active material for a lithium secondary battery excellent in initial efficiency and capacity retention characteristics.
  • the present invention provides an anode active material for a lithium secondary battery, characterized in that the amorphous crystallinity of the microcrystalline region of the matrix (Matrix) in the alloy is 30% or more as an alloy consisting of the formula (1).
  • the present invention provides a negative electrode active material for a lithium secondary battery, characterized in that the transition metal is selected from the group consisting of Al, Cu, Ti and Fe.
  • the present invention also provides a secondary battery comprising a cathode and an electrolyte including a cathode and an anode active material according to the present invention.
  • the present invention provides a secondary battery in which the positive electrode comprises a thiolated intercalation compound, an inorganic sulfur or a sulfur compound.
  • the present invention also provides a secondary battery in which the electrolyte contains a non-aqueous organic solvent and a lithium salt.
  • the present invention also provides a secondary battery having a cylindrical shape, a horn shape, a coin shape, or a pouch shape.
  • the negative electrode active material for a lithium secondary battery according to the present invention has an effect of extending the service life because the electrical change does not occur because the volume change is small during charge and discharge when used in the secondary battery.
  • the negative electrode active material for a lithium secondary battery according to the present invention has an excellent initial efficiency and capacity retention characteristics when used in a secondary battery.
  • the negative electrode active material for a lithium secondary battery according to the present invention has an effect that the amount of voltage and current is maintained substantially constant even when repeated charging and discharging when used in the secondary battery.
  • Figure 1 shows the SEM measurement results of the negative electrode active material according to an embodiment of the present invention.
  • Figure 2 shows the XRD measurement results of the negative electrode active material according to an embodiment of the present invention.
  • Figure 3 shows the amorphousness measurement of the negative electrode active material according to an embodiment of the present invention.
  • Figure 4 shows the charge and discharge capacity of the negative electrode active material according to an embodiment of the present invention.
  • 5 is a charge and discharge cycle repeated up to 50 times at 0.5C of a battery manufactured using a negative electrode active material according to an embodiment of the present invention, the capacity change according to the cycle is measured.
  • the present invention provides an anode active material for a secondary battery, characterized in that the amorphous crystallinity is 30% or more in the microcrystalline region of the matrix (Matrix) in the alloy as an alloy of the formula (1).
  • the microcrystalline region is present on the matrix of the alloy, and the presence of the microcrystalline region allows lithium to be diffused more easily than the crystalline region mainly.
  • the ratio of the presence of the microcrystalline region may be represented through the degree of amorphousness, and when the amorphous region is formed on the matrix, it may be suppressed in the volume expansion during charging of the secondary battery in applying it as a negative electrode active material of the secondary battery.
  • the present invention is characterized in that at least 30% of the degree of amorphousness of the microcrystalline region on the matrix (Matrix).
  • the amorphousness of the microcrystalline region is 30% or more, thereby facilitating the diffusion of lithium.
  • the amorphous phase on the matrix is 30% or more, when the secondary battery is used as a negative electrode active material, it can be seen that volume expansion is suppressed during charging.
  • the transition metal is preferably selected from one or more from the group consisting of Al, Cu, Ti and Fe.
  • Figure 1 shows the SEM measurement results of the negative electrode active material according to an embodiment of the present invention
  • Figure 2 shows the XRD measurement results of the negative electrode active material according to an embodiment of the present invention.
  • Amorphization degree of the microcrystals in the range of ° ⁇ 100 ° to 30 to 45%, thereby having an effect that the volume expansion is suppressed when the alloy is charged in the secondary battery.
  • the amorphousness is 30 to 45%, volume expansion is suppressed so that electrical insulation is hardly generated.
  • Calculation of the degree of amorphousness used in the present invention is as follows, the expression can be obtained by looking at the area to measure the degree of amorphousness of FIG.
  • the high degree of amorphousness may be interpreted to mean that there are many microcrystalline regions, and thus, a buffering function may be performed in the microcrystalline region during charging to block a factor in which lithium ions may accumulate and expand in volume. It becomes possible.
  • the method for preparing the negative electrode active material of the present invention is not particularly limited, and for example, various fine powder production techniques known in the art (gas atomizer method, centrifugal gas atomizer method, plasma atomizer method, rotary electrode method, Mechanical alignment, etc.) may be used.
  • gas atomizer method centrifugal gas atomizer method, plasma atomizer method, rotary electrode method, Mechanical alignment, etc.
  • Si and the components constituting the matrix may be mixed, the mixture may be melted by an arc melting method or the like, and then applied to a single roll quench solidification method in which the melt is sprayed onto a rotating copper roll to prepare an active material. have.
  • the method applied in the present invention is not limited to the above method, and if a sufficient quenching speed can be obtained in addition to the single-roll quenching solidification method, the fine powder production technique (gas atomizer method, centrifugal gas atomizer method) presented above. , Plasma atomizer method, rotary electrode method, mechanical aligning method, and the like.
  • a secondary battery may be manufactured using a negative electrode active material according to an embodiment of the present invention, and the positive electrode of the secondary battery may include a ritated intercalation compound, and also inorganic sulfur (S8). Also, elemental sulfur and sulfur compounds may be used.
  • the kind of electrolyte included in the secondary battery of the present invention is not particularly limited either, and general means known in the art may be employed.
  • the electrolyte may include a non-aqueous organic solvent and a lithium salt.
  • the lithium salt may be dissolved in an organic solvent to serve as a source of lithium ions in the battery and to promote the movement of lithium ions between the positive electrode and the negative electrode.
  • lithium salts examples include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ), where x and y are natural numbers, LiCl, LiI, and lithium It includes the one or more kinds of bisoxalate borate (lithium bisoxalate borate) or the like as a supporting electrolyte salt.
  • the concentration of lithium salt in the electrolyte which can vary depending on the application, is typically used within the range of 0.1M to 2.0M.
  • the organic solvent serves as a medium to move ions involved in the electrochemical reaction of the battery, for example, benzene, toluene, fluorobenzene, 1,2-difluorobenzene, 1, 3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene, 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1, 3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, iodobenzene, 1,2-diiobenzene, 1, 3-diiobenzene, 1,4-diiobenzene, 1,2,3-triiobenzene, 1,2,4-triiobenzene, fluorotoluene, 1,2-difluorotoluene , 1,3-di
  • the secondary battery of the present invention may further include conventional elements such as a separator, a can, a battery case or a gasket, and the specific types thereof are not particularly limited.
  • the secondary battery of the present invention may be manufactured in a conventional manner and shape in the art, including such elements.
  • Examples of the shape that the secondary battery of the present invention may have include a cylindrical shape, a horn shape, a coin shape, or a pouch shape, but are not limited thereto.
  • the method for preparing the negative electrode active material of the present invention is not particularly limited, and for example, various fine powder production techniques known in the art (gas atomizer method, centrifugal gas atomizer method, plasma atomizer method, rotary electrode method, Mechanical alignment, etc.) may be used.
  • gas atomizer method centrifugal gas atomizer method, plasma atomizer method, rotary electrode method, Mechanical alignment, etc.
  • Si and the components constituting the matrix were mixed, the mixture was melted by an arc melting method or the like, and then applied to a single roll quench solidification method in which the melt was sprayed onto a rotating copper roll to prepare an active material.
  • the method applied in the present invention is not limited to the above method, and if a sufficient quenching speed can be obtained in addition to the single-roll quenching solidification method, the fine powder manufacturing technique (gas atomizer method, centrifugal gas atomizer method, plasma method) presented above. It can also be manufactured by the atomizer method, the rotating electrode method, the mechanical etching method and the like.
  • a composite alloy was prepared in which the transition metal was Cu 65.40 Ni 25.69 Cu 8.91 in the Si x Ni y M z alloy, and the degree of amorphousness of the alloy was measured. In preparing, it was used as a negative electrode active material.
  • Example 2 It carried out similarly to Example 1 except having set the transition metal as Ti in Si x Ni y M z alloy, and set it as Si 65.41 Ni 25.69 Ti 8.90 .
  • Example 2 It carried out similarly to Example 1 except having set the transition metal to Fe in the alloy of Si x Ni y M z to Si 65.40 Ni 25.69 Fe 8.91 .
  • Example 2 It carried out similarly to Example 1 except having set the transition metal to Al in Si x Ni y M z alloy, and set it as Si 65.40 Ni 25.70 Al 8.90 .
  • Si 60 Fe 14 Al 26 was prepared. At this time, Si 60 Fe 14 Al 26 was prepared and used as a negative electrode active material.
  • Si x Ni y M z of a transition in the alloy and the metal of Fe was carried out in the same manner as in Example 1 except that Si 45 Ni 25 Fe 30.
  • Example 2 The same procedure as in Example 1 was carried out except that Si 48 Ni 30 Al 22 was prepared using Al as a transition metal in the alloy of Si x Ni y M z .
  • SEM Scanning Electron Microscopy
  • the Si phase was uniformly dispersed and precipitated on the matrix.
  • Cu k ⁇ -ray XRD measurements were performed on the negative active materials prepared in Examples 1 to 4, and the results are shown in FIG. 2.
  • the measurement angle was set at 20 degrees to 100 degrees, and the measurement speed was set at 5.7 degrees per minute.
  • Coin-shaped secondary batteries were prepared using the negative electrode active materials prepared in Examples 1 to 4 and Comparative Examples 1 to 4, and after the charge and discharge evaluations, the results are shown in FIG. 4.
  • the mixing ratio of the active material, the conductive agent (Super P-based conductive agent), and the binder (PI-based binder) is 77: 15: 2: 6 (active material: additive: conductive agent: binder). It was prepared as possible. Charged and discharged after performing once at 0.5C for the prepared electrode plate was measured, as shown in Table 1 below.
  • the amorphousness measurement can be obtained by using the formula of the amorphousness degree using the XRD pattern of the alloy.
  • the volume expansion factor may be reduced.
  • the degree of amorphousness was less than 30%, and thus, it is judged that the volume expansion is higher than that of the Examples.
  • Charge and discharge was repeated 50 times at 0.5C and measured, and the result is as shown in FIG.
  • the charge and discharge method was performed according to the charge and discharge method for the active material for a lithium secondary battery generally known in the art.

Abstract

The present invention relates to a negative electrode active material for a lithium secondary battery and a secondary battery using same, and more specifically provides a negative electrode active material for a lithium secondary battery and a secondary battery using same wherein the active material comprises an alloy represented by chemical formula (1) SixNiyMz (in the formula 50≤x≤90, 1≤y≤49, 1≤z≤49, x+y+z=100, x, y and z are each atomic percentages, and M is a transition metal), and the amorphization degree of a micro crystal region on the matrix in the alloy is at least 30%.

Description

리튬 이차 전지용 음극활물질 및 이를 이용한 이차전지Anode active material for lithium secondary battery and secondary battery using same
본 발명은 리튬 이차 전지용 음극활물질 및 이를 이용한 이차전지에 관한 것으로 보다 상세하게는 충방전 용량이 높고 및 용량 유지율이 우수한 리튬 이차 전지용 음극활물질 및 이를 이용한 이차전지에 관한 것이다.The present invention relates to a negative electrode active material for a lithium secondary battery and a secondary battery using the same, and more particularly, to a negative electrode active material for a lithium secondary battery having a high charge and discharge capacity and an excellent capacity retention rate, and a secondary battery using the same.
종래 리튬 전지의 음극 활물질로는 리튬 금속을 사용하였으나, 리튬 금속을 사용할 경우 덴드라이트(dendrite) 형성으로 인한 전지 단락이 발생하여 폭발의 위험성이 있으므로 리튬 금속 대신 탄소계 물질이 음극 활물질로서 많이 사용되고 있다.Lithium metal is used as a negative electrode active material of a conventional lithium battery. However, when a lithium metal is used, a carbon-based material is used as a negative electrode active material instead of lithium metal because a short circuit of the battery occurs due to dendrite formation. .
상기 탄소계 활물질로서는, 그래파이트 및 인조 흑연과 같은 결정질계 탄소와 소프트 카본(soft carbon) 및 하드 카본(hard carbon)과 같은 비정질계 탄소가 있다. 그러나 상기 비정질계 탄소는 용량이 크지만, 충방전 과정에서 비가역성이 크다는 문제점이 있다. 결정질계 탄소로는 그래파이트가 대표적으로 사용되며, 이론 한계 용량이 372㎃h/g으로서 용량이 높아 음극 활물질로 이용되고 있다.Examples of the carbon-based active material include crystalline carbon such as graphite and artificial graphite, and amorphous carbon such as soft carbon and hard carbon. However, although the amorphous carbon has a large capacity, there is a problem in that irreversibility is large in the charging and discharging process. Graphite is typically used as the crystalline carbon, and has a theoretical limit capacity of 372 mAh / g, which has a high capacity, and is used as a negative electrode active material.
그러나 이러한 그래파이트나 카본계 활물질은 이론 용량이 다소 높다고 하여도 380 mAh/g 정도에 불과하여, 향후 고용량 리튬 전지의 개발시 상술한 음극을 사용할 수 없게 되는 문제점이 있다.However, even if the graphite or carbon-based active material has a rather high theoretical capacity, it is only about 380 mAh / g, and there is a problem in that the above-described negative electrode cannot be used in the development of a high capacity lithium battery in the future.
이와 같은 문제점을 개선하기 위하여 현재 활발히 연구되고 있는 물질이 금속계 또는 금속간 화합물(intermetallic compounds)계의 음극 활물질이다. 예를 들어 알루미늄, 게르마늄, 실리콘, 주석, 아연, 납 등의 금속 또는 반금속을 음극 활물질로서 활용한 리튬 전지가 연구되고 있다. 이러한 재료는 고용량이면서 고에너지 밀도를 가지며, 탄소계 재료를 이용한 음극 활물질보다 많은 리튬이온을 흡장, 방출할 수 있어 고용량 및 고에너지 밀도를 갖는 전지를 제조할 수 있다. 예를 들어 순수한 실리콘은 4017mAh/g의 높은 이론용량을 갖는 것으로 알려져 있다.In order to improve such a problem, a material that is currently being actively researched is a negative electrode active material based on metals or intermetallic compounds. For example, lithium batteries using metals or semimetals such as aluminum, germanium, silicon, tin, zinc, and lead as negative electrode active materials have been studied. Such a material has a high energy density and high energy density, and can absorb and release more lithium ions than a negative electrode active material using a carbon-based material, thereby manufacturing a battery having a high capacity and a high energy density. Pure silicon, for example, is known to have a high theoretical capacity of 4017 mAh / g.
그러나 탄소계 재료와 비교하였을 때 사이클 특성이 저하되어 아직 실용화에 걸림돌이 되고 있는 데, 이는 음극 활물질로서 상기 실리콘 등을 그대로 리튬 흡장 및 방출 물질로서 사용할 경우, 충방전 과정에서 부피 변화로 인해 활물질 사이의 도전성이 저하되거나, 음극 집전체로부터 음극 활물질이 박리되는 현상이 발생하기 때문이다. 즉 음극 활물질에 포함된 상기 실리콘 등은 충전에 의하여 리튬을 흡장하여 부피가 약 300 내지 400%에 이를 정도로 팽창하며, 방전하는 경우에 리튬이 방출되면 무기질 입자는 수축하게 된다.However, when compared with carbon-based materials, the cycle characteristics are deteriorated, and it is still an obstacle to practical use. When the silicon is used as a lithium occlusion and emission material as a negative electrode active material, it is interposed between the active materials due to the volume change in the charging and discharging process. This is because a decrease in conductivity or a phenomenon in which the negative electrode active material peels from the negative electrode current collector occurs. That is, the silicon, etc. included in the negative electrode active material occludes lithium by charging and expands to about 300 to 400% by volume, and when lithium is discharged, the inorganic particles shrink.
이와 같은 충방전 사이클을 반복하게 되면 음극 활물질의 크랙으로 인해 전기적 절연이 발생할 수 있어 수명이 급격히 저하되므로 리튬 전지에 사용하기에 문제점을 가지고 있다.Repeating such a charge / discharge cycle may cause electrical insulation due to cracking of the negative electrode active material, and thus has a problem in that it is used in a lithium battery because the life is sharply reduced.
이와 같은 문제점을 개선하기 위하여 실리콘 입자로서 나노크기 수준의 입자를 사용하거나, 실리콘이 다공성을 가지게 하여 부피변화에 대한 완충효과를 갖게 하는 연구가 진행되었다. In order to improve such a problem, studies have been made to use nano-sized particles as silicon particles, or to make the silicon porous to have a buffering effect against volume change.
한국공개특허 제2004-0063802호는 "리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 리튬이차 전지"에 관한 것으로 실리콘과 니켈 등의 다른 금속을 합금시킨 후 이 금속을 용출시키는 방법을 사용하였으며, 한국공개특허 제2004-0082876호는 "다공성 실리콘 및 나노크기 실리콘 입자의 제조 방법과리튬 이차 전지용 음극 재료로의 응용"에 관한 것으로 분말 상태의 알칼리 금속 또는 알칼리 토금속과 실리콘 다이옥사이드 등의 실리콘 전구체를 혼합하여 열처리 후, 산으로 용출시키는 기술이 개시되었다.Korean Laid-Open Patent Publication No. 2004-0063802 relates to a "negative active material for lithium secondary batteries, a manufacturing method thereof, and a lithium secondary battery", which uses a method of eluting a metal after alloying another metal such as silicon and nickel. Patent No. 2004-0082876 relates to "Method for Producing Porous Silicon and Nano-Sized Silicon Particles and Application to Cathode Material for Lithium Secondary Battery", and heat treatment by mixing a silicon precursor such as alkali metal or alkaline earth metal in powder state and silicon dioxide. Later, the technique of eluting with an acid was disclosed.
상기 특허들은 다공성 구조로 인한 완충효과로 초기 용량유지율의 향상은 있을 수 있으나, 단순히 전도성이 떨어지는 다공성 실리콘 입자만을 사용하였기 때문에 입자가 나노크기가 되지 않으면 전극제조시 입자간의 전도도가 떨어져 초기효율이나 용량유지특성이 저하되는 문제점을 가지게 된다.The patents may improve the initial capacity retention rate due to the buffering effect due to the porous structure. However, since only the porous silicon particles having low conductivity are used, if the particles are not nano-sized, the conductivity between the particles may be lowered at the time of manufacturing the electrode. There is a problem that the retention characteristics are lowered.
따라서 초기효율 및 용량 유지특성을 향상시킬 수 있는 동시에 반복해서 충방전을 실시하더라도 전압 및 전류량이 거의 일정하게 유지될 수 있는 음극 활물질의 제조가 요구되었다.Therefore, there has been a demand for the preparation of a negative electrode active material which can improve initial efficiency and capacity retention characteristics and at the same time maintain a constant voltage and current amount even after repeatedly charging and discharging.
상기 문제점을 해결하기 위해 충방전시에 부피변화가 적어 전기적 절연이 잘 발생하지 않는 리튬 이차전지용 음극활물질을 제공하는 데 있다.In order to solve the above problems, there is provided a negative electrode active material for a lithium secondary battery in which the electrical change does not easily occur due to a small volume change during charge and discharge.
본 발명의 다른 목적은 초기 효율 및 용량 유지특성이 우수한 리튬 이차 전지용 음극활물질을 제공하는 데 있다.Another object of the present invention is to provide a negative electrode active material for a lithium secondary battery excellent in initial efficiency and capacity retention characteristics.
상기 목적을 달성하기 위해 본 발명은 하기 화학식1로 이루어지는 합금으로서 합금 내 매트릭스(Matrix)상 미세 결정영역의 비정질화도가 30% 이상인 것을 특징으로 하는 리튬 이차전지용 음극활물질을 제공한다.In order to achieve the above object, the present invention provides an anode active material for a lithium secondary battery, characterized in that the amorphous crystallinity of the microcrystalline region of the matrix (Matrix) in the alloy is 30% or more as an alloy consisting of the formula (1).
[화학식 1][Formula 1]
SixNiyMz Si x Ni y M z
(상기 식에서 50≤x≤90, 1≤y≤49, 1≤z≤49, x+y+z = 100이며, x, y, z는 각각 원자%, M은 전이금속임)(Where 50≤x≤90, 1≤y≤49, 1≤z≤49, x + y + z = 100, x, y, z are atomic% and M is a transition metal)
또한 본 발명은 상기 전이금속이 Al, Cu, Ti 및 Fe로 이루어진 군에서 1이상 선택되는 것을 특징으로 하는 리튬 이차전지용 음극활물질을 제공한다.In another aspect, the present invention provides a negative electrode active material for a lithium secondary battery, characterized in that the transition metal is selected from the group consisting of Al, Cu, Ti and Fe.
또한 본 발명은 상기 합금의 XRD 패턴 회절각도 2θ=20°~100° 범위에서 비정질화도는 30% 이상인 것을 특징으로 하는 리튬 이차전지용 음극활물질을 제공한다.In another aspect, the present invention provides an anode active material for a lithium secondary battery, characterized in that the degree of amorphousness in the XRD pattern diffraction angle 2θ = 20 ° ~ 100 ° of the alloy is 30% or more.
또한 본 발명은 양극과 본 발명에 따른 음극활물질을 포함하는 음극과 전해질을 포함하는 이차 전지를 제공한다.The present invention also provides a secondary battery comprising a cathode and an electrolyte including a cathode and an anode active material according to the present invention.
또한 본 발명은 상기 양극이 리티에이티드 인터칼레이션 화합물, 무기 유황 또는 황계 화합물을 포함하는 이차 전지를 제공한다.In another aspect, the present invention provides a secondary battery in which the positive electrode comprises a thiolated intercalation compound, an inorganic sulfur or a sulfur compound.
또한 본 발명은 전해질이 비수성 유기 용매 및 리튬염을 포함하는 이차 전지를 제공한다.The present invention also provides a secondary battery in which the electrolyte contains a non-aqueous organic solvent and a lithium salt.
또한 본 발명은 통 형상, 뿔 형상, 코인 형상 또는 파우치 형상을 가지는 이차 전지를 제공한다.The present invention also provides a secondary battery having a cylindrical shape, a horn shape, a coin shape, or a pouch shape.
본 발명에 따른 리튬 이차 전지용 음극활물질은 이차전지에 활용시에 충방전시에 부피변화가 적어 전기적 절연이 잘 발생하지 않아 수명이 연장되는 효과가 있다.The negative electrode active material for a lithium secondary battery according to the present invention has an effect of extending the service life because the electrical change does not occur because the volume change is small during charge and discharge when used in the secondary battery.
본 발명에 따른 리튬 이차 전지용 음극활물질은 이차전지에 활용시에 초기 효율 및 용량 유지특성이 우수한 효과가 있다.The negative electrode active material for a lithium secondary battery according to the present invention has an excellent initial efficiency and capacity retention characteristics when used in a secondary battery.
본 발명에 따른 리튬 이차 전지용 음극활물질은 이차전지에 활용시 충방전을 반복하여 실시하더라도 전압 및 전류량이 거의 일정하게 유지되는 효과가 있다.The negative electrode active material for a lithium secondary battery according to the present invention has an effect that the amount of voltage and current is maintained substantially constant even when repeated charging and discharging when used in the secondary battery.
도 1은 본 발명의 실시예에 따른 음극활물질의 SEM 측정결과를 나타낸 것이다.Figure 1 shows the SEM measurement results of the negative electrode active material according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 음극활물질의 XRD 측정결과를 나타낸 것이다.Figure 2 shows the XRD measurement results of the negative electrode active material according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 음극활물질의 비정질화도 측정을 나타낸 것이다.Figure 3 shows the amorphousness measurement of the negative electrode active material according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 음극활물질의 충방전용량을 나타낸 것이다.Figure 4 shows the charge and discharge capacity of the negative electrode active material according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 음극활물질을 이용하여 제조된 전지의 0.5C로 50 회까지 충방전을 반복한 후에, 사이클에 따른 용량 변화를 측정한 것이다.5 is a charge and discharge cycle repeated up to 50 times at 0.5C of a battery manufactured using a negative electrode active material according to an embodiment of the present invention, the capacity change according to the cycle is measured.
이하 본 발명에 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다. 우선, 도면들 중, 동일한 구성요소 또는 부품들은 가능한 한 동일한 참조부호를 나타내고 있음에 유의하여야 한다. 본 발명을 설명함에 있어, 관련된 공지기능 또는 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. First, it should be noted that in the drawings, the same components or parts denote the same reference numerals as much as possible. In describing the present invention, detailed descriptions of related well-known functions or configurations are omitted in order not to obscure the subject matter of the present invention.
본 명세서에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.As used herein, the terms “about”, “substantially”, and the like, are used at, or in close proximity to, numerical values when manufacturing and material tolerances inherent in the meanings indicated are intended to aid the understanding of the invention. Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers.
본 명세서에서 사용되는 단위 「%」는 특별히 달리 규정하지 않는 한 「원자%」를 의미한다.The unit "%" used in the present specification means "atomic%" unless otherwise specified.
본 발명은 하기 화학식 1로 이루어지는 합금으로서 합금 내 매트릭스(Matrix)상의 미세 결정영역이 비정질화도가 30% 이상인 것을 특징으로 하는 이차전지용 음극활물질을 제공한다.The present invention provides an anode active material for a secondary battery, characterized in that the amorphous crystallinity is 30% or more in the microcrystalline region of the matrix (Matrix) in the alloy as an alloy of the formula (1).
[화학식 1][Formula 1]
SixNiyMz Si x Ni y M z
(상기 식에서 50≤x≤90, 1≤y≤49, 1≤z≤49, x+y+z = 100이며, x, y, z는 각각 원자%, M은 전이금속임)(Where 50≤x≤90, 1≤y≤49, 1≤z≤49, x + y + z = 100, x, y, z are atomic% and M is a transition metal)
합금의 매트릭스(Matrix) 상에 미세 결정영역이 존재하고, 상기 미세 결정 영역이 존재함으로 인해 결정질 영역이 주를 이루는 것에 비하여 리튬이 보다 쉽게 확산될 수 있다. 미세 결정영역이 존재하는 비율은 비정질화도를 통하여 나타날 수 있으며, 매트릭스 상에 비정질 영역이 형성됨에 따라 이를 이차 전지의 음극 활물질로 적용함에 있어서, 이차 전지 충전 시의 부피 팽창이 억제될 수 있다.The microcrystalline region is present on the matrix of the alloy, and the presence of the microcrystalline region allows lithium to be diffused more easily than the crystalline region mainly. The ratio of the presence of the microcrystalline region may be represented through the degree of amorphousness, and when the amorphous region is formed on the matrix, it may be suppressed in the volume expansion during charging of the secondary battery in applying it as a negative electrode active material of the secondary battery.
본 발명의 합금에서 Ni이 존재하는 것이 특징인데, 상기 Ni이 존재함으로 인해 강도가 우수함에 따라 고강도 매트릭스에 유리한 특성이 있다. Characterized by the presence of Ni in the alloy of the present invention, there is an advantage in the high-strength matrix as the strength is excellent due to the presence of Ni.
또한, 본 발명은 매트릭스(Matrix)상 미세 결정영역의 비정질화도가 30% 이상이 존재하는 것이 특징이다. 상기 미세결정 영역의 비정질화도가 30% 이상 됨으로써 리튬의 확산을 용이하게 하는 특성이 있다.In addition, the present invention is characterized in that at least 30% of the degree of amorphousness of the microcrystalline region on the matrix (Matrix). The amorphousness of the microcrystalline region is 30% or more, thereby facilitating the diffusion of lithium.
매트릭스 상의 비정질화도가 30% 이상임에 의해 이차전지에 음극활물질로 이용하는 경우 충전시에 부피 팽창이 억제되는 것을 확인할 수 있다. When the amorphous phase on the matrix is 30% or more, when the secondary battery is used as a negative electrode active material, it can be seen that volume expansion is suppressed during charging.
또한 본 발명에 있어서 전이금속은 Al, Cu, Ti 및 Fe로 이루어진 군에서 1이상 선택되는 것이 바람직하다.In addition, in the present invention, the transition metal is preferably selected from one or more from the group consisting of Al, Cu, Ti and Fe.
도 1은 본 발명의 실시예에 따른 음극활물질의 SEM 측정결과를 나타낸 것이며, 도 2는 본 발명의 실시예에 따른 음극활물질의 XRD 측정결과를 나타낸 것이다.Figure 1 shows the SEM measurement results of the negative electrode active material according to an embodiment of the present invention, Figure 2 shows the XRD measurement results of the negative electrode active material according to an embodiment of the present invention.
도 1은 본 발명의 실시예들인 Si65.40Ni25.69Cu8.91, Si65.41Ni25.69Ti8.90, Si65.40 Ni25.69Fe8.91 및 Si65.40Ni25.70Al8.90으로 이루어진 합금으로서 상기 합금의 XRD 패턴 회절각도 2θ= 20°~100° 범위에서 미세결정의 비정질화도가 30~45%를 이루고 있어 이로인해 상기 합금이 이차전지에서 충전시에 부피팽창이 억제되는 효과가 있다.1 is an alloy consisting of Si 65.40 Ni 25.69 Cu 8.91 , Si 65.41 Ni 25.69 Ti 8.90 , Si 65.40 Ni 25.69 Fe 8.91 and Si 65.40 Ni 25.70 Al 8.90 , which are embodiments of the present invention. Amorphization degree of the microcrystals in the range of ° ~ 100 ° to 30 to 45%, thereby having an effect that the volume expansion is suppressed when the alloy is charged in the secondary battery.
본 발명의 일실시예에 따른 음극활물질에 있어서, 합금의 XRD 패턴 회절각도 2θ=20°~100° 범위에서 비정질화도는 30 ~ 45%인 것이 바람직하다. 상기 비정질화도가 30 ~ 45%일 때 부피팽창이 억제되어 전기적 절연이 잘 발생하지 않게 된다.In the negative electrode active material according to the embodiment of the present invention, it is preferable that the amorphous degree is 30 to 45% in the XRD pattern diffraction angle 2θ = 20 ° to 100 ° of the alloy. When the amorphousness is 30 to 45%, volume expansion is suppressed so that electrical insulation is hardly generated.
본 발명에 이용된 비정질화도의 계산은 아래와 같으며, 그 표현은 도 3의 비정질화도 측정을 위해 면적을 살펴보면 비정질화도를 구할 수 있다.Calculation of the degree of amorphousness used in the present invention is as follows, the expression can be obtained by looking at the area to measure the degree of amorphousness of FIG.
비정질화도(%) = ((전체 면적 - 결정화 면적) ÷ 전체 면적) × 100% Crystallization = ((Total Area-Crystallization Area) ÷ Total Area) × 100
상기 비정질화도가 높다는 것은 미세결정영역이 많다는 의미로 해석할 수 있으며, 이에 따라 충전시에 상기 미세 결정영역에서 완충작용을 하여 리튬이온이 축적되어 부피가 팽창될 수 있는 요인을 차단하는 역할을 할 수 있게 된다.The high degree of amorphousness may be interpreted to mean that there are many microcrystalline regions, and thus, a buffering function may be performed in the microcrystalline region during charging to block a factor in which lithium ions may accumulate and expand in volume. It becomes possible.
본 발명의 음극 활물질을 제조하는 방법은 특별히 제한되지 않으며, 예를 들면, 이 분야에서 공지되어 있는 다양한 미세한 분말 제조 기법(가스아토마이져법, 원심가스아토마이져법, 프라즈마아토마이져법, 회전전극법, 메커니컬 어로잉법 등)을 이용할 수 있다. 본 발명에서는, 예를 들면, Si 및 매트릭스를 구성하는 성분을 혼합하고, 혼합물을 아크 용해법 등으로 용융시킨 다음, 상기 용융물을 회전하는 구리롤에 분사시키는 단롤 급냉 응고법에 적용하여 활물질을 제조할 수 있다. 그러나, 본 발명에서 적용되는 방식이 상기 방식에 제한되는 것은 아니며, 단롤 급랭 응고법 외에도 충분한 급냉 속도가 얻어질 수 있는 것이라면, 상기에서 제시한 미세 분말 제조 기법(가스아토마이져법, 원심가스아토마이져법, 프라즈마아토마이져법, 회전전극법, 메커니컬 어로잉법 등)에 의해서도 제조할 수 있다.The method for preparing the negative electrode active material of the present invention is not particularly limited, and for example, various fine powder production techniques known in the art (gas atomizer method, centrifugal gas atomizer method, plasma atomizer method, rotary electrode method, Mechanical alignment, etc.) may be used. In the present invention, for example, Si and the components constituting the matrix may be mixed, the mixture may be melted by an arc melting method or the like, and then applied to a single roll quench solidification method in which the melt is sprayed onto a rotating copper roll to prepare an active material. have. However, the method applied in the present invention is not limited to the above method, and if a sufficient quenching speed can be obtained in addition to the single-roll quenching solidification method, the fine powder production technique (gas atomizer method, centrifugal gas atomizer method) presented above. , Plasma atomizer method, rotary electrode method, mechanical aligning method, and the like.
또한, 본 발명의 일실시예에 따른 음극활물질을 이용하여 이차전지를 제조할 수 있는 데, 이차전지 중 양극으로는 리티에이티드 인터칼레이션 화합물을 포함할 수 있으며, 또한, 이외에 무기 유황(S8, elemental sulfur) 및 황계 화합물(sulfur compound)을 사용할 수도 있으며, 상기에서 황계 화합물로는 Li2Sn(n≥1), 캐솔라이트(catholyte)에 용해된 Li2Sn(n≥1), 유기 황 화합물 또는 탄소-황 폴리머((C2Sf)n: f=2.5 내지 50, n≥2) 등을 예시할 수 있다.In addition, a secondary battery may be manufactured using a negative electrode active material according to an embodiment of the present invention, and the positive electrode of the secondary battery may include a ritated intercalation compound, and also inorganic sulfur (S8). Also, elemental sulfur and sulfur compounds may be used. The sulfur compounds include Li 2 S n (n ≧ 1), Li 2 S n (n ≧ 1) dissolved in catholyte, An organic sulfur compound or a carbon-sulfur polymer ((C 2 S f ) n : f = 2.5 to 50, n ≧ 2) and the like can be exemplified.
또한, 본 발명의 이차 전지에 포함되는 전해질의 종류 역시 특별히 제한되지 않고, 이 분야에서 공지되어 있는 일반적인 수단을 채용할 수 있다. 본 발명의 하나의 예시에서 상기 전해액은 비수성 유기 용매 및 리튬염을 포함할 수 있다. 상기에서 리튬염은 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진시킬 수 있다. 본 발명에서 사용할 수 있는 리튬염의 예로는, LiPF6, LiBF4, LiSbF6, LiAsF6, LiCF3SO3, LiN(CF3SO2)3, Li(CF3SO2)2N, LiC4F9SO3, LiClO4, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수), LiCl, LiI, 및 리튬 비스옥살레이트 보레이트(lithium bisoxalate borate) 등의 일종 또는 이종 이상을 지지(supporting) 전해염으로 포함하는 것을 들 수 있다. 전해질에서 리튬염의 농도는, 용도에 따라 변화될 수 있는 것으로, 통상적으로는 0.1M 내지 2.0M 범위 내에서 사용한다.In addition, the kind of electrolyte included in the secondary battery of the present invention is not particularly limited either, and general means known in the art may be employed. In one example of the present invention, the electrolyte may include a non-aqueous organic solvent and a lithium salt. In the above, the lithium salt may be dissolved in an organic solvent to serve as a source of lithium ions in the battery and to promote the movement of lithium ions between the positive electrode and the negative electrode. Examples of lithium salts that can be used in the present invention include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ), where x and y are natural numbers, LiCl, LiI, and lithium It includes the one or more kinds of bisoxalate borate (lithium bisoxalate borate) or the like as a supporting electrolyte salt. The concentration of lithium salt in the electrolyte, which can vary depending on the application, is typically used within the range of 0.1M to 2.0M.
또한, 상기에서 유기 용매는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질의 역할을 하는 것으로서, 그 예로는, 벤젠, 톨루엔, 플루오로벤젠, 1,2-디플루오로벤젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3-트리플루오로벤젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3-디클로로벤젠, 1,4-디클로로벤젠, 1,2,3-트리클로로벤젠, 1,2,4-트리클로로벤젠, 아이오도벤젠(iodobenzene), 1,2-디이오도벤젠, 1,3-디이오도벤젠, 1,4-디이오도벤젠, 1,2,3-트리이오도벤젠, 1,2,4-트리이오도벤젠, 플루오로톨루엔, 1,2-디플루오로톨루엔, 1,3-디플루오로톨루엔, 1,4-디플루오로톨루엔, 1,2,3-트리플루오로톨루엔, 1,2,4-트리플루오로톨루엔, 클로로톨루엔, 1,2-디클로로톨루엔, 1,3-디클로로톨루엔, 1,4-디클로로톨루엔, 1,2,3-트리클로로톨루엔, 1,2,4-트리클로로톨루엔, 아이오도톨루엔, 1,2-디이오도톨루엔, 1,3-디이오도톨루엔, 1,4-디이오도톨루엔, 1,2,3-트리이오도톨루엔, 1,2,4-트리이오도톨루엔, R-CN(여기에서, R은 탄소수 2 내지 50의 직쇄상, 분지상 또는 고리상 구조의 탄화 수소기로서, 상기 탄화수소기는 이중결합, 방향족 고리 또는 에테르 결합 등을 포함할 수 있다), 디메틸포름아마이드, 디메틸아세테이트, 크실렌, 사이클로헥산, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 사이클로헥사논, 에탄올, 이소프로필 알콜, 디메틸 카보네이트, 에틸메틸 카보네이트, 디에틸 카보네이트, 메틸프로필 카보네이트, 프로필렌 카보네이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 디메톡시에탄, 1,3-디옥솔란, 디글라임, 테트라글라임, 에틸렌카보네이트, 프로필렌 카보네이트, γ-부티로락톤, 설포란(sulfolane), 발레로락톤, 데카놀라이드 또는 메발로락톤의 일종 또는 이종 이상을 들 수 있으나, 이에 제한되는 것은 아니다.In addition, the organic solvent serves as a medium to move ions involved in the electrochemical reaction of the battery, for example, benzene, toluene, fluorobenzene, 1,2-difluorobenzene, 1, 3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene, 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1, 3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, iodobenzene, 1,2-diiobenzene, 1, 3-diiobenzene, 1,4-diiobenzene, 1,2,3-triiobenzene, 1,2,4-triiobenzene, fluorotoluene, 1,2-difluorotoluene , 1,3-difluorotoluene, 1,4-difluorotoluene, 1,2,3-trifluorotoluene, 1,2,4-trifluorotoluene, chlorotoluene, 1,2-dichlorotoluene , 1,3-dichlorotoluene, 1,4-dichlorotoluene, 1,2,3-trichlorotoluene, 1,2,4-tri Chlorotoluene, iodotoluene, 1,2-dioodotoluene, 1,3-dioodotoluene, 1,4-dioodotoluene, 1,2,3-triiodotoluene, 1,2,4 -Triiodotoluene, R-CN (wherein R is a linear, branched or cyclic hydrocarbon group having 2 to 50 carbon atoms, the hydrocarbon group may include a double bond, an aromatic ring or an ether bond, etc. Dimethylformamide, dimethylacetate, xylene, cyclohexane, tetrahydrofuran, 2-methyltetrahydrofuran, cyclohexanone, ethanol, isopropyl alcohol, dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, methylpropyl Carbonate, propylene carbonate, methyl propionate, ethyl propionate, methyl acetate, ethyl acetate, propyl acetate, dimethoxyethane, 1,3-dioxolane, diglyme, tetraglyme, ethylene carbo Sites, but are propylene carbonate, -butyrolactone γ- lactone, sulfolane (sulfolane), valerolactone, big surprise grade or type of mevalolactone or two kinds or more, without being limited thereto.
본 발명의 이차 전지는 상기한 요소 외에도 세퍼레이터, 캔, 전지 케이스 또는 캐스킷 등의 통상의 요소를 추가로 포함할 수 있고, 그 구체적인 종류 역시 특별히 제한되지 않는다.In addition to the above elements, the secondary battery of the present invention may further include conventional elements such as a separator, a can, a battery case or a gasket, and the specific types thereof are not particularly limited.
또한, 본 발명의 이차 전지는 상기와 같은 요소를 포함하여, 이 분야의 통상적인 방식 및 형상으로 제조될 수 있다. 본 발명의 이차 전지가 가질 수 있는 형상의 예로는, 통 형상, 뿔 형상, 코인 형상 또는 파우치 형상 등을 들 수 있으나, 이에 제한되는 것은 아니다.In addition, the secondary battery of the present invention may be manufactured in a conventional manner and shape in the art, including such elements. Examples of the shape that the secondary battery of the present invention may have include a cylindrical shape, a horn shape, a coin shape, or a pouch shape, but are not limited thereto.
이하 본 발명에 따르는 실시예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시 예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples according to the present invention, but the scope of the present invention is not limited to the following examples.
실시예 1Example 1
본 발명의 음극활물질을 제조하는 방법은 특별히 제한되지 않으며, 예를 들면, 이 분야에서 공지되어 있는 다양한 미세한 분말 제조 기법(가스아토마이져법, 원심가스아토마이져법, 프라즈마아토마이져법, 회전전극법, 메커니컬 어로잉법 등)을 이용할 수 있다. 실시예 1에서는 Si 및 매트릭스를 구성하는 성분을 혼합하고, 혼합물을 아크 용해법 등으로 용융시킨 다음, 상기 용융물을 회전하는 구리롤에 분사시키는 단롤 급냉 응고법에 적용하여 활물질을 제조하였다.The method for preparing the negative electrode active material of the present invention is not particularly limited, and for example, various fine powder production techniques known in the art (gas atomizer method, centrifugal gas atomizer method, plasma atomizer method, rotary electrode method, Mechanical alignment, etc.) may be used. In Example 1, Si and the components constituting the matrix were mixed, the mixture was melted by an arc melting method or the like, and then applied to a single roll quench solidification method in which the melt was sprayed onto a rotating copper roll to prepare an active material.
본 발명에서 적용되는 방식이 상기 방식에 제한되는 것은 아니며, 단롤 급랭 응고법 외에도 충분한 급냉 속도가 얻어질 수 있는 것이라면, 상기에서 제시한 미세 분말 제조 기법(가스아토마이져법, 원심가스아토마이져법, 프라즈마아토마이져법, 회전전극법, 메커니컬 어로잉법 등)에 의해서도 제조할 수 있다.The method applied in the present invention is not limited to the above method, and if a sufficient quenching speed can be obtained in addition to the single-roll quenching solidification method, the fine powder manufacturing technique (gas atomizer method, centrifugal gas atomizer method, plasma method) presented above. It can also be manufactured by the atomizer method, the rotating electrode method, the mechanical etching method and the like.
SixNiyMz 의 합금 중에 전이금속을 Cu로 하여 Si65.40Ni25.69Cu8.91가 되도록 하는 복합합금을 제조하였으며, 상기 합금에 대한 비정질화도를 측정하였으며, 또한 이를 이용하여 코인 형상의 이차전지를 제조함에 있어서 음극활물질로 이용하였다.A composite alloy was prepared in which the transition metal was Cu 65.40 Ni 25.69 Cu 8.91 in the Si x Ni y M z alloy, and the degree of amorphousness of the alloy was measured. In preparing, it was used as a negative electrode active material.
실시예 2Example 2
SixNiyMz 의 합금 중에 전이금속을 Ti로 하여 Si65.41Ni25.69Ti8.90으로 하는 것 외에는 실시예 1과 동일하게 실시하였다.It carried out similarly to Example 1 except having set the transition metal as Ti in Si x Ni y M z alloy, and set it as Si 65.41 Ni 25.69 Ti 8.90 .
실시예 3Example 3
SixNiyMz 의 합금 중에 전이금속을 Fe로 하여 Si65.40Ni25.69Fe8.91로 하는 것 외에는 실시예 1과 동일하게 실시하였다.It carried out similarly to Example 1 except having set the transition metal to Fe in the alloy of Si x Ni y M z to Si 65.40 Ni 25.69 Fe 8.91 .
실시예 4Example 4
SixNiyMz 의 합금 중에 전이금속을 Al로 하여 Si65.40Ni25.70Al8.90으로 하는 것 외에는 실시예 1과 동일하게 실시하였다.It carried out similarly to Example 1 except having set the transition metal to Al in Si x Ni y M z alloy, and set it as Si 65.40 Ni 25.70 Al 8.90 .
비교예 1Comparative Example 1
Si60Fe14Al26 로 하는 합금을 제조하였는 데, 이 때, Si60Fe14Al26 를 제조하여 음극활물질로 활용하였다.An alloy of Si 60 Fe 14 Al 26 was prepared. At this time, Si 60 Fe 14 Al 26 was prepared and used as a negative electrode active material.
비교예 2Comparative Example 2
SixNiyMz 의 합금 중에 전이금속을 Ti로 하여 Si40Ni20Ti40으로 하는 것 외에는 실시예 1과 동일하게 실시하였다.Si x Ni y M z in the alloy of the transition metals of Ti and except that the Si 40 Ni 20 Ti 40 was performed in the same manner as in Example 1.
비교예 3Comparative Example 3
SixNiyMz 의 합금 중에 전이금속을 Fe로 하여 Si45Ni25Fe30로 하는 것 외에는 실시예 1과 동일하게 실시하였다.Si x Ni y M z of a transition in the alloy and the metal of Fe was carried out in the same manner as in Example 1 except that Si 45 Ni 25 Fe 30.
비교예 4Comparative Example 4
SixNiyMz 의 합금 중에 전이금속을 Al로 하여 Si48Ni30Al22로 제조하는 것 외에는 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that Si 48 Ni 30 Al 22 was prepared using Al as a transition metal in the alloy of Si x Ni y M z .
1. SEM 분석1. SEM analysis
제조된 음극활물질에 대하여 SEM(Scanning Electron Microscopy) 분석을 수행하였다. 도 1은 실시예 1 ~ 실시예 4 의 음극활물질을 확대한 SEM 사진이다.Scanning Electron Microscopy (SEM) analysis was performed on the prepared anode active material. 1 is an enlarged SEM photograph of the negative electrode active material of Examples 1 to 4.
상기 음극활물질에서 Si 상이 매트릭스(Matrix) 상에 균일하게 분산 석출되어 있는 것을 확인할 수 있었다.In the negative electrode active material, it was confirmed that the Si phase was uniformly dispersed and precipitated on the matrix.
2. XRD 분석2. XRD Analysis
실시예 1 ~ 4에서 제조된 음극 활물질에 대하여 Cu kα선 XRD 측정을 수행하고, 그 결과를 도 2에 나타내었다. 분석시에 측정 각도는 20도 내지 100도이고, 측정 속도는 분당 5.7도로 설정하였다.Cu kα-ray XRD measurements were performed on the negative active materials prepared in Examples 1 to 4, and the results are shown in FIG. 2. In the analysis, the measurement angle was set at 20 degrees to 100 degrees, and the measurement speed was set at 5.7 degrees per minute.
3. 충·방전용량3. Charge and discharge capacity
실시예 1 ~ 실시예 4 및 비교예 1 ~ 비교예 4에서 제조된 음극활물질을 이용하여 코인 형상의 이차전지를 제조하고, 충방전 평가를 실시한 후, 그 결과를 도 4에 나타내었다. 코인 형상의 극판의 제조 시에 활물질, 도전제(Super P 계열 도전제) 및 바인더(PI 계열 바인더)의 혼합 비율은, 중량비 77:15:2:6 (활물질:첨가제:도전제:바인더)가 되도록 하여 제조하였다. 제조된 극판에 대하여 0.5C로 1회 실시한 후 충방전을 측정하였으며, 이는 아래의 표 1과 같다.Coin-shaped secondary batteries were prepared using the negative electrode active materials prepared in Examples 1 to 4 and Comparative Examples 1 to 4, and after the charge and discharge evaluations, the results are shown in FIG. 4. In the manufacture of the coin-shaped electrode plate, the mixing ratio of the active material, the conductive agent (Super P-based conductive agent), and the binder (PI-based binder) is 77: 15: 2: 6 (active material: additive: conductive agent: binder). It was prepared as possible. Charged and discharged after performing once at 0.5C for the prepared electrode plate was measured, as shown in Table 1 below.
4. 비정질화도 측정4. Determination of amorphousness
비정질화도 측정은 합금의 XRD 패턴을 이용한 비정질화도의 계산식을 이용하여 구할 수 있다.The amorphousness measurement can be obtained by using the formula of the amorphousness degree using the XRD pattern of the alloy.
비정질화도(%) = ((전체 면적 - 결정화 면적) ÷ 전체 면적) × 100% Crystallization = ((Total Area-Crystallization Area) ÷ Total Area) × 100
비정질화도가 높을 수록 미세 결정영역이 많다는 것을 의미하며, 이에 따라 부피팽창 요소가 줄어든다고 볼 수 있다.The higher the degree of amorphousness, the larger the number of fine crystal regions, and thus, the volume expansion factor may be reduced.
실시예 1 ~ 실시예 4 및 비교예 1 ~ 비교예 4의 비정질화도는 아래의 표 1과 같다.Examples 1 to 4 and Comparative Examples 1 to 4, the amorphous degree is shown in Table 1 below.
표 1
구 분 전극특성 비정질화도(%)
충전용량(mAh/g) 방전용량(mAh/g) 효율(%)
실시예 1 1162 969 83 32
실시예 2 873 706 81 43
실시예 3 617 498 81 42
실시예 4 1394 1198 86 45
비교예 1 1241 986 79 29.5
비교예 2 598 468 78 29
비교예 3 605 472 78 28
비교예 4 602 462 77 28
Table 1
division Electrode characteristics Amorphous Degree (%)
Charge capacity (mAh / g) Discharge Capacity (mAh / g) efficiency(%)
Example 1 1162 969 83 32
Example 2 873 706 81 43
Example 3 617 498 81 42
Example 4 1394 1198 86 45
Comparative Example 1 1241 986 79 29.5
Comparative Example 2 598 468 78 29
Comparative Example 3 605 472 78 28
Comparative Example 4 602 462 77 28
비교예 1 ~ 비교예 4의 합금을 이용하여 음극활물질을 제조하였을 때 비정질화도가 30% 미만 이었으며, 이로인하여 부피팽창이 실시예와 비교하여 높게 발생한다고 판단되어진다.When the negative electrode active material was prepared using the alloys of Comparative Examples 1 to 4, the degree of amorphousness was less than 30%, and thus, it is judged that the volume expansion is higher than that of the Examples.
5. 사이클 수명 특성 측정5. Cycle life characteristics measurement
0.5C으로 충방전을 50회 반복하여 이를 측정하였으며, 그 결과는 도 5에 나타난 바와 같다. 상기에서 충방전 방식은, 이 분야에서 일반적으로 공지되어 있는 리튬 이차 전지용 활물질에 대한 충방전 방식에 준하여 수행하였다.Charge and discharge was repeated 50 times at 0.5C and measured, and the result is as shown in FIG. In the above, the charge and discharge method was performed according to the charge and discharge method for the active material for a lithium secondary battery generally known in the art.
도 5에 나타난 바와 같이, 반복적인 충방전 후에도 전압 및 전류량이 거의 일정하게 유지되고, 이에 따라 가역적인 충방전이 가능함을 확인할 수 있다. 본 발명에 실시예들의 음극활물질에 대하여 0.5C로 50 회까지 충방전을 반복한 후에, 사이클에 따른 용량 변화를 측정한 것으로서, 반복적인 충방전 후에도 급격한 방전용량의 감소가 없음을 확인할 수 있다.As shown in FIG. 5, even after repeated charging and discharging, the voltage and current amount are almost constant, and thus, reversible charging and discharging is possible. After repeated charging and discharging up to 50 times at 0.5 C with respect to the negative electrode active material of the present invention, the capacity change according to the cycle was measured, it can be seen that there is no sudden decrease in the discharge capacity even after repeated charging and discharging.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

Claims (7)

  1. 하기 화학식1로 이루어지는 합금으로서 합금 내 매트릭스(Matrix)상 미세 결정영역의 비정질화도가 30% 이상인 것을 특징으로 하는 리튬 이차전지용 음극활물질.An alloy composed of the following formula (1), characterized in that the amorphous degree of the amorphous state of the crystal phase in the alloy (Matrix) in the alloy is 30% or more.
    [화학식 1][Formula 1]
    SixNiyMz Si x Ni y M z
    (상기 식에서 50≤x≤90, 1≤y≤49, 1≤z≤49, x+y+z = 100이며, x, y, z는 각각 원자%, M은 전이금속임)(Where 50≤x≤90, 1≤y≤49, 1≤z≤49, x + y + z = 100, x, y, z are atomic% and M is a transition metal)
  2. 제1항에 있어서,The method of claim 1,
    상기 전이금속은 Al, Cu, Ti 및 Fe로 이루어진 군에서 1이상 선택되는 것을 특징으로 하는 리튬 이차전지용 음극활물질.The transition metal is an anode active material for a lithium secondary battery, characterized in that at least one selected from the group consisting of Al, Cu, Ti and Fe.
  3. 제1항에 있어서,The method of claim 1,
    상기 합금의 XRD 패턴 회절각도 2θ = 20°~100° 범위에서 비정질화도는 30 ~ 45%인 것을 특징으로 하는 리튬 이차전지용 음극활물질.XRD pattern diffraction angle 2θ = 20 ° ~ 100 ° of the alloy in the range between the amorphous degree of the negative electrode active material for lithium secondary battery, characterized in that 30 to 45%.
  4. 양극과 제1항 내지 제3항 중 어느 한항에 따른 활물질을 포함하는 음극과 전해질을 포함하는 이차 전지.A secondary battery comprising a negative electrode and an electrolyte comprising a positive electrode and the active material according to any one of claims 1 to 3.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 양극은 리티에이티드 인터칼레이션 화합물, 무기 유황 또는 황계 화합물을 포함하는 이차전지.The cathode includes a secondary intercalation compound, an inorganic sulfur or sulfur compound.
  6. 제4항에 있어서,The method of claim 4, wherein
    전해질은 비수성 유기 용매 및 리튬염을 포함하는 이차 전지.The electrolyte comprises a non-aqueous organic solvent and a lithium salt.
  7. 제4항에 있어서,The method of claim 4, wherein
    통 형상, 뿔 형상, 코인 형상 또는 파우치 형상을 가지는 이차 전지.A secondary battery having a cylindrical shape, a horn shape, a coin shape, or a pouch shape.
PCT/KR2013/010438 2012-12-12 2013-11-18 Negative electrode active material for lithium secondary battery and secondary battery using same WO2014092347A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0144153 2012-12-12
KR20120144153A KR101492973B1 (en) 2012-12-12 2012-12-12 Negative active material and Secondary batteries prepared the same

Publications (1)

Publication Number Publication Date
WO2014092347A1 true WO2014092347A1 (en) 2014-06-19

Family

ID=50934586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010438 WO2014092347A1 (en) 2012-12-12 2013-11-18 Negative electrode active material for lithium secondary battery and secondary battery using same

Country Status (2)

Country Link
KR (1) KR101492973B1 (en)
WO (1) WO2014092347A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225971A1 (en) * 2017-06-07 2018-12-13 한국생산기술연구원 Anode active material for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising same anode

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101762773B1 (en) * 2015-05-06 2017-07-28 공문규 Negative Active Material For Rechargeable Lithium Battery
KR102527633B1 (en) 2023-03-17 2023-04-28 성재욱 Anode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery comprising the anode active material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338646A (en) * 2000-05-26 2001-12-07 Sanyo Electric Co Ltd Lithium secondary battery negative electrode
KR20050090220A (en) * 2004-03-08 2005-09-13 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
KR20060074808A (en) * 2004-12-27 2006-07-03 삼성에스디아이 주식회사 Rechargeable lithium battery
KR20080009269A (en) * 2005-03-23 2008-01-28 파이오닉스 가부시키가이샤 Negative electrode active material particle for lithium secondary battery, negative electrode and methods for producing those

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338646A (en) * 2000-05-26 2001-12-07 Sanyo Electric Co Ltd Lithium secondary battery negative electrode
KR20050090220A (en) * 2004-03-08 2005-09-13 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
KR20060074808A (en) * 2004-12-27 2006-07-03 삼성에스디아이 주식회사 Rechargeable lithium battery
KR20080009269A (en) * 2005-03-23 2008-01-28 파이오닉스 가부시키가이샤 Negative electrode active material particle for lithium secondary battery, negative electrode and methods for producing those

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225971A1 (en) * 2017-06-07 2018-12-13 한국생산기술연구원 Anode active material for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising same anode

Also Published As

Publication number Publication date
KR20140080578A (en) 2014-07-01
KR101492973B1 (en) 2015-02-13

Similar Documents

Publication Publication Date Title
EP1925592B1 (en) Negative active core-shell material, method of preparing the same, and rechargeable lithium battery including the same
US8835053B2 (en) Negative active material containing an intermetallic compound of silicon and a first metal and a metal matrix containing copper and aluminum for rechargeable lithium battery and rechargeable lithium battery containing the negative active material
US8377592B2 (en) Negative active material for rechargeable lithium battery, and method of preparing the same
JP4920880B2 (en) Lithium ion secondary battery
KR100859687B1 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery
JP4855346B2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2007149685A (en) Anode active material for lithium secondary battery and lithium secondary battery containing the same
JP2008130570A (en) Negativee active material for lithium secondary battery, manufacturing method therefor, and lithium secondary battery containing the material
WO2010035950A2 (en) Negative active material for a lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
US20070190415A1 (en) Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
WO2016085190A1 (en) Negative active material for secondary battery and secondary battery using the same
KR100637488B1 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same
WO2014092347A1 (en) Negative electrode active material for lithium secondary battery and secondary battery using same
WO2014092349A1 (en) Alloy method for complex metal for negative electrode active material
KR100551006B1 (en) Rechargeable lithium ion battery
WO2014092348A1 (en) Negative electrode active material for lithium secondary battery
WO2016111468A1 (en) Negative active material for secondary battery and secondary battery using the same
WO2013137510A1 (en) Method for manufacturing anode active material for lithium secondary battery, anode active material for lithium secondary battery, and lithium secondary battery
KR101492970B1 (en) Negative active material for secondary batteries
WO2023074934A1 (en) Anode active material for lithium secondary battery, anode for lithium secondary battery, comprising same, and lithium secondary battery comprising same
US20240105922A1 (en) Negative electrode for rechargeable lithium battery, rechargeable lithium battery, and all-solid-state rechargeable battery
WO2021125536A1 (en) Anode for secondary battery, manufacturing method of same, and lithium metal secondary battery including same
KR20160085382A (en) Negative active material for secondary battery and the secondary battery comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862235

Country of ref document: EP

Kind code of ref document: A1