WO2018225525A1 - センサシステム - Google Patents

センサシステム Download PDF

Info

Publication number
WO2018225525A1
WO2018225525A1 PCT/JP2018/020043 JP2018020043W WO2018225525A1 WO 2018225525 A1 WO2018225525 A1 WO 2018225525A1 JP 2018020043 W JP2018020043 W JP 2018020043W WO 2018225525 A1 WO2018225525 A1 WO 2018225525A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
coil
side coil
sensor system
probe
Prior art date
Application number
PCT/JP2018/020043
Other languages
English (en)
French (fr)
Inventor
明紀 田村
菅野 智
ポール ウィルコックス
アンソニー クロックフォード
チェンファン ゾン
Original Assignee
日立Geニュークリア・エナジー株式会社
インダクトゥセンス リミテッド
ユニバーシティー オブ ブリストル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Geニュークリア・エナジー株式会社, インダクトゥセンス リミテッド, ユニバーシティー オブ ブリストル filed Critical 日立Geニュークリア・エナジー株式会社
Priority to GB1916856.6A priority Critical patent/GB2576843B/en
Priority to US16/612,951 priority patent/US11150221B2/en
Publication of WO2018225525A1 publication Critical patent/WO2018225525A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/228Details, e.g. general constructional or apparatus details related to high temperature conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2431Probes using other means for acoustic excitation, e.g. heat, microwaves, electron beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2475Embedded probes, i.e. probes incorporated in objects to be inspected
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2636Surfaces cylindrical from inside

Definitions

  • the present invention relates to a sensor system suitable for nondestructive inspection using ultrasonic waves.
  • the non-destructive inspection technique is a technique that can inspect the state of an object without destroying it.
  • the non-destructive inspection using ultrasonic waves is used in a wide range of fields because of its low cost and easy application.
  • ultrasonic crack inspection and wall thickness inspection are regularly performed to ensure the soundness of piping and containers. Since most pipes and containers are covered with a heat insulating material, for ultrasonic inspection, first remove the heat insulating material, manually press the ultrasonic probe against a predetermined inspection point, and then incubate the heat. It is necessary to restore the material. In addition, if the inspection location is high, scaffold assembly is required before and after the inspection.
  • Non-Patent Document 1 or Non-Patent Document 2 a method of attaching an ultrasonic sensor including a battery and a control radio wave transmitter / receiver in advance to an inspection point It has been known. By arranging a control server and a control radio wave transmitter in the plant, each ultrasonic sensor can be controlled from the control server at the time of inspection, and ultrasonic inspection at each inspection point can be automatically performed. . By attaching an ultrasonic sensor under the heat insulating material in advance, it becomes possible to ultrasonically inspect the pipes and containers without attaching or removing the heat insulating material. However, in this method, it is necessary to attach a battery and a control radio wave transmitter / receiver to the ultrasonic sensor, and periodic maintenance such as battery replacement is required. Further, there is a problem that the sensor itself is increased in size.
  • Non-Patent Document 3 describes an inspection method using an ultrasonic optical probe in which an electromagnetic ultrasonic transmitter and an optical fiber sensor are combined.
  • the ultrasonic resonance wave excited by the electromagnetic ultrasonic wave transmitter is detected by an optical fiber sensor.
  • Patent Document 1 a sensor installed in advance on the surface of a metal structure to be inspected, a transducer coil disposed on the outside of the sensor, and a sensor and the surface of the metal structure to be inspected.
  • a sensor system includes an electromagnetic interference (EMI) absorption layer and transmits and receives information to and from a sensor via a transducer coil and a reception coil by electromagnetic induction coupling with a transmission coil that constitutes a probe coil.
  • EMI electromagnetic interference
  • This method is a promising technique because the sensor unit is composed only of a sensor and a transducer coil and does not require a battery, so that the sensor unit is maintenance-free.
  • Nuclear power plants require periodic inspections of numerous pipes and containers.
  • an inspection method recommended by the Japan Society of Mechanical Engineers is defined, and the measurement pitch on the pipe surface is required to be 100 mm or less.
  • the sensors are attached to the pipe surface, so it is important that the sensors themselves are maintenance-free and compact.
  • the inspection method utilizing electromagnetic induction between coils described in Patent Document 1 the sensor unit is maintenance-free, and It is considered effective because it is compact.
  • the heat insulating material for plant piping is generally composed of a nonmetallic heat insulating portion having a heat insulating function and a metal exterior material for holding the heat insulating portion.
  • the heat retaining portion is made of a non-metallic member such as calcium silicate, and has a maximum thickness (diameter thickness) of 90 mm, for example.
  • the present invention provides a sensor system capable of ultrasonic inspection of pipes or containers that are temporarily covered with a thick covering member, for thinning, cracking, etc. without attaching or detaching the covering member.
  • a sensor system is a sensor system used for nondestructive inspection, and is electrically connected to the sensor attached to the surface to be inspected by the sensor and the first cable.
  • the sensor coil, the first electromagnetic wave shielding member disposed between the surface of the inspection object and the sensor coil, and the sensor coil are disposed so as to face each other through a gap, and can be coupled by electromagnetic induction. It has a sensor side coil and a probe side coil which is spaced apart from the sensor side coil and is electrically connected by a second cable.
  • the covering member that covers the inspection target is, for example, a heat insulating material or a member made of concrete.
  • a heat insulating material a product made of calcium silicate, a product made from rock wool, a product made from glass wool, a product made from amorphous water, a product made from rigid urethane foam, or the like is used.
  • the “exterior member” is a member that covers the outer surface of the covering member that covers the object to be inspected, and when the covering member is a heat insulating material, a metal exterior member or a resin exterior member is used. It is done.
  • the exterior member which covers the outer surface of the covering member which is a member made from concrete is not necessarily required. Therefore, when the exterior member is a metal exterior member, an electromagnetic wave shielding member (second electromagnetic wave shielding member) is provided between the surface of the metal exterior member and the probe side coil in order to prevent the influence of eddy current. On the other hand, when the exterior member is a resin exterior member or the cover member is a concrete member, an electromagnetic wave shielding member (second electromagnetic wave shield) is provided between the surface of the resin exterior member or the concrete cover member and the probe side coil. There is no need to provide a member.
  • the covering member is a heat insulating material and the exterior member that covers the outer surface of the heat insulating material is a metal exterior member will be described, but it goes without saying that the present invention is not limited to this. Embodiments of the present invention will be described below with reference to the drawings.
  • FIG. 1 is an overall schematic configuration diagram of a sensor system of Example 1 according to an embodiment of the present invention
  • FIG. 2 is a diagram showing shapes of various coils constituting the sensor system shown in FIG.
  • the sensor system 1 includes a sensor 20 attached to the surface of an inspection object 42, a sensor coil 21 electrically connected to the sensor 20 via a first cable 22, and an inspection object 42.
  • the first electromagnetic wave shielding member 23 is provided between the surface of the sensor and the sensor coil 21.
  • the sensor system 1 is arranged so as to face the sensor coil 21 with a gap and is coupled by electromagnetic induction, and is separated from the sensor side coil 3 and is electrically connected via the second cable 4.
  • the circuit element 6 is attached between the sensor side coils 3 and on the surface of the metal exterior member 41 without contacting the surface of the metal exterior member 41.
  • the sensor system 1 transmits and receives information to and from the sensor probe 32 including the transmission coil 31 and the reception coil 30.
  • gap between the sensor coil 21 and the sensor side coil 3 is made as narrow as possible.
  • the present invention is not limited to this, and the gap between the sensor coil 21 and the sensor side coil 3 may be widened. In other words, the gap between the sensor coil 21 and the sensor side coil 3 is arbitrarily set as appropriate.
  • the inspection object 42 in this embodiment is a metal plate made of carbon steel or stainless steel, and corresponds to piping and containers having a large curvature in plant inspection. Since the inspection object 42 becomes high temperature during plant operation, it is covered with a heat insulating material that is a covering member 40 made of calcium silicate (or made of rock wool, glass wool, amorphous water kneaded, hard urethane foam, etc.). ing. A metal exterior member 41 made of aluminum (or galvanized steel plate) is attached around the heat insulating material that is the covering member 40 in order to hold the heat insulating material.
  • the transmission coil 31 and the reception coil 30 constituting the sensor probe 32 are connected to a pulser / receiver (not shown) used for normal ultrasonic inspection and a PC (Personal Computer) (not shown) having an oscilloscope function. Further, to the heat insulating material that is the metal exterior member 41 and the covering member 40, the second cable 4 that electrically connects the probe side coil 2 and the sensor side coil 3 can be inserted into the sensor 20 side. And a through-hole 5 is formed. The sensor side coil 3 is arranged on the inner surface of the heat insulating material that is the covering member 40.
  • the probe-side coil 2 and the sensor-side coil 3 constituting the sensor system 1 are formed in a spiral shape or a spiral shape, for example, flat coils each formed with a copper wire of 0.05 mm. is there.
  • the receiving coil 30 constituting the sensor probe 32 is arranged inside the transmitting coil 31 in a plan view and is formed in a spiral shape or a spiral shape.
  • the receiving coil 30 and the transmitting coil 31 are each made of, for example, 0.05 mm copper. It is a flat coil formed of wires.
  • FIG. 3 is a diagram showing an electric circuit configuration of the sensor system shown in FIG.
  • the size and the number of turns of the probe coil 2 and the sensor coil 3 constituting the sensor system 1 and the reception coil 30 and the transmission coil 31 constituting the sensor probe 32 are determined by the electric circuit model shown in FIG.
  • This electric circuit model is derived for the first time in the present invention in consideration of the components shown in FIG.
  • the resistance R, capacitance C, and inductance L of each coil change.
  • the mutual inductance M between coils changes from the size and relative position of each coil.
  • the coil size is the output voltage V 3 to the input voltages V 1 becomes optimal, determines the number of turns.
  • the pipe thinning inspection requires a measurement pitch of 100 mm or less.
  • the outer diameters of the probe side coil 2, the sensor side coil 3, and the sensor coil 21 constituting the sensor system 1 are set to 30 mm.
  • the outer diameters of the transmission coil 31 and the reception coil 30 constituting the sensor probe 32 are set to 53 mm and 46 mm, respectively, in consideration of the SN ratio and interference of adjacent coils.
  • the outer diameter dimensions of these coils are not limited to these dimensions, and are appropriately set according to the shape of the inspection object 42, the required S / N ratio, and the like.
  • a circuit element 6 is attached between the probe side coil 2 and the sensor side coil 3.
  • the circuit element 6 is composed of a capacitor and / or a resistor, for example. Since the circuit element 6 is generally difficult to use in a high temperature environment, in this embodiment, the circuit element 6 is not easily affected by the temperature of the inspection object 42 that is at a high temperature during plant operation. Is installed. In other words, the circuit element 6 is installed on the surface of the metal exterior member 41 without contacting the surface of the metal exterior member 41.
  • An electrical signal corresponding to a transmission wave generated by a pulser (not shown) is converted into a magnetic field by electromagnetic induction in the transmission coil 31 constituting the sensor probe 32 and received by the probe side coil 2 constituting the sensor system 1. Is done.
  • the second electromagnetic wave blocking member 7 is installed between the probe side coil 2 and the metal exterior member 41. is doing.
  • the electromagnetic wave shielding member for example, an electromagnetic wave shielding sheet of EMI Absorber ABASeries manufactured by 3M Corporation of the United States is used.
  • the thickness of the electromagnetic wave shielding sheet is 0.2 to 0.5 mm in order to sufficiently exhibit the shielding performance, but a thicker one may be used.
  • An electrical signal received via the magnetic field by the probe side coil 2 constituting the sensor system 1 is transmitted to the sensor side coil 3 via the second cable 4. This electrical signal is transmitted to the sensor coil 21 via a magnetic field formed by electromagnetic induction in the sensor side coil 3.
  • a first electromagnetic wave shielding member 23 is installed between the sensor coil 21 and the inspection object 42 in order to suppress eddy currents formed on the surface of the inspection object 42.
  • the material, thickness, etc. may be the same as those of the second electromagnetic wave shielding member 7.
  • a piezoelectric element is used for the sensor 20.
  • the size of the piezoelectric element is determined by the frequency of the ultrasonic wave used.
  • the outer diameter is 10 mm and the thickness is 0.6 mm.
  • As a material of the piezoelectric element to be used for example, NCE51 manufactured by Denmark Nolia Corporation is used.
  • the sensor 20 since the ultrasonic wave is generated, the sensor 20 is a piezoelectric element, but the present invention is not necessarily limited to this.
  • the sensor 20 may be configured to use a strain meter (strain gauge or strain sensor), an electromagnetic sensor, an accelerometer, a thermal sensor, or the like. Since the sensor 20 is electrically connected to the sensor coil 21 by the first cable 22, the sensor 20 vibrates due to the electrical signal received by the sensor coil 21, and ultrasonic waves are transmitted into the inspection object 42. .
  • the ultrasonic wave transmitted into the inspection object 42 is reflected by a crack or bottom surface of the inspection object 42, and the ultrasonic wave received by the sensor 20 generates an electric signal in the sensor 20 by the piezoelectric effect.
  • This electric signal is transmitted to the probe side coil 2 via the sensor coil 21, the sensor side coil 3, and the second cable 4.
  • An electrical signal converted into a magnetic field by electromagnetic induction in the probe side coil 2 is received by the receiving coil 30 constituting the sensor probe 32 and displayed on an oscilloscope on the PC via a receiver (not shown).
  • the heat insulating material and the metal made of the covering member 40 are used.
  • the ultrasonic inspection of the inspection object 42 can be performed without attaching / detaching the exterior member 41.
  • an ultrasonic inspection can be performed without assembling a scaffold by attaching the long probe for the high place inspection to the sensor probe 32. Since the probe-side coil 2 is disposed on the metal exterior member 41 via the second electromagnetic wave shielding member 7 corresponding to the position where the sensor 20 is previously attached to the inspection object 42, the inspector can easily visually recognize it. Since this is possible, it is not necessary to carefully control the ultrasonic probe (sensor probe 32) for each inspection point, and the inspection time can be shortened. As described above, since energy is supplied to the sensor 20 from the sensor probe 32 in a non-contact manner through a magnetic field, the sensor 20 does not require an energy source such as a battery, and the sensor 20 is compact and maintenance-free.
  • the sensor 20 and the sensor coil 21 attached to the inspection object 42, and the sensor side coil 3, the second cable 4, and the probe side coil 2 attached to the heat insulating material that is the covering member 40 are mechanically Since it is not necessary to couple, when the crack or thinning is detected by the sensor 20, the second cable 4 is also used when removing the heat insulating material as the covering member 40 and shifting to the manual detailed inspection.
  • the heat insulating material can be removed without cutting.
  • the sensor-side coil 3 and the sensor coil 21 are arranged close to each other, that is, by narrowing the gap between the sensor coil 21 and the sensor-side coil 3, the measurement pitch is narrow as in pipe thinning inspection.
  • the ultrasonic inspection can be performed without the sensor side coil 3 receiving a signal from the adjacent sensor coil 21.
  • FIG. 4 shows a comparison diagram of a received waveform obtained by a known technique and a received waveform obtained by the sensor system 1 according to the present embodiment.
  • FIG. 4 shows the experimental results when a calcium silicate heat insulating material is used as the heat insulating material that is the covering member 40 and its thickness is 30 mm.
  • the graph shown in the upper part of FIG. 4 (the uppermost part in the drawing) is based on a known technique disclosed in Non-Patent Document 4 (method of performing non-contact ultrasonic inspection using electromagnetic induction between coils).
  • the obtained reception waveform bottom surface echo
  • the result in a state in which the metal exterior member for holding the heat insulating material as the covering member 40 is not installed is shown.
  • Non-Patent Document 4 (intermediate part toward the drawing) is a known technique disclosed in Non-Patent Document 4 (method of performing non-contact ultrasonic inspection using electromagnetic induction between coils). ) Shows the received waveform (bottom echo), and shows the result in a state where a metal exterior member for holding the heat insulating material as the covering member 40 is installed. Furthermore, the graph shown in the lower part of FIG. 4 (the lowermost part toward the drawing) shows the received waveform (bottom echo) obtained by the sensor system 1 of this embodiment, and holds the heat insulating material that is the covering member 40. The result in the state which installed the metal exterior member 41 for doing is shown. As can be seen from FIG.
  • the received waveform is satisfactorily obtained even when the members are installed.
  • the sensor system 1 of the present embodiment has the second electromagnetic wave shielding member 7 disposed between the surface of the metal exterior member 41 and the probe-side coil 2, so that the surface of the metal exterior member 41 is The influence of the eddy current generated can be prevented, and the sensor side coil 3 and the probe side coil 2 which are arranged so as to face the sensor coil 21 via a gap and are coupled by electromagnetic induction are electrically connected via the second cable 4.
  • the case where the metal exterior member 41 is used as the exterior member that covers the outer surface of the heat insulating material that is the covering member 40 is not limited to this.
  • the second electromagnetic wave shielding member 7 disposed between the surface of the resin exterior member and the probe side coil 2 is not necessary, and the probe side coil 2 is made of resin. It is good also as a structure distribute
  • the circuit element 6 is attached between the probe side coil 2 and the sensor side coil 3 on the surface of the metal exterior member 41 without contacting the surface of the metal exterior member 41.
  • the electric circuit shown in FIG. 3 described above can be designed only by the number of turns of the coil, and therefore the circuit element 6 may be omitted. .
  • the probe side coil 2 and the sensor probe 32 are coupled via an electromagnetic induction phenomenon and there is no mechanical connection portion, a long bar for inspecting high places is attached to the sensor probe 32. Therefore, even when the inspection object is located at a high place, the ultrasonic inspection can be performed without assembling the scaffold.
  • the probe-side coil 2 is arranged on the metal exterior member 41 via the second electromagnetic wave shielding member 7 corresponding to the position where the sensor 20 is previously attached to the inspection object 42.
  • the inspector can easily visually recognize, it is not necessary to carefully control the ultrasonic probe (sensor probe 32) for each inspection point, and the inspection time can be shortened. Further, since energy is supplied to the sensor 20 from the sensor probe 32 through electromagnetic induction, it is not necessary to provide the battery with the sensor 20, and the sensor 20 can be compact and maintenance-free. Moreover, according to the present Example, since the sensor coil 21 and the sensor side coil 3 can be arrange
  • FIG. 5 is an overall schematic configuration diagram of a sensor system of Example 2 according to another example of the present invention.
  • the heat insulating material that is the covering member has an independent two-layer structure and covers the first heat insulating material (inner layer side heat insulating material) and the first heat insulating material (inner layer side heat insulating material).
  • the second intermediate coil arranged on the second heat insulating material (outer layer side heat insulating material) and the first heat insulating material (inner layer side heat insulating material) arranged on the outer surface.
  • the first intermediate coil and the sensor side coil are electrically connected by a third cable, and the second intermediate coil and the probe side coil are electrically connected by a second cable.
  • the sensor system 1 a includes a sensor 20 attached to the surface of the inspection target 42, a sensor coil 21 electrically connected to the sensor 20 via the first cable 22, and the inspection target 42.
  • the first electromagnetic wave shielding member 23 is provided between the surface of the sensor and the sensor coil 21.
  • the sensor system 1a is arranged so as to face the sensor coil 21 via a gap and is coupled by electromagnetic induction, and is separated from the sensor side coil 3 and is electrically connected via the third cable 10.
  • First intermediate coil 8 connected to each other, second intermediate coil 9 arranged to face first intermediate coil 8 through a gap and coupled by electromagnetic induction, and second intermediate coil 9
  • a probe-side coil 2 that is spaced apart and electrically connected via a second cable 4 is provided.
  • the sensor system 1 a transmits and receives information to and from the sensor probe 32 including the transmission coil 31 and the reception coil 30.
  • gap between the sensor coil 21 and the sensor side coil 3 is made as narrow as possible.
  • the present invention is not limited to this, and the gap between the sensor coil 21 and the sensor side coil 3 may be widened. In other words, the gap between the sensor coil 21 and the sensor side coil 3 is arbitrarily set as appropriate.
  • the heat insulating material as the covering member has an independent two-layer structure, and includes the first covering member 40a (inner layer side heat insulating material) and the first covering. It is covered with a second covering member 40b (outer layer side heat insulating material) that covers the member 40a (inner layer side heat insulating material).
  • the second covering member 40b (outer layer side heat insulating material) has a first metal outer member 41a (outer layer side outer member) as an outer member for maintaining its shape.
  • the first covering member 40a (inner layer side heat insulating material) is also covered with a second metal outer member 41b (inner layer side outer member) as an outer member for the purpose of shape retention and the like.
  • the sensor system 1a includes a second electromagnetic wave shielding member 7 disposed between the surface of the first metal exterior member 41a (outer layer side exterior member) and the probe side coil 2, and a second metal exterior. It has the 3rd electromagnetic wave shielding member 11 distribute
  • the first metal exterior member 41a (outer layer side exterior member), the second coating member 40b (outer layer side heat insulating material), the second metal exterior member 41b (inner layer side exterior member), and the first coating
  • the member 40 a (inner layer side heat insulating material) includes the second cable 4 that electrically connects the probe side coil 2 and the second intermediate coil 9, and the first intermediate coil 8 and the sensor side coil 3.
  • a through hole 5 penetrating to the sensor 20 side is formed so that the third cable 10 to be electrically connected can be inserted.
  • the sensor side coil 3 is disposed on the inner surface of the first covering member 40a (inner layer side heat insulating material), and the second intermediate coil 9 is provided on the inner surface of the second covering member 40b (outer layer side heat insulating material). It is arranged in.
  • An electrical signal corresponding to a transmission wave generated by a pulsar (not shown) connected to the sensor probe 32 is converted into a magnetic field by electromagnetic induction in the transmission coil 31 constituting the sensor probe 32, thereby constituting the sensor system 1a.
  • the electric signal transmitted to the second intermediate coil 9 via the second cable 4 is converted into a magnetic field by electromagnetic induction in the second intermediate coil 9, and is transmitted to the first intermediate coil 8 via the magnetic field.
  • the electrical signal transmitted to the sensor side coil 3 via the third cable 10 is converted into a magnetic field by electromagnetic induction in the sensor side coil 3 and is received by the sensor coil 21 via the magnetic field.
  • the sensor 20 Since the sensor 20 is electrically connected to the sensor coil 21 via the first cable 22, the sensor 20 vibrates due to the electrical signal received by the sensor coil 21, and ultrasonic waves are transmitted into the inspection object 42.
  • the structure of the sensor 20 is the same as that in the first embodiment.
  • the ultrasonic wave transmitted into the inspection object 42 is reflected by the crack or bottom of the inspection object 42, and the ultrasonic wave received by the sensor 20 causes the sensor 20 to generate an electric signal due to the piezoelectric effect.
  • This electrical signal is transmitted to the first intermediate coil 8 via the sensor coil 21, the sensor side coil 3, and the third cable 10.
  • the electrical signal transmitted to the first intermediate coil 8 is received by the receiving coil 30 constituting the sensor probe 32 via the second intermediate coil 9, the second cable 4, and the probe-side coil 2.
  • This electrical signal is displayed on an oscilloscope on the PC via a receiver (not shown), and the inspector can determine the presence / absence of a crack in the inspection object 42 and the amount of thinning from the waveform.
  • the first metal exterior member 41a outer layer side exterior member
  • the second coating member 40b outer layer side heat insulating material
  • the second metal exterior member 41b inner layer side exterior member
  • the first The ultrasonic inspection of the inspection object 42 can be performed without attaching / detaching the one covering member 40a (inner layer side heat insulating material).
  • the first covering member 40a (inner layer side heat insulating material) and the second covering member 40b (outer layer side heat insulating material) can be detached independently without cutting the fourth and third cables 10.
  • the heat insulating material that is the covering member has an independent two-layer structure, and covers the first covering member 40a (inner layer side heat insulating material) and the first covering member 40a (inner layer side heat insulating material).
  • the present invention is not limited to this, and the case where the heat insulating material that is the covering member has an independent structure of three or more layers.
  • the sensor system 1a can be applied. In this case, an intermediate coil corresponding to the number of independent heat insulating material layers and a cable for electrically connecting the coils may be installed.
  • FIG. 6 is an overall schematic configuration diagram showing a modification of the sensor system shown in FIG.
  • the sensor system 1 b includes a sensor 20 attached to the surface of the inspection object 42, a sensor coil 21 electrically connected to the sensor 20 via the first cable 22, and the inspection object 42.
  • the first electromagnetic wave shielding member 23 is provided between the surface of the sensor and the sensor coil 21.
  • the sensor system 1b includes a second intermediate coil 9 that is spaced apart from the sensor coil 21 and is coupled to the inner surface of the second covering member 40b (outer layer side heat insulating material) by electromagnetic induction.
  • the probe side coil 2 that is spaced apart from the intermediate coil 9 and is electrically connected via the second cable 4, and the surface of the first metal exterior member 41 a (outer layer side exterior member) and the probe side coil 2
  • the 2nd electromagnetic wave shielding member 7 distribute
  • the sensor system 1 b transmits and receives information to and from the sensor probe 32 including the transmission coil 31 and the reception coil 30.
  • the heat insulating material that is the covering member has an independent two-layer structure, and the first covering member 40a (inner layer side heat insulating material).
  • the thickness of the first covering member 40a (inner layer side heat insulating material) is smaller than the thickness of the second covering member 40b (outer layer side heat insulating material).
  • the 2nd metal exterior member 41b inner layer side exterior member for hold
  • coated member 40a inner layer side heat insulating material
  • the outer surface of one covering member 40a (inner layer side heat insulating material) and the inner surface of the second covering member 40b (outer layer side heat insulating material) are in direct contact with each other.
  • the first metal exterior member 41a (outer layer side exterior member), the second covering member 40b (outer layer side heat insulating material), and the first covering member 40a (inner layer side heat insulating material) include the probe side coil 2.
  • a through-hole 5 penetrating to the sensor 20 side is formed so that the second cable 4 that electrically connects the second intermediate coil 9 can be inserted.
  • the sensor system 1 b includes a sensor-side coil 3, a first intermediate coil 8, and a third cable that electrically connects the sensor-side coil 3 and the first intermediate coil 8. 10 and the third electromagnetic wave shielding member 11 are not provided. Therefore, an electrical signal corresponding to a transmission wave generated by a pulser (not shown) connected to the sensor probe 32 is converted into a magnetic field by electromagnetic induction in the transmission coil 31 constituting the sensor probe 32, and the sensor system 1b. Is received by the probe-side coil 2. The electric signal transmitted to the second intermediate coil 9 via the second cable 4 is converted into a magnetic field by electromagnetic induction in the second intermediate coil 9 and received by the sensor coil 21 via the magnetic field. .
  • the sensor 20 Since the sensor 20 is electrically connected to the sensor coil 21 via the first cable 22, the sensor 20 vibrates due to the electrical signal received by the sensor coil 21, and ultrasonic waves are transmitted into the inspection object 42.
  • the structure of the sensor 20 is the same as that in the first embodiment.
  • the ultrasonic wave transmitted into the inspection object 42 is reflected by the crack or bottom of the inspection object 42, and the ultrasonic wave received by the sensor 20 causes the sensor 20 to generate an electric signal due to the piezoelectric effect.
  • This electric signal is transmitted to the probe side coil 2 via the sensor coil 21, the second intermediate coil 9, and the second cable 4.
  • the electrical signal transmitted to the probe side coil 2 is received by the receiving coil 30 constituting the sensor probe 32 by electromagnetic induction.
  • This electrical signal is displayed on an oscilloscope on a PC via a receiver (not shown), and the inspector can determine the presence / absence of a crack in the inspection object 42 and the thinning amount from the waveform.
  • the first metal exterior member 41a (outer layer side exterior member), the second covering member 40b (outer layer side heat insulating material), and the first covering member 40a (inner layer side heat insulating material) are not attached or detached. Ultrasonography can be performed.
  • first covering member 40a inner layer side heat insulating material
  • second covering member 40b that is the outer covering member. Workability is improved by thickening the (outer layer side heat insulating material).
  • the first metal exterior member 41a outer layer side exterior member as an exterior member covering the outer surface of the second covering member 40b (outer layer side heat insulating material)
  • the first metal exterior member 41a outer layer side exterior member
  • the 2nd metal exterior member 41b inner layer side exterior member
  • the 2nd metal exterior member 41b outer layer side exterior member as an exterior member which covers the outer surface of 1 covering member 40a (inner layer side heat insulating material) was shown was shown, it is not restricted to this.
  • the resin exterior member 41a outer layer side exterior member
  • the second metal exterior member 41b inner layer side exterior member
  • the resin exterior member A second electromagnetic wave shielding member 7 disposed between the surface and the probe side coil 2, and a surface of the second electromagnetic wave shielding member 7 disposed between the surface of the resin exterior member and the probe side coil 2.
  • the third electromagnetic wave blocking member 11 disposed between the first intermediate coil 8 and the first intermediate coil 8 is not required, the probe side coil 2 is directly disposed on the surface of the resin exterior member, and the first intermediate coil 8 is formed of the resin. It is good also as a structure distribute
  • the first metal exterior member 41a (outer layer side exterior member) is used as an exterior member that covers the outer surface of the second covering member 40b (outer layer side heat insulating material).
  • the present invention is not limited to this.
  • the second disposed between the surface of the resin exterior member and the probe side coil 2 is used.
  • the electromagnetic wave shielding member 7 becomes unnecessary, and the probe side coil 2 may be arranged directly on the surface of the resin exterior member.
  • the covering member is not attached and detached. It is possible to perform a sound wave inspection.
  • coated member 40a inner layer side heat insulating material which is an inner side coating member is made thin
  • coated member 40b outer layer side heat insulating material which is an outer side coating member. It is possible to improve the workability by increasing the thickness.
  • FIG. 7 is an overall schematic configuration diagram of a sensor system of Example 3 according to another example of the present invention.
  • the inspection object is a metal cylindrical pipe, and a plurality of sensor systems described in the first embodiment are arranged on the surface of the cylindrical pipe so as to be spaced apart at a predetermined interval in the circumferential direction.
  • the configuration is different from the first embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals.
  • a fluid (water or steam) flowing in a cylindrical pipe may wear the pipe components and cause thinning.
  • the Japan Society of Mechanical Engineers recommends a pipe thinning inspection method, and among them, the measurement pitch is required to be 100 mm or less. This embodiment assumes such an inspection object.
  • the sensor system of this embodiment includes a sensor 20 attached to the surface of a cylindrical pipe 43 to be inspected, and a sensor coil 22 electrically connected to the sensor 20 by a first cable 22 (see FIG. 1).
  • the first electromagnetic wave shielding member 23 (see FIG. 1) disposed between the surface of the pipe 43 to be inspected and the sensor coil 21, and the sensor coil 21 disposed so as to face each other through a gap and coupled by electromagnetic induction Sensor side coil 3, probe side coil 2 spaced apart from the sensor side coil 3 and electrically connected via the second cable 4, and the surface of the metal exterior member 41 as the exterior member and the probe
  • the sensor system 1 including the second electromagnetic wave blocking member 7 disposed between the side coil 2 is placed at a predetermined interval along the circumferential direction of the pipe 43 to be inspected (45 ° around the axis of the pipe 43).
  • These eight sensor systems 1 transmit / receive information to / from a sensor probe 32 (see FIG. 1) that includes a transmission coil 31 and a reception coil 30, respectively.
  • a sensor probe 32 see FIG. 1 that includes a transmission coil 31 and a reception coil 30, respectively.
  • gap between the sensor coil 21 and the sensor side coil 3 is made as narrow as possible.
  • the present invention is not limited to this, and the gap between the sensor coil 21 and the sensor side coil 3 may be widened. In other words, the gap between the sensor coil 21 and the sensor side coil 3 is arbitrarily set as appropriate.
  • a heat insulating material 44 (covering member) made of calcium silicate (or made of rock wool, glass wool, amorphous water kneaded, hard urethane foam, etc.) is used.
  • the outer peripheral surface is covered.
  • the outer peripheral surface of the heat insulating material 44 (cover member) is covered with a metal exterior member 41 made of aluminum (or galvanized steel plate).
  • the sensor side coil 3 is attached to the inner surface of the heat insulating material 44 (covering member), and the probe side coil 2 is attached to the second electromagnetic wave shielding member 7 attached to the outer peripheral surface of the metal exterior member 41. Yes.
  • the configuration is the same as that described in the first embodiment.
  • the second cable 4 that electrically connects the probe side coil 2 and the sensor side coil 3 can be inserted into the metal exterior member 41 and the heat insulating material 44 (covering member) to the sensor 20 side. And a through-hole 5 is formed.
  • a circuit element 6 (see FIG. 1) is installed in the second cable 4 in order to facilitate electric circuit design.
  • FIG. 8 is a view showing a method of incorporating the sensor system shown in FIG. 7 into a heat insulating material (covering member).
  • the sensor side coil 3 is attached to the inner surface of the heat insulating material 44 (covering member), and the probe side coil 2 is attached to the outer peripheral surface of the metal exterior member 41. Affixed on top.
  • the probe side coil 2 and the sensor side coil 3 are electrically connected by the 2nd cable 4 penetrated by the through-hole 5,
  • the sensor 20 on the piping 43 which is a test object, the sensor coil 22, and There is no need to be mechanically coupled. Therefore, as shown in FIG.
  • the heat insulating material 44 (covering member), the metal exterior member 41, the sensor side coil 3, the probe side coil 2, and the probe side coil 2 and the sensor side coil 3 are electrically connected.
  • the second cable 4 can be manufactured in an integral structure. This eliminates the need for wiring and the like associated with local installation, and improves workability. In the pipe thinning inspection, it is necessary to remove the heat insulating material 44 (covering member) and move to detailed measurement where measurement is performed at a higher density measurement pitch at the place where signs of thinning are seen. However, in this embodiment, as shown in FIG. 8, the heat insulating material 44 (covering member) can be removed only at necessary places.
  • the sensor system 1 is provided with eight sensor systems 1 that are spaced apart at a predetermined interval (a 45 ° interval around the axis of the pipe 43) along the circumferential direction of the pipe 43 to be inspected.
  • a predetermined interval a 45 ° interval around the axis of the pipe 43
  • the number of sensor systems 1 arranged in the circumferential direction of the pipe 43 is not limited to this, and a desired number of sensor systems 1 are arranged as appropriate within a range satisfying a required measurement pitch.
  • the present embodiment in addition to the effects of the first embodiment, it is possible to improve workability when installing a plurality of sensor systems 1 on a metal cylindrical pipe of a nuclear power plant or a thermal power plant. It becomes. Further, according to the present embodiment, it is possible to remove the heat insulating material (covering member) only at a necessary portion at the time of shifting to detailed measurement for a portion where a sign of thinning is seen.
  • FIG. 9 is an overall schematic configuration diagram of a sensor system of Example 4 according to another embodiment of the present invention
  • FIG. 10 shows the arrangement of probe-side coils on the metal exterior member of the sensor system shown in FIG. FIG.
  • the object to be inspected is a metal cylindrical pipe, and is electrically connected by a sensor and the sensor and the first cable so as to be spaced apart from the surface of the cylindrical pipe at a predetermined interval in the circumferential direction.
  • the fourth cable is different from the first embodiment in that the fourth cable is routed in the circumferential direction and connected to the probe-side coil via a plurality of fourth cables and one second cable.
  • the same components as those in the first embodiment are denoted by the same reference numerals.
  • a pipe thinning inspection in a nuclear power plant or a thermal power plant is assumed as in the third embodiment. Depending on the laying position of the pipe 43 to be inspected, as shown in FIG.
  • the fourth cable 12 is arranged in the circumferential direction as shown in FIG.
  • the probe-side coil 2 is arranged at a position (a right side of the pipe 43 in FIG. 9) where a sufficient space can be secured outside the pipe 43 to be inspected.
  • the fourth cable 12 is represented as if it was one, but actually, the fourth cable 12 is a sensor disposed at a position corresponding to the probe-side coil 2.
  • the sensor system 1c of the present embodiment has a predetermined interval along the circumferential direction on the surface of a metal cylindrical pipe 43 to be inspected (45 around the axis of the pipe 43). 8 sensors 20 separated and collected at intervals of °.
  • the sensors 20 arranged at the other seven locations other than the sensor 20 arranged at the position corresponding to the probe coil 2 are electrically connected to the sensor 20 by the first cable 22 (see FIG. 1), respectively.
  • the sensor-side coil 3 is arranged and coupled by electromagnetic induction.
  • each fourth cable 12 is connected to the sensor-side coil 3 and the other end is connected to the probe-side coil 2.
  • the sensor 20 (on the right side of the pipe 43 in FIG. 9) arranged at a position corresponding to the probe side coil 2 is electrically connected to the sensor 20 by the first cable 22 (see FIG. 1).
  • a first electromagnetic wave shielding member 23 (see FIG. 1) disposed between the surface of the pipe 43 to be inspected and the sensor coil 21, and is disposed so as to face the sensor coil 21 with a gap therebetween by electromagnetic induction.
  • the sensor side coil 3 to be coupled, the probe side coil 2 spaced apart from the sensor side coil 3 and electrically connected via the second cable 4, and the surface of the metal exterior member 41 as the exterior member
  • a second electromagnetic wave blocking member 7 disposed between the probe side coil 2 and the probe side coil 2 is provided.
  • a heat insulating material 44 (covering member) made of calcium silicate (or made of rock wool, glass wool, amorphous water kneaded, hard urethane foam, etc.) is used.
  • the outer peripheral surface is covered.
  • the outer peripheral surface of the heat insulating material 44 (cover member) is covered with a metal exterior member 41 made of aluminum (or galvanized steel plate).
  • the sensor side coil 3 arranged at eight places is attached to the inner surface of the heat insulating material 44 (covering member), and the probe side coil 2 arranged at one place is attached to the outer peripheral face of the metal exterior member 41. It is affixed on the second electromagnetic wave shielding member 7 formed.
  • a second cable 4 and seven fourth cables 12 that electrically connect the probe-side coil 2 and the sensor-side coil 3 can be inserted into the metal exterior member 41 and the heat insulating material 44 (covering member). Thus, a through-hole 5 that penetrates to the sensor 20 side is formed.
  • FIG. 10 is a view of the probe side coil 2 in FIG. 9 as viewed from the side.
  • eight probe-side coils 2 are attached to the second electromagnetic wave shielding member 7 (not shown) on the metal exterior member 41 of the pipe 43 to be inspected.
  • the eight probe-side coils 2 are formed in a spiral shape or a spiral shape, and each of the sensor-side coils 3 is arranged at eight locations with seven fourth cables 12 and one second cable 4. And are electrically connected.
  • the arrangement pitch of the eight probe side coils 2 shown in FIG. 10 is desirably 1.5 times or more the outer diameter of the probe side coil 2 in order to avoid the influence from the adjacent probe side coils 2.
  • each probe-side coil 2 can be easily accessed as compared with the third embodiment, so that the inspection time can be shortened. For example, when a sensor probe is mounted on a drone or the like and the probe-side coil 2 is accessed, it is not necessary to move the entire circumference of the pipe 43 to be inspected. In addition, even when a long probe for inspection at high places is attached to the sensor probe 32 (see FIG. 1) for inspection at high places, the probe-side coil 2 is integrated into one place, so that inspection can be performed easily. Is possible.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

仮に厚肉の被覆部材で覆われた配管或いは容器の減肉、き裂等を、被覆部材を着脱することなく超音波検査可能なセンサシステムを提供する。非破壊検査に用いられるセンサシステム(1)は、検査対象(42)の表面に取り付けられたセンサ(20)と、センサ(20)と第1のケーブル(22)により電気的に接続されるセンサコイル(21)と、検査対象(42)の表面とセンサコイル(21)との間に配される第1の電磁波遮断部材(23)と、センサコイル(21)に空隙を介して対向するよう配され、電磁誘導により結合し得るセンサ側コイル(3)と、センサ側コイル(3)と離間し配され、第2のケーブル(4)により電気的に接続されるプローブ側コイル(2)と、を有する。

Description

センサシステム
 本発明は超音波を用いた非破壊検査に好適なセンサシステムに関する。
 非破壊検査技術は対象物を破壊することなくその状態を検査できる技術であり、特に超音波を用いた非破壊検査は、低コスト、適用が容易等の理由から幅広い分野で用いられている。 
 原子力プラントや火力プラントなどでは、配管や容器等の健全性を担保するため、超音波によるき裂検査や肉厚検査が定期的に行われている。大部分の配管や容器は保温材で覆われているため、超音波検査のためには、まず保温材を取り外し、手動で超音波プローブを予め決められた検査点に押しつけて検査し、その後保温材を復旧する必要がある。また、検査箇所が高所であれば検査の前後で足場組み立てが必要となる。 
 特に原子力プラントでは、多数の配管、容器を定期検査毎に検査することが規定されており、多大な労力と時間を要している。また、上述の手動による検査では、超音波プローブの押しつけ角等により、超音波プローブに受信される信号が変化するため、検査点毎に超音波プローブを注意深く制御する必要がある。
 このような課題を解決するため、例えば、非特許文献1又は非特許文献2に記載されるように、検査点に予めバッテリと制御用の電波送受信機を備えた超音波センサを取り付けておく方法が知られている。プラント内に制御用のサーバと制御用電波発信機を配置しておくことで、検査時に制御用サーバから各超音波センサを制御し、各検査点における超音波検査を自動的に行うことができる。保温材下に予め超音波センサを取り付けておくことで、保温材の着脱なしに配管、容器を超音波検査することが可能となる。しかしながら本方法では、超音波センサにバッテリおよび制御用の電波送受信機を取り付ける必要があり、バッテリ交換などの定期的なメンテナンスが必要となる。また、センサ自身が大型化するといった課題がある。
 非特許文献3には、電磁超音波発信子と光ファイバセンサを組み合わせた超音波光プローブによる検査方法が記載されている。電磁超音波発信子により励起した超音波の共振波を光ファイバセンサにより検出する。電磁超音波発振子と光ファイバセンサを予め保温材下の検査点に設置しておくことにより、保温材の着脱なしで配管の超音波検査が可能である。しかしながら、各電磁超音波発振子と光ファイバセンサから電源線や信号線を引き出すため、多数の配線が必要となり、断線のリスクが高くなる。また、本センサにより配管にき裂や減肉が検知された場合、保温材を取り外して手動による詳細検査に移行する必要があるが、本センサの電源線や信号線は保温材を通して外側へ引き出されているため、保温材取り外しには電源線や信号線を切断する必要があり、詳細検査が必要ない部分のセンサまで使用できなくなる課題がある。
 また、特許文献1には、検査対象である金属構造の表面に予め設置されたセンサ、センサの外側に配されるトランスデューサコイル、及びセンサと検査対象である金属構造の表面の間に配される電磁干渉(Electromagnetic Interference :EMI)吸収層を備え、プローブコイルを構成する送信コイルと電磁誘導結合によりトランスデューサコイル及び受信コイルを介してセンサと情報の送受信を行うセンサシステムが開示されている。本方法では、センサ部はセンサとトランスデューサコイルのみで構成され、バッテリが不要であるため、センサ部がメンテナンスフリーとなるため有望な技術である。
GB2523266A公報
S.Jang, et.al, Structural health monitoring of a cable-stayed bridge using smart sensor technology: Deployment and evaluation,Smart Structures and Systems, Vlo.6, No.5-6 (2010) pp.439-459 F.Cegla, J.Allin, Ultrasonic monitoring of pipeline wall thickness with autonomous, wireless sensor networks, Oil and Gas Pilelines: Integrity and Safety Handbook (2015) 山家, 高橋, 阿彦「火力発電プラントにおける配管減肉の測定技術」東芝レビューVol.63, No.4 (2008) pp.41-44 C.Zhong, A.Croxford, P.Wilcox, Investigation of Inductively Coupled Ultrasonic Transducer System for NDE, IEEE transactions on ultrasonics, Vol.60, No.6 (2013) pp.1115-1125
 原子力プラントでは多数の配管、容器の定期的な検査が要求されている。特に配管減肉検査では、日本機械学会により推奨される検査方法が定められており、その中で配管表面での計測ピッチが100mm以下であることが要求されている。本規格に従うと、配管表面に多数のセンサが取り付けられる事になるため、センサ自身がメンテナンスフリーであること、コンパクトであることが重要となる。非特許文献1、非特許文献2、及び非特許文献3に開示される検査方法に比べ、特許文献1に記載のコイル間の電磁誘導を活用する検査方法では、センサ部がメンテナンスフリー、且つ、コンパクトであるため有効であると考えられる。 
 一方で、プラント配管の保温材は、保温機能を有する非金属製の保温部と、保温部を保持するための金属製外装材で構成されることが一般的である。保温部はケイ酸カルシウム等の非金属部材で構成され、その肉厚(径方向の厚さ)は例えば最大で90mmを有する。この場合、特許文献1に記載に記載される構成では、センサの外側に配されるトランスデューサコイルの外径を90mm~100mmにする必要があり、上述の計測ピッチが100mm以下とする規格には到底対応できない。すなわち、特許文献1の構成では、隣り合うトランスデューサコイルからの信号を受信するという不具合が生じる虞がある。 
 そこで、本発明は、仮に厚肉の被覆部材で覆われた配管或いは容器の減肉、き裂等を、被覆部材を着脱することなく超音波検査可能なセンサシステムを提供する。
 上記課題を解決するため、本発明に係るセンサシステムは、非破壊検査に用いられるセンサシステムであって、検査対象の表面に取り付けられたセンサと、前記センサと第1のケーブルにより電気的に接続されるセンサコイルと、前記検査対象の表面と前記センサコイルとの間に配される第1の電磁波遮断部材と、前記センサコイルに空隙を介して対向するよう配され、電磁誘導により結合し得るセンサ側コイルと、前記センサ側コイルと離間し配され、第2のケーブルにより電気的に接続されるプローブ側コイルと、を有することを特徴とする。
 本発明によれば、仮に厚肉の被覆部材で覆われた配管或いは容器の減肉、き裂等を、被覆部材を着脱することなく超音波検査可能なセンサシステムを提供することが可能となる。 
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施例に係る実施例1のセンサシステムの全体概略構成図である。 図1に示すセンサシステムを構成する各種コイルの形状を示す図である。 図1に示すセンサシステムの電気回路構成を示す図である。 公知技術で得られた受信波形と実施例1によるセンサシステムで得られた受信波形の比較図である。 本発明の他の実施例に係る実施例2のセンサシステムの全体概略構成図である。 図5に示すセンサシステムの変形例を示す全体概略構成図である。 本発明の他の実施例に係る実施例3のセンサシステムの全体概略構成図である。 図7に示すセンサシステムの保温材(被覆部材)への組み込み方法を示す図である。 本発明の他の実施例に係る実施例4のセンサシステムの全体概略構成図である。 図9に示すセンサシステムの金属製外装部材上におけるプローブ側コイルの配置を示す図である。
 本明細書において、「検査対象を覆う被覆部材」とは、例えば、保温材或いはコンクリート製の部材である。保温材としては、ケイ酸カルシウム製、ロックウール製、グラスウール製、無定形水練製、若しくは硬質ウレタンフォーム製等が用いられる。 
 また、本明細書において「外装部材」とは、検査対象を覆う被覆部材の外表面を覆う部材であって、被覆部材が保温材の場合には、金属製外装部材又は樹脂製外装部材が用いられる。一方、上記被覆部材がコンクリート製の部材である場合は、必ずしもコンクリート製の部材である被覆部材の外表面を覆う外装部材は要しない。よって、外装部材が金属製外装部材である場合、渦電流による影響を防止するため、金属製外装部材の表面とプローブ側コイルとの間に電磁波遮蔽部材(第2の電磁波遮断部材)を設ける。一方、外装部材が樹脂製外装部材或いは被覆部材がコンクリート製の部材である場合、樹脂製外装部材或いはコンクリート製の被覆部材の表面とプローブ側コイルとの間に電磁波遮蔽部材(第2の電磁波遮断部材)を設ける必要はない。 
 以下では、一例として、被覆部材が保温材であり、且つ、保温材の外表面を覆う外装部材が金属製外装部材である場合を説明するが、これに限られるものでないことは言うまでもない。 
 以下、図面を用いて本発明の実施例について説明する。
 図1は本発明の一実施例に係る実施例1のセンサシステムの全体概略構成図であり、図2は図1に示すセンサシステムを構成する各種コイルの形状を示す図である。 
 図1に示すように、センサシステム1は、検査対象42の表面に貼付されたセンサ20、センサ20と第1のケーブル22を介して電気的に接続されるセンサコイル21、及び、検査対象42の表面とセンサコイル21との間に配される第1の電磁波遮断部材23を備える。また更に、センサシステム1は、センサコイル21に空隙を介して対向するよう配され電磁誘導により結合されるセンサ側コイル3、センサ側コイル3と離間し配され第2のケーブル4を介して電気的に接続されるプローブ側コイル2、及び、外装部材としての金属製外装部材41の表面とプローブ側コイル2との間に配される第2の電磁波遮断部材7を備え、プローブ側コイル2とセンサ側コイル3の間であって、金属製外装部材41の表面上に金属製外装部材41の表面と接触することなく回路素子6が取り付けられている。 
 センサシステム1は、送信コイル31及び受信コイル30で構成されるセンサプローブ32と情報の送受信を行う。なお、センサコイル21とセンサ側コイル3との間の空隙は、できるだけ狭くすることが好ましい。但し、これに限らず、センサコイル21とセンサ側コイル3との間の空隙を広くしても良い。換言すれば、センサコイル21とセンサ側コイル3との間の空隙は適宜任意に設定される。
 本実施例における検査対象42は、炭素鋼若しくはステンレス鋼製の金属板であり、プラント検査における曲率の大きい配管、容器に対応する。検査対象42はプラント運転中、高温となるため、ケイ酸カルシウム製(若しくは、ロックウール製、グラスウール製、無定形水練製、硬質ウレタンフォーム製等)の被覆部材40である保温材にて覆われている。被覆部材40である保温材の周囲には保温材を保持するためアルミ製(若しくは亜鉛メッキ鋼板製)の金属製外装部材41が取り付けられている。センサプローブ32を構成する送信コイル31及び受信コイル30は、通常の超音波検査に用いられるパルサ・レシーバ(図示せず)及びオシロスコープ機能を備えた図示しないPC(Personal Computer)に接続されている。また、金属製外装部材41及び被覆部材40である保温材には、プローブ側コイル2とセンサ側コイル3とを電気的に接続する第2のケーブル4を挿通可能とするよう、センサ20側へと貫通する貫通口5が形成されている。また、センサ側コイル3は、被覆部材40である保温材の内表面に配されている。
 図2に示すように、センサシステム1を構成するプローブ側コイル2及びセンサ側コイル3は、渦巻き状或いは螺旋状に成形され、例えば、それぞれ0.05mmの銅線で形成される平型コイルである。また、センサプローブ32を構成する受信コイル30は、平面視、送信コイル31の内側に配され渦巻き状或いは螺旋状に成形され、受信コイル30及び送信コイル31は、例えば、それぞれ0.05mmの銅線で形成される平型コイルである。
 図3は、図1に示すセンサシステムの電気回路構成を示す図である。センサシステム1を構成するプローブ側コイル2及びセンサ側コイル3並びにセンサプローブ32を構成する受信コイル30及び送信コイル31のサイズ、巻き数は図3に示す電気回路モデルにより決定する。本電気回路モデルは、図1に示す構成要素を考慮し、本発明において初めて導出されたものである。各コイルのサイズ、巻き数が変化すると、各コイルのレジスタンスR、キャパシタンスC、インダクタンスLが変化する。また、各コイルのサイズ及び相対位置からコイル間の相互インダクタンスMが変化する。センサプローブ32を構成する送信コイル31とセンサシステム1を構成するプローブ側コイル2との間の相互インダクタンスM12、センサプローブ32を構成する受信コイル30とセンサシステム1を構成するプローブ側コイル2との間の相互インダクタンスM23、及びセンサシステム1を構成するセンサ側コイル3とセンサコイル21との間の相互インダクタンスM45が変化することになる。従って、これらを考慮した上で、入力電圧Vに対し出力電圧Vが最適となるコイルサイズ、巻き数を決定する。
 コイルの外径が大きくなる程、レシーバで受信される信号のSN比(Signal to Noise比)が向上するが、上述のように配管減肉検査では100mm以下の計測ピッチが要求されるため、隣り合うセンサコイル21の干渉を考慮し、本実施例では、センサシステム1を構成するプローブ側コイル2、センサ側コイル3、及びセンサコイル21の外径を30mmとする。また、センサプローブ32を構成する送信コイル31及び受信コイル30の外径は、SN比及び隣接コイルの干渉を考慮し、それぞれ53mm、46mmとする。これらコイルの外径寸法は本寸法に限定されるものではなく、検査対象42の形状、求められるSN比等によって適宜設定される。
 超音波検査で用いる周波数が高くなると、コイルの巻き数が少なくなるため、コイルの巻き数のみで電気回路を設計することが困難になる。この課題を解決するため、プローブ側コイル2とセンサ側コイル3との間に回路素子6を取り付けている。回路素子6は、例えばキャパシタ及び/又はレジスタで構成される。一般的に回路素子6は高温環境での使用が困難であるため、本実施例ではプラント運転中、高温となる検査対象42の温度影響を受けにくい、金属製外装部材41の外側に回路素子6を設置している。換言すれば、回路素子6は、金属製外装部材41の表面上であって金属製外装部材41の表面と接触することなく設置されている。
 パルサ(図示せず)で発生した送信波に対応する電気信号は、センサプローブ32を構成する送信コイル31での電磁誘導により磁場へと変換され、センサシステム1を構成するプローブ側コイル2で受信される。送信コイル31により形成された磁場が金属製外装部材41の表面で渦電流として失われることを防ぐため、プローブ側コイル2と金属製外装部材41との間に第2の電磁波遮断部材7を設置している。電磁波遮断部材として、例えば米国3M社製EMI Absorber AB Seriesの電磁波遮断シートが用いられる。電磁波遮断シートの厚みは、十分に遮断性能を発揮するため、0.2~0.5mmとするが、より厚いものを用いても良い。センサシステム1を構成するプローブ側コイル2で磁場を介して受信された電気信号は、第2のケーブル4を介してセンサ側コイル3に伝達される。本電気信号は、センサ側コイル3での電磁誘導により形成される磁場を介してセンサコイル21に伝達される。上述のプローブ側コイル2と同様に、検査対象42の表面に形成される渦電流を抑制するため、センサコイル21と検査対象42との間に第1の電磁波遮断部材23を設置している。材質、厚み等は第2の電磁波遮断部材7と同様のもので良い。
 超音波を発生させるため、センサ20には圧電素子が用いられる。使用する超音波の周波数により圧電素子のサイズが決定されるが、本実施例では、外径10mm、厚み0.6mmとしている。使用する圧電素子の材料としては、例えば、デンマークNoliac社製のNCE51が用いられる。本実施例では超音波を発生させるため、センサ20を圧電素子としているが必ずしもこれに限られるものではない。例えばセンサ20として、ひずみ計(歪ゲージ或いは歪センサ)、電磁センサ、加速度計、熱センサ等を用いる構成としても良い。センサ20はセンサコイル21と第1のケーブル22により電気的に接続しているため、センサコイル21で受信された電気信号によりセンサ20が振動し、検査対象42の中に超音波が発信される。
 検査対象42の中に発信された超音波は、検査対象42のき裂若しくは底面で反射し、センサ20で受信された超音波は圧電効果によりセンサ20に電気信号を発生させる。本電気信号はセンサコイル21、センサ側コイル3、及び第2のケーブル4を介してプローブ側コイル2に伝達される。プローブ側コイル2で電磁誘導により磁場に変換された電気信号は、センサプローブ32を構成する受信コイル30で受信され、図示しないレシーバを介してPC上のオシロスコープに表示される。検査員は、表示された波形から、検査対象42におけるき裂の有無、減肉量などを判別することができるため、本実施例のセンサシステム1では、被覆部材40である保温材及び金属製外装部材41を着脱することなく検査対象42の超音波検査を行うことができる。
 また、検査対象42が高所に位置する場合、センサプローブ32に高所検査用の長棒を取り付けることにより、足場を組み立てることなく超音波検査を行うことができる。センサ20が予め検査対象42に貼付された位置に対応して金属製外装部材41上に第2の電磁波遮断部材7を介してプローブ側コイル2が配されているため、検査員は容易に視認可能であることから、検査点毎に注意深く超音波プローブ(センサプローブ32)を制御する必要はなく、検査時間の短縮が可能となる。上述のように、センサ20へはセンサプローブ32から磁場を通して非接触でエネルギーが供給されるため、センサ20はバッテリ等のエネルギー源を必要とせず、センサ20がコンパクトでメンテナンスフリーとなる。
検査対象42に貼付されているセンサ20及びセンサコイル21と、被覆部材40である保温材に取り付けられているセンサ側コイル3、第2のケーブル4、及びプローブ側コイル2とは、機械的に結合している必要がないため、本センサ20によりき裂もしくは減肉が検知された際に、被覆部材40である保温材を取り外して手動による詳細検査に移行する際も、第2のケーブル4を切断することなく保温材を取り外すことができる。なお、センサ側コイル3とセンサコイル21を近接して配置する、すなわち、センサコイル21とセンサ側コイル3との間の空隙を狭くすることにより、配管減肉検査のように計測ピッチが狭い場合においても、隣接するセンサコイル21からの信号をセンサ側コイル3が受信することなく、超音波検査を行うことができる。
 図4に、公知技術で得られた受信波形と本実施例によるセンサシステム1で得られた受信波形の比較図を示す。図4は、被覆部材40である保温材としてケイ酸カルシウム製保温材を用い、その厚さを30mmとした場合の実験結果である。 
 図4の上段(図面に向かって最上部)に示されるグラフは、非特許文献4に開示されている公知技術(コイル間の電磁誘導を用いて非接触で超音波検査を実施する方法)により得られた受信波形(底面エコー)を示しおり、被覆部材40である保温材を保持するための金属製外装部材を設置しない状態での結果を示している。 
 また、図4の中段(図面に向かって中間部)に示されるグラフは、非特許文献4に開示されている公知技術(コイル間の電磁誘導を用いて非接触で超音波検査を実施する方法)により得られた受信波形(底面エコー)を示しおり、被覆部材40である保温材を保持するための金属製外装部材を設置した状態での結果を示している。 
 更に、図4の下段(図面に向かって最下部)に示されるグラフは、本実施例のセンサシステム1により得られた受信波形(底面エコー)を示しおり、被覆部材40である保温材を保持するための金属製外装部材41を設置した状態での結果を示している。 
 図4からから分かるように、検査対象を覆う被覆部材である保温材を保持する金属製外装部材を設置しない場合は、公知技術によっても、受信波形が得られている。しかしながら、検査対象を覆う被覆部材である保温材を保持する金属製外装部材を設置した場合においては、公知技術を用いるとコイル間の電磁誘導が金属製外装部材で遮断され、受信波形が得られない。これに対し、図4の下段(図面に向かって最下部)に示されるように、本実施例のセンサシステム1を用いることで、検査対象を覆う被覆部材である保温材を保持する金属製外装部材を設置した場合においても受信波形が良好に得られることが分かる。
これは、本実施例のセンサシステム1では、金属製外装部材41の表面とプローブ側コイル2との間に配される第2の電磁波遮断部材7を有するため、金属製外装部材41の表面に生じる渦電流の影響を防止できると共に、センサコイル21に空隙を介して対向するよう配され電磁誘導により結合されるセンサ側コイル3とプローブ側コイル2とを第2のケーブル4を介して電気的に接続する構成を備えることによる。
 なお、本実施例では、被覆部材40である保温材の外表面を覆う外装部材として、金属製外装部材41を用いる場合を示したがこれに限られるものではない。例えば、外装部材として樹脂製外装部材を用いる場合は、樹脂製外装部材の表面とプローブ側コイル2との間に配される第2の電磁波遮断部材7は不要となり、プローブ側コイル2を樹脂製外装部材の表面に直接配する構成としても良い。 
 また、本実施例では、プローブ側コイル2とセンサ側コイル3の間であって、金属製外装部材41の表面上に金属製外装部材41の表面と接触することなく回路素子6を取り
付ける構成を示したが必ずしもこれに限られるものではない。例えば、超音波検査で用いる周波数がそれほど高くない場合においては、コイルの巻き数のみで上述の図3に示す電気回路を設計することが可能となるため、回路素子6を有しない構成としても良い。
 以上の通り本実施例によれば、仮に厚肉の被覆部材で覆われた配管或いは容器の減肉、き裂等を、被覆部材を着脱することなく超音波検査可能なセンサシステムを提供することが可能となる。 
 また、本実施例によれば、プローブ側コイル2とセンサプローブ32が電磁誘導現象を介して結合され、機械的な接続部が無いため、センサプローブ32に高所検査用の長棒を取り付けることにより、検査対象が高所に位置する場合においても、足場を組み立てることなく超音波検査を行うことができる。 
 更にまた、本実施例によれば、センサ20が予め検査対象42に貼付された位置に対応して金属製外装部材41上に第2の電磁波遮断部材7を介してプローブ側コイル2が配されているため、検査員は容易に視認可能であることから、検査点毎に注意深く超音波プローブ(センサプローブ32)を制御する必要はなく、検査時間の短縮が可能となる。 
 また、センサ20にはセンサプローブ32から電磁誘導を通してエネルギーが供給されるため、センサ20にバッテリを備える必要が無く、センサ20がコンパクトでメンテナンスフリーとすることができる。 
 また、本実施例によれば、センサコイル21とセンサ側コイル3を近接して配置することができるので、隣り合うセンサコイル21からの干渉を抑制することができる。
 図5は、本発明の他の実施例に係る実施例2のセンサシステムの全体概略構成図である。本実施例では、被覆部材である保温材を独立した2層の構造とし、第1の保温材(内層側保温材)、第1の保温材(内層側保温材)を覆う第2の保温材(外層側保温材)より構成し、第2の保温材(外層側保温材)に配される第2の中間コイル及び第1の保温材(内層側保温材)の外表面に配される第1の中間コイルを備え、第1の中間コイルとセンサ側コイルとを第3のケーブルにて電気的に接続すると共に、第2の中間コイルとプローブ側コイルとを第2のケーブルにて電気的に接続する構成とした点が実施例1と異なる。実施例1と同様の構成要素に同一符号を付している。 
 検査対象42が高温となり被覆部材である保温材の厚さを大きくする必要がある場合、施工性の観点から、それぞれが独立した複数の保温材を組み合わせて使用することがある。このような構成において、詳細検査などで保温材の着脱が必要となった場合、各保温材を別々に取り外すことができることが望ましい。本実施例はこのような対象を想定したものである。
 図5に示すように、センサシステム1aは、検査対象42の表面に貼付されたセンサ20、センサ20と第1のケーブル22を介して電気的に接続されるセンサコイル21、及び、検査対象42の表面とセンサコイル21との間に配される第1の電磁波遮断部材23を備える。また更に、センサシステム1aは、センサコイル21に空隙を介して対向するよう配され電磁誘導により結合されるセンサ側コイル3、センサ側コイル3と離間し配され第3のケーブル10を介して電気的に接続される第1の中間コイル8、第1の中間コイル8に空隙を介して対向するよう配され電磁誘導により結合される第2の中間コイル9、及び、第2の中間コイル9と離間し配され第2のケーブル4を介して電気的に接続されるプローブ側コイル2を備える。 
 センサシステム1aは、送信コイル31及び受信コイル30で構成されるセンサプローブ32と情報の送受信を行う。なお、センサコイル21とセンサ側コイル3との間の空隙は、できるだけ狭くすることが好ましい。但し、これに限らず、センサコイル21とセンサ側コイル3との間の空隙を広くしても良い。換言すれば、センサコイル21とセンサ側コイル3との間の空隙は適宜任意に設定される。
 本実施例において想定する検査対象42は高温となるため、被覆部材である保温材は独立した2層の構造を有し、第1の被覆部材40a(内層側保温材)、及び第1の被覆部材40a(内層側保温材)を覆う第2の被覆部材40b(外層側保温材)により覆われている。第2の被覆部材40b(外層側保温材)は、その形状を保持するための外装部材としての第1の金属製外装部材41a(外層側外装部材)を有している。また、第1の被覆部材40a(内層側保温材)も同様に、形状保持等の目的のため外装部材としての第2の金属製外装部材41b(内層側外装部材)で覆われている。そして、センサシステム1aは、第1の金属製外装部材41a(外層側外装部材)の表面とプローブ側コイル2との間に配される第2の電磁波遮断部材7、及び第2の金属製外装部材41b(内層側外装部材)の表面と第1の中間コイル8との間に配される第3の電磁波遮断部材11を有する。また、第1の金属製外装部材41a(外層側外装部材)、第2の被覆部材40b(外層側保温材)、第2の金属製外装部材41b(内層側外装部材)、及び第1の被覆部材40a(内層側保温材)には、プローブ側コイル2と第2の中間コイル9とを電気的に接続する第2のケーブル4、及びを第1の中間コイル8とセンサ側コイル3とを電気的に接続する第3のケーブル10を挿通可能とするよう、センサ20側へと貫通する貫通口5が形成されている。また、センサ側コイル3は、第1の被覆部材40a(内層側保温材)の内表面に配され、第2の中間コイル9は、第2の被覆部材40b(外層側保温材)の内表面に配されている。
 センサプローブ32に接続されたパルサ(図示せず)で発生した送信波に対応する電気信号は、センサプローブ32を構成する送信コイル31での電磁誘導により磁場へと変換され、センサシステム1aを構成するプローブ側コイル2で受信される。第2のケーブル4を介して第2の中間コイル9に伝達された電気信号は、第2の中間コイル9での電磁誘導により磁場へと変換され、磁場を介して第1の中間コイル8へ伝達される。第3のケーブル10を介してセンサ側コイル3に伝達された電気信号は、センサ側コイル3での電磁誘導により磁場へと変換され、磁場を介してセンサコイル21で受信される。センサ20はセンサコイル21と第1のケーブル22にて電気的に接続されているため、センサコイル21で受信された電気信号によりセンサ20が振動し、検査対象42の中に超音波が発信される。なお、センサ20の構造は上述の実施例1と同様である。
 検査対象42の中に発信された超音波は、検査対象42のき裂部若しくは底面で反射し、センサ20で受信された超音波は圧電効果によりセンサ20に電気信号を発生させる。
この電気信号はセンサコイル21、センサ側コイル3、及び第3のケーブル10を介して第1の中間コイル8へ伝達される。第1の中間コイル8へ伝達された電気信号は、第2の中間コイル9、第2のケーブル4及びプローブ側コイル2を介して、センサプローブ32を構成する受信コイル30で受信される。この電気信号は図示しないレシーバを介してPC上のオシロスコープに表示され、検査員はその波形から、検査対象42におけるき裂の有無、減肉量などを判別することができるため、本実施例のセンサシステム1aでは、第1の金属製外装部材41a(外層側外装部材)、第2の被覆部材40b(外層側保温材)、第2の金属製外装部材41b(内層側外装部材)、及び第1の被覆部材40a(内層側保温材)を着脱することなく検査対象42の超音波検査を行うことができる。
 検査対象42に貼付されたセンサコイル21、第1の被覆部材40a(内層側保温材)に取り付けられているセンサ側コイル3、第3のケーブル10、第1の中間コイル8、第2の中間コイル9、第2のケーブル4、及びローブ側コイル2とは、機械的に結合している必要がないため、減肉の兆候が見られ手動による詳細検査に移行する際も、第2のケーブル4及び第3のケーブル10を切断することなく、第1の被覆部材40a(内層側保温材)及び第2の被覆部材40b(外層側保温材)を独立して取り外すことができる。 
 本実施例では、被覆部材である保温材が独立した2層の構造を有し、第1の被覆部材40a(内層側保温材)、及び第1の被覆部材40a(内層側保温材)を覆う第2の被覆部材40b(外層側保温材)により検査対象42が覆われている場合について説明したが、これに限られず被覆部材である保温材が独立した3層以上の構造を有する場合においても、センサシステム1aを適用することができる。この場合、独立した保温材の層数に応じた中間コイルと、コイル間を電気的に接続するケーブルを設置すれば良い。
 図6は、図5に示すセンサシステムの変形例を示す全体概略構成図である。図6に示すように、センサシステム1bは、検査対象42の表面に貼付されたセンサ20、センサ20と第1のケーブル22を介して電気的に接続されるセンサコイル21、及び、検査対象42の表面とセンサコイル21との間に配される第1の電磁波遮断部材23を備える。また更に、センサシステム1bは、センサコイル21に離間し第2の被覆部材40b(外層側保温材)の内表面に配され電磁誘導により結合される第2の中間コイル9、及び、第2の中間コイル9と離間し配され第2のケーブル4を介して電気的に接続されるプローブ側コイル2、及び、第1の金属製外装部材41a(外層側外装部材)の表面とプローブ側コイル2との間に配される第2の電磁波遮断部材7を備える。 
 センサシステム1bは、送信コイル31及び受信コイル30で構成されるセンサプローブ32と情報の送受信を行う。
 なお、図6に示す変形例においては、想定する検査対象42は高温となるため、被覆部材である保温材は独立した2層の構造を有し、第1の被覆部材40a(内層側保温材)、及び第1の被覆部材40a(内層側保温材)を覆う第2の被覆部材40b(外層側保温材)により覆われている。第1の被覆部材40a(内層側保温材)の厚さは、第2の被覆部材40b(外層側保温材)の厚さよりも小さい。そして、図5に示した構成と異なり、第1の被覆部材40a(内層側保温材)の形状を保持するための第2の金属製外装部材41b(内層側外装部材)を有さず、第1の被覆部材40a(内層側保温材)の外表面と第2の被覆部材40b(外層側保温材)の内表面とが直接接触する構成となっている。また、第1の金属製外装部材41a(外層側外装部材)、第2の被覆部材40b(外層側保温材)、及び第1の被覆部材40a(内層側保温材)には、プローブ側コイル2と第2の中間コイル9とを電気的に接続する第2のケーブル4を挿通可能とするよう、センサ20側へと貫通する貫通口5が形成されている。
 図5に示したセンサシステム1aと異なり、センサシステム1bは、センサ側コイル3、第1の中間コイル8、センサ側コイル3と第1の中間コイル8とを電気的に接続する第3のケーブル10、及び第3の電磁波遮断部材11を有しない。そのため、センサプローブ32に接続されたパルサ(図示せず)で発生した送信波に対応する電気信号は、センサプローブ32を構成する送信コイル31での電磁誘導により磁場へと変換され、センサシステム1bを構成するプローブ側コイル2で受信される。第2のケーブル4を介して第2の中間コイル9に伝達された電気信号は、第2の中間コイル9での電磁誘導により磁場へと変換され、磁場を介してセンサコイル21で受信される。センサ20はセンサコイル21と第1のケーブル22にて電気的に接続されているため、センサコイル21で受信された電気信号によりセンサ20が振動し、検査対象42の中に超音波が発信される。なお、センサ20の構造は上述の実施例1と同様である。 
 検査対象42の中に発信された超音波は、検査対象42のき裂部若しくは底面で反射し、センサ20で受信された超音波は圧電効果によりセンサ20に電気信号を発生させる。
この電気信号はセンサコイル21、第2の中間コイル9、及び第2のケーブル4を介してプローブ側コイル2へ伝達される。プローブ側コイル2へ伝達された電気信号は、電磁誘導によりセンサプローブ32を構成する受信コイル30で受信される。この電気信号は図示しないレシーバを介してPC上のオシロスコープに表示され、検査員はその波形から、検査対象42におけるき裂の有無、減肉量などを判別することができるため、センサシステム1bでは、第1の金属製外装部材41a(外層側外装部材)、第2の被覆部材40b(外層側保温材)、及び第1の被覆部材40a(内層側保温材)を着脱することなく検査対象42の超音波検査を行うことができる。なお、センサコイル21の電磁誘導により、センサ20にて発生された電気信号を、介在する第1の被覆部材40a(内層側保温材)を経て第2の中間コイル9へ伝達する構成であるため、第1の被覆部材40a(内層側保温材)の厚さは薄いほど好ましい。例えば、被覆部材全体としての厚さが90mm必要となる場合、内側の被覆部材である第1の被覆部材40a(内層側保温材)を薄くし、外側の被覆部材である第2の被覆部材40b(外層側保温材)を厚くすることで施工性が向上される。
 なお、図5に示した本実施例では、第2の被覆部材40b(外層側保温材)の外表面を覆う外装部材としての第1の金属製外装部材41a(外層側外装部材)、及び第1の被覆部材40a(内層側保温材)の外表面を覆う外装部材としての第2の金属製外装部材41b(内層側外装部材)を用いる場合を示したがこれに限られるものではない。例えば、第1の金属製外装部材41a(外層側外装部材)及び第2の金属製外装部材41b(内層側外装部材)に代えて、それぞれ樹脂製外装部材を用いる場合は、樹脂製外装部材の表面とプローブ側コイル2との間に配される第2の電磁波遮断部材7、及び樹脂製外装部材の表面とプローブ側コイル2との間に配される第2の電磁波遮断部材7の表面と第1の中間コイル8との間に配される第3の電磁波遮断部材11は不要となり、プローブ側コイル2を樹脂製外装部材の表面に直接配すると共に、第1の中間コイル8を樹脂製外装部材の表面に直接配する構成としても良い。
 同様に、図6に示した変形例にでは、第2の被覆部材40b(外層側保温材)の外表面を覆う外装部材としての第1の金属製外装部材41a(外層側外装部材)を用いる場合を示したがこれに限られるものではない。例えば、第1の金属製外装部材41a(外層側外装部材)に代えて、樹脂製外装部材を用いる場合は、樹脂製外装部材の表面とプローブ側コイル2との間に配される第2の電磁波遮断部材7は不要となり、プローブ側コイル2を樹脂製外装部材の表面に直接配する構成としても良い。
 以上の通り、本実施例によれば、実施例1の効果に加え、検査対象が高温となり被覆部材である保温材の厚さを大きくする必要がある場合においても被覆部材を着脱することなく超音波検査を行うことが可能となる。 
 また、図6の変形例によれば、内側の被覆部材である第1の被覆部材40a(内層側保温材)を薄くし、外側の被覆部材である第2の被覆部材40b(外層側保温材)を厚くすることで施工性を向上することが可能となる。
 図7は、本発明の他の実施例に係る実施例3のセンサシステムの全体概略構成図である。本実施例では、検査対象が金属製の円筒状配管であって、円筒状配管の表面に周方向に所定の間隔にて離間するよう上述の実施例1にて説明したセンサシステムを複数配する構成とした点が実施例1と異なる。実施例1と同様の構成要素に同一符号を付している。  原子力プラント或いは火力プラントでは、円筒状の配管内を流れる流体(水或いは蒸気等)により、配管の構成材が摩耗し減肉が生じることがある。日本機械学会では推奨される配管減肉検査方法が定められており、その中で計測ピッチが100mm以下であることが要求されている。本実施例はそのような検査対象を想定している。
 本実施例のセンサシステムは、検査対象である円筒状の配管43の表面に貼付されたセンサ20、センサ20と第1のケーブル22(図1参照)にて電気的に接続されるセンサコイル22、検査対象である配管43の表面とセンサコイル21との間に配される第1の電磁波遮断部材23(図1参照)、センサコイル21に空隙を介して対向するよう配され電磁誘導により結合されるセンサ側コイル3、センサ側コイル3と離間し配され第2のケーブル4を介して電気的に接続されるプローブ側コイル2、及び、外装部材としての金属製外装部材41の表面とプローブ側コイル2との間に配される第2の電磁波遮断部材7を備えるセンサシステム1を、検査対象である配管43の周方向に沿って所定の間隔(配管43の軸心を中心とし45°の間隔)にて離間し8個備える。これら8個のセンサシステム1は、それぞれ送信コイル31及び受信コイル30で構成されるセンサプローブ32(図1参照)と情報の送受信を行う。なお、センサコイル21とセンサ側コイル3との間の空隙は、できるだけ狭くすることが好ましい。但し、これに限らず、センサコイル21とセンサ側コイル3との間の空隙を広くしても良い。換言すれば、センサコイル21とセンサ側コイル3との間の空隙は適宜任意に設定される。
 検査対象である配管43はプラント運転中、高温となるため、ケイ酸カルシウム製(若しくはロックウール製、グラスウール製、無定形水練製、硬質ウレタンフォーム製など)の保温材44(被覆部材)にて、その外周面が覆われている。保温材44(被覆部材)の外周面は、アルミ製(もしくは亜鉛メッキ鋼板製)の金属製外装部材41にて覆われている。センサ側コイル3は保温材44(被覆部材)の内表面に取り付けられており、プローブ側コイル2は金属製外装部材41の外周面に取り付けられた第2の電磁波遮断部材7上に貼付されている。その構成は上述の実施例1に記載のものと同様である。また、金属製外装部材41及び保温材44(被覆部材)には、プローブ側コイル2とセンサ側コイル3とを電気的に接続する第2のケーブル4を挿通可能とするよう、センサ20側へと貫通する貫通口5が形成されている。なお、上述の実施例1と同様に、電気回路設計を容易にするため、第2のケーブル4には回路素子6(図1参照)が設置されている。
 図8は図7に示すセンサシステムの保温材(被覆部材)への組み込み方法を示す図である。上述のように、センサ側コイル3は保温材44(被覆部材)の内表面に取り付けられており、プローブ側コイル2は金属製外装部材41の外周面に取り付けられた第2の電磁波遮断部材7上に貼付されている。そして、貫通口5に挿通される第2のケーブル4にてプローブ側コイル2とセンサ側コイル3とが電気的に接続されており、検査対象である配管43上のセンサ20、センサコイル22と機械的に結合している必要がない。そのため、図8に示すように、保温材44(被覆部材)、金属製外装部材41、センサ側コイル3、プローブ側コイル2、及びプローブ側コイル2とセンサ側コイル3とを電気的に接続する第2のケーブル4とを一体構造で製作することができる。これにより、現地での設置に伴う配線引き回し等が不要になり、作業性が向上する。配管減肉検査では、減肉の兆候が見られた箇所は、保温材44(被覆部材)を取り外し、より密度の高い計測ピッチで計測する詳細計測に移行する必要があるが、そのような場合においても、本実施例であれば図8に示すように、必要箇所のみ保温材44(被覆部材)を取り外すことができる。
 なお、本実施例では、センサシステム1を、検査対象である配管43の周方向に沿って所定の間隔(配管43の軸心を中心とし45°の間隔)にて離間し8個備える構成を示したが、配管43の周方向に配されるセンサシステム1の個数はこれに限られるものではなく、要求される計測ピッチを満たす範囲内において適宜所望数のセンサシステム1が配される。
 以上の通り本実施例によれば、実施例1の効果に加え、原子力プラント或いは火力プラントの金属製の円筒状の配管へ複数のセンサシステム1を設置する際における作業性を向上することが可能となる。 
 また、本実施例によれば、減肉の兆候が見られた箇所に対する詳細計測への移行時において、必要箇所のみ保温材(被覆部材)を取り外すことが可能となる。
 図9は、本発明の他の実施例に係る実施例4のセンサシステムの全体概略構成図であり、図10は、図9に示すセンサシステムの金属製外装部材上におけるプローブ側コイルの配置を示す図である。本実施例では、検査対象が金属製の円筒状配管であって、円筒状配管の表面に周方向に所定の間隔にて離間するよう、センサ、センサと第1のケーブルにて電気的に接続されるセンサコイル、及びセンサコイルに空隙を介して対向するよう配され電磁誘導により結合されるセンサ側コイルのペア(組)を複数配すると共に、各センサ側コイルに一端が接続される複数本の第4のケーブルを周方向に引き回し、複数の第4のケーブルと1本の第2のケーブルを介してプローブ側コイルに接続される構成とした点が実施例1と異なる。実施例1と同様の構成要素に同一符号を付している。 
 本実施例では、上述の実施例3と同様に、原子力プラント或いは火力プラントにおける配管減肉検査を想定している。 
 検査対象である配管43の敷設位置によっては、図9に示すように、検査対象である配管43の一部が壁面45に接するよう配される場合、或いは、配管サポート等(図示せず)の位置により、検査対象である配管43の外部に十分な空間を確保できず、センサプローブ32(図1参照)の取り回しが困難になる場合がある。本実施例では、図7に示した上述の実施例3のようにセンサコイル21の直上にプローブ側コイル2を配置する構成に代えて、図9に示すように第4のケーブル12を周方向に引き回し、検査対象である配管43の外部に十分な空間を確保できる位置(図9では配管43の右側)にプローブ側コイル2を配置する構成としている。なお便宜上、図9においては、第4のケーブル12があたかも1本のように表記しているが、実際には、第4のケーブル12は、プローブ側コイル2に対応する位置に配されるセンサ20以外の他の7か所に配されるセンサ20に対応して7本存在する。
 図9に示すように、本実施例のセンサシステム1cは、検査対象である金属製の円筒状の配管43の表面に、周方向に沿って所定の間隔(配管43の軸心を中心とし45°の間隔)にて離間し徴される8個のセンサ20を有する。プローブ側コイル2に対応する位置に配されるセンサ20以外の他の7か所に配されるセンサ20は、それぞれ、センサ20と第1のケーブル22(図1参照)にて電気的に接続されるセンサコイル22、検査対象である配管43の表面とセンサコイル21との間に配される第1の電磁波遮断部材23(図1参照)、及びセンサコイル21に空隙を介して対向するよう配され電磁誘導により結合されるセンサ側コイル3を備え、各第4のケーブル12の一端がセンサ側コイル3に接続され他端がプローブ側コイル2に接続されている。一方、プローブ側コイル2に対応する位置に配されるセンサ20(図9では配管43の右側)は、センサ20と第1のケーブル22(図1参照)にて電気的に接続されるセンサコイル22、検査対象である配管43の表面とセンサコイル21との間に配される第1の電磁波遮断部材23(図1参照)、センサコイル21に空隙を介して対向するよう配され電磁誘導により結合されるセンサ側コイル3、センサ側コイル3と離間し配され第2のケーブル4を介して電気的に接続されるプローブ側コイル2、及び、外装部材としての金属製外装部材41の表面とプローブ側コイル2との間に配される第2の電磁波遮断部材7を備える。
 検査対象である配管43はプラント運転中、高温となるため、ケイ酸カルシウム製(若しくはロックウール製、グラスウール製、無定形水練製、硬質ウレタンフォーム製など)の保温材44(被覆部材)にて、その外周面が覆われている。保温材44(被覆部材)の外周面は、アルミ製(もしくは亜鉛メッキ鋼板製)の金属製外装部材41にて覆われている。8か所に配されるセンサ側コイル3は保温材44(被覆部材)の内表面に取り付けられており、1か所に配されるプローブ側コイル2は金属製外装部材41の外周面に取り付けられた第2の電磁波遮断部材7上に貼付されている。金属製外装部材41及び保温材44(被覆部材)には、プローブ側コイル2とセンサ側コイル3とを電気的に接続する第2のケーブル4及び7本の第4のケーブル12を挿通可能とするよう、センサ20側へと貫通する貫通口5が形成されている。
 次に1か所に配されるプローブ側コイル2について説明する。図10は、図9におけるプローブ側コイル2を側面から眺めた図である。図10に示すように、検査対象である配管43の金属製外装部材41上に第2の電磁波遮断部材7(図示せず)に8個のプローブ側コイル2が貼付されている。8個のプローブ側コイル2は渦巻き状或いは螺旋状に成形され、それぞれが7本の第4のケーブル12及び1本の第2のケーブル4にて、8か所に配されたセンサ側コイル3と電気的に接続されている。図10に示す8個のプローブ側コイル2の配置ピッチは、それぞれ隣り合うプローブ側コイル2からの影響を避けるため、プローブ側コイル2の外径の1.5倍以上とすることが望ましい。このような8個のプローブ側コイル2の配置とすることで、実施例3に比べて容易に各プローブ側コイル2にアクセスできるため、検査時間を短縮することができる。例えば、ドローン等にセンサプローブを搭載してプローブ側コイル2にアクセスする際にも、検査対象である配管43の全周を移動する必要がないため、容易に検査が可能である。また、高所検査のために、センサプローブ32(図1参照)に高所検査用の長棒を取り付けた場合においても、プローブ側コイル2が1か所に集約されているため、容易に検査が可能となる。
 以上の通り本実施例によれば、実施例1の効果に加え、原子力プラント或いは火力プラントの金属製の円筒状の配管が如何なる敷設形態であっても、容易に検査することが可能となる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
1,1a,1b,1c・・・センサシステム、2・・・プローブ側コイル、3・・・センサ側コイル、4・・・第2のケーブル、5・・・貫通口、6・・・回路素子、7・・・第2の電磁波遮断部材、8・・・第1の中間コイル、9・・・第2の中間コイル、10・・・第3のケーブル、11・・・第3の電磁波遮断部材、12・・・第4のケーブル、20・・・センサ、21・・・センサコイル、22・・・第1のケーブル、23・・・第1の電磁波遮断部材、30・・・受信コイル、31・・・送信コイル、32・・・センサプローブ、40・・・被覆部材、40a・・・第1の被覆部材、40b・・・第2の被覆部材、41・・・金属製外装部材、41a・・・第1の金属製外装部材、41b・・・第2の金属製外装部材、42・・・検査対象、43・・・配管、44・・・保温材、45・・・壁面

Claims (15)

  1.  非破壊検査に用いられるセンサシステムであって、
     検査対象の表面に取り付けられたセンサと、
     前記センサと第1のケーブルにより電気的に接続されるセンサコイルと、
     前記検査対象の表面と前記センサコイルとの間に配される第1の電磁波遮断部材と、
     前記センサコイルに空隙を介して対向するよう配され、電磁誘導により結合し得るセンサ側コイルと、
     前記センサ側コイルと離間し配され、第2のケーブルにより電気的に接続されるプローブ側コイルと、を有することを特徴とするセンサシステム。
  2.  請求項1に記載のセンサシステムにおいて、
     前記センサ側コイルは、前記センサコイルに空隙を介して対向するよう配され、前記検査対象を覆う被覆部材の内表面に配され、電磁誘導により前記センサコイルと結合し得ることを特徴とするセンサシステム。
  3.  請求項2に記載のセンサシステムにおいて、
     前記プローブ側コイルは、前記被覆部材を前記センサ側へ貫通する貫通口に挿通される前記第2のケーブルにより電気的に前記センサ側コイルに接続されることを特徴とするセンサシステム。
  4.  請求項1に記載のセンサシステムにおいて、
     前記プローブ側コイルは、前記検査対象を覆う被覆部材を前記センサ側へ貫通する貫通口に挿通される前記第2のケーブルにより電気的に前記センサ側コイルに接続されることを特徴とするセンサシステム。
  5.  請求項3に記載のセンサシステムにおいて、
     前記被覆部材の外表面を覆う第1の金属製外装部材を備え、前記第1の金属製外装部材の表面と前記プローブ側コイルとの間に配される第2の電磁波遮断部材を有することを特徴とするセンサシステム。
  6.  請求項4に記載のセンサシステムにおいて、
     前記被覆部材の外表面を覆う第1の金属製外装部材を備え、前記第1の金属製外装部材の表面と前記プローブ側コイルとの間に配される第2の電磁波遮断部材を有することを特徴とするセンサシステム。
  7.  請求項5に記載のセンサシステムにおいて、
     前記被覆部材は、2層の独立する第1の被覆部材と前記第1の被覆部材の外側を覆う第2の被覆部材を有し、前記第2の被覆部材の外表面を覆う第1の金属製外装部材と、前記第1の被覆部材の外表面を覆う第2の金属製外装部材と、前記第2の金属製外装部材の表面に第3の電磁波遮断部材を介して配される第1の中間コイルと、前記第1の中間コイルに空隙を介して対向するよう配され前記第2の被覆部材の内表面に電磁誘導により結合し得る第2の中間コイルと、を備え、
     前記プローブ側コイルは前記第2のケーブルにより前記第2の中間コイルに電気的に接続され、且つ、前記第1の被覆部材の内表面に配される前記センサ側コイルと前記第1の中間コイルとが第3のケーブルにて電気的に接続されることを特徴とするセンサシステム。
  8.  請求項6に記載のセンサシステムにおいて、
     前記被覆部材は、2層の独立する第1の被覆部材と前記第1の被覆部材の外側を覆う第2の被覆部材を有し、前記第2の被覆部材の外表面を覆う第1の金属製外装部材と、を備え、
     前記プローブ側コイルは前記第2のケーブルにより前記第2の被覆部材の内表面に配される前記センサ側コイルと電気的に接続され、且つ、前記センサ側コイルと前記センサコイルとが電磁誘導により結合されることを特徴とするセンサシステム。
  9.  請求項5に記載のセンサシステムにおいて、
     前記プローブ側コイルと前記センサ側コイルとを電気的に接続する第2のケーブルに設置される、キャパシタ及び/又はレジスタを含む回路素子を有することを特徴とするセンサシステム。
  10.  請求項7乃至請求項9のうちいずれか1項に記載のセンサシステムにおいて、
     前記センサは超音波発生用の圧電素子であることを特徴とするセンサシステム。
  11.  請求項7乃至請求項9のうちいずれか1項に記載のセンサシステムにおいて、
     前記センサは、歪ゲージ、歪センサ、電磁センサ、角速度計、及び熱センサのうちいずれか1つであることを特徴とするセンサシステム。
  12.  請求項7乃至請求項9のうちいずれか1項に記載のセンサシステムにおいて、
     前記被覆部材、前記第1の被覆部材、及び前記第2の被覆部材は、ケイ酸カルシウム製保温材、ロックウール製保温材、グラスウール製保温材、無定形水練製保温材、及び硬質ウレタンフォーム製保温材のうちのいずれか1つであることを特徴とするセンサシステム。
  13.  請求項4に記載のセンサシステムにおいて、
     前記検査対象は、金属製の円筒状の配管であって、
     前記配管の表面に、周方向に沿って所定の間隔にて相互に離間するよう前記センサが複数取り付けられることを特徴とするセンサシステム。
  14.  請求項4に記載のセンサシステムにおいて、
     前記検査対象は、金属製の円筒状の配管であって、
     前記配管の表面に、
     前記センサ、前記センサと前記第1のケーブルにて電気的に接続されるセンサコイル、及び前記センサコイルに空隙を介して対向するよう配され電磁誘導により結合されるセンサ側コイルよりなる組を、周方向に沿って所定の間隔にて相互に離間するよう複数組配すると共に、前記複数組のうち一の組は前記第2のケーブルにより前記センサ側コイルと前記プローブ側コイルとが電気的に接続され、前記一の組以外の組はセンサ側コイルに一端が接続され周方向に引き回される第4のケーブルにより前記プローブ側コイルと電気的に接続されることを特徴とするセンサシステム。
  15.  請求項14に記載のセンサシステムにおいて、
     前記配管の表面の1か所に、前記複数組に対応する数の前記プローブ側コイルが配され、相互に離接するプローブ側コイルの配置ピッチが前記プローブ側コイルの外径の1.5倍以上であることを特徴とするセンサシステム。
PCT/JP2018/020043 2017-06-08 2018-05-24 センサシステム WO2018225525A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1916856.6A GB2576843B (en) 2017-06-08 2018-05-24 Sensor system
US16/612,951 US11150221B2 (en) 2017-06-08 2018-05-24 Sensor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-113171 2017-06-08
JP2017113171A JP6887317B2 (ja) 2017-06-08 2017-06-08 センサシステム

Publications (1)

Publication Number Publication Date
WO2018225525A1 true WO2018225525A1 (ja) 2018-12-13

Family

ID=64567285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020043 WO2018225525A1 (ja) 2017-06-08 2018-05-24 センサシステム

Country Status (4)

Country Link
US (1) US11150221B2 (ja)
JP (1) JP6887317B2 (ja)
GB (1) GB2576843B (ja)
WO (1) WO2018225525A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7189076B2 (ja) * 2019-05-13 2022-12-13 日立Geニュークリア・エナジー株式会社 超音波センサシステム
CN113281265B (zh) * 2021-05-31 2022-05-20 华中科技大学 一种适用于宽膜厚范围样品的激光超声测量系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2523266A (en) * 2014-07-15 2015-08-19 Univ Bristol Wireless sensor
JP2016001136A (ja) * 2014-06-12 2016-01-07 日立Geニュークリア・エナジー株式会社 原子力プラントの検査装置取付け方法及び検査装置取付け構造
WO2016207604A1 (en) * 2015-06-22 2016-12-29 The University Of Bristol Wireless ultrasound sensor
JP2017096857A (ja) * 2015-11-27 2017-06-01 日立Geニュークリア・エナジー株式会社 超音波減肉検査方法および検査装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001136A (ja) * 2014-06-12 2016-01-07 日立Geニュークリア・エナジー株式会社 原子力プラントの検査装置取付け方法及び検査装置取付け構造
GB2523266A (en) * 2014-07-15 2015-08-19 Univ Bristol Wireless sensor
WO2016207604A1 (en) * 2015-06-22 2016-12-29 The University Of Bristol Wireless ultrasound sensor
JP2017096857A (ja) * 2015-11-27 2017-06-01 日立Geニュークリア・エナジー株式会社 超音波減肉検査方法および検査装置

Also Published As

Publication number Publication date
GB2576843B (en) 2022-07-13
GB2576843A (en) 2020-03-04
US20200158690A1 (en) 2020-05-21
JP6887317B2 (ja) 2021-06-16
GB201916856D0 (en) 2020-01-01
US11150221B2 (en) 2021-10-19
JP2018205225A (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
Ghavamian et al. Detection, localisation and assessment of defects in pipes using guided wave techniques: A review
Sun et al. A methodological review of piezoelectric based acoustic wave generation and detection techniques for structural health monitoring
US10073065B2 (en) Segmented strip design for a magnetostriction sensor (MsS) using amorphous material for long range inspection of defects and bends in pipes at high temperatures
US20230003692A1 (en) Passive measurement of acousto-elastic waves
CN113567560B (zh) 一种基于超声导波的含附属结构管道的损伤检测方法
WO2018225525A1 (ja) センサシステム
JP6570875B2 (ja) 配管検査装置および配管検査方法
US20210327625A1 (en) Lagging material
Ray et al. Monitoring pipe wall integrity using fiber Bragg grating-based sensing of low-frequency guided ultrasonic waves
Jacques et al. Design and in situ validation of a guided wave system for corrosion monitoring in coated buried steel pipes
Bertoncini et al. Overview and Experimental Evaluation of Magnetostrictive Transducers for Guided Wave Inspection
CN107607623A (zh) 鼠笼式磁致伸缩纵向模态导波检测传感器
Dhutti et al. IPERM: A guided wave pipeline monitoring tool for oil & gas industry
US11883844B2 (en) Multi-frequency wireless sensor
JP5143111B2 (ja) ガイド波を用いた非破壊検査装置及び非破壊検査方法
RU2737226C1 (ru) Электромагнитно-акустический интроскоп для диагностического обследования обсадных колонн и насосно-компрессорных труб скважин
Bertoncini et al. An online monitoring technique for long-term operation using guided waves propagating in steel pipe
JP2012122751A (ja) 材料劣化診断装置
KR20220000179A (ko) 유도 초음파를 이용한 전주 진단 장치
JP6458167B2 (ja) 超音波を用いた配管厚さ測定装置及びその方法
JP7208761B2 (ja) センサおよび保温材
Stepinski Structural health monitoring of piping in nuclear power plants-A review of efficiency of existing methods
CN204758538U (zh) 适用于电站管线安全监测的超声导波传感器
Bertoncini et al. Non-Invasive On-Line Monitoring for Nuclear Power Plants Using Guided Waves Propagating in Steel Pipes With Different Types of Structural Complexity
JP5784793B2 (ja) 材料劣化診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201916856

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180524

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813361

Country of ref document: EP

Kind code of ref document: A1