WO2018225877A1 - 모터 - Google Patents

모터 Download PDF

Info

Publication number
WO2018225877A1
WO2018225877A1 PCT/KR2017/005825 KR2017005825W WO2018225877A1 WO 2018225877 A1 WO2018225877 A1 WO 2018225877A1 KR 2017005825 W KR2017005825 W KR 2017005825W WO 2018225877 A1 WO2018225877 A1 WO 2018225877A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
motor
rotor
shaft
impeller
Prior art date
Application number
PCT/KR2017/005825
Other languages
English (en)
French (fr)
Inventor
임송
김종수
정수진
정태용
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020197038473A priority Critical patent/KR102303799B1/ko
Priority to PCT/KR2017/005825 priority patent/WO2018225877A1/ko
Publication of WO2018225877A1 publication Critical patent/WO2018225877A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/193Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/15Mounting arrangements for bearing-shields or end plates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/20Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil wherein the cooling medium vaporises within the machine casing

Definitions

  • the present invention relates to a motor, and more particularly to a motor capable of cooling the motor by injecting a cooling fluid into the motor.
  • a motor (or electric motor) is a device that converts electrical energy into mechanical energy by using a force received by a current conductor in a magnetic field.
  • the motor may be cooled by air cooling using air and water cooling using cooling water.
  • the motor When the motor is cooled by water cooling, the motor may be provided with a water jacket through which the coolant passes, between the motor housing and the stator, or in the motor housing itself, a coolant flow path through which the coolant passes may be formed, and supplied from the outside of the motor.
  • the coolant can cool the housing and stator while passing through the water jacket or the coolant flow path.
  • the motor in which the water jacket is disposed or the coolant flow path is formed is an indirect cooling method of absorbing heat inside the motor into the cooling water through the water jacket or the motor housing, and this indirect cooling method has a problem in that its cooling efficiency is low.
  • the assembly process for mounting the water jacket has a complicated problem.
  • the housing structure has a complicated shape and structure, thereby increasing the motor housing manufacturing cost.
  • the motor is cooled by water cooling as described above, there is a problem in that the total volume of the motor is increased by the volume occupied by the water jacket or the cooling water flow path, and it is not compacted.
  • a cooling fluid such as oil or a compressive refrigerant can directly cool the inside of the motor.
  • An example of such a motor may be configured such that the cooling fluid is directly injected into the motor, and the Republic of Korea Patent Publication KR 10-1238209 B1 (March 04, 2013 announcement) is a compressive refrigerant used in the steam compression refrigeration cycle motor Disclosed is a spray tube that cools by direct injection therein.
  • an inlet and an outlet for inlet and outlet of a compressive refrigerant are formed in a cover, and an injection tube accommodating part for accommodating a refrigerant injection tube is formed in a frame and a stator, respectively.
  • the injection hole for injecting the compressive refrigerant toward the end of the stator coil is formed in the refrigerant injection pipe for injecting.
  • the motor using the compressive refrigerant has a low cooling efficiency due to an increase in the flow pressure due to the evaporation of the compressive refrigerant, the inconvenience of frequently filling the compressive refrigerant when the compressive refrigerant leaks, and the maintenance cost of the motor increases. There is a problem.
  • the motor may be used as a cooling fluid for cooling the inside of the oil
  • an example of such a motor is disclosed in Republic of Korea Patent Publication KR 10-1340403 B1 (December 11, 2013).
  • KR 10-1340403 B1 an oil introduction flow path in which oil is introduced into the rotor shaft is formed, an oil flow path is formed in the rotor, and oil introduced through the oil introduction flow path of the rotor shaft is in the rotor shaft.
  • the oil After passing through the gap between the rotor and the rotor, it may pass through the oil flow path of the rotor, and the oil may cool the rotor shaft and the rotor while passing sequentially through the rotor shaft, the gap between the rotor shaft and the rotor, and the rotor, respectively.
  • An object of the present invention is to provide a motor that is not only low in maintenance cost but also easy to manufacture and efficient heat dissipation.
  • the present invention for solving the above problems is a housing assembly having a space formed therein; A stator disposed in the space; A rotor rotatably positioned inside the stator; An oil injection pipe mounted on the shaft and the housing assembly in which the rotor is mounted to be spaced apart from the rotor, the oil injection pipe including an oil passage through which oil passes; At least one rotor cooling hole for injecting oil into the oil passage toward the outer surface of the rotor may be formed.
  • the rotor may comprise a pair of end plates spaced in the longitudinal direction of the shaft.
  • the impeller may protrude from at least one outer surface of the pair of end plates.
  • the rotor cooling hole may be opened in the direction of spraying oil toward the impeller.
  • the impeller may include a plurality of blades whose leading edge is closer to the shaft than the trailing edge.
  • the rotor cooling hole may be open toward the region where the leading edge of the impeller is located.
  • the stator may include a stator core surrounding the outer circumference of the rotor and a stator coil mounted to the stator core.
  • the stator coil may include an inner coil part disposed inside the stator core, and an outer coil part extending from the inner coil part to the outside of the stator core and radially spaced apart from the outer circumference of the impeller and the shaft.
  • the housing assembly includes a motor housing having a space formed therein; It may include a motor cover covering the space of the motor housing.
  • the impeller may protrude toward the motor cover on either side of the end plater toward the motor cover.
  • the impeller may include an oil guide for guiding oil in a centrifugal direction.
  • the plurality of blades may protrude from the outer surface of the oil guide. As the oil guide gets closer to the motor cover, the outer diameter may be reduced.
  • the motor may further include at least one oil inlet protruding outwardly from the top of the motor housing, and an oil outlet protruding outwardly from the bottom of the motor housing.
  • the oil injection pipe may be connected to the oil inlet and disposed in the horizontal direction in the housing.
  • the rotor cooling hole may be formed in plural in the oil injection pipe.
  • the spacing of the plurality of rotor cooling holes may be smaller than the outer diameter of the rotor.
  • the motor cover may be equipped with a bearing for supporting the shaft.
  • the oil injection pipe may have a motor cover cooling hole which is different from the rotor cooling hole in the opening direction and injects oil toward the motor cover.
  • the motor cover may further include a bearing housing part surrounding the outer circumference of the bearing. At least one oil hole may be formed in the bearing housing to guide oil to the periphery of the bearing. In addition, an oil chamber may be formed in the upper portion of the bearing housing to communicate with the oil hole.
  • the oil injection pipe may be provided with a stator cooling hole for injecting oil toward the stator.
  • a shaft impeller having a plurality of blades for scattering oil may be formed at the outer circumference of the shaft.
  • At the outer circumference of the shaft may be formed a shaft groove for scattering oil.
  • the present invention has an advantage that the maintenance cost is cheaper than when the compressed refrigerant is injected into the motor, and the structure is simpler and easier to manufacture than the case where the oil passage passes through each of the shaft and the rotor.
  • FIG. 1 is a cross-sectional view of a motor according to an embodiment of the present invention
  • Figure 2 is a perspective view of the inside of the motor according to an embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of an impeller and an oil injection pipe according to an embodiment of the present invention
  • Figure 4 is a side view showing the rotor and stator and the oil injection pipe of the motor according to an embodiment of the present invention
  • FIG. 5 is an enlarged view showing a rear motor cover and a rear bearing of a motor according to an embodiment of the present invention
  • FIG. 6 is a partially cutaway cross-sectional view showing a rear motor cover and a rear bearing of a motor according to an embodiment of the present invention
  • FIG. 8 is a partially cutaway sectional view showing a front motor cover and a front bearing of a motor according to an embodiment of the present invention
  • FIG. 9 is a perspective view showing an oil injection pipe of a motor according to an embodiment of the present invention.
  • FIG. 10 is an enlarged cross-sectional view of the inside of the motor according to another embodiment of the present invention.
  • FIG. 11 is an enlarged cross-sectional view of the inside of a motor according to another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a motor according to an embodiment of the present invention
  • Figure 2 is a perspective view showing the inside of the motor according to an embodiment of the present invention
  • Figure 3 is an impeller and oil according to an embodiment of the present invention 4 is an enlarged cross-sectional view of the injection pipe
  • FIG. 4 is a side view of the rotor, the stator, and the oil injection pipe of the motor according to an embodiment of the present invention.
  • the motor of this embodiment includes a housing assembly 1, a stator 2, a rotor 3, a shaft 4, and an oil injection pipe 5.
  • the housing assembly 1 may have a space S1 formed therein.
  • the stator 2 and the rotor 3 may be disposed inside the housing assembly 1.
  • the stator 2 and the rotor 3 may be arranged in the space S1.
  • the housing assembly 1 can protect the stator 2 and the rotor 3.
  • the housing assembly 1 may be composed of a combination of a plurality of members.
  • the housing assembly 1 may include a motor housing 11 having a space S1 formed therein and at least one motor cover 12 and 13 covering the space S1.
  • the housing assembly 11 may be provided with a terminal block 17 to which the bus bar 16 is fixed, and the terminal block 17 may be mounted on any one of the pair of motor covers 12 and 13. .
  • the bus bar 16 connects the inverter 14 and the terminal block 17. One end of the bus bar 16 may be connected to the inverter 14, and the other end of the bus bar 16 may be connected to the terminal block 17. ) Can be connected.
  • the inverter 14 may include a power device such as an IGBT for applying power to the stator 2.
  • the inverter 14 may be connected to the PCB 15.
  • the PCB 15 may be a motor controller board capable of controlling the motor.
  • various control components such as a semiconductor element for controlling a motor may be disposed.
  • an inverter accommodation space S2 in which the inverter 14 and the PCB 15 may be accommodated may be formed.
  • the inverter accommodating space S2 and the space S1 may be partitioned in the motor housing 11.
  • the inverter accommodation space S2 may be formed outside the space S1.
  • the inverter accommodating space S2 and the space S1 may be partitioned from each other by barriers positioned therebetween.
  • the inverter accommodation space S2 may be located higher than the space S1.
  • the inverter 14 and the PCB 15 may be part of the motor.
  • the inverter 14 and the PCB 15 may be disposed outside the motor housing 1, in this case, the bus bar 16 connected to the inverter 14 outside the motor is extended to the motor to the terminal block (17) can be connected.
  • the motor housing 11 may have both sides of the space S1 open, and the housing assembly 1 may include at least one motor cover 12 and 13.
  • the motor may comprise a pair of motor covers 12, 13.
  • the pair of motor covers 12 and 13 may be motor covers covering the space S1.
  • Any one of the pair of motor covers 12 and 13 may block one surface of the motor housing 11, and the other one of the pair of motor covers 12 and 13 may be the motor housing.
  • the other side of (11) can be prevented.
  • One of the pair of motor covers 12, 13 may be a front cover coupled to one end of the motor housing 11, and the other of the pair of motor covers 12, 13 is spaced apart from the front cover. It may be a rear cover coupled to the other end of the motor housing (11).
  • the motor may further comprise at least one bearing 19A, 19B supporting the shaft 4.
  • the bearings 19A and 19B can be mounted to the motor cover.
  • Each of the pair of motor covers 12 and 13 may be equipped with a bearing rotatably supporting the shaft 4.
  • One of the pair of motor covers 12 and 13 may be equipped with a rear bearing 19A supporting one side of the shaft 4, and the other of the pair of motor covers 12 and 13 may be mounted.
  • the front bearing 19B supporting the other side of the shaft 4 may be mounted.
  • the motor may further include a terminal block cover 20 covering the terminal block 17.
  • the terminal block cover 20 may be fastened by a fastening member such as a screw or a hook to the motor housing 11 and one of the pair of motor covers 12 and 13.
  • the stator 2 may be disposed in the space S1.
  • the stator 2 may be formed in a hollow shape.
  • the stator 2 may include a stator core 21 and a stator coil 22 mounted on the stator core 21.
  • the stator core 21 may be formed in a hollow cylindrical shape, and may surround the outer circumference of the rotor 3.
  • the inner circumferential surface of the stator core 21 may surround the outer circumferential surface of the rotor 3.
  • a gap G may be formed between the inner circumferential surface of the stator core 21 and the outer circumferential surface of the rotor 3.
  • the stator coil 22 may be mounted in a slot formed in the stator core 21.
  • the stator coil 22 may include an inner coil part 23 disposed inside the stator core 21 and an outer coil part 24 extending from the inner coil part 23 to the outside of the stator core 21. have.
  • the outer coil part 24 may be spaced apart from the outer circumference 60A of the impeller 60 to be described later in the radial direction Y of the shaft 4.
  • the oil injected in the centrifugal direction from the impeller 60 may flow to the outer coil part 24, and the outer coil part 24 may be cooled by the oil injected from the impeller 60.
  • the oil injected in the centrifugal direction from the impeller 60 may cool the outer coil part 24 while flowing in the outer coil part 24.
  • the stator 2 may have a lead wire 25 connected to the bus bar 16.
  • One end of the lead wire 25 may be connected to the stator 2, and the other end of the lead wire 25 may extend to the terminal block 17 and be connected to the bus bar 16.
  • the rotor 3 can be mounted to the shaft 4.
  • the rotor 3 may be rotatably positioned inside the stator 2.
  • the rotor 3 may be hollow cylindrical, the inner circumferential surface of the rotor 3 may face the shaft 4, and the outer circumferential surface of the rotor 3 may face the inner circumferential surface of the stator 2. have.
  • the rotor 3 may be composed of a combination of a plurality of members.
  • the rotor 3 may include a rotor core 31 and at least one magnet 32.
  • the rotor core 31 may be laminated with a plurality of steel sheets.
  • the rotor core 31 may have a hollow cylindrical shape.
  • the rotor core 31 may have a shaft through hole 33 through which the shaft 4 penetrates.
  • the magnet core may be formed in the rotor core 31.
  • the magnet mounting portion may be formed to be recessed in the outer surface of the rotor core 31.
  • the magnet mounting portion may be opened from one end of the rotor core 31 to the other end of the rotor core.
  • the magnet mounting portion may be formed to penetrate the rotor core 31.
  • the magnet 32 may be mounted to the rotor core 31.
  • the magnet 32 may be inserted into and mounted on the rotor core 31 and may be integrated with the rotor core 31.
  • a plurality of magnets 32 may be mounted to the rotor core 31.
  • the rotor 3 may comprise a pair of end plates 34, 35 spaced apart in the longitudinal direction X of the shaft 4.
  • End plate 34 and 35 may be formed with a shaft through hole 36 through which the shaft 4 passes.
  • the end plates 34 and 35 may face one side of the rotor core 31 and the other side may face the motor covers 12 and 13.
  • the shaft 4 can be connected with the rotor 3.
  • the shaft 4 can be formed longer than the rotor 3.
  • the shaft 4 may be supported by at least one bearing 19A, 19B.
  • the shaft 4 may be arranged to penetrate the housing assembly 1, and the rotor 3 and the bearings 19A and 19B may be mounted apart from the shaft 4.
  • the shaft 4 may comprise an end projecting out of the housing assembly 1.
  • the protruding end of the housing assembly 1 of the shaft 4 can be connected to the gearbox of the vehicle or to the axle of the wheel.
  • the oil injection pipe 5 may be disposed inside the motor to inject oil into the motor.
  • the oil injection pipe 5 may be mounted to the housing assembly 1.
  • the oil injection pipe 5 may be mounted inside the housing assembly 1 and may be protected by the housing assembly 1.
  • the oil injection pipe 5 may be mounted to the housing assembly 1 so as to be spaced apart from the rotor 3.
  • the oil injection pipe 5 may be mounted to the motor housing 11 or to the motor covers 12 and 13. When the oil injection pipe 5 is mounted on the motor housing 11, when the motor cover 12 and 13 for service of the motor are disassembled, the oil injection pipe 5 may maintain the state mounted on the motor housing 11. When the oil injection pipe 5 is mounted to the motor housing 11, the oil injection pipe 5 may facilitate service of the motor.
  • the oil injection pipe 5 may be mounted to the motor housing 11 so as to be spaced apart from the rotor 3.
  • the oil injection pipe 5 may be mounted to the motor housing 11 so as to be spaced apart from each of the motor covers 12 and 13.
  • the oil injection pipe 5 may be mounted to the motor housing 11 so as to be spaced apart from each of the stator 2 and the motor covers 12 and 13.
  • the oil injection pipe 5 may be an outer injection pipe for injecting oil toward the outer surface of the rotor 3 from the outside of the rotor 3.
  • the oil injection pipe 5 may be formed with an oil passage P through which oil passes and at least one rotor cooling hole 51 for injecting oil from the oil passage P toward the outer surface of the rotor 4. have.
  • the oil injected from the oil injection pipe 5 to the outer surface of the rotor 3 may be in contact with the rotor 3 to cool the rotor 3.
  • the oil that cools the rotor 3 may be scattered around the rotor 3 by the rotor 3, and thus the oil scattered around the rotor 3 flows to the stator 2 to flow the stator 2. Can be cooled.
  • the motor may further include at least one oil inlet 71 and 72 and an oil outlet 73.
  • the oil inlets 71 and 72 may be mounted to the outside of the motor housing 11 to protrude outward.
  • the oil inlets 71 and 72 may be connected to a plurality of upper portions of the motor housing 11.
  • the oil injection pipe 5 may be connected to the oil inlets 71 and 72.
  • the oil introduced into the oil inlet may flow into the oil injection pipe 5 and pass through the oil injection pipe 5.
  • the oil injection pipe 5 may correspond 1: 1 with the oil inlets 71 and 72.
  • the oil injection pipe 5 may be provided in plurality, such as oil inlets 71 and 72.
  • oil introduced into the plurality of oil inlets 71 and 72 from the outside of the motor may be dispersed in a larger area inside the motor by the plurality of oil injection pipes 5A and 5B.
  • the oil injection pipe 5 may be disposed long in the horizontal direction inside the motor housing 11.
  • the oil injection pipe 5 may be mounted to the motor housing 11 by a fastening member such as a screw.
  • An oil spray pipe mounter 68 may be formed at an upper portion of the motor housing 11 to mount the oil spray pipe 5 as a fastening member.
  • the oil outlet 73 may be mounted to protrude outward from the bottom of the motor housing 11.
  • the motor may be connected to an oil cooler (not shown) and an oil tube (not shown) for cooling the oil.
  • the oil tube may be equipped with an oil pump.
  • the oil tube may be connected to the oil inlets 71 and 72 and the oil outlet 73, and the vehicle equipped with the motor may be an oil cooler, an oil pump and an oil supply tube and oil connected to the oil inlets 71 and 72. It may include an oil recovery tube connected to the outlet 73.
  • the oil can circulate the oil cooler, the oil pump and the motor, and the oil cooled in the oil cooler flows into the oil inlets 71 and 72 and then inside the oil spray pipe 5. It can be flowed in, and after being guided to the oil flow path (P) of the oil injection pipe (5) can be injected into the motor.
  • the oil cooling the inside of the motor may fall on the inner lower portion of the motor, and the oil dropped to the inner lower portion of the motor may flow out of the motor through the oil outlet 73.
  • the oil injection pipe 5 may include a plurality of rotor cooling holes 51, and the oil injection pipe 5 may distribute oil to the outer surface of the rotor 3 through the plurality of rotor cooling holes 51. have.
  • the distance L of the plurality of rotor cooling holes 51 may be smaller than the outer diameter D1 of the rotor 3. Oil dispersed in the plurality of rotor cooling holes 51 may be injected to a plurality of points on the outer surface of the rotor 3. The plurality of rotor cooling holes 51 may be spaced apart in the longitudinal direction of the oil injection pipe (5).
  • the motor may further include an oil scattering unit for scattering oil sprayed from the oil spray pipe 5 to the outer surface of the rotor 3 to the periphery of the rotor 3.
  • the oil splash portion may be part of the rotor 3, and the oil spray pipe 5 may spray oil into the oil splash portion of the rotor 3.
  • the oil scattering unit may receive oil sprayed from the oil spray pipe 5 and scatter the surroundings.
  • the oil scattering unit may be formed in a shape capable of maximizing the heat dissipation performance of the motor while minimizing Aerodynamic forces (forces and moments applied to the object by the flow of air) acting on the rotor 3.
  • the oil scattering portion may have a different pattern of scattering oil depending on the formation position thereof.
  • the oil scattering portion is preferably formed at a position where oil can be most evenly scattered by the stator 2 in the rotor 3.
  • the oil scattering part of the present embodiment may include an impeller 60 protruding on an outer surface of at least one of the pair of end plates 34 and 35.
  • the impeller 60 may receive the oil injected from the oil injection pipe 5 and force flow in the centrifugal direction.
  • the impeller 60 may accelerate by receiving oil injected from the oil injection pipe 5, and the oil accelerated by the impeller 60 may be quickly scattered to the surroundings.
  • the impeller 60 may be formed in a region of the rotor 3 which is not directly surrounded by the stator core 21.
  • the impeller 60 may receive the oil injected from the oil injection pipe 5 in a wide area.
  • the oil can be widely spread in the centrifugal direction, and the oil flowing in the centrifugal direction to the impeller 60 is guided to the outer coil part 24 of the stator 2. Can be.
  • the rotor cooling hole 51 of the oil injection pipe 5 may be opened in the direction of injecting oil toward the impeller 60.
  • a plurality of impellers 60 may be formed inside the motor.
  • two impellers 60 may be formed inside the motor.
  • the oil injected from any one 5A of the two oil injection pipes 5 may be guided to any one 60A of the two impellers 60 and spread in the centrifugal direction, and the two oil injection pipes ( The oil injected from any one of 5) may be guided to one of the two impellers 60B and spread in the centrifugal direction.
  • the plurality of oil injection pipes may inject oil into one impeller 60, and the oil injection pipes and the impellers may be 1: 1 corresponded.
  • the impeller 60 may protrude toward the motor covers 12 and 13 on the surfaces of the end plates 34 and 35 facing the motor covers 12 and 13.
  • the impeller 60 may be formed on the pair of end plates 34 and 35 respectively.
  • the motor may include a pair of impellers 60A and 60B.
  • Any one 60A of the pair of impellers 60A and 60B may be formed in the end plate 34 closer to the rear bracket 12 and may protrude toward the rear bracket 12.
  • the other one 60B of the pair of impellers 60A and 60B may be formed in the end plate 35 closer to the front bracket 13 and may protrude toward the front bracket 13. .
  • Such a pair of impellers 60A and 60B may be formed symmetrically with each other only in the protruding direction thereof.
  • impeller 60 since a pair of impeller 60A (60B) is the same except for the protruding direction, the common structure is called the impeller 60, and it demonstrates.
  • the impeller 60 may inject the oil injected toward the outer surface of the rotor 3 from the oil injection pipe 5 in the centrifugal direction.
  • the impeller 60 may include a plurality of blades 62.
  • the impeller 60 may further include an oil guide 61 in which a plurality of blades 62 are formed.
  • the outer diameter D2 may be reduced.
  • the oil guide 61 of the impeller 60A closer to the rear motor cover 12 among the pair of impellers 60A and 60B may be formed such that its outer diameter decreases as it approaches the rear motor cover 12.
  • the oil guide 61 of the impeller 60B closer to the front motor cover 13 among the pair of impellers 60A and 60B may be formed such that its outer diameter decreases as it approaches the front motor cover 13. have.
  • the oil guide 61 may be hollow to surround a portion of the shaft 4.
  • the oil guide 61 may have a shaft through hole 36 through which the shaft 4 penetrates.
  • the inner diameter D3 of the oil guide 61 may be larger than the outer diameter of the shaft 4 or the same as the outer diameter of the shaft 4.
  • the oil guide 61 may divert the oil guided along its outer surface in the centrifugal direction.
  • the plurality of blades 62 may be formed to protrude from the oil guide 61.
  • the plurality of blades 62 may protrude from the outer surface of the oil guide 61.
  • each of the plurality of blades 62 includes a leading edge 63 at the leading end in the direction of guiding the fluid and trailing edge 64 at the rear end in the direction of guiding the fluid. can do.
  • Each of the plurality of blades 62 may have a curved shape between the leading edge 63 and the trailing edge 64 in an arc shape.
  • Each of the plurality of blades 62 may be formed along a three-dimensional curved surface, and the leading edge 63 and the trailing edge 64 may face different directions, and when the impeller 60 rotates, the blade 62 ) Can accelerate oil with low noise and high efficiency.
  • Each of the plurality of blades 62 may further include a blade tip 65 connecting the leading edge 63 and the trailing edge 64.
  • the leading edge 63 may be formed closer to the shaft 4 than the trailing edge 64.
  • the leading edge 63 may face the motor cover 12, 13, and the trailing edge 64 may face the outer coil portion 24 of the stator coil 22.
  • the flow direction can be gradually changed to the centrifugal direction, and the oil exiting the trailing edge 64 from the blade 62 is transferred to the stator coil 22. It may flow toward the outer coil unit 24.
  • the oil flowing from the oil injection pipe 5 to the impeller 60 may be accelerated while being guided along the oil guide 61 and the blade 62 of the impeller 60, and this accelerated oil may be accelerated by the stator coil 22. Can be scattered at a high speed toward the outer coil part 24.
  • An example of the impeller 60 may include both the oil guide 61 and the plurality of blades 62 as described above.
  • impeller 60 may also include a plurality of blades 62 protruding from one surface of the end plate without a separate oil guide 61.
  • the rotor cooling hole 51 of the present embodiment may be open toward the region where the leading edge 63 of the impeller 60 is located.
  • the region where the leading edge 63 is located may be a region closer to the shaft 4 of the impeller 60.
  • the impeller 60 may be divided into an inner region IA and an outer region OA based on the boundary 66 between the leading edge 63 and the blade tip 65.
  • the impeller 60 may be divided into an inner region IA and an outer region OA based on an imaginary line O connecting the boundary 66 of each of the plurality of blades 62.
  • the inner region IA may be defined as the region between this boundary 66 and the inner circumference of the oil guide 61, and the outer region OA is defined as the outer region of the inner region IA of the impeller 60. Can be.
  • the oil injection pipe 5 can spray oil toward the inner region IA, and can spray oil toward the outer region OA.
  • the rotor cooling hole 51 is preferably opened toward the region IA in which the leading edge 63 of the impeller 60 is located.
  • the oil introduced into the area IA where the leading edge 63 is located can be guided from the leading edge 63 to the trailing edge 64 while being guided to the oil guide 61 and the blade 62. May be accelerated at high speed by the impeller 60.
  • the oil injection pipe 5 may not only inject oil into the rotor 3 but also inject oil into the stator 2.
  • the oil injection pipe 5 may be formed with a stator cooling hole 52 for injecting the oil in the oil passage (P) toward the stator (2).
  • the stator cooling hole 52 may be opened toward the stator 2, in particular, the stator coil 22, as shown in FIGS. 3 and 4. As shown in FIG. 3, the stator cooling hole 52 may have a different opening direction from the rotor cooling hole 51.
  • the stator cooling hole 52 may be spaced apart from the rotor cooling hole 51, as shown in FIG. 4.
  • the stator cooling hole 52 and the rotor cooling hole 51 may be formed to be spaced apart from the oil injection pipe 5, as shown in FIG. 4.
  • the rotor cooling holes 51 and the stator cooling holes 52 may have different opening directions from each other.
  • One of the rotor cooling holes 51 and the stator cooling holes 52 may be opened in the horizontal direction, and the other of the rotor cooling holes 51 and the stator cooling holes 52 may be opened in the inclined direction.
  • One of the rotor cooling hole 51 and the stator cooling hole 52 may be opened in the inclined direction of the lower side, and the other of the rotor cooling holes 51 and the stator cooling hole 52 may be formed in the inclined direction of the upper side.
  • the oil injection pipe 5 may be formed with a motor cover cooling hole 53 which is different from the rotor cooling hole 51 in the opening direction and injects oil toward the motor covers 12 and 13.
  • the motor cover cooling hole 53 may have a different opening direction from each of the rotor cooling hole 51 and the stator cooling hole 52.
  • the motor cover cooling hole 53 can inject cooling water toward the periphery of the bearings 19A and 19B and the periphery of the terminal block 17 among the motor covers 12 and 13_, and the motor cover 12 (
  • the oil cooled to the periphery of the bearings 19A and 19B or to the periphery of the terminal block 17 among the 13 flows along the motor covers 12 and 13 to the periphery of the bearings 19A and 19B or the terminal block.
  • the periphery of (17) can be cooled.
  • the motor cover cooling hole 53 may be opened toward the area between the bearings 19A and 19B and the terminal block 17 of the motor cover 2, in which case, through the motor cover cooling hole 53. Oil injected into the motor covers 12 and 13 may cool the bearings 19A and 19B and the terminal block 17, respectively.
  • the motor cover cooling hole 53 may include a plurality of motor cover cooling holes 53A and 53B open in directions different from each other.
  • the plurality of motor cover cooling holes 53A and 53B provide oil toward the periphery of the terminal block 17 and bearing cooling holes 53A for injecting oil toward the periphery of the bearing 19A of the motor cover 12.
  • the terminal block cooling hole 53B may be injected.
  • the bearing cooling holes 53A and the terminal block cooling holes 53B may be opened in different directions from each other.
  • the bearing cooling holes 53A may be opened in the lower inclined direction, and the terminal block cooling holes 53B may be opened in the upper inclined direction.
  • the motor cover cooling hole 53 may be formed only in any one of the pair of oil injection pipes 5A and 5B 5A closer to the terminal block 17.
  • the motor cover cooling hole 53 may be formed in each of the pair of oil injection pipes 5A and 5B.
  • the rotor cooling hole 51, the stator cooling hole 52, and the motor cover cooling hole 53 may be formed in the oil injection pipe 5, the oil injected from the oil injection pipe 5 may have a rotor ( 3), the stator 2, the bearings 19A, 19B, and the terminal block 17 can all be cooled, and the motor can be radiated quickly and efficiently.
  • the number of the rotor cooling holes 51 and the stator cooling hole 52 are formed.
  • the sum of the number may be greater than the number of the motor cover cooling holes 53.
  • the motor can cool the rotor 3 and the stator 2 which are relatively hotter than the motor covers 12 and 13 more efficiently.
  • the motor cover 12, 13 may include a bearing housing portion surrounding the outer circumference of the bearing. At least one oil hole may be formed in the bearing housing to guide oil to the periphery of the bearing. In addition, an oil chamber may be formed in the upper portion of the bearing housing to communicate with the oil hole.
  • Each of the rear motor cover 12 and the front motor cover 13 may include a bearing housing part, an oil hole, and an oil chamber part as described above.
  • FIG. 5 is an enlarged view of a rear motor cover and a rear bearing of a motor according to an embodiment of the present invention
  • FIG. 6 is a partial cutout showing the rear motor cover and rear bearing of a motor according to an embodiment of the present invention. It is a cross section.
  • the rear motor cover 12 may be formed with a bearing housing portion 12A surrounding the outer circumference of the rear bearing 19A.
  • an oil hole 12B for guiding oil injected from the oil injection pipe 5A to the rear motor cover 12 toward the periphery of the rear bearing 19A is formed. Can be.
  • oil hole 12B communicates with the upper portion of the bearing housing portion 12A of the rear motor cover 12, and oil injected from the oil injection pipe 5A to the rear motor cover 12 collects, and then oil hole 12B.
  • An oil chamber portion 12C flowing into) may be formed.
  • the oil flowing from the oil chamber portion 12C of the rear motor cover 12 to the oil hole 12B of the rear motor cover 12 can not only cool the rear bearing 19A but also lubricate the rear bearing 19A. have. That is, the motor can minimize the frictional loss of the rear bearing 19A, and the efficiency of the motor and the life of the rear bearing 19A can be increased.
  • FIG. 7 is an enlarged view of a front motor cover and a front bearing of a motor according to an embodiment of the present invention
  • FIG. 8 is a front motor cover and a front bearing of a motor according to an embodiment of the present invention.
  • the front motor cover 13 may be formed with a bearing housing part 13A surrounding the outer circumference of the front bearing 19B.
  • an oil hole 13B for guiding oil injected from the oil injection pipe 5B to the front motor cover 13 to the periphery of the front bearing 19B is formed. Can be.
  • the oil hole 13B communicates with the upper portion of the bearing housing portion 13A of the front motor cover 13, and oil injected from the oil injection pipe 5B to the front motor cover 13 collects, and then the oil hole 13B.
  • the oil chamber portion 13C flowing into) may be formed.
  • the oil flowing from the oil chamber portion 13C of the front motor cover 13 to the oil hole 13B of the front motor cover 13 can not only cool the front bearing 19B but also lubricate the front bearing 19B. have. That is, the motor can minimize the frictional loss of the front bearing 19B, and the efficiency of the motor and the life of the front bearing 19B can be increased.
  • FIG. 9 is a perspective view illustrating an oil injection pipe of a motor according to an embodiment of the present invention.
  • the oil injection pipe 5 is a tube 5C in which the oil flow path P, the rotor cooling hole 51, the stator cooling hole 52, and the motor cover cooling hole 53 are formed, and a protrusion protruding from the tube 5C. Piece 5D.
  • a fastening hole 5E through which a fastening member such as a screw passes may be formed in the fastening piece 5D.
  • the fastening piece 5D may be formed closer to one side of one end and the other end of the tube 5C, and may be mounted inside the motor housing 11 by a fastening member such as a screw.
  • the fastening piece 5D may be fastened to the oil jet pipe mounter 68 (see FIG. 2) mounted in the motor housing 11.
  • FIG. 10 is an enlarged cross-sectional view of the inside of the motor according to another embodiment of the present invention.
  • the present embodiment may be provided with a shaft impeller 60 ′ for scattering oil on the outer circumferential surface of the shaft 4.
  • the shaft impeller 60 ' can flow oil together with the impeller 60 formed in the rotor 3.
  • the motor may include both an impeller 60 formed on the rotor 3 and a shaft impeller 60 'formed on the shaft 4.
  • One example of the shaft impeller 60 ' may include both an oil guide 61' and a blade 62 'formed on the oil guide 61'.
  • Another example of a shaft impeller 60 'does not include an oil guide 61', but may include only a blade 62 '.
  • the oil guide 61 ′ of the shaft impeller 60 ′ is different from the oil guide 61 of the impeller 60 in its formation position and size, and other configurations and actions other than its formation position and size are the impeller 60. Since the oil guide 61 is the same as the detailed description thereof will be omitted.
  • the blade 62 'of the shaft impeller 60' is different in its formation position and size from the blade 62 of the impeller 60, and other configurations and actions other than its formation position and size are the blades of the impeller 60 '. Since it is the same as (62), detailed description thereof will be omitted.
  • the blade 62 'of the shaft impeller 60' may include a leading edge, a trailing edge and a blade tip, like the blade 62 of the impeller 60 '.
  • the blade 62 ' may be curved between the leading edge and the trailing edge.
  • the outer circumference of the shaft impeller 60 ′ may face the outer coil portion 24 of the stator coil 22 in the radial direction Y of the shaft 4, and the shaft impeller 60 ′ may pass oil to the stator coil ( It can flow toward the outer coil part 24 of 22. As shown in FIG.
  • the shaft 4 may include a small diameter portion 4A and a large diameter portion 4B having a larger outer diameter than the small diameter portion 4A.
  • the shaft impeller 60 ' may be formed to protrude in the radial direction of the shaft 4 on the outer circumferential surface of the shaft 4.
  • the shaft impeller 60 ' may be formed to protrude radially of the shaft 4 on the outer circumferential surface of at least one of the small diameter portion 4A and the large diameter portion 4B.
  • the shaft impeller 60 ' can be formed in the side surface 4D of the outer peripheral surface 4C and the side surface 4D of the large diameter part 4B.
  • the shaft impeller 60 ' can be formed in the side surface 4D of the large diameter part 4B and the outer peripheral surface of the small diameter part 4A.
  • oil may be injected from the rotor cooling hole 51 of the oil injection pipe 5, and the oil injected from the rotor cooling hole 51 may be injected into the impeller 60 formed in the rotor 3 to rotate the rotor. After cooling (3), it can be spread around the impeller 60.
  • the oil injection pipe 5 of the present embodiment may be formed with a shaft cooling hole (not shown) opened to inject oil toward the shaft impeller (60 ') provided on the outer circumferential surface of the shaft (4).
  • oil When oil is injected from the rotor cooling hole 51, oil may be injected from the shaft cooling hole, and the oil injected from the shaft cooling hole is injected into the shaft impeller 60 ′ formed in the shaft 4 and the shaft 4. ) Can be cooled and spread around the shaft impeller 60 '.
  • FIG. 11 is an enlarged cross-sectional view of the inside of a motor according to another embodiment of the present invention.
  • the present embodiment may be formed with a shaft groove 46 for scattering oil droplets on the outer circumferential surface of the shaft 4, the other configuration and operation other than the shaft groove 46 is an embodiment of the present invention or another embodiment Are the same as or similar to, and the same reference numerals are used, and detailed description thereof will be omitted.
  • the present embodiment may include an oil injection pipe 5 for injecting oil into the motor, and some of the oil injected from the oil injection pipe 5 may flow along the outer surface of the shaft 4, and the shaft It may be scattered around by the grooves 46. The oil thus scattered may flow into the stator 2, the rotor 3, and the motor covers 12 and 13.

Abstract

본 실시예는 내부에 공간이 형성된 하우징 어셈블리와; 하우징 어셈블리 내부에 배치된 스테이터와; 스테이터의 내부에 회전 가능하게 위치된 로터와; 로터가 장착된 샤프트 및 하우징 어셈블리에 장착되어 로터의 외면에 오일을 분사하는 오일 분사파이프를 포함하고, 오일 분사파이프는 오일이 통과하는 오일유로와; 오일유로의 오일을 로터의 외면으로 분사하는 적어도 하나의 로터 냉각공이 형성되어, 압축식 냉매로 모터 내부를 냉각하는 경우 보다 유지비가 저렴하고, 샤프트 및 로터의 각각에 오일이 통과하는 유로가 형성되는 경우 보다 구조가 간단하고 제작이 용이한 이점이 있다.

Description

모터
본 발명은 모터에 관한 것으로, 더욱 상세하게는 냉각유체가 모터 내부로 분사되어 모터를 냉각시킬 수 있는 모터에 관한 것이다.
일반적으로 모터(또는 전동기)는 전류가 흐르는 도체가 자기장 속에서 받은 힘을 이용하여 전기 에너지를 역학적 에너지로 바꾸는 장치이다.
최근에는 차량의 연료 연소시 발생되는 유해가스로 인한 환경오염을 방지하고자, 차량의 구동원으로 모터가 사용되는 예가 점차 증가되고 있다.
모터는 구동시, 고열이 발생되고, 모터의 효율적인 방열은 모터의 성능을 결정하는 중요인자가 될 수 있다.
모터는 공기를 이용한 공냉식과, 냉각수를 이용한 수냉식에 의해 냉각될 수 있다.
모터가 수냉식으로 냉각될 경우, 모터는 냉각수가 통과하는 워터 재킷이 모터 하우징과 스테이터 사이에 배치되거나, 모터 하우징 자체에 모터는 냉각수가 통과하는 냉각수 유로가 형성될 수 있고, 모터의 외부에서 공급된 냉각수는 워터 재킷이나 냉각수 유로를 통과하면서 하우징 및 스테이터를 냉각할 수 있다.
이러한, 워터 재킷이 배치되거나 냉각수 유로가 형성된 모터는 워터 재킷이나 모터 하우징을 통해 모터 내부의 열을 냉각수로 흡열시키는 간접 냉각 방식이고, 이러한 간접 냉각 방식은 그 냉각 효율이 낮은 문제점이 있다.
모터가 워터 재킷을 포함하는 경우, 워터 재킷의 장착을 위한 조립 공정이 복잡한 문제점이 있다. 그리고, 모터 하우징에 냉각수 유로가 형성된 경우는, 하우징 구조가 형상 및 구조가 복잡하여 모터 하우징 제조 비용이 증대되는 문제점이 있다. 한편 상기와 같이 모터가 수냉식으로 냉각되는 경우, 워터 재킷이나 냉각수 유로가 차지하는 용적만큼 모터의 전체 용적이 증대되고, 컴팩트화되지 못하는 문제점이 있다.
한편, 모터는 오일이나 압축성 냉매 등의 냉각유체가 모터 내부를 직접 냉각시키는 것이 가능하다.
이러한 모터의 일예는 냉각유체가 모터 내부로 직접 분사되게 구성될 수 있고, 대한민국 등록특허공보 KR 10-1238209 B1(2013년03월04일 공고)에는 증기 압축식 냉동사이클에 이용되는 압축성 냉매를 모터 내부로 직접 분사하여 냉각시키는 분사관이 개시되어 있다.
대한민국 등록특허공보 KR 10-123820 B1에 개시된 모터는 커버에 압축성 냉매의 유입 및 유출을 위한 유입구 및 유출구가 형성되고, 프레임 및 스테이터에 냉매 분사관을 수용하는 분사관 수용부가 각각 형성되며, 압축성 냉매를 분사하는 냉매 분사관에 스테이터 코일의 단부를 향해 압축성 냉매를 분사하는 분사공이 형성된다.
그러나, 상기와 같이 압축성 냉매를 이용하는 모터는 압축성 냉매의 증발에 의해 유로 압력이 증가되어 냉각 효율이 낮고, 압축성 냉매의 누설시 압축성 냉매를 자주 충진해야 하는 불편함이 있고, 모터의 유지비가 증가되는 문제점이 있다.
한편, 모터는 그 내부를 냉각하는 냉각유체로 오일이 사용되는 것도 가능하고, 이러한 모터의 예는 대한민국 등록특허공보 KR 10-1340403 B1(2013년 12월11일)에 개시되어 있다. 대한민국 등록특허공보 KR 10-1340403 B1에 개시된 모터는 로터 축에 오일이 유입이 도입되는 오일 도입유로가 형성되고, 로터에 오일 유로가 형성되며, 로터 축의 오일 도입유로를 통해 유입된 오일이 로터 축과 로터 사이의 간극을 통과한 후, 로터의 오일유로를 통과할 수 있고, 오일은 로터 축과, 로터축과 로터 사이의 간극 및 로터 각각을 순차적으로 통과하면서 로터 축과 로터를 냉각할 수 있다.
그러나, 대한민국 등록특허공보 KR 10-1340403 B1에 개시된 모터는 로터 축 및 로터 축과 로터의 사이 및 로터의 각각에 오일이 통과하는 유로를 형성하여 하므로, 구조가 복잡하고 제작 공정이 복잡하여 비용이 증대되는 문제점이 있다.
본 발명은 유지비가 저렴할 뿐만 아니라 제작이 용이하면서 효율적인 방열이 가능한 모터를 제공하는데 목적이 있다.
상기한 과제를 해결하기 위한 본 발명은 내부에 공간이 형성된 하우징 어셈블리와; 공간에 배치된 스테이터와; 스테이터의 내부에 회전 가능하게 위치된 로터와; 로터가 장착된 샤프트 및 하우징 어셈블리에 로터와 이격되게 장착된 오일 분사파이프를 포함하고, 오일 분사파이프에는 오일이 통과하는 오일유로와; 오일유로의 오일을 로터의 외면을 향해 분사하는 적어도 하나의 로터 냉각공이 형성될 수 있다.
로터는 샤프트의 길이방향으로 이격된 한 쌍의 엔드 플레이트를 포함할 수 있다. 그리고, 한 쌍의 엔드 플레이트 중 적어도 하나의 외면에는 임펠러가 돌출될 수 있다. 로터 냉각공은 임펠러를 향해 오일을 분사하는 방향으로 개방될 수 있다.
임펠러는 리딩에지가 트레일링에지 보다 샤프트와 더 가까운 복수개의 블레이드를 포함할 수 있다.
로터 냉각공은 임펠러 중 리딩 에지가 위치하는 영역을 향해 개방될 수 있다.
스테이터는 상기 로터의 외둘레를 둘러싸는 스테이터 코어와, 스테이터 코어에 장착된 스테이터 코일을 포함할 수 있다.
스테이터 코일은 스테이터 코어 내부에 배치된 이너 코일부과, 이너 코일부에서 스테이터 코어의 외부로 연장되고 임펠러의 외둘레와 샤프트의 반경방향으로 이격된 아우터 코일부를 포함할 수 있다.
하우징 어셈블리는 내부에 공간이 형성된 모터 하우징과; 모터 하우징의 공간을 덮는 모터 커버를 포함할 수 있다.
임펠러는 엔드 플레이터의 양면 중 모터 커버를 향하는 면에 모터 커버를 향해 돌출될 수 있다.
임펠러는 오일을 원심방향으로 안내하는 오일가이드를 포함할 수 있다. 복수개의 블레이드는 오일가이드의 외면에 돌출될 수 있다. 오일가이드는 모터 커버와 가까워질수록 외경이 감소될 수 있다.
모터는 모터 하우징의 상부에 외부로 돌출되게 장착된 적어도 하나의 오일 인렛과, 모터 하우징의 하부에 외부로 돌출되게 장착된 오일 아웃렛을 더 포함할 수 있다.
오일 분사파이프는 오일 인렛과 연결되고 하우징의 내부에 수평방향으로 길게 배치될 수 있다.
로터 냉각공은 상기 오일 분사파이프에 복수개 형성될 수 있다. 복수개 로터 냉각공의 간격은 로터의 외경 보다 작을 수 있다.
모터 커버에는 샤프트를 지지하는 베어링이 장착될 수 있다.
오일 분사파이프에는 로터 냉각공과 개방 방향이 상이하고 모터 커버를 향해 오일을 분사하는 모터 커버 냉각공이 형성될 수 있다.
모터 커버는 베어링의 외둘레를 둘러싸는 베어링 하우징부를 더 포함할 수 있다. 베어링 하우징부에는 오일을 베어링의 주변으로 안내하는 적어도 하나의 오일홀이 형성될 수 있다. 그리고, 베어링 하우징부의 상부에 오일홀이 연통되고 오일이 모이는 오일 챔버부가 형성될 수 있다.
오일 분사파이프에는 스테이터를 향해 오일을 분사하는 스테이터 냉각공이 형성될 수 있다.
샤프트의 외둘레에는 오일을 비산시키는 복수개 블레이드를 갖는 샤프트 임펠러가 형성될 수 있다.
샤프트의 외둘레에는 오일을 비산시키는 샤프트 그루브가 형성될 수 있다.
본 발명은 모터 내부로 압축식 냉매를 분사하는 경우 보다 유지비가 저렴하고, 샤프트 및 로터의 각각에 오일이 통과하는 유로가 형성되는 경우 보다 구조가 간단하고 제작이 용이한 이점이 있다.
또한, 오일 분사파이프에서 임펠러로 분사된 오일이 임펠러에 의해 가속되면서 비산되므로, 오일 비산의 효과가 극대화될 수 있고, 냉각 성능이 향상될 수 있는 이점이 있다.
또한, 오일이 임펠러와 접촉되는 시간을 최대화하여 로터의 열을 보다 효율적으로 방열할 수 있는 이점이 있다.
도 1은 본 발명의 일 실시예에 따른 모터의 단면도,
도 2는 본 발명의 일 실시예에 따른 모터의 내부가 도시된 사시도,
도 3은 본 발명의 일 실시예에 따른 임펠러 및 오일 분사파이프가 확대 도시된 단면도,
도 4는 본 발명의 일 실시예에 따른 모터의 로터와 스테이터 및 오일 분사파이프가 함께 도시된 측면도,
도 5는 본 발명의 일 실시예에 따른 모터의 리어 모터 커버 및 리어 베어링이 도시된 확대도,
도 6은 본 발명의 일 실시예에 따른 모터의 리어 모터 커버 및 리어 베어링이 도시된 일부 절결 단면도,
도 7은 본 발명의 일 실시예에 따른 모터의 프론트 모터 커버 및 프론트 베어링이 도시된 확대도,
도 8은 본 발명의 일 실시예에 따른 모터의 프론트 모터 커버 및 프론트 베어링이 도시된 일부 절결 단면도,
도 9는 본 발명의 일 실시예에 따른 모터의 오일 분사파이프가 도시된 사시도,
도 10은 본 발명의 다른 실시예에 따른 모터 내부가 확대 도시된 단면도,
도 11은 본 발명의 또 다른 실시예에 따른 모터 내부가 확대 도시된 단면도이다.
이하에서는 본 발명의 구체적인 실시예를 도면과 함께 상세히 설명하도록 한다.
도 1은 본 발명의 일 실시예에 따른 모터의 단면도이고, 도 2는 본 발명의 일 실시예에 따른 모터의 내부가 도시된 사시도이며, 도 3는 본 발명의 일 실시예에 따른 임펠러 및 오일 분사파이프가 확대 도시된 단면도이고, 도 4은 본 발명의 일 실시예에 따른 모터의 로터와 스테이터 및 오일 분사파이프가 함께 도시된 측면도이다.
본 실시예의 모터는 하우징 어셈블리(1)와, 스테이터(2)와, 로터(3)와 샤프트(4) 및 오일 분사파이프(5)를 포함한다.
하우징 어셈블리(1)는 내부에 공간(S1)이 형성될 수 있다.
하우징 어셈블리(1)의 내부에는 스테이터(2) 및 로터(3)가 배치될 수 있다. 스테이터(2) 및 로터(3)은 공간(S1)에 배치될 수 있다. 하우징 어셈블리(1)는 스테이터(2) 및 로터(3)를 보호할 수 있다.
하우징 어셈블리(1)는 복수개 부재의 결합체로 구성될 수 있다. 하우징 어셈블리(1)는 내부에 공간(S1)이 형성된 모터 하우징(11)과, 공간(S1)을 덮는 적어도 하나의 모터 커버(12)(13)을 포함할 수 있다.
하우징 어셈블리(11)에는 버스바(16)가 고정되는 터미널 블록(17)이 구비될 수 있고, 터미널 블록(17)은 한 쌍의 모터 커버(12)(13) 중 어느 하나에 장착될 수 있다.
버스바(16)는 인버터(14)와 터미널 블록(17)을 연결하는 것으로서, 버스바(16)의 일단은 인버터(14)에 연결될 수 있고, 버스바(16)의 타단은 터미널 블록(17)에 연결될 수 있다.
인버터(14)는 스테이터(2)로 전원을 인가하는 IGBT 등의 전력소자를 포함할 수 있다. 인버터(14)는 피시비(15)와 연결될 수 있다. 피시비(15)는 모터를 제어할 수 있는 모터 제어기판일 수 있다. 피시비(15)에는 모터를 제어하기 위한 반도체 소자 등의 각종 제어부품이 배치될 수 있다.
모터 하우징(11)에는 인버터(14) 및 피시비(15)가 수용되는 인버터 수용공간(S2)이 형성될 수 있다.
인버터 수용공간(S2)과 공간(S1)은 모터 하우징(11)에 구획될 수 있다. 인버터 수용공간(S2)은 공간(S1)의 외부에 형성될 수 있다. 인버터 수용공간(S2)과 공간(S1)은 그 사이에 위치하는 베리어에 의해 서로 구획될 수 있다. 인버터 수용공간(S2)은 공간(S1) 보다 높게 위치될 수 있다.
상기와 같이, 모터 하우징(1)에 인버터(14) 및 피시비(15)가 수용될 경우, 인버터(14) 및 피시비(15)는 모터의 일부가 될 수 있다.
한편, 인버터(14) 및 피시비(15)는 모터 하우징(1)의 외부에 배치되는 것도 가능하고, 이 경우, 모터 외부의 인버터(14)와 연결된 버스바(16)는 모터로 연장되어 터미널 블록(17)에 연결될 수 있다.
모터 하우징(11)은 공간(S1)의 양면이 개방될 수 있고, 하우징 어셈블리(1)는 적어도 하나의 모터 커버(12)(13)을 포함할 수 있다.
모터는 한 쌍의 모터 커버(12)(13)을 포함할 수 있다. 한 쌍의 모터 커버(12)(13)는 공간(S1)을 덮는 모터 커버일 수 있다.
한 쌍의 모터 커버(12)(13) 중 어느 하나(12)는 모터 하우징(11)의 일면을 막을 수 있고, 한 쌍의 모터 커버(12)(13) 중 다른 하나(13)는 모터 하우징(11)의 타면을 막을 수 있다.
한 쌍의 모터 커버(12)(13) 중 어느 하나는 모터 하우징(11)의 일단에 결합된 프론트 커버일 수 있고, 한 쌍의 모터 커버(12)(13) 중 다른 하나는 프론트 커버와 이격되게 모터 하우징(11)의 타단에 결합된 리어 커버일 수 있다.
모터는 샤프트(4)를 지지하는 적어도 하나의 베어링(19A)(19B)을 더 포함할 수 있다.
베어링(19A)(19B)는 모터 커버에 장착될 수 있다. 한 쌍의 모터 커버(12)(13)의 각각에는 샤프트(4)를 회전 가능하게 지지하는 베어링이 장착될 수 있다. 한 쌍의 모터 커버(12)(13) 중 어느 하나에는 샤프트(4)의 일측을 지지하는 리어 베어링(19A)이 장착될 수 있고, 한 쌍의 모터 커버(12)(13) 중 다른 하나에는 샤프트(4)의 타측을 지지하는 프론트 베어링(19B)이 장착될 수 있다.
한편, 모터는 터미널 블록(17)을 덮는 터미널 블록 커버(20)를 더 포함할 수 있다. 터미널 블록 커버(20)는 모터 하우징(11)과 한 쌍의 모터 커버(12)(13) 중 하나에 스크류나 후크 등의 체결부재로 체결될 수 있다.
스테이터(2)는 공간(S1)에 배치될 수 있다. 스테이터(2)는 중공 형상으로 형성될 수 있다. 스테이터(2)는 스테이터 코어(21)와, 스테이터 코어(21)에 장착된 스테이터 코일(22)을 포함할 수 있다.
스테이터 코어(21)는 중공 원통 형상으로 형성될 수 있고, 로터(3)의 외둘레를 둘러쌀 수 있다.
스테이터 코어(21)의 내둘레면은 로터(3)의 외둘레면을 둘러쌀 수 있다. 스테이터 코어(21)의 내둘레면과 로터(3)의 외둘레면 사이에는 간극(G)이 형성될 수 있다.
스테이터 코일(22)은 스테이터 코어(21)에 형성된 슬롯에 장착될 수 있다.
스테이터 코일(22)은 스테이터 코어(21) 내부에 배치된 이너 코일부(23)과, 이너 코일부(23)에서 스테이터 코어(21)의 외부로 연장된 아우터 코일부(24)를 포함할 수 있다.
아우터 코일부(24)는 후술하는 임펠러(60)의 외둘레(60A)와 샤프트(4)의 반경방향(Y)으로 이격될 수 있다.
임펠러(60)에서 원심방향으로 분사된 오일은 아우터 코일부(24)로 유동될 수 있고, 아우터 코일부(24)는 임펠러(60)에서 분사된 오일에 의해 냉각될 수 있다. 임펠러(60)에서 원심방향으로 분사된 오일은 아우터 코일부(24)를 타고 흐르면서 아우터 코일부(24)를 냉각할 수 있다.
한편, 스테이터(2)에는 도 1에 도시된 바와 같이, 버스바(16)와 접속되는 리드 와이어(25)가 연결될 수 있다. 리드 와이어(25)의 일단은 스테이터(2)에 연결될 수 있고, 리드 와이어(25)의 타단은 터미널 블록(17)으로 연장되어 버스바(16)에 접속될 수 있다.
로터(3)은 샤프트(4)에 장착될 수 있다. 로터(3)은 스테이터(2)의 내부에 회전 가능하게 위치될 수 있다. 로터(3)는 중공 원통 형상일 수 있고, 로터(3)의 내둘레면은 샤프트(4)를 향할 수 있고, 로터(3)의 외둘레면은 스테이터(2)의 내둘레면을 향할 수 있다.
로터(3)는 다수개 부재의 결합체로 구성될 수 있다. 로터(3)는 로터 코어(31)와, 적어도 하나의 마그넷(32)을 포함할 수 있다.
로터 코어(31)는 다수개의 강판이 적층될 수 있다. 로터 코어(31)는 중공 원통 형상일 수 있다. 로터 코어(31)에는 샤프트(4)가 관통되는 샤프트 관통공(33)이 형성될 수 있다.
로터 코어(31)에는 마그넷 장착부가 형성될 수 있다. 마그넷 장착부는 로터 코어(31)의 외면에 함몰되게 형성될 수 있다. 마그넷 장착부는 로터 코어(31)의 일단에서 로터 코어의 타단까지 개방될 수 있다. 마그넷 장착부는 로터 코어(31)에 관통되게 형성될 수 있다.
마그넷(32)는 로터 코어(31)에 장착될 수 있다. 마그넷(32)은 로터 코어(31)에 삽입되어 장착될 수 있고, 로터 코어(31)와 일체화될 수 있다. 마그넷(32)는 로터 코어(31)에 복수개 장착될 수 있다.
로터(3)는 샤프트(4)의 길이방향(X)으로 이격된 한 쌍의 엔드 플레이트(34)(35)를 포함할 수 있다.
엔드 플레이트(34)(35)에는 샤프트(4)가 관통되는 샤프트 관통공(36)이 형성될 수 있다.
엔드 플레이트(34)(35)는 일면이 로터 코어(31)를 향할 수 있고, 타면이 모터 커버(12)(13)을 향할 수 있다.
샤프트(4)는 로터(3)와 연결될 수 있다. 샤프트(4)는 로터(3) 보다 더 길게 형성될 수 있다. 샤프트(4)는 적어도 하나의 베어링(19A)(19B)에 지지될 수 있다.
샤프트(4)는 하우징 어셈블리(1)에 관통되게 배치될 수 있고, 샤프트(4)에는 로터(3)와 베어링(19A)(19B)가 이격되게 장착될 수 있다.
샤프트(4)는 하우징 어셈블리(1) 외부로 돌출된 단부를 포함할 수 있다. 샤프트(4) 중 하우징 어셈블리(1)의 외부로 돌출된 단부는 차량의 기어박스에 연결되거나 차륜의 차축에 연결될 수 있다.
오일 분사파이프(5)는 모터의 내부에 배치되어 모터의 내부로 오일을 분사할 수 있다. 오일 분사파이프(5)는 하우징 어셈블리(1)에 장착될 수 있다. 오일 분사파이프(5)는 하우징 어셈블리(1) 내부에 장착될 수 있고, 하우징 어셈블리(1)에 의해 보호될 수 있다.
오일 분사파이프(5)는 하우징 어셈블리(1)에 로터(3)와 이격되게 장착될 수 있다.
오일 분사파이프(5)는 모터 하우징(11)에 장착되거나 모터 커버(12)(13)에 장착될 수 있다. 오일 분사파이프(5)는 모터 하우징(11)에 장착될 경우, 모터의 서비스를 위한 모터 커버(12)(13)의 분해시, 모터 하우징(11)에 장착된 상태를 유지할 수 있다. 오일 분사파이프(5)는 모터 하우징(11)에 장착될 경우, 모터의 서비스를 용이하게 할 수 있다.
오일 분사파이프(5)는 모터 하우징(11)에 로터(3)와 이격되게 장착될 수 있다. 오일 분사파이프(5)는 모터 하우징(11)에 모터 커버(12)(13) 각각과 이격되게 장착될 수 있다. 오일 분사파이프(5)는 모터 하우징(11)에 스테이터(2) 및 모터 커버(12)(13) 각각과 이격되게 장착될 수 있다.
오일 분사파이프(5)는 로터(3)의 외부에서 로터(3)의 외면을 향해 오일을 분사하는 아우터 분사파이프일 수 있다.
오일 분사파이프(5)에는 오일이 통과하는 오일유로(P)와, 오일유로(P)의 오일을 로터(4))의 외면을 향해 분사하는 적어도 하나의 로터 냉각공(51)이 형성될 수 있다.
오일 분사파이프(5)에서 로터(3)의 외면으로 분사된 오일은 로터(3)와 접촉되어 로터(3)를 냉각할 수 있다. 로터(3)를 냉각한 오일은 로터(3)에 의해 로터(3) 주변으로 비산될 수 있고, 이렇게 로터(3)의 주변으로 비산된 오일은 스테이터(2)로 유동되어 스테이터(2)를 냉각할 수 있다.
모터는 도 2에 도시된 바와 같이, 적어도 하나의 오일 인렛(71)(72)과, 오일 아웃렛(73)을 더 포함할 수 있다.
오일 인렛(71)(72)는 모터 하우징(11)의 상부에 외부로 돌출되게 장착될 수 있다. 오일 인렛(71)(72)은 모터 하우징(11)의 상부에 복수개 연결될 수 있다.
오일 분사파이프(5)는 오일 인렛(71)(72)과 연결될 수 있다. 오일 인렛으로 유입된 오일은 오일 분사파이프(5)로 유입되어 오일 분사파이프(5)를 통과할 수 있다.
오일 분사파이프(5)는 오일 인렛(71)(72)와 1:1 대응될 수 있다. 오일 분사파이프(5)는 오일 인렛(71)(72)과 같이 복수개 구비될 수 있다. 이 경우, 모터의 외부에서 복수개의 오일 인렛(71)(72)으로 유입된 오일은 복수개의 오일 분사파이프(5A)(5B)에 의해 모터의 내부의 보다 넓은 영역으로 분산될 수 있다.
오일 분사파이프(5)는 모터 하우징(11)의 내부에 수평방향으로 길게 배치될 수 있다.
오일 분사파이프(5)는 모터 하우징(11)에 스크류 등의 체결부재로 장착될 수 있다. 모터 하우징(11)의 상부에는 오일 분사파이프(5)가 체결부재로 장착되는 오일 분사파이프 마운터(68)가 형성될 수 있다.
오일 아웃렛(73)은 모터 하우징(11)의 하부에 외부로 돌출되게 장착될 수 있다.
한편, 모터는 오일을 냉각하는 오일 쿨러(미도시)와 오일튜브(미도시)로 연결될 수 있다. 그리고, 오일튜브에는 오일펌프가 장착될 수 있다.
오일튜브는 오일 인렛(71)(72) 및 오일 아웃렛(73)에 연결될 수 있고, 모터가 장착된 차량은 오일 쿨러, 오일펌프와, 오일 인렛(71)(72)과 연결된 오일공급튜브 및 오일 아웃렛(73)과 연결된 오일회수튜브를 포함할 수 있다.
오일펌프의 구동시, 오일은 오일 쿨러와, 오일펌프와, 모터를 순환할 수 있고, 오일 쿨러에서 냉각된 오일은 오일 인렛(71)(72)로 유입된 후 오일 분사파이프(5)의 내부로 유동될 수 있고, 오일 분사파이프(5)의 오일유로(P)에 안내된 후, 모터 내부로 분사될 수 있다.
모터의 내측 하부에는 모터의 내부를 냉각시킨 오일이 낙하될 수 있고, 모터의 내측 하부로 낙하된 오일은 오일 아웃렛(73)을 통해 모터의 외부로 유출될 수 있다.
오일 분사파이프(5)는 복수개의 로터 냉각공(51)을 포함할 수 있고, 오일 분사파이프(5)는 복수개의 로터 냉각공(51)을 통해 로터(3)의 외면으로 오일을 분산할 수 있다.
도 4를 참조하면, 복수개 로터 냉각공(51)의 간격(L)은 로터(3)의 외경(D1) 보다 작을 수 있다. 복수개의 로터 냉각공(51)으로 분산된 오일은 로터(3)의 외면 복수 지점으로 분사될 수 있다. 로터 냉각공(51)은 복수개가 오일 분사파이프(5)의 길이방향으로 이격될 수 있다.
모터는 오일 분사파이프(5)에서 로터(3)의 외면으로 분사된 오일을 로터(3)의 주변으로 비산시키는 오일 비산부를 더 포함할 수 잇다.
오일 비산부는 로터(3)의 일부일 수 있고, 오일 분사파이프(5)는 로터(3)의 오일 비산부로 오일을 분사할 수 있다.
오일 비산부는 오일 분사파이프(5)에서 분사된 오일을 받아 주변으로 비산할 수 있다. 이러한 오일 비산부는 로터(3)에 작용하는 공기력(Aerodynamic force: 공기의 흐름이 물체에 미치는 힘 및 모멘트)를 최소화하면서 모터의 방열 성능을 극대화할 수 있는 형상으로 형성될 수 있다.
그리고, 오일 비산부는 그 형성 위치에 따라 오일을 비산시키는 패턴이 상이할 수 있다. 오일 비산부는 로터(3) 중 스테이터(2)로 오일을 가장 고르게 비산시킬 수 있는 위치에 형성되는 것이 바람직하다.
본 실시예의 오일 비산부는 한 쌍의 엔드 플레이트(34)(35) 중 적어도 하나의 외면에 돌출된 임펠러(60)를 포함할 수 있다. 임펠러(60)는 오일 분사파이프(5)에서 분사된 오일을 받아 원심방향으로 강제 유동할 수 있다. 임펠러(60)는 오일 분사파이프(5)에서 분사된 오일을 받아 가속할 수 있고, 임펠러(60)에 의해 가속된 오일은 신속하게 주변으로 비산될 수 있다.
임펠러(60)는 로터(3) 중 스테이터 코어(21)에 직접 둘러싸이지 않는 영역에 형성될 수 있다. 임펠러(60)는 오일 분사파이프(5)에서 분사된 오일을 넓은 영역으로 공급받을 수 있다.
임펠러(60)는 로터(3)의 회전시, 오일을 원심방향으로 넓게 퍼트릴 수 있고, 임펠러(60)에 원심방향으로 유동된 오일은 스테이터(2) 중 아우터 코일부(24)로 안내될 수 있다.
상기와 같은, 오일의 유동 및 가속을 위해, 오일 분사파이프(5)의 로터 냉각공(51)은 임펠러(60)를 향해 오일을 분사하는 방향으로 개방될 수 있다.
이하, 임펠러(60)에 대해 상세히 설명하면 다음과 같다.
임펠러(60)는 오일 분사파이프(5)가 복수개일 경우, 모터 내부에 복수개 형성될 수 있다.
모터가 서로 이격된 2개의 오일 분사파이프(5A)(5B)를 포함할 경우, 임펠러(60)는 모터 내부에 2개 형성될 수 있다.
이 경우, 2개의 오일 분사파이프(5) 중 어느 하나(5A)에서 분사된 오일은 2개의 임펠러(60) 중 어느 하나(60A)에 안내되어 원심방향으로 퍼질 수 있고, 2개의 오일 분사파이프(5) 중 어느 하나(5B)에서 분사된 오일은 2개의 임펠러(60) 중 어느 하나(60B)에 안내되어 원심방향으로 퍼질 수 있다.
본 실시예는 복수개의 오일 분사파이프가 하나의 임펠러(60)로 오일을 분사하는 것도 가능하고, 오일 분사파이프와 임펠러가 1:1 대응되는 것도 가능함은 물론이다.
임펠러(60)는 엔드 플레이터(34)(35)의 양면 중 모터 커버(12)(13)을 향하는 면에 모터 커버(12)(13)을 향해 돌출될 수 있다.
모터가 2개의 오일 분사파이프(5A)(5B)를 포함할 경우, 임펠러(60)는 한 쌍의 엔드 플레이트(34)(35)에 각각 형성될 수 있다. 이 경우, 모터는 한 쌍의 임펠러(60A)(60B)를 포함할 수 있다.
한 쌍의 임펠러(60A)(60B) 중 어느 하나(60A)는 리어 브라켓(12)과 더 근접한 엔드 플레이트(34)에 형성될 수 있고, 리어 브라켓(12)을 향해 돌출 형성될 수 있다.
그리고, 한 쌍의 임펠러(60A)(60B) 중 다른 하나(60B)는 프론트 브라켓(13)과 더 근접한 엔드 플레이트(35)에 형성될 수 있고, 프론트 브라켓(13)을 향해 돌출 형성될 수 있다.
이러한, 한 쌍의 임펠러(60A)(60B)는 그 돌출방향만 상이하고 서로 대칭되게 형성될 수 있다.
이하, 한 쌍의 임펠러(60A)(60B)는 그 돌출방향 이외가 모두 동일하므로 그 공통된 구성에 대해서는 임펠러(60)로 칭하여 설명한다.
임펠러(60)는 오일 분사파이프(5)에서 로터(3)의 외면을 향해 분사된 오일을 원심방향으로 분사할 수 있다.
임펠러(60)는 복수개의 블레이드(62)를 포함할 수 있다.
임펠러(60)는 복수개의 블레이드(62)가 형성된 오일가이드(61)를 더 포함할 수 있다.
오일가이드(61)는 모터 커버(12)(13) 중 어느 하나와 가까워질수록 외경(D2)이 감소될 수 있다.
한 쌍의 임펠러(60A)(60B) 중 리어 모터 커버(12)과 더 근접한 임펠러(60A)의 오일가이드(61)는 리어 모터 커버(12)과 근접할수록 그 외경이 감소되게 형성될 수 있다.
반대로, 한 쌍의 임펠러(60A)(60B) 중 프론트 모터 커버(13)과 더 근접한 임펠러(60B)의 오일가이드(61)는 프론트 모터 커버(13)과 근접할수록 그 외경이 감소되게 형성될 수 있다.
오일가이드(61)는 샤프트(4)의 일부를 둘러싸도록 중공 형상일 수 있다. 오일가이드(61)는 샤프트(4)가 관통되는 샤프트 관통공(36)이 형성될 수 있다.
오일가이드(61)의 내경(D3)은 샤프트(4)의 외경보다 크거나 샤프트(4)의 외경과 같을 수 있다.
오일가이드(61)는 그 외면을 따라 안내되는 오일을 원심방향으로 방향전환할 수 있다.
복수개의 블레이드(62)는 오일가이드(61)에 돌출되게 형성될 수 있다. 복수개의 블레이드(62)는 오일가이드(61)의 외면에서 돌출될 수 있다.
이를 위해, 복수개의 블레이드(62) 각각은 도 4를 참조하면, 유체를 안내하는 방향으로 가장 선단의 리딩에지(63)와, 유체를 안내하는 방향으로 가장 후단의 트레일링 에지(64)를 포함할 수 있다.
복수개의 블레이드(62) 각각은 리딩에지(63)와 트레일링 에지(64) 사이가 호 형상으로 굽은 형상일 수 있다.
복수개의 블레이드(62) 각각은 3차원 곡면을 따라 형성될 수 있고, 리딩에지(63)와 트레일링 에지(64)는 서로 상이한 방향을 향할 수 있으며, 임펠러(60)의 회전시, 블레이드(62)는 저소음 및 고효율로 오일을 가속할 수 있다.
복수개의 블레이드(62) 각각은 리딩에지(63)와 트레일링 에지(64)를 잇는 블레이드 팁(65)을 더 포함할 수 있다.
리딩에지(63)는 트레일링에지(64) 보다 샤프트(4)과 더 가깝게 형성될 수 있다.
리딩에지(63)는 모터 커버(12)(13)을 향할 수 있고, 트레일링 에지(64)는 스테이터 코일(22)의 아우터 코일부(24)를 향할 수 있다.
오일은 오일 가이드(61) 및 블레이드(62)를 따라 안내되면서 점차 유동방향이 원심방향으로 전환될 수 있고, 블레이드(62)를 트레일링에지(64)를 빠져나온 오일은 스테이터 코일(22)의 아우터 코일부(24)를 향해 유동될 수 있다.
오일 분사파이프(5)에서 임펠러(60)로 유동된 오일은 임펠러(60)의 오일 가이드(61) 및 블레이드(62)를 따라 안내되면서 가속될 수 있고, 이렇게 가속된 오일은 스테이터 코일(22)의 아우터 코일부(24)를 향해 빠른 속도로 비산될 수 있다.
임펠러(60)의 일 예는 상기와 같은 오일가이드(61) 및 복수개 블레이드(62)를 모두 포함할 수 있다.
임펠러(60)의 다른 예는 별도의 오일가이드(61) 없이, 엔드 플레이트의 일면에 돌출된 복수개의 블레이드(62)를 포함하는 것도 가능함은 물론이다.
한편, 본 실시예의 로터 냉각공(51)은 임펠러(60) 중 리딩 에지(63)가 위치하는 영역을 향해 개방될 수 있다. 여기서, 리딩 에지(63)가 위치하는 영역은 임펠러(60) 중 샤프트(4)와 더 근접한 영역일 수 있다.
임펠러(60)는 리딩 에지(63)와 블레이드 팁(65)의 경계(66)를 기준으로, 내측 영역(IA)과 외측 영역(OA)으로 구분될 수 있다.
임펠러(60)는 복수개 블레이드(62) 각각의 경계(66)를 잇는 가상선(O)를 기준으로, 내측 영역(IA)과 외측 영역(OA)으로 구분될 수 있다.
내측 영역(IA)은 이러한 경계(66)와 오일 가이드(61)의 내둘레 사이의 영역으로 정의될 수 있고, 외측 영역(OA)은 임펠러(60) 중 내측 영역(IA)의 외측 영역으로 정의될 수 있다.
오일 분사파이프(5)는 내측 영역(IA)을 향해 오일을 분사하는 것이 가능하고, 외측 영역(OA)를 향해 오일을 분사하는 것이 가능하다.
오일 분사파이프(5)에서 분사된 오일이 내측 영역(IA)으로 분사될 경우, 오일과 오일가이드(61)의 접촉 시간이 길고, 로터(3)의 열을 보다 효율적으로 흡열할 수 있다.
반면에, 오일 분사파이프(5)에서 분사된 오일이 외측 영역(OA)로 분사될 경우, 오일과 오일가이드(61)의 접촉 시간은 상대적으로 짧다.
로터 냉각공(51)은 임펠러(60) 중 리딩 에지(63)가 위치하는 영역(IA)을 향해 개방되는 것이 바람직하다.
리딩 에지(63)가 위치하는 영역(IA)으로 유입된 오일은 오일 가이드(61) 및 블레이드(62)에 안내되면서 리딩 에지(63)에서 트레일링 에지(64)로 안내될 수 있고, 이러한 오일은 임펠러(60)에 의해 고속으로 가속될 수 있다.
한편, 오일 분사파이프(5)는 로터(3)로 오일을 분사할 뿐만 아니라 스테이터(2)로 오일을 분사할 수 있다. 이를 위해, 오일 분사파이프(5)에는 오일유로(P)의 오일을 스테이터(2)를 향해 분사하는 스테이터 냉각공(52)이 형성될 수 있다.
스테이터 냉각공(52)은 도 3 및 도 4에 도시된 바와 같이, 스테이터(2) 특히, 스테이터 코일(22)을 향해 개방될 수 있다. 스테이터 냉각공(52)은 도 3에 도시된 바와 같이, 그 개방 방향이 로터 냉각공(51)과 상이할 수 있다. 스테이터 냉각공(52)은 도 4에 도시된 바와 같이, 로터 냉각공(51)과 이격될 수 있다. 스테이터 냉각공(52)과 로터 냉각공(51)은 도 4에 도시된 바와 같이, 오일 분사파이프(5)에 이격되게 형성될 수 있다.
로터 냉각공(51)과 스테이터 냉각공(52)는 그 개방방향이 서로 상이할 수 있다. 로터 냉각공(51)과 스테이터 냉각공(52) 중 어느 하나는 수평방향으로 개방될 수 있고, 둘 중 다른 하나는 경사방향으로 개방될 수 있다. 로터 냉각공(51)과 스테이터 냉각공(52) 중 어느 하나는 하측의 경사방향으로 개방될 수 있고, 둘 중 다른 하나는 상측의 경사방향으로 형성될 수 있다.
한편, 오일 분사파이프(5)에는 로터 냉각공(51)과 개방 방향이 상이하고 모터 커버(12)(13)을 향해 오일을 분사하는 모터 커버 냉각공(53)이 형성될 수 있다.
모터 커버 냉각공(53)는 로터 냉각공(51) 및 스테이터 냉각공(52) 각각과 개방 방향이 상이할 수 있다.
모터 커버 냉각공(53)은 모터 커버(12)(13_) 중 베어링(19A)(19B)의 주변이나 터미털 블록(17)의 주변을 향해 냉각수를 분사할 수 있고, 모터 커버(12)(13) 중 베어링(19A)(19B)의 주변이나 터미털 블록(17)의 주변으로 냉각된 오일은 모터 커버(12)(13)을 따라 흐르면서 베어링(19A)(19B)의 주변이나 터미털 블록(17)의 주변을 냉각시킬 수 있다.
모터 커버 냉각공(53)은 모터 커버(2) 중 베어링(19A)(19B)과 터미털 블록(17)의 사이 영역을 향해 개방될 수 있고, 이 경우, 모터 커버 냉각공(53)을 통해 모터 커버(12)(13)으로 분사된 오일은 베어링(19A)(19B)과 터미털 블록(17) 각각을 냉각할 수 있다.
모터 커버 냉각공(53)은 서로 각도가 상이한 방향으로 개방된 다수의 모터 커버 냉각공(53A)(53B)를 포함할 수 있다. 다수의 모터 커버 냉각공(53A)(53B)은 모터 커버(12) 중 베어링(19A)의 주변을 향해 오일을 분사하는 베어링 냉각공(53A)와, 터미널 블록(17)의 주변을 향해 오일을 분사하는 터미널 블록 냉각공(53B)를 포함할 수 있다. 베어링 냉각공(53A)과 터미널 블록 냉각공(53B)은 서로 상이한 방향으로 개방될 수 있다. 베어링 냉각공(53A)은 하측 경사방향으로 개방될 수 있고, 터미널 블록 냉각공(53B)은 상측 경사방향으로 개방될 수 있다.
모터 커버 냉각공(53)은 한 쌍의 오일 분사파이프(5A)(5B) 중 터미널 블록(17)과 더 근접한 어느 하나(5A)에만 형성되는 것도 가능하다.
또한, 모터 커버 냉각공(53)은 한 쌍의 오일 분사파이프(5A)(5B) 각각에 형성되는 것도 가능하다.
오일 분사파이프(5)에 로터 냉각공(51)과, 스테이터 냉각공(52)와, 모터 커버 냉각공(53)이 모두 형성될 수 경우, 오일 분사파이프(5)에서 분사된 오일은 로터(3)와, 스테이터(2)와, 베어링(19A)(19B) 및 터미널 블록(17)을 모두 냉각할 수 있고, 모터는 신속하고 효율적으로 방열될 수 있다.
오일 분사파이프(5)에 로터 냉각공(51)과 스테이터 냉각공(52)과 모터 커버 냉각공(53)이 모두 형성될 경우, 로터 냉각공(51)의 개수와 스테이터 냉각공(52)의 개수의 합은 모터 커버 냉각공(53)의 개수 보다 많을 수 있다. 이 경우, 모터는 모터 커버(12)(13) 보다 상대적으로 고열인 로터(3) 및 스테이터(2)를 보다 효율적으로 냉각할 수 있다.
한편, 모터 커버(12)(13)은 베어링의 외둘레를 둘러싸는 베어링 하우징부를 포함할 수 있다. 베어링 하우징부에는 오일을 베어링의 주변으로 안내하는 적어도 하나의 오일홀이 형성될 수 있다. 그리고, 베어링 하우징부의 상부에 오일홀이 연통되고 오일이 모이는 오일 챔버부가 형성될 수 있다.
리어 모터 커버(12)과 프론트 모터 커버(13) 각각은 상기와 같은, 베어링 하우징부, 오일홀, 오일챔버부를 포함할 수 있다.
도 5는 본 발명의 일 실시예에 따른 모터의 리어 모터 커버 및 리어 베어링이 도시된 확대도이고, 도 6는 본 발명의 일 실시예에 따른 모터의 리어 모터 커버 및 리어 베어링이 도시된 일부 절결 단면도이다.
도 5 및 도 6을 참조하면, 리어 모터 커버(12)에는 리어 베어링(19A)의 외둘레를 둘러싸는 베어링 하우징부(12A)가 형성될 수 있다.
리어 모터 커버(12)의 베어링 하우징부(12A)에는 오일 분사파이프(5A)에서 리어 모터 커버(12)으로 분사된 오일을 리어 베어링(19A)의 주변으로 안내하는 오일홀(12B)이 형성될 수 있다.
그리고, 리어 모터 커버(12)의 베어링 하우징부(12A)의 상부에는 오일홀(12B)이 연통되고 오일 분사파이프(5A)에서 리어 모터 커버(12)으로 분사된 오일이 모였다가 오일홀(12B)로 유동되는 오일 챔버부(12C)가 형성될 수 있다.
리어 모터 커버(12)의 오일 챔버부(12C)에서 리어 모터 커버(12)의 오일홀(12B)로 유동된 오일은 리어 베어링(19A)을 냉각시킬 뿐만 아니라 리어 베어링(19A)을 윤할할 수 있다. 즉, 모터는 리어 베어링(19A)의 마찰손실을 최소화할 수 있고, 모터의 효율 및 리어 베어링(19A)의 수명이 증대될 수 있다.
그리고, 도 7은 본 발명의 일 실시예에 따른 모터의 프론트 모터 커버 및 프론트 베어링이 도시된 확대도이고, 도 8은 본 발명의 일 실시예에 따른 모터의 프론트 모터 커버 및 프론트 베어링이 도시된 일부 절결 단면도이다.
도 7 및 도 8을 참조하면, 프론트 모터 커버(13)에는 프론트 베어링(19B)의 외둘레를 둘러싸는 베어링 하우징부(13A)가 형성될 수 있다.
프론트 모터 커버(13)의 베어링 하우징부(13A)에는 오일 분사파이프(5B)에서 프론트 모터 커버(13)으로 분사된 오일을 프론트 베어링(19B)의 주변으로 안내하는 오일홀(13B)이 형성될 수 있다.
그리고, 프론트 모터 커버(13)의 베어링 하우징부(13A)의 상부에는 오일홀(13B)이 연통되고 오일 분사파이프(5B)에서 프론트 모터 커버(13)으로 분사된 오일이 모였다가 오일홀(13B)로 유동되는 오일 챔버부(13C)가 형성될 수 있다.
프론트 모터 커버(13)의 오일 챔버부(13C)에서 프론트 모터 커버(13)의 오일홀(13B)로 유동된 오일은 프론트 베어링(19B)을 냉각시킬 뿐만 아니라 프론트 베어링(19B)을 윤할할 수 있다. 즉, 모터는 프론트 베어링(19B)의 마찰손실을 최소화할 수 있고, 모터의 효율 및 프론트 베어링(19B)의 수명이 증대될 수 있다.
도 9는 본 발명의 일 실시예에 따른 모터의 오일 분사파이프가 도시된 사시도이다.
오일 분사파이프(5)는 오일 유로(P) 및 로터 냉각공(51)과 스테이터 냉각공(52)과 모터 커버 냉각공(53)이 형성된 튜브(5C)와, 튜브(5C)에 돌출된 체결편(5D)를 포함할 수 있다.
체결편(5D)에는 스크류 등의 체결부재가 관통되는 체결공(5E)가 형성될 수 있다. 체결편(5D)는 튜브(5C)의 일단과 타단 중 일측에 더 가깝게 형성될 수 있고, 스크류 등의 체결부재에 의해 모터 하우징(11)의 내부에 장착될 수 있다.
체결편(5D)는 모터 하우징(11)의 내부에 장착된 오일 분사파이프 마운터(68, 도 2 참조)에 체결될 수 있다.
도 10은 본 발명의 다른 실시예에 따른 모터 내부가 확대 도시된 단면도이다.
본 실시예는 샤프트(4)의 외둘레면에 오일을 비산시키는 샤프트 임펠러(60')가 구비될 수 있다.
샤프트 임펠러(60')는 로터(3)에 형성된 임펠러(60)와 함께 오일을 유동시키는 것이 가능하다. 이 경우, 모터는 로터(3)에 형성된 임펠러(60)와, 샤프트(4)에 형성된 샤프트 임펠러(60')를 모두 포함할 수 있다.
샤프트 임펠러(60')의 일예는 오일가이드(61')와, 오일 가이드(61')에 형성된 블레이드(62')를 모두 포함하는 것이 가능하다. 샤프트 임펠러(60')의 다른 예는 오일가이드(61')를 포함하지 않고, 블레이드(62')만을 포함하는 것이 가능하다.
샤프트 임펠러(60')의 오일가이드(61')는 그 형성 위치 및 크기가 임펠러(60)의 오일가이드(61)와 상이하고, 그 형성 위치 및 크기 이외의 기타 구성 및 작용이 임펠러(60)의 오일가이드(61)과 동일하므로 그에 대한 상세한 설명은 생략한다.
샤프트 임펠러(60')의 블레이드(62')는 그 형성 위치 및 크기가 임펠러(60)의 블레이드(62)와 상이하고, 그 형성 위치 및 크기 이외의 기타 구성 및 작용이 임펠러(60)의 블레이드(62)와 동일하므로 그에 대한 상세한 설명은 생략한다.
샤프트 임펠러(60')의 블레이드(62')는 임펠러(60)의 블레이드(62)와 같이, 리딩 에지와, 트레일링 에지와 블레이드 팁을 포함할 수 있다. 블레이드(62')는 리딩 에지와, 트레일링 에지의 사이가 굽은 형상일 수 있다.
샤프트 임펠러(60')의 외둘레는 샤프트(4)의 반경방향(Y)으로 스테이터 코일(22)의 아우터 코일부(24)를 향할 수 있고, 샤프트 임펠러(60')는 오일을 스테이터 코일(22)의 아우터 코일부(24)를 향해 유동시킬 수 있다.
샤프트(4)는 소경부(4A)와, 소경부(4A) 보다 외경이 큰 대경부(4B)를 포함할 수 있다.
샤프트 임펠러(60')는 샤프트(4)의 외둘레면에 샤프트(4)의 반경방향으로 돌출되게 형성되는 것이 가능하다. 샤프트 임펠러(60')는 소경부(4A)와 대경부(4B) 중 적어도 하나의 외둘레면에 샤프트(4)의 반경방향으로 돌출되게 형성되는 것이 가능하다. 샤프트 임펠러(60')는 대경부(4B)의 외둘레면(4C)과 측면(4D) 중 측면(4D)에 형성되는 것이 가능하다. 샤프트 임펠러(60')는 대경부(4B)의 측면(4D) 및 소경부(4A)의 외둘레면에 형성될 수 있다.
본 실시예는 오일 분사파이프(5)의 로터 냉각공(51)에서 오일이 분사될 수 있고, 로터 냉각공(51)에서 분사된 오일은 로터(3)에 형성된 임펠러(60)로 분사되어 로터(3)를 냉각시킨 후, 임펠러(60)의 주변으로 퍼질 수 있다.
한편, 본 실시예의 오일 분사파이프(5)에는 샤프트(4)의 외둘레면에 구비된 샤프트 임펠러(60')를 향해 오일을 분사하게 개방된 샤프트 냉각공(미도시)이 형성될 수 있다.
로터 냉각공(51)에서 오일이 분사될 때, 샤프트 냉각공에서 오일이 분사될 수 있고, 샤프트 냉각공에서 분사된 오일은 샤프트(4)에 형성된 샤프트 임펠러(60')로 분사되어 샤프트(4)를 냉각시키고, 샤프트 임펠러(60')의 주변으로 퍼질 수 있다.
도 11은 본 발명의 또 다른 실시예에 따른 모터 내부가 확대 도시된 단면도이다.
본 실시예는 샤프트(4)의 외둘레면에 오일 액적을 비산시키는 샤프트 그루브(46)가 형성될 수 있고, 샤프트 그루브(46) 이외의 기타 구성 및 작용은 본 발명 일 실시예 또는 다른 실시예와 동일하거나 유사하므로 동일부호를 사용하고 그에 대한 상세한 설명은 생략한다.
본 실시예는 모터의 내부로 오일을 분사하는 오일 분사파이프(5)를 포함할 수 있고, 오일 분사파이프(5)에서 분사된 오일 중 일부는 샤프트(4)의 외면을 따라 흐를 수 있고, 샤프트 그루브(46)에 의해 주변으로 비산될 수 있다. 이렇게 비산된 오일은 스테이터(2)와 로터(3) 및 모터 커버(12)(13)으로 유동되어 흐를 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (13)

  1. 내부에 공간이 형성된 하우징 어셈블리와;
    상기 공간에 배치된 스테이터와;
    상기 스테이터의 내부에 회전 가능하게 위치된 로터와;
    상기 로터가 장착된 샤프트 및
    상기 하우징 어셈블리에 상기 로터와 이격되게 장착된 오일 분사파이프를 포함하고,
    상기 오일 분사파이프에는
    오일이 통과하는 오일유로와;
    상기 오일유로의 오일을 상기 로터의 외면을 향해 분사하는 적어도 하나의 로터 냉각공이 형성된 모터.
  2. 제 1항에 있어서,
    상기 로터는 상기 샤프트의 길이방향으로 이격된 한 쌍의 엔드 플레이트를 포함하고,
    상기 한 쌍의 엔드 플레이트 중 적어도 하나의 외면에는 임펠러가 돌출되고,
    상기 로터 냉각공은 상기 임펠러를 향해 오일을 분사하는 방향으로 개방된 모터.
  3. 제 2 항에 있어서,
    상기 임펠러는 리딩에지가 트레일링에지 보다 샤프트와 더 가까운 복수개의 블레이드를 포함하고,
    상기 로터 냉각공은 상기 임펠러 중 리딩 에지가 위치하는 영역을 향해 개방된 모터.
  4. 제 2 항에 있어서,
    상기 스테이터는 상기 로터의 외둘레를 둘러싸는 스테이터 코어와, 상기 스테이터 코어에 장착된 스테이터 코일을 포함하고,
    상기 스테이터 코일은
    상기 스테이터 코어 내부에 배치된 이너 코일부과,
    상기 이너 코일부에서 스테이터 코어의 외부로 연장되고 상기 임펠러의 외둘레와 상기 샤프트의 반경방향으로 이격된 아우터 코일부를 포함하는 모터.
  5. 제 2 항에 있어서,
    상기 하우징 어셈블리는
    내부에 공간이 형성된 모터 하우징과;
    상기 모터 하우징의 공간을 덮는 모터 커버를 포함하고,
    상기 임펠러는 상기 엔드 플레이터의 양면 중 상기 모터 커버를 향하는 면에 상기 모터 커버를 향해 돌출된 모터.
  6. 제 5 항에 있어서,
    상기 임펠러는 외면에 복수개의 블레이드가 돌출되고 상기 모터 커버와 가까워질수록 외경이 감소되며 오일을 원심방향으로 안내하는 오일가이드를 포함하는 모터.
  7. 제 5 항에 있어서,
    상기 모터 하우징의 상부에 외부로 돌출되게 장착된 적어도 하나의 오일 인렛과,
    상기 모터 하우징의 하부에 외부로 돌출되게 장착된 오일 아웃렛을 더 포함하고,
    상기 오일 분사파이프는 상기 오일 인렛과 연결되고 상기 하우징의 내부에 수평방향으로 길게 배치된 모터.
  8. 제 1 항에 있어서,
    상기 로터 냉각공은 상기 오일 분사파이프에 복수개 형성되고,
    복수개 로터 냉각공의 간격은 로터의 외경 보다 작은 모터.
  9. 제 1 항에 있어서,
    상기 오일 분사파이프에는 스테이터를 향해 오일을 분사하는 스테이터 냉각공이 형성된 모터.
  10. 제 1 항에 있어서,
    상기 하우징 어셈블리는
    내부에 공간이 형성된 모터 하우징과;
    상기 모터 하우징의 공간을 덮고 상기 샤프트를 지지하는 베어링이 장착된 모터 커버를 포함하고,
    상기 오일 분사파이프에는 상기 로터 냉각공과 개방 방향이 상이하고 상기 모터 커버를 향해 오일을 분사하는 모터 커버 냉각공이 형성된 모터.
  11. 제 1 항에 있어서,
    상기 하우징 어셈블리는
    내부에 공간이 형성된 모터 하우징과;
    상기 모터 하우징의 공간을 덮고 상기 샤프트를 지지하는 베어링이 장착된 모터 커버를 포함하고,
    상기 모터 커버는 상기 베어링의 외둘레를 둘러싸는 베어링 하우징부를 더 포함하고,
    상기 베어링 하우징부에는 오일을 상기 베어링의 주변으로 안내하는 적어도 하나의 오일홀이 형성되며,
    상기 베어링 하우징부의 상부에 상기 오일홀이 연통되고 오일이 모이는 오일 챔버부가 형성된 모터.
  12. 제 1 항에 있어서,
    상기 샤프트의 외둘레에는 오일을 비산시키는 복수개 블레이드를 갖는 샤프트 임펠러가 형성된 모터.
  13. 제 1 항에 있어서,
    상기 샤프트의 외둘레에는 오일을 비산시키는 샤프트 그루브가 형성된 모터.
PCT/KR2017/005825 2017-06-05 2017-06-05 모터 WO2018225877A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197038473A KR102303799B1 (ko) 2017-06-05 2017-06-05 모터
PCT/KR2017/005825 WO2018225877A1 (ko) 2017-06-05 2017-06-05 모터

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/005825 WO2018225877A1 (ko) 2017-06-05 2017-06-05 모터

Publications (1)

Publication Number Publication Date
WO2018225877A1 true WO2018225877A1 (ko) 2018-12-13

Family

ID=64565911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005825 WO2018225877A1 (ko) 2017-06-05 2017-06-05 모터

Country Status (2)

Country Link
KR (1) KR102303799B1 (ko)
WO (1) WO2018225877A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112152344A (zh) * 2019-06-28 2020-12-29 日本电产株式会社 驱动装置
CN113472128A (zh) * 2020-03-31 2021-10-01 日本电产株式会社 驱动装置
CN113519107A (zh) * 2019-02-25 2021-10-19 Lg电子株式会社 转子以及设置有该转子的电动机
EP4033643A1 (en) 2021-01-26 2022-07-27 Toyota Jidosha Kabushiki Kaisha An electric motor comprising a cooling system and a cooling method for cooling an electric motor
CN115735795A (zh) * 2022-11-30 2023-03-07 苏州克林威尔电器有限公司 低噪音吸吹一体式宠物护理机
WO2023031280A1 (de) * 2021-09-06 2023-03-09 Mahle International Gmbh Elektromotor
EP4089891A4 (en) * 2020-04-10 2023-07-12 Aisin Corporation VEHICLE DRIVE DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102453150B1 (ko) 2020-10-07 2022-10-12 현대위아 주식회사 모터의 냉각구조

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072812A (ja) * 2002-08-01 2004-03-04 Meidensha Corp 回転電機
JP2010093987A (ja) * 2008-10-10 2010-04-22 Hitachi Industrial Equipment Systems Co Ltd 回転電機
JP2011193642A (ja) * 2010-03-15 2011-09-29 Toyota Motor Corp 回転電機の冷却構造
JP2011217438A (ja) * 2010-03-31 2011-10-27 Toyota Motor Corp 回転電機の冷却装置
CN103532307A (zh) * 2013-10-21 2014-01-22 南车株洲电力机车研究所有限公司 一种永磁同步牵引电机及其油冷却装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3502210B2 (ja) * 1995-11-28 2004-03-02 株式会社日平トヤマ ビルトインモータ
JP4990872B2 (ja) * 2008-11-25 2012-08-01 本田技研工業株式会社 車両用モータユニット
KR101238209B1 (ko) * 2010-11-29 2013-03-04 엘지전자 주식회사 전동기
KR102108194B1 (ko) * 2014-01-28 2020-05-08 현대모비스 주식회사 냉각기능을 갖는 모터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072812A (ja) * 2002-08-01 2004-03-04 Meidensha Corp 回転電機
JP2010093987A (ja) * 2008-10-10 2010-04-22 Hitachi Industrial Equipment Systems Co Ltd 回転電機
JP2011193642A (ja) * 2010-03-15 2011-09-29 Toyota Motor Corp 回転電機の冷却構造
JP2011217438A (ja) * 2010-03-31 2011-10-27 Toyota Motor Corp 回転電機の冷却装置
CN103532307A (zh) * 2013-10-21 2014-01-22 南车株洲电力机车研究所有限公司 一种永磁同步牵引电机及其油冷却装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113519107A (zh) * 2019-02-25 2021-10-19 Lg电子株式会社 转子以及设置有该转子的电动机
CN113519107B (zh) * 2019-02-25 2023-12-26 Lg麦格纳电子动力总成有限公司 转子以及设置有该转子的电动机
CN112152344A (zh) * 2019-06-28 2020-12-29 日本电产株式会社 驱动装置
CN113472128A (zh) * 2020-03-31 2021-10-01 日本电产株式会社 驱动装置
CN113472128B (zh) * 2020-03-31 2023-12-05 日本电产株式会社 驱动装置
EP4089891A4 (en) * 2020-04-10 2023-07-12 Aisin Corporation VEHICLE DRIVE DEVICE
EP4033643A1 (en) 2021-01-26 2022-07-27 Toyota Jidosha Kabushiki Kaisha An electric motor comprising a cooling system and a cooling method for cooling an electric motor
WO2023031280A1 (de) * 2021-09-06 2023-03-09 Mahle International Gmbh Elektromotor
CN115735795A (zh) * 2022-11-30 2023-03-07 苏州克林威尔电器有限公司 低噪音吸吹一体式宠物护理机
CN115735795B (zh) * 2022-11-30 2024-02-02 苏州克林威尔电器有限公司 低噪音吸吹一体式宠物护理机

Also Published As

Publication number Publication date
KR102303799B1 (ko) 2021-09-17
KR20200008633A (ko) 2020-01-28

Similar Documents

Publication Publication Date Title
WO2018225877A1 (ko) 모터
WO2018225878A1 (ko) 모터
WO2018235969A1 (ko) 오일분사부를 구비한 전동기
WO2017052114A1 (ko) 냉각장치를 갖춘 진공펌프
WO2018131988A1 (ko) 팬 모터
WO2016098977A1 (en) Rotating electric machine
WO2018038382A1 (en) Laundry apparatus
WO2020189826A1 (ko) 지능형 동력생성모듈
WO2019240522A1 (ko) 전기자동차용 구동시스템
AU2018314055B2 (en) Laundry treatment apparatus
WO2016195148A1 (ko) 전동기용 케이스 및 그의 제조방법, 전동기용 케이스를 구비한 전동기
EP3179895A1 (en) Vacuum cleaner
WO2018070618A1 (ko) 감시 카메라용 냉각장치
WO2020130671A1 (en) Motor assembly, method of manufacturing the same and a cleaner having the same
WO2020130200A1 (ko) 전동기
WO2018143699A1 (ko) 냉온장고
WO2021172793A1 (ko) 액시얼 갭 타입 전동기 및 이를 이용한 워터 펌프
WO2018026177A1 (ko) 리어 홀더 및 이를 포함하는 모터
WO2020059909A1 (ko) 전동기 및 이를 구비하는 지능형 동력생성모듈
WO2019045305A1 (ko) 스테이터 및 이를 포함하는 모터
WO2020189825A1 (ko) 지능형 동력생성모듈
WO2019107829A1 (ko) 모터
CN100534860C (zh) 船舶发电系统
WO2022035015A1 (ko) 팬모터
WO2019054637A1 (ko) 전동 펌프 및 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197038473

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17912543

Country of ref document: EP

Kind code of ref document: A1