WO2018225419A1 - Refrigerant volume estimation device and refrigeration cycle device - Google Patents

Refrigerant volume estimation device and refrigeration cycle device Download PDF

Info

Publication number
WO2018225419A1
WO2018225419A1 PCT/JP2018/017070 JP2018017070W WO2018225419A1 WO 2018225419 A1 WO2018225419 A1 WO 2018225419A1 JP 2018017070 W JP2018017070 W JP 2018017070W WO 2018225419 A1 WO2018225419 A1 WO 2018225419A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
estimation
amount
parameter
refrigeration cycle
Prior art date
Application number
PCT/JP2018/017070
Other languages
French (fr)
Japanese (ja)
Inventor
麿 緑川
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018225419A1 publication Critical patent/WO2018225419A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to a refrigerant amount estimation device that estimates a refrigerant amount in a circulation circuit through which a refrigerant circulates, and a refrigeration cycle apparatus that includes the refrigerant amount estimation device.
  • Vapor compression type refrigeration cycle devices suffer from problems such as reduced cooling capacity when the amount of refrigerant in the circulation circuit is insufficient. Further, if the amount of refrigerant in the circulation circuit is excessive, problems such as stagnation of liquid refrigerant in the condenser and suction of liquid refrigerant into the compressor occur. Accordingly, various methods for charging an appropriate amount of refrigerant to the refrigerant circuit in the refrigeration cycle apparatus have been proposed (see, for example, Patent Document 1).
  • a highly airtight hermetic compressor is adopted, and various pipes are joined by welding, so that substantially no refrigerant leakage occurs. It has a configuration.
  • a semi-hermetic or open type compressor is adopted for the convenience of maintenance, or a circulation circuit is used to absorb vibration during movement of the moving body. It is necessary to adopt rubber piping for some parts. For this reason, in the refrigeration cycle apparatus mounted on the moving body, a small amount of refrigerant leakage (so-called slow leak) is unavoidable from a part of the compressor and piping.
  • the refrigerant in the circulation circuit is based on general-purpose arithmetic expressions including parameters determined based on the results of tests performed in advance and state quantities such as the temperature and pressure of refrigerant in the circulation circuit as in Patent Document 1. It is conceivable to estimate the quantity.
  • the present disclosure is intended to provide a refrigerant amount estimation device capable of accurately estimating the refrigerant amount and a refrigeration cycle apparatus including the refrigerant amount estimation device.
  • the refrigerant amount estimation device is applied to a vapor compression refrigeration cycle device that is mounted on a moving body and has a refrigerant circulation circuit.
  • a refrigeration cycle apparatus includes a circulation circuit that is mounted on a moving body and circulates refrigerant, and a refrigerant amount estimation device that estimates a refrigerant amount in the circulation circuit.
  • the refrigerant quantity estimation device in each aspect is A refrigerant quantity estimation unit that estimates a refrigerant quantity in the circulation circuit based on a physical quantity including a refrigerant state quantity during operation of the refrigeration cycle apparatus and a predetermined estimation parameter; A parameter correction unit that corrects the estimated parameter so that the refrigerant amount estimated by the refrigerant amount estimation unit approaches the actual refrigerant amount measured when the refrigerant is charged; It is comprised including.
  • the refrigerant quantity estimation unit estimates the refrigerant quantity in the circulation circuit based on the physical quantity including the refrigerant state quantity and the estimation parameter corrected by the parameter correction unit.
  • the estimation parameter used for estimating the refrigerant amount is corrected so that the refrigerant amount estimated when the actual refrigeration cycle apparatus is operated is close to the actual refrigerant quantity. It is possible to reduce errors due to individual differences. As a result, the amount of refrigerant can be estimated with high accuracy.
  • FIG. 1 In the present embodiment, an example in which the refrigeration cycle apparatus 20 of the present disclosure is mounted on an automobile 1 that is a moving body will be described.
  • the automobile 1 of this embodiment is equipped with an engine 10 that functions as a driving source for traveling and a driving source for the refrigeration cycle apparatus 20.
  • the refrigeration cycle apparatus 20 is applied to a vehicle air conditioner that air-conditions the interior space of the automobile 1.
  • the refrigeration cycle apparatus 20 functions to cool the air blown into the vehicle interior space until it reaches a desired temperature.
  • the refrigeration cycle apparatus 20 is configured as a vapor compression refrigeration cycle including a circulation circuit 200 in which a refrigerant circulates, a compressor 21, a radiator 22, a decompression device 23, and an evaporator 24.
  • the refrigeration cycle apparatus 20 employs R134a, which is an HFC refrigerant, as the refrigerant. Note that oil that lubricates the compressor 21 (that is, refrigeration oil) is mixed in the refrigerant. Part of the oil circulates in the circulation circuit 200 together with the refrigerant.
  • the compressor 21 is a device that compresses and discharges the sucked refrigerant.
  • the compressor 21 includes a reciprocating compression mechanism. Note that the compressor 21 may include a rotary compression mechanism.
  • the compressor 21 of the present embodiment is configured to be driven by a rotational driving force output from the external engine 10.
  • the compressor 21 of the present embodiment is configured as a variable capacity compressor capable of changing the refrigerant discharge capacity.
  • the compressor 21 of the present embodiment is configured as an open type compressor. Specifically, the compressor 21 of the present embodiment has a power transmission mechanism 213 such as a pulley and a belt such that a shaft 212 that protrudes outside through the housing 211 is rotated by a driving force from the engine 10. To the output shaft 10a of the engine 10.
  • a power transmission mechanism 213 such as a pulley and a belt
  • a shaft 212 that protrudes outside through the housing 211 is rotated by a driving force from the engine 10.
  • the compressor 21 of the present embodiment is provided with an electromagnetic clutch 214 that turns on / off transmission of the rotational driving force from the engine 10.
  • the compressor 21 of the present embodiment is configured to stop its operation when the electromagnetic clutch 214 is turned off.
  • a portion where the shaft 212 passes through the housing 211 is sealed by a seal member 215 such as a mechanical seal or a lip seal.
  • the seal member 215 is made of a polymer material containing a resin. The polymer material has gas permeability. For this reason, in the compressor 21, the refrigerant inside the housing 211 may gradually permeate outside through the seal member 215.
  • the heat radiator 22 exchanges heat of the high-temperature and high-pressure refrigerant discharged from the compressor 21 with the outside air introduced from the outdoor blower 221 or the outside air introduced by the ram pressure during travel of the automobile 1. It is a heat exchanger that dissipates heat.
  • the radiator 22 of the present embodiment is disposed in a front portion of the engine room where outside air is introduced by the ram pressure when the automobile 1 is traveling. The refrigerant flowing into the radiator 22 is condensed by heat exchange with the outside air. Note that the outside air passes through the radiator 22 as indicated by a broken line arrow AFo in FIG.
  • the decompression device 23 is an expansion valve that decompresses and expands the refrigerant that has passed through the radiator 22.
  • a temperature type expansion valve configured so that the temperature on the outlet side of the evaporator 24 can be adjusted to a predetermined temperature is employed.
  • the evaporator 24 is a heat exchanger that evaporates the low-temperature and low-pressure refrigerant decompressed by the decompression device 23 by heat exchange with the blown air supplied from the indoor blower 241 that blows air into the vehicle interior space. .
  • the blown air supplied from the indoor blower 241 passes through the evaporator 24 as indicated by a broken line arrow AFc in FIG.
  • the blown air supplied from the indoor blower 241 is cooled to a desired temperature by the latent heat of vaporization of the refrigerant, and then blown out into the vehicle interior.
  • the circulation circuit 200 is a closed circuit configured by sequentially connecting the compressor 21, the radiator 22, the decompression device 23, and the evaporator 24 through a plurality of pipes 201 to 204.
  • the circulation circuit 200 includes a first high-pressure pipe 201 that connects the refrigerant discharge side of the compressor 21 and the refrigerant inlet side of the radiator 22, the refrigerant outlet side of the radiator 22, and the refrigerant inlet side of the decompression device 23.
  • the second high-pressure pipe 202 is connected.
  • the circulation circuit 200 connects the first low-pressure pipe 203 connecting the refrigerant outlet side of the decompression device 23 and the refrigerant inlet side of the evaporator 24, and connects the refrigerant outlet side of the evaporator 24 and the refrigerant suction side of the compressor 21.
  • the second low-pressure pipe 204 is configured.
  • the high-pressure pipes 201 and 202 and the low-pressure pipes 203 and 204 are basically composed of metal pipes.
  • the first high-pressure pipe 201 is a first polymer pipe partially containing a polymer material (for example, rubber or resin) having excellent flexibility in order to absorb vibration of the engine 10 or the compressor 21.
  • 201a is a first polymer pipe partially containing a polymer material (for example, rubber or resin) having excellent flexibility in order to absorb vibration of the engine 10 or the compressor 21.
  • the second low-pressure pipe 204 is a second polymer partly containing a polymer material (for example, rubber or resin) having excellent flexibility in order to absorb vibrations of the engine 10 and the compressor 21. It is comprised by the piping 204a.
  • each polymer pipe 201a, 204a has higher gas permeability than a part constituted by a metal pipe, the refrigerant flowing inside may gradually permeate to the outside.
  • the high-pressure refrigerant compressed by the compressor 21 flows through the first polymer pipe 201a, the refrigerant tends to easily leak to the outside.
  • the refrigeration cycle apparatus 20 includes a refrigerant amount estimation device 30 that estimates the refrigerant amount in the circulation circuit 200.
  • the 3 includes a known microcomputer having a storage unit 31 such as a processor, a ROM, a RAM, and its peripheral circuits.
  • coolant amount estimation apparatus 30 is comprised with a non-transitional tangible storage medium.
  • an outside air temperature sensor 301 that detects the outside air temperature
  • an inside air temperature sensor 302 that detects the inside air temperature
  • an air conditioning control device 40 that controls the refrigeration cycle apparatus 20
  • An engine control device 50 and the like for controlling the engine 10 are connected.
  • the refrigerant amount estimation device 30 is connected to the air conditioning control device 40 and the engine control device 50 so that the air conditioning control information of the air conditioning control device 40 and the travel control information of the engine control device 50 can be acquired. .
  • the air conditioning control device 40 is connected to various sensors for detecting state quantities of the refrigerant such as the temperature and pressure of the refrigerant flowing through the circulation circuit 200 on the input side. Specifically, a high-pressure side pressure sensor 41 and a high-pressure side temperature sensor 42 that detect the pressure and temperature of the high-pressure refrigerant that has flowed out of the radiator 22 are connected to the air conditioning control device 40. The air conditioning control device 40 is connected to a low-pressure side pressure sensor 43 and a low-pressure side temperature sensor 44 that detect the pressure and temperature of the low-pressure refrigerant that has flowed out of the evaporator 24.
  • the refrigerant amount estimation device 30 of the present embodiment can acquire information detected by the high pressure side pressure sensor 41, the high pressure side temperature sensor 42, the low pressure side pressure sensor 43, and the low pressure side temperature sensor 44 from the air conditioning control device 40 as air conditioning control information. It has become.
  • the engine control device 50 is connected to its input side with a rotation speed sensor 51 that detects the rotation speed of the engine 10, a vehicle speed sensor 52 that detects the traveling speed of the automobile 1, and the like.
  • the refrigerant amount estimation device 30 of the present embodiment can acquire information detected by the rotation speed sensor 51 and the vehicle speed sensor 52 from the engine control device 50 as engine control information.
  • the refrigeration cycle apparatus 20 has a configuration in which the compressor 21 is driven by the rotational driving force output from the engine 10. For this reason, the rotation speed of the engine 10 is a factor that greatly affects the operation of the compressor 21 of the refrigeration cycle apparatus 20.
  • the refrigeration cycle apparatus 20 is configured such that the heat radiator 22 is introduced to the outside air by the ram pressure when the automobile 1 is traveling. For this reason, the traveling speed of the automobile 1 is a factor that affects the heat radiation amount of the radiator 22 in the refrigeration cycle apparatus 20.
  • the information detected by the rotation speed sensor 51 and the vehicle speed sensor 52 is a state quantity that is relevant to the operation of the refrigeration cycle apparatus 20 among the operating states of the automobile 1.
  • information detected by the rotation speed sensor 51 and the vehicle speed sensor 52 corresponds to a moving body state quantity that is relevant to the operation of the refrigeration cycle apparatus 20 among the operating states of the moving body.
  • the refrigerant amount estimation device 30 is connected to the output side thereof, such as an electromagnetic clutch 214 of the compressor 21, a notification device 60 that notifies the user of the abnormality.
  • the notification device 60 has a display panel that visually displays various abnormality information of the refrigeration cycle device 20.
  • the notification device 60 displays information indicating an abnormality on the display panel when an abnormal signal indicating an abnormal state is input from the refrigerant amount estimation device 30.
  • the notification device 60 is not limited to a configuration that visually notifies abnormality information, and may be configured to notify the abnormality information audibly.
  • the refrigerant amount estimation device 30 of the present embodiment is connected to a wireless communication device 70 mounted on the automobile 1.
  • the wireless communication device 70 is configured to be able to communicate with the external server 90 via the base station 80 and the Internet 85.
  • the refrigerant amount estimation device 30 of the present embodiment is configured to be able to output various information stored in the storage unit 31 to the external server 90 via the wireless communication device 70.
  • the external server 90 functions as an external data storage device.
  • the refrigerant amount estimation device 30 configured as described above performs arithmetic processing on various signals or the like input from the input side according to a program stored in the storage unit 31 in advance, and based on the result of the arithmetic processing or the like, Control various devices to be controlled connected to.
  • the refrigerant amount estimation device 30 estimates the refrigerant amount in the circulation circuit 200 based on the input information and a predetermined estimation parameter.
  • the refrigerant amount estimation device 30 of the present embodiment is configured to correct an estimation parameter used when estimating the refrigerant amount in order to reduce an error due to individual differences of functional products constituting the refrigeration cycle apparatus 20.
  • the refrigerant amount estimation device 30 of the present embodiment determines whether or not the refrigerant amount in the circulation circuit 200 is in an abnormal state that is equal to or less than the appropriate reference amount based on the estimated refrigerant amount, and the refrigerant amount is insufficient. When an abnormal state occurs, a predetermined measure against the abnormal state is executed.
  • the refrigerant amount estimation device 30 of the present embodiment uses the wireless server 70, the Internet 85, and the like to store various information used when determining whether the refrigerant leak is abnormal or not, using the external server 90. Output to.
  • the refrigerant amount estimation device 30 includes a processing execution unit configured by hardware and software for executing various arithmetic processes, a control unit configured by hardware and software for controlling various control target devices, and the like. It has been aggregated.
  • the refrigerant amount estimation device 30 includes a refrigerant amount estimation unit 30a that estimates the refrigerant amount in the circulation circuit 200 and a parameter correction unit 30b that corrects an estimation parameter used when estimating the refrigerant amount.
  • the refrigerant amount estimation device 30 includes an abnormality determination unit 30c that determines whether or not the refrigerant amount in the circulation circuit 200 is in an abnormal state, and executes a countermeasure to execute a predetermined countermeasure when an abnormal state occurs.
  • the unit 30d is aggregated.
  • the refrigerant amount estimation device 30 outputs various information used when determining whether or not the refrigerant leak is an abnormal leak to the external server 90 using the wireless communication device 70 or the like. Are aggregated.
  • the air conditioning control device 40 turns on the electromagnetic clutch 214 to operate the compressor 21.
  • the refrigerant discharged from the compressor 21 (that is, the point A1 in FIG. 4) flows into the radiator 22 and is radiated by heat exchange with the outside air in the radiator 22. (That is, point A1 ⁇ point A2 in FIG. 4).
  • the refrigerant that has flowed out of the radiator 22 flows into the decompression device 23 and is decompressed and expanded until it reaches a predetermined pressure in the decompression device 23 (that is, point A2 ⁇ A3 in FIG. 4). ).
  • the refrigerant that has flowed out of the decompression device 23 flows into the evaporator 24, and in the evaporator 24, absorbs heat from the air blown into the passenger compartment and evaporates (that is, point A3 in FIG. 4). A4 points). Thereby, the air blown into the passenger compartment is cooled. Then, the refrigerant flowing out of the evaporator 24 (that is, point A4 in FIG. 4) flows to the refrigerant suction side of the compressor 21 and is compressed again by the compressor 21 (that is, point A4 in FIG. 4). ⁇ A1 point).
  • the pressure decrease amount ⁇ PL of the low pressure refrigerant and the refrigerant superheat degree SH increase amount ⁇ SH tend to increase as the refrigerant amount in the circulation circuit 200 decreases.
  • the pressure of the refrigerant sucked into the compressor 21 is decreased due to the decrease in the refrigerant amount, the pressure of the high-pressure refrigerant discharged from the compressor 21 is decreased and the degree of supercooling of the refrigerant on the refrigerant outlet side of the radiator 22 is reduced. SC becomes small (that is, point A2 ⁇ point B2 in FIG. 4). According to the knowledge of the present inventors, the amount of decrease ⁇ PH in the pressure of the high-pressure refrigerant and the amount of decrease ⁇ SC in the refrigerant supercooling degree SC tend to increase as the amount of refrigerant in the circulation circuit 200 decreases.
  • the refrigeration cycle apparatus 20 employs a refrigerant-permeable pipe in a part of the circulation circuit 200 and employs an open-type compressor 21. A slow leak is inevitable. That is, in the refrigeration cycle apparatus 20 of the present embodiment, the refrigerant amount M in the circulation circuit 200 decreases with time as shown by the solid line in FIG.
  • the refrigerant quantity estimation device 30 of the present embodiment estimates the refrigerant quantity by substituting the refrigerant state quantity and the physical quantity including the automobile 1 state quantity as variables into an estimation equation using a predetermined estimation parameter. It has a configuration.
  • an estimation formula for estimating the refrigerant amount a general-purpose estimation formula using an estimation parameter determined based on a test result of a test machine of the refrigeration cycle apparatus 20 or a simulator simulating the refrigeration cycle apparatus 20 may be adopted.
  • the estimation parameter is a generic name for each coefficient set for each variable used for estimating the refrigerant amount.
  • the correction coefficient ⁇ M for correcting the estimation parameter in the general-purpose estimation formula is determined, and the refrigerant quantity is estimated by the correction estimation formula using the general-purpose estimation formula and the correction coefficient ⁇ M. It is the composition to do.
  • each control step of the control process shown in FIG. 6 and FIG. 7 constitutes a function realization unit that realizes various functions executed by the refrigerant amount estimation device 30.
  • the refrigerant quantity estimation device 30 performs correction coefficient calculation processing when the refrigeration cycle apparatus 20 is operated for the first time after a specified amount of refrigerant is filled in the circulation circuit 200 in the product shipping stage or maintenance. Execute.
  • the refrigerant quantity estimating device 30, at step S100 reads the actual refrigerant amount M R which is weighed at the time of filling of the refrigerant.
  • the actual refrigerant amount M R is an amount of refrigerant which is metered by the refrigerant filling machine for filling a refrigerant is stored in advance in the air conditioning controller 40 or the like.
  • the refrigerant amount estimation device 30 operates the refrigeration cycle device 20 via the air conditioning control device 40 in step S110.
  • the refrigerant quantity estimation device 30 of the present embodiment operates the refrigeration cycle apparatus 20 so that the output of the indoor blower 241, the output of the outdoor blower 221, and the discharge capacity of the compressor 21 are maximized.
  • the refrigerant amount estimation device 30 counts the elapsed time Cnt1 after the refrigeration cycle device 20 is operated by the timer A in step S120.
  • the timer A is a time measuring means and is built in the refrigerant quantity estimating device 30 in advance.
  • step S130 the refrigerant amount estimating apparatus 30 determines whether or not the elapsed time Cnt1 counted by the timer A has passed a preset first reference time Cnt_th1.
  • the first reference time Cnt_th1 is set to a time required from when the refrigeration cycle apparatus 20 is operated until a change in state quantity of the refrigerant in the refrigeration cycle apparatus 20 reaches a stable state within a predetermined range. .
  • the process of step S130 can be interpreted as a determination process for determining whether or not the behavior of the refrigerant in the refrigeration cycle apparatus 20 is stable.
  • the refrigerant amount estimation device 30 uses the general-purpose estimation equation M 1 (preliminarily stored in the storage unit 31 in step S140). estimating the refrigerant quantity M 1 by t). Note that the general-purpose estimation formula M 1 (t) is set so that the refrigerant amount M 1 decreases as the elapsed time t increases, as shown by the solid line in FIG.
  • M 1 (t) f [Pd, Ps, Td, Ts, Ne, Vs, t]... F1
  • the temperature Td and pressure Pd of the refrigerant on the refrigerant outlet side of the radiator 22 and the temperature Ts and pressure Ps of the refrigerant on the refrigerant outlet side of the evaporator 24 are the traveling speed Vs of the automobile 1 and the rotational speed Ne of the engine 10. It changes by fluctuation. For this reason, in the above-described mathematical formula F1, the state quantities of the automobile 1 such as the traveling speed Vs of the automobile 1 and the rotational speed Ne of the engine 10 are also added to the variables.
  • the universal estimation formula M 1 (t) is the estimated parameter is set which is determined on the basis of the test results performed by the testing machine or the like of the refrigeration cycle apparatus 20.
  • the estimation parameter is defined as each coefficient ⁇ 1 to ⁇ 7 set for each variable, for example, as shown in the following formula F2.
  • the refrigerant quantity estimation device 30 converts the physical quantity including the refrigerant state quantity and the state quantity of the automobile 1 into the general-purpose estimation equation M 1 (t) using the predetermined estimation parameter in step S140. substituted estimates the refrigerant quantity M 1 by. Then, the refrigerant quantity estimation apparatus 30 stores the M 1 estimated by the generic estimation formula M 1 (t) in the storage unit 31.
  • step S150 the refrigerant amount estimation device 30 counts an elapsed time Cnt2 after the refrigeration cycle apparatus 20 is in a stable state by a timer B different from the timer A.
  • the timer B is a time measuring means and is built in the refrigerant quantity estimating device 30 in advance.
  • step S160 the refrigerant quantity estimating device 30 determines whether or not the elapsed time Cnt2 counted by the timer B has passed a preset second reference time Cnt_th2.
  • the second reference time Cnt_th2 the sample number of the generic estimation formula M 1 (t) the refrigerant quantity M 1 estimated in is set to the time required to reach the required number required for regression analysis to be described later ing.
  • the required number of samples is preferably, for example, 10 times or more the number of coefficients constituting the estimation parameter.
  • step S160 Determination processing result of the step S160, if the elapsed time Cnt2 has not passed the second reference time Cnt_th2, refrigerant quantity estimation apparatus 30 returns to step S140, the refrigerant quantity M 1 in the general-purpose estimation formula M 1 (t) presume.
  • step S160 if the elapsed time Cnt2 has passed the second reference time Cnt_th2, refrigerant quantity estimation apparatus 30, at step S170, the actual refrigerant amount M R and the refrigerant quantity M 1 (t The difference amount ⁇ M (t) is calculated.
  • Refrigerant quantity estimating device 30 calculates a difference amount .DELTA.M (t) between the actual refrigerant amount M R and the refrigerant quantity M 1 (t) by the following equation F3.
  • the refrigerant quantity estimation device 30 calculates a mathematical model ⁇ M related to the difference quantity ⁇ M (t) in step S180.
  • the refrigerant quantity estimation device 30 of the present embodiment describes physical quantities including the refrigerant temperature and pressure when the refrigerant quantity M 1 is estimated by the general-purpose estimation equation M 1 (t) using the difference amount ⁇ M (t) as an objective variable.
  • a mathematical model ⁇ M related to the difference amount ⁇ M (t) is calculated by regression analysis using variables.
  • the refrigerant temperature Td and pressure Pd on the refrigerant outlet side of the radiator 22 the refrigerant temperature Ts and pressure Ps on the refrigerant outlet side of the evaporator 24 are employed.
  • the refrigerant amount estimation device 30 uses, as explanatory variables for regression analysis, the refrigerant temperature Td and pressure Pd of the refrigerant outlet side of the radiator 22, the refrigerant temperature Ts and pressure Ps of the refrigerant outlet side of the evaporator 24, and the automobile.
  • a traveling speed Vs of 1 and a rotational speed Ne of the engine 10 are employed.
  • the mathematical model ⁇ M calculated in step S180 is a mathematical expression that includes the traveling speed Vs of the automobile 1 and the rotational speed Ne of the engine 10 as variables, as represented by the following mathematical expression F4.
  • ⁇ M g [Pd, Ps, Td, Ts, Ne, Vs]... F4
  • the correction parameters are defined as coefficients ⁇ 1 to ⁇ 6 set for each variable, for example, as shown in the following formula F5.
  • step S190 the refrigerant quantity estimation device 30 calculates a corrected estimation formula M 2 (t) obtained by correcting the estimation parameter of the general-purpose estimation formula M 1 (t) by the mathematical model ⁇ M. Specifically, the refrigerant quantity estimation device 30 adds the mathematical model ⁇ M to the general-purpose estimation formula M 1 (t) as shown in the following formula F6, thereby obtaining the corrected estimation formula M 2 (t). calculate.
  • the general-purpose estimation formula M 1 (t) is replaced with the corrected estimation formula M 2 (t).
  • the refrigerant amount estimation device 30 uses the general-purpose estimation formula for the mathematical model ⁇ M calculated in step S180 in step S220. A correction coefficient for correcting the estimation parameter of M 1 (t) is determined.
  • the refrigerant quantity estimation device 30 outputs the data calculated in this control process to the external server 90 using the wireless communication device 70 or the like in step S230. Specifically, the refrigerant amount estimation device 30 associates information related to the corrected estimation parameter (for example, the correction coefficient ⁇ M) with identification information (for example, a vehicle identification number) for identifying the automobile 1, and the wireless communication device 70 and the like are output to the external server 90.
  • the corrected estimation parameter for example, the correction coefficient ⁇ M
  • identification information for example, a vehicle identification number
  • the above is the outline of the correction coefficient calculation process.
  • the outline of the refrigerant quantity estimation process executed by the refrigerant quantity estimation device 30 will be described with reference to FIG.
  • the refrigerant quantity estimation device 30 of the present embodiment performs a refrigerant quantity estimation process when a predetermined start condition is satisfied while the refrigeration cycle apparatus 20 is operating.
  • the refrigerant quantity estimation device 30 reads various sensor outputs via the air conditioning control device 40, the engine control device 50, and the like in step S300. Then, the refrigerant quantity estimating device 30, at step S310, the estimating the refrigerant quantity M 2 in the circulation circuit 200 by the correction estimation formula M 2 (t).
  • the refrigerant amount estimation device 30 uses the temperature Td and pressure Pd of the refrigerant on the refrigerant outlet side of the radiator 22 and the temperature Ts and pressure of the refrigerant on the refrigerant outlet side of the evaporator 24 with respect to the above formula F8.
  • ps, running speed Vs estimates the refrigerant quantity M 2 by substituting the rotation speed Ne of the engine 10.
  • the appropriate reference amount M_th is set to a refrigerant amount that starts to affect the operation (for example, cooling capacity) of the refrigeration cycle apparatus 20.
  • the refrigerant quantity estimating device 30 at step S330, appropriate to the status flag indicating the state of the refrigerant quantity indicating a state where no shortage of amount of refrigerant Set to state and exit this process.
  • the refrigerant quantity estimating device 30 sets a status flag indicating the state of the refrigerant quantity in the abnormal state indicating that the amount of refrigerant is insufficient To do.
  • the refrigerant quantity estimation device 30 performs a notification process for notifying the user that the refrigerant leakage state is an abnormal leakage state by the notification device 60. Specifically, the refrigerant amount estimation device 30 outputs an abnormal signal indicating that the refrigerant amount is in an abnormal state to the notification device 60. In this notification process, in addition to being in an abnormal state, it is desirable that the notification device 60 notifies the user of information that prompts the charging of the refrigerant.
  • the refrigerant quantity estimation device 30 executes an operation restriction process for restricting the operation of the refrigeration cycle apparatus 20 in step S360.
  • this operation restriction process the electromagnetic clutch 214 is turned off and the operation of the refrigeration cycle apparatus 20 is stopped. According to this, various malfunctions that occur in the refrigeration cycle apparatus 20 due to a lack of refrigerant can be suppressed.
  • Refrigerant quantity estimation apparatus 30 described above as the amount of the refrigerant estimated when the operate the refrigeration cycle apparatus 20 is actual approaches the actual refrigerant quantity M R, configured to correct the estimated parameters used to estimate the refrigerant quantity It has become. According to this, since the error due to individual differences in functional products constituting the refrigeration cycle apparatus 20 can be reduced, the estimation accuracy of the refrigerant amount can be improved.
  • the refrigerant quantity estimation apparatus 30 of this embodiment the difference between the refrigerant amount estimated the actual refrigerant amount M R and objective variable, a state amount and the state quantity of the motor vehicle 1 of the refrigerant and the explanatory variable regression
  • the mathematical model that is, the correction coefficient ⁇ M relating to the difference amount is determined by analysis.
  • the refrigerant quantity estimation apparatus 30 is configured to correct the estimated parameters of the function estimation formula M 1 (t) by the correction coefficient ⁇ M determined by regression analysis. According to this, it is possible to reduce the estimation error of the refrigerant amount due to the individual difference between the functional products constituting the refrigeration cycle apparatus 20.
  • the correction coefficient ⁇ M for correcting the estimated parameter is determined in a state where the state of the refrigerant in the circulation circuit 200 becomes unstable, such as when the refrigeration cycle apparatus 20 is started, the reliability of the corrected estimated parameter is determined. Can not be secured.
  • the refrigerant quantity estimation device 30 of the present embodiment corrects the estimation parameter in a state where the refrigeration cycle apparatus 20 is operating in a stable state where fluctuations in the refrigerant state quantity fall within a predetermined range.
  • the coefficient ⁇ M is determined. According to this, the reliability of the corrected estimated parameter can be ensured.
  • the refrigerant amount estimation device 30 of the present embodiment is configured to determine a correction coefficient ⁇ M for correcting the estimation parameter when the refrigeration cycle apparatus 20 is operated for the first time after the refrigerant is charged.
  • the refrigerant amount estimation device 30 of the present embodiment compares the moisture amount M 2 estimated by the corrected estimation formula M 2 (t) using the corrected estimation parameter with the refrigerant proper reference amount M_th, and compares the refrigerant amount. Is configured to determine whether or not is in an abnormal state.
  • the refrigerant amount estimation device 30 of the present embodiment calculates the refrigerant amount based not only on the refrigerant state quantity but also on the physical quantity including the state quantity of the automobile 1 such as the running speed Vs of the automobile 1 and the rotational speed Ne of the engine 10. The configuration is to be estimated. According to this, the estimation accuracy of the refrigerant in the refrigerant quantity estimation device 30 can be improved.
  • the refrigerant amount estimation device 30 of the present embodiment is configured to output the information related to the corrected estimation parameter to the external server 90 using the wireless communication device 70 or the like in a state in which the information is associated with the identification information of the automobile 1. ing.
  • the data stored in the external server 90 can be effectively used for grasping the tendency of individual differences in functional products constituting the refrigeration cycle apparatus 20 mounted on the automobile 1.
  • step S110 in the correction coefficient calculation process the refrigeration cycle apparatus 20 is operated so that the output of the indoor fan 241, the output of the outdoor fan 221, and the discharge capacity of the compressor 21 are maximized.
  • the example to make was demonstrated, it is not limited to this.
  • step S110 in the correction coefficient calculation process the refrigerant amount estimation device 30 performs refrigeration so that, for example, the output of the indoor blower 241, the output of the outdoor blower 221, and the discharge capacity of the compressor 21 are set to predetermined values.
  • the cycle device 20 may be configured to operate.
  • the refrigerant quantity estimation device 30 of the present embodiment executes a correction coefficient calculation process shown in FIG. 8 instead of the correction coefficient calculation process shown in FIG.
  • steps denoted by the same reference numerals as those shown in FIG. 6 have the same processing contents unless otherwise specified.
  • the refrigerant amount estimation device 30 performs correction coefficient calculation processing when a user operates the refrigeration cycle apparatus 20 after a specified amount of refrigerant is filled in the circulation circuit 200 in a product shipping stage or maintenance. Execute.
  • the refrigerant quantity estimation apparatus 30 of this embodiment after reading the actual refrigerant quantity M R in step S100, in step S110A, the refrigeration cycle apparatus 20 is activated by the user Judge whether or not.
  • Step S110A determination process result if the refrigeration cycle apparatus 20 is activated by the user, the refrigerant quantity estimation apparatus 30, at step S120A, estimates the refrigerant quantity M 1 by the function estimation formula M 1 (t). Since the process of step S120A is the same as the process of step S140 of FIG. 6, the description thereof is omitted. Incidentally, the refrigerant quantity estimation apparatus 30 stores the refrigerant quantity M 1 estimated time in the storage unit 31.
  • the refrigerant quantity M 1 estimated by the general-purpose estimation equation M 1 (t) is As shown in FIG.
  • the refrigerant quantity M 1 estimated by the general-purpose estimation equation M 1 (t) is sufficiently reliable. I can't say that.
  • the state quantity of the refrigerant in the circulation circuit 200 when the state quantity of the refrigerant in the circulation circuit 200 is in a stable state, the fluctuation of the refrigerant quantity M 1 estimated by the general-purpose estimation equation M 1 (t) converges to a predetermined range. That is, when the state quantity of the refrigerant in the circulation circuit 200 is in a stable state, the refrigerant quantity M 1 estimated by the general-purpose estimation equation M 1 (t) can sufficiently ensure the reliability.
  • the refrigerant quantity estimation apparatus 30, at step S130A the difference between the currently estimated refrigerant quantity M 1 and the previous estimated refrigerant quantity M 1 _old is preset smaller than the reference difference amount e M It is determined whether or not. In the case where the refrigerant quantity M 1 _old the previously estimated is not stored in the storage unit 31, can not be performed, the determination at Step S130A. Therefore, when the refrigerant quantity M 1 _old the previously estimated is not stored in the storage unit 31, forcibly may be to return to the process of step S120A.
  • Step S130A determination process results, when the difference between a currently estimated refrigerant quantity M 1 and the previous estimated refrigerant quantity M 1 _old exceeds the reference difference amount e M, the refrigerant quantity estimation apparatus 30, at step S120A Then, the refrigerant quantity M 1 is estimated again by the general-purpose estimation formula M 1 (t). At this time, the refrigerant quantity estimation apparatus 30 stores before estimating the refrigerant quantity M 1 by the function estimation formula M 1 (t), the refrigerant quantity M 1 of the previously estimated in the storage unit 31 as the M 1 _old.
  • the refrigerant quantity estimation apparatus 30 at step S140, a general purpose estimation formula M 1 (estimating the refrigerant quantity M 1 by t).
  • a general purpose estimation formula M 1 estimating the refrigerant quantity M 1 by t.
  • the refrigerant amount estimation device 30 of the present embodiment can obtain the same effects as the first embodiment with the same configuration as that of the first embodiment.
  • the refrigerant amount estimation device 30 of the present embodiment is configured to execute the correction coefficient calculation process at the timing when the user operates the refrigeration cycle apparatus 20, and it is necessary to force the refrigeration cycle apparatus 20 to operate. Absent. This has the advantage that, for example, the time required for product shipment and maintenance can be shortened.
  • the refrigerant quantity estimation device 30 is configured to calculate the refrigerant quantity in the circulation circuit 200 using, for example, a control map that associates the refrigerant state quantity, the state quantity of the automobile 1, the refrigerant quantity, and the corrected estimated parameter. It may be.
  • the refrigerant quantity estimation device 30 may be configured to calculate the mathematical model ⁇ M by machine learning such as a neural network, for example.
  • the refrigerant amount estimation device 30 may be configured to determine the correction coefficient ⁇ M for correcting the estimation parameter regardless of whether or not the refrigerant state in the refrigeration cycle apparatus 20 is a stable state.
  • the refrigerant quantity estimation device 30 may be configured to correct the estimation parameter at an arbitrary timing after charging the refrigerant, for example.
  • the refrigerant quantity estimation device 30 may be configured to estimate the refrigerant quantity in the circulation circuit 200 based on, for example, a physical quantity related to the state quantity of the refrigerant when the refrigeration cycle apparatus 20 is operating.
  • the refrigerant state quantity serving as a variable at the time of estimating the refrigerant quantity is the refrigerant temperature Td and pressure Pd of the refrigerant outlet side of the radiator 22, and the refrigerant outlet side refrigerant of the evaporator 24.
  • temperature Ts and pressure Ps were illustrated, it is not limited to this.
  • the variable at the time of estimating the refrigerant amount is not limited to the direct refrigerant state quantity, and a physical quantity having a strong correlation with the refrigerant state quantity may be employed.
  • the refrigerant temperature Td on the refrigerant outlet side of the radiator 22 has a strong correlation with the outside air temperature.
  • the refrigerant temperature Ts on the refrigerant outlet side of the evaporator 24 has a strong correlation with the inside air temperature.
  • the variables at the time of estimating the refrigerant quantity for example, instead of the refrigerant temperature Td on the refrigerant outlet side of the radiator 22 and the refrigerant temperature Ts on the refrigerant outlet side of the evaporator 24, the outside air temperature and the inside air temperature are used. It may be adopted. Further, the variables at the time of estimating the refrigerant amount may include, for example, the degree of supercooling SC and the degree of superheating SH.
  • the refrigerant quantity estimation device 30 may simply be configured to output the estimated refrigerant quantity to a display device or the like, for example. In this case, it is desirable that the appropriate reference amount M_th is displayed on the display device.
  • information related to the corrected estimated parameter is output to the external server 90 using the wireless communication device 70 or the like in a state in which the information is associated with identification information for identifying the automobile 1.
  • the refrigerant quantity estimation device 30 may be configured to simply estimate the refrigerant quantity and not output information regarding the corrected estimation parameter or the like to the external server 90.
  • the compressor 21 driven by the rotational driving force output from the external engine 10 is exemplified, but the present invention is not limited to this.
  • the compressor 21 may be configured to be driven by a rotational driving force output from an electric motor.
  • the refrigeration cycle apparatus 20 may be mounted on a moving body such as a railway vehicle or a trailer, for example.
  • R134a which is an HFC-based refrigerant
  • R1234yf having a low global warming potential GWP may be employed for the refrigeration cycle apparatus 20.
  • coolant amount estimation apparatus is provided with a refrigerant
  • coolant estimation part estimates the refrigerant
  • the parameter correction unit corrects the estimated parameter so that the refrigerant amount estimated by the refrigerant amount estimation unit approaches the actual refrigerant amount measured when the refrigerant is charged.
  • the parameter correction unit uses the difference amount between the actual refrigerant amount and the refrigerant amount estimated by the refrigerant amount estimation unit as an objective variable, and the refrigerant when the refrigerant amount is estimated by the refrigerant amount estimation unit
  • the mathematical model for the difference is determined by regression analysis using the physical quantity including the state quantity as an explanatory variable.
  • the parameter correction unit corrects the estimated parameter using a mathematical model determined by regression analysis. According to this, it becomes possible to reduce the estimation error of the refrigerant amount due to the individual difference of the functional products constituting the refrigeration cycle apparatus.
  • the parameter correction unit corrects the estimated parameter when the refrigeration cycle apparatus is operating in a stable state in which the fluctuation of the physical quantity including the refrigerant state quantity falls within a predetermined range.
  • the estimated parameter is corrected in a state where the state quantity of the refrigerant in the circulation circuit becomes unstable, such as when the refrigeration cycle apparatus is started up, the reliability of the corrected estimated parameter cannot be ensured. For this reason, it is desirable to correct the estimation parameter when the refrigeration cycle apparatus is operating in a stable state in which the fluctuation of the physical quantity including the refrigerant state quantity falls within a predetermined range.
  • the parameter correction unit corrects the estimated parameter when the refrigeration cycle apparatus is operated for the first time after the refrigerant is charged.
  • the estimated parameter is corrected in a situation where there is almost no deviation between the refrigerant amount actually present in the circulation circuit and the actual refrigerant amount, the reliability of the corrected estimated parameter can be ensured.
  • the refrigerant amount estimation device determines whether the refrigerant amount in the circulation circuit is less than or equal to the appropriate reference amount in advance based on the refrigerant amount estimated by the refrigerant amount estimation unit. Department. According to this, an abnormal state in which the amount of refrigerant in the circulation circuit is insufficient due to slow leak or the like can be grasped, and there is an advantage that it is easy to prevent problems such as a decrease in cooling capacity in the refrigeration cycle apparatus.
  • the physical quantity includes a moving body state quantity that is related to the operation of the refrigeration cycle apparatus among the operating states of the moving body. According to this, it is possible to improve the estimation accuracy of the refrigerant amount in the refrigerant estimation unit.
  • the refrigerant amount estimation device includes an output unit that outputs to the external data storage device in a state associated with the estimation parameter corrected by the parameter correction unit and the identification information for identifying the moving object. Yes.
  • the data stored in the external data storage device can be effectively used for grasping the tendency of individual differences among functional products constituting the refrigeration cycle device.
  • the refrigerant quantity estimation device is applied to a refrigeration cycle device including a compressor, a radiator, a decompression device, and an evaporator.
  • the refrigerant amount estimation unit is based on at least the temperature and pressure of the refrigerant on the refrigerant outlet side of the radiator, the temperature and pressure of the refrigerant on the refrigerant outlet side of the evaporator, and the estimation parameter corrected by the parameter correction unit. Estimate the amount of refrigerant in the circulation circuit.
  • the refrigerant in the circulation circuit If the amount is estimated, the accuracy of estimating the amount of refrigerant can be improved.
  • the refrigeration cycle apparatus includes a circulation circuit in which the refrigerant circulates, and a refrigerant amount estimation device that estimates the amount of refrigerant circulated in the circulation circuit.
  • the refrigerant quantity estimation device includes a refrigerant quantity estimation unit and a parameter correction unit.
  • the refrigerant quantity estimation unit estimates the refrigerant quantity in the circulation circuit based on the physical quantity including the refrigerant state quantity during operation of the refrigeration cycle apparatus and a predetermined estimation parameter.
  • the parameter correction unit corrects the estimated parameter so that the refrigerant amount estimated by the refrigerant amount estimation unit approaches the actual refrigerant amount measured when the refrigerant is charged.

Abstract

A refrigerant volume estimation device (30) is applied to a vapor-compression refrigeration cycle device (20) that is mounted to a mobile body (1) and that has a refrigerant circulation circuit (200). The refrigerant volume estimation device comprises a refrigerant volume estimation unit (30a) that estimates the volume of refrigerant in the circulation circuit on the basis of a prescribed estimation parameter and a physical quantity that includes the state quantity of the refrigerant while the refrigeration cycle device is operating. The refrigerant volume estimation device comprises a parameter correction unit (30b) that corrects the estimation parameter so that the refrigerant volume estimated by the refrigerant volume estimation unit approaches the actual refrigerant volume measured during refrigerant charging. The refrigerant volume estimation unit estimates the refrigerant volume in the circulation circuit on the basis of the physical quantity that includes the state quantity of the refrigerant and the estimation parameter corrected by the parameter correction unit.

Description

冷媒量推定装置、冷凍サイクル装置Refrigerant amount estimation device, refrigeration cycle device 関連出願への相互参照Cross-reference to related applications
 本出願は、2017年6月6日に出願された日本出願番号2017-111860号に基づくものであって、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-111860 filed on June 6, 2017, the contents of which are incorporated herein by reference.
 本開示は、冷媒が循環する循環回路内の冷媒量を推定する冷媒量推定装置、および当該冷媒量推定装置を備える冷凍サイクル装置に関する。 The present disclosure relates to a refrigerant amount estimation device that estimates a refrigerant amount in a circulation circuit through which a refrigerant circulates, and a refrigeration cycle apparatus that includes the refrigerant amount estimation device.
 蒸気圧縮式の冷凍サイクル装置は、循環回路における冷媒量が不足していると、冷却能力の低下等の不具合が生ずる。また、循環回路における冷媒量が過剰となっていると、凝縮器における液冷媒の滞留や、圧縮機に液冷媒が吸入される等の不具合が生ずる。そこで、冷凍サイクル装置における冷媒の循環回路に対して、適正な量の冷媒を充填する方法が種々提案されている(例えば、特許文献1参照)。 Vapor compression type refrigeration cycle devices suffer from problems such as reduced cooling capacity when the amount of refrigerant in the circulation circuit is insufficient. Further, if the amount of refrigerant in the circulation circuit is excessive, problems such as stagnation of liquid refrigerant in the condenser and suction of liquid refrigerant into the compressor occur. Accordingly, various methods for charging an appropriate amount of refrigerant to the refrigerant circuit in the refrigeration cycle apparatus have been proposed (see, for example, Patent Document 1).
特開2008-232579号公報JP 2008-232579 A
 ところで、家屋やビル等の空調に利用される冷凍サイクル装置では、気密性の高い密閉型の圧縮機が採用される共に、各種配管が溶接によって接合されており、実質的に冷媒漏れが生じない構成となっている。 By the way, in a refrigeration cycle apparatus used for air conditioning of a house, a building, etc., a highly airtight hermetic compressor is adopted, and various pipes are joined by welding, so that substantially no refrigerant leakage occurs. It has a configuration.
 一方、車両等の移動体に搭載される冷凍サイクル装置では、メンテナンスの都合上、半密閉型または開放型の圧縮機を採用したり、移動体の移動時の振動を吸収するために循環回路の一部にゴム製の配管を採用したりする必要がある。このため、移動体に搭載される冷凍サイクル装置では、圧縮機や配管の一部から微量の冷媒漏れ(いわゆる、スローリーク)が避けられない。 On the other hand, in a refrigeration cycle apparatus mounted on a moving body such as a vehicle, a semi-hermetic or open type compressor is adopted for the convenience of maintenance, or a circulation circuit is used to absorb vibration during movement of the moving body. It is necessary to adopt rubber piping for some parts. For this reason, in the refrigeration cycle apparatus mounted on the moving body, a small amount of refrigerant leakage (so-called slow leak) is unavoidable from a part of the compressor and piping.
 これに対して、特許文献1の如く、予め実施した試験結果に基づいて決定したパラメータを含む汎用の演算式、および循環回路における冷媒の温度や圧力といった状態量に基づいて、循環回路内の冷媒量を推定することが考えられる。 On the other hand, the refrigerant in the circulation circuit is based on general-purpose arithmetic expressions including parameters determined based on the results of tests performed in advance and state quantities such as the temperature and pressure of refrigerant in the circulation circuit as in Patent Document 1. It is conceivable to estimate the quantity.
 しかしながら、特許文献1の如く、汎用の演算式に用いるパラメータを固定値とすると、例えば、冷凍サイクル装置を構成する機能品の個体差による誤差が生ずるため、冷媒量の推定精度を充分に確保することができない。 However, as in Patent Document 1, if a parameter used in a general-purpose arithmetic expression is a fixed value, for example, an error due to individual differences in functional products constituting the refrigeration cycle apparatus occurs, so that sufficient estimation accuracy of the refrigerant amount is ensured. I can't.
 本開示は、冷媒量を精度よく推定可能な冷媒量推定装置、および当該冷媒量推定装置を備える冷凍サイクル装置を提供することを目的とする。 The present disclosure is intended to provide a refrigerant amount estimation device capable of accurately estimating the refrigerant amount and a refrigeration cycle apparatus including the refrigerant amount estimation device.
 本開示の1つの観点によれば、冷媒量推定装置は、移動体に搭載され、冷媒の循環回路を有する蒸気圧縮式の冷凍サイクル装置に適用される。また、本開示の別の観点によれば、冷凍サイクル装置は、移動体に搭載され、冷媒が循環する循環回路と、循環回路内の冷媒量を推定する冷媒量推定装置と、を備える。 According to one aspect of the present disclosure, the refrigerant amount estimation device is applied to a vapor compression refrigeration cycle device that is mounted on a moving body and has a refrigerant circulation circuit. According to another aspect of the present disclosure, a refrigeration cycle apparatus includes a circulation circuit that is mounted on a moving body and circulates refrigerant, and a refrigerant amount estimation device that estimates a refrigerant amount in the circulation circuit.
 各観点における冷媒量推定装置は、
 冷凍サイクル装置の稼働時における冷媒の状態量を含む物理量、および所定の推定パラメータに基づいて、循環回路内の冷媒量を推定する冷媒量推定部と、
 冷媒量推定部で推定された冷媒量が冷媒の充填時に計量された実冷媒量に近付くように、推定パラメータを補正するパラメータ補正部と、
 を含んで構成されている。
The refrigerant quantity estimation device in each aspect is
A refrigerant quantity estimation unit that estimates a refrigerant quantity in the circulation circuit based on a physical quantity including a refrigerant state quantity during operation of the refrigeration cycle apparatus and a predetermined estimation parameter;
A parameter correction unit that corrects the estimated parameter so that the refrigerant amount estimated by the refrigerant amount estimation unit approaches the actual refrigerant amount measured when the refrigerant is charged;
It is comprised including.
 そして、冷媒量推定部は、冷媒の状態量を含む物理量、およびパラメータ補正部にて補正された推定パラメータに基づいて、循環回路内の冷媒量を推定する。 Then, the refrigerant quantity estimation unit estimates the refrigerant quantity in the circulation circuit based on the physical quantity including the refrigerant state quantity and the estimation parameter corrected by the parameter correction unit.
 これによると、実機である冷凍サイクル装置を稼働させた際に推定した冷媒量が実冷媒量に近付くように、冷媒量の推定に用いる推定パラメータを補正するので、冷凍サイクル装置を構成する機能品の個体差による誤差を小さくすることが可能となる。この結果、冷媒量を精度よく推定することができる。 According to this, the estimation parameter used for estimating the refrigerant amount is corrected so that the refrigerant amount estimated when the actual refrigeration cycle apparatus is operated is close to the actual refrigerant quantity. It is possible to reduce errors due to individual differences. As a result, the amount of refrigerant can be estimated with high accuracy.
第1実施形態の冷凍サイクル装置が搭載された車両を示す模式図である。It is a schematic diagram which shows the vehicle carrying the refrigeration cycle apparatus of 1st Embodiment. 第1実施形態の冷凍サイクル装置の概略構成を示す模式図である。It is a mimetic diagram showing a schematic structure of a refrigerating cycle device of a 1st embodiment. 第1実施形態の冷媒漏れ検知装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the refrigerant | coolant leak detection apparatus of 1st Embodiment. 冷凍サイクル装置の稼働時における冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of operation | movement of a refrigerating-cycle apparatus. 循環回路における冷媒量の継時的な変化を説明するための説明図である。It is explanatory drawing for demonstrating the change over time of the refrigerant | coolant amount in a circulation circuit. 第1実施形態の冷媒量推定装置が実行する補正係数算出処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the correction coefficient calculation process which the refrigerant | coolant amount estimation apparatus of 1st Embodiment performs. 第1実施形態の冷媒量推定装置が実行する冷媒量推定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the refrigerant | coolant amount estimation process which the refrigerant | coolant amount estimation apparatus of 1st Embodiment performs. 第2実施形態の冷媒量推定装置が実行する補正係数算出処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the correction coefficient calculation process which the refrigerant | coolant amount estimation apparatus of 2nd Embodiment performs. 冷凍サイクル装置の稼働時における汎用推定式にて推定された冷媒量の変化を説明するための説明図である。It is explanatory drawing for demonstrating the change of the refrigerant | coolant amount estimated by the general purpose estimation formula at the time of operation | movement of a refrigerating-cycle apparatus.
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts as those described in the preceding embodiments are denoted by the same reference numerals, and the description thereof may be omitted. Further, in the embodiment, when only a part of the constituent elements are described, the constituent elements described in the preceding embodiment can be applied to the other parts of the constituent elements. The following embodiments can be partially combined with each other even if they are not particularly specified as long as they do not cause any trouble in the combination.
 (第1実施形態)
 本実施形態について、図1~図7を参照して説明する。図1に示すように、本実施形態では、本開示の冷凍サイクル装置20が、移動体である自動車1に搭載された例について説明する。本実施形態の自動車1には、走行用の駆動源および冷凍サイクル装置20の駆動源として機能するエンジン10が搭載されている。
(First embodiment)
This embodiment will be described with reference to FIGS. As shown in FIG. 1, in the present embodiment, an example in which the refrigeration cycle apparatus 20 of the present disclosure is mounted on an automobile 1 that is a moving body will be described. The automobile 1 of this embodiment is equipped with an engine 10 that functions as a driving source for traveling and a driving source for the refrigeration cycle apparatus 20.
 冷凍サイクル装置20は、自動車1の車室内空間を空調する車両用空調装置に適用されている。冷凍サイクル装置20は、車室内空間に吹き出す空気を所望の温度となるまで冷却する機能を果たす。 The refrigeration cycle apparatus 20 is applied to a vehicle air conditioner that air-conditions the interior space of the automobile 1. The refrigeration cycle apparatus 20 functions to cool the air blown into the vehicle interior space until it reaches a desired temperature.
 図2に示すように、冷凍サイクル装置20は、冷媒が循環する循環回路200、圧縮機21、放熱器22、減圧機器23、蒸発器24を含む蒸気圧縮式の冷凍サイクルとして構成されている。 2, the refrigeration cycle apparatus 20 is configured as a vapor compression refrigeration cycle including a circulation circuit 200 in which a refrigerant circulates, a compressor 21, a radiator 22, a decompression device 23, and an evaporator 24.
 冷凍サイクル装置20は、冷媒として、HFC系冷媒であるR134aが採用されている。なお、冷媒には、圧縮機21を潤滑するオイル(すなわち、冷凍機油)が混入されている。オイルの一部は、冷媒と共に循環回路200を循環する。 The refrigeration cycle apparatus 20 employs R134a, which is an HFC refrigerant, as the refrigerant. Note that oil that lubricates the compressor 21 (that is, refrigeration oil) is mixed in the refrigerant. Part of the oil circulates in the circulation circuit 200 together with the refrigerant.
 圧縮機21は、吸入した冷媒を圧縮して吐出する機器である。圧縮機21は、往復動式の圧縮機構を含んで構成されている。なお、圧縮機21は、回転式の圧縮機構を含む構成となっていてもよい。 The compressor 21 is a device that compresses and discharges the sucked refrigerant. The compressor 21 includes a reciprocating compression mechanism. Note that the compressor 21 may include a rotary compression mechanism.
 本実施形態の圧縮機21は、外部のエンジン10から出力される回転駆動力によって駆動される構成となっている。本実施形態の圧縮機21は、冷媒の吐出容量を変更可能な容量可変型の圧縮機として構成されている。 The compressor 21 of the present embodiment is configured to be driven by a rotational driving force output from the external engine 10. The compressor 21 of the present embodiment is configured as a variable capacity compressor capable of changing the refrigerant discharge capacity.
 本実施形態の圧縮機21は、開放型の圧縮機として構成されている。具体的には、本実施形態の圧縮機21は、ハウジング211を貫通して外部に突き出たシャフト212が、エンジン10からの駆動力によって回転するように、プーリおよびベルト等の動力伝達機構213を介してエンジン10の出力軸10aに連結されている。 The compressor 21 of the present embodiment is configured as an open type compressor. Specifically, the compressor 21 of the present embodiment has a power transmission mechanism 213 such as a pulley and a belt such that a shaft 212 that protrudes outside through the housing 211 is rotated by a driving force from the engine 10. To the output shaft 10a of the engine 10.
 さらに、本実施形態の圧縮機21には、エンジン10からの回転駆動力の伝達をオン・オフする電磁クラッチ214が設けられている。本実施形態の圧縮機21は、電磁クラッチ214がオフされることで、その作動が停止される構成となっている。 Furthermore, the compressor 21 of the present embodiment is provided with an electromagnetic clutch 214 that turns on / off transmission of the rotational driving force from the engine 10. The compressor 21 of the present embodiment is configured to stop its operation when the electromagnetic clutch 214 is turned off.
 ここで、本実施形態の圧縮機21は、シャフト212がハウジング211を貫通する部位が、メカニカルシールやリップシール等のシール部材215によってシールされている。シール部材215は、樹脂を含む高分子材料で構成されている。なお、高分子材料は、ガス透過性を有している。このため、圧縮機21では、ハウジング211内部の冷媒がシール部材215を介して徐々に外部に透過することがある。 Here, in the compressor 21 of the present embodiment, a portion where the shaft 212 passes through the housing 211 is sealed by a seal member 215 such as a mechanical seal or a lip seal. The seal member 215 is made of a polymer material containing a resin. The polymer material has gas permeability. For this reason, in the compressor 21, the refrigerant inside the housing 211 may gradually permeate outside through the seal member 215.
 続いて、放熱器22は、圧縮機21から吐出された高温高圧の冷媒を、室外送風機221から導入される外気、または、自動車1の走行時のラム圧によって導入される外気との熱交換によって放熱させる熱交換器である。本実施形態の放熱器22は、エンジンルームのうち、自動車1の走行時のラム圧によって外気が導入される前方部分に配置されている。放熱器22に流入した冷媒は、外気との熱交換によって凝縮する。なお、外気は、図2の破線矢印AFoで示すように、放熱器22を通過する。 Subsequently, the heat radiator 22 exchanges heat of the high-temperature and high-pressure refrigerant discharged from the compressor 21 with the outside air introduced from the outdoor blower 221 or the outside air introduced by the ram pressure during travel of the automobile 1. It is a heat exchanger that dissipates heat. The radiator 22 of the present embodiment is disposed in a front portion of the engine room where outside air is introduced by the ram pressure when the automobile 1 is traveling. The refrigerant flowing into the radiator 22 is condensed by heat exchange with the outside air. Note that the outside air passes through the radiator 22 as indicated by a broken line arrow AFo in FIG.
 続いて、減圧機器23は、放熱器22を通過した冷媒を減圧膨張させる膨張弁である。減圧機器23としては、例えば、蒸発器24の出口側の温度を所定温度に調整可能に構成された温度式膨張弁が採用されている。 Subsequently, the decompression device 23 is an expansion valve that decompresses and expands the refrigerant that has passed through the radiator 22. As the decompression device 23, for example, a temperature type expansion valve configured so that the temperature on the outlet side of the evaporator 24 can be adjusted to a predetermined temperature is employed.
 続いて、蒸発器24は、減圧機器23で減圧された低温低圧の冷媒を、車室内空間へ空気を送風する室内送風機241から供給される送風空気との熱交換によって蒸発させる熱交換器である。室内送風機241から供給される送風空気は、図2の破線矢印AFcで示すように、蒸発器24を通過する。室内送風機241から供給される送風空気は、蒸発器24を通過する際に、冷媒の蒸発潜熱によって所望の温度となるまで冷却された後、車室内へ吹き出される。 Subsequently, the evaporator 24 is a heat exchanger that evaporates the low-temperature and low-pressure refrigerant decompressed by the decompression device 23 by heat exchange with the blown air supplied from the indoor blower 241 that blows air into the vehicle interior space. . The blown air supplied from the indoor blower 241 passes through the evaporator 24 as indicated by a broken line arrow AFc in FIG. When passing through the evaporator 24, the blown air supplied from the indoor blower 241 is cooled to a desired temperature by the latent heat of vaporization of the refrigerant, and then blown out into the vehicle interior.
 続いて、循環回路200は、圧縮機21、放熱器22、減圧機器23、蒸発器24を複数の配管201~204により順次接続して構成される閉回路である。具体的には、循環回路200は、圧縮機21の冷媒吐出側と放熱器22の冷媒入口側とを接続する第1高圧配管201、放熱器22の冷媒出口側と減圧機器23の冷媒入口側とを接続する第2高圧配管202を含んで構成されている。また、循環回路200は、減圧機器23の冷媒出口側と蒸発器24の冷媒入口側とを接続する第1低圧配管203、蒸発器24の冷媒出口側と圧縮機21の冷媒吸入側とを接続する第2低圧配管204を含んで構成されている。 Subsequently, the circulation circuit 200 is a closed circuit configured by sequentially connecting the compressor 21, the radiator 22, the decompression device 23, and the evaporator 24 through a plurality of pipes 201 to 204. Specifically, the circulation circuit 200 includes a first high-pressure pipe 201 that connects the refrigerant discharge side of the compressor 21 and the refrigerant inlet side of the radiator 22, the refrigerant outlet side of the radiator 22, and the refrigerant inlet side of the decompression device 23. The second high-pressure pipe 202 is connected. The circulation circuit 200 connects the first low-pressure pipe 203 connecting the refrigerant outlet side of the decompression device 23 and the refrigerant inlet side of the evaporator 24, and connects the refrigerant outlet side of the evaporator 24 and the refrigerant suction side of the compressor 21. The second low-pressure pipe 204 is configured.
 各高圧配管201、202および各低圧配管203、204は、基本的に金属製の配管で構成されている。但し、第1高圧配管201は、エンジン10や圧縮機21の振動を吸収するために、その一部が可撓性に優れた高分子材料(例えば、ゴム、樹脂)を含む第1高分子配管201aで構成されている。同様に、第2低圧配管204は、エンジン10や圧縮機21の振動を吸収するために、その一部が可撓性に優れた高分子材料(例えば、ゴム、樹脂)を含む第2高分子配管204aで構成されている。 The high- pressure pipes 201 and 202 and the low- pressure pipes 203 and 204 are basically composed of metal pipes. However, the first high-pressure pipe 201 is a first polymer pipe partially containing a polymer material (for example, rubber or resin) having excellent flexibility in order to absorb vibration of the engine 10 or the compressor 21. 201a. Similarly, the second low-pressure pipe 204 is a second polymer partly containing a polymer material (for example, rubber or resin) having excellent flexibility in order to absorb vibrations of the engine 10 and the compressor 21. It is comprised by the piping 204a.
 各高分子配管201a、204aは、金属製の配管で構成された部位に比べて、ガス透過性が高いため、内部を流れる冷媒が徐々に外部に透過してしまうことがある。特に、第1高分子配管201aは、圧縮機21で圧縮された高圧の冷媒が流れることから、冷媒が外部に漏れ易い傾向がある。 Since each polymer pipe 201a, 204a has higher gas permeability than a part constituted by a metal pipe, the refrigerant flowing inside may gradually permeate to the outside. In particular, since the high-pressure refrigerant compressed by the compressor 21 flows through the first polymer pipe 201a, the refrigerant tends to easily leak to the outside.
 本実施形態の冷凍サイクル装置20では、圧縮機21のシール部材215や、各高分子配管201a、204a等からの冷媒のスローリークが避けられない。このため、冷凍サイクル装置20は、循環回路200内の冷媒量を推定する冷媒量推定装置30を備えている。 In the refrigeration cycle apparatus 20 of the present embodiment, a slow leak of refrigerant from the seal member 215 of the compressor 21 and the polymer pipes 201a and 204a is unavoidable. For this reason, the refrigeration cycle apparatus 20 includes a refrigerant amount estimation device 30 that estimates the refrigerant amount in the circulation circuit 200.
 図3に示す冷媒量推定装置30は、プロセッサ、ROM、RAM等の記憶部31を有する周知のマイクロコンピュータ、およびその周辺回路を含んで構成されている。なお、冷媒量推定装置30の記憶部31は、非遷移的実体的記憶媒体で構成される。 3 includes a known microcomputer having a storage unit 31 such as a processor, a ROM, a RAM, and its peripheral circuits. In addition, the memory | storage part 31 of the refrigerant | coolant amount estimation apparatus 30 is comprised with a non-transitional tangible storage medium.
 図3に示すように、冷媒量推定装置30の入力側には、外気温度を検出する外気温度センサ301、内気温度を検出する内気温度センサ302、冷凍サイクル装置20を制御する空調制御装置40、エンジン10を制御するエンジン制御装置50等が接続されている。 As shown in FIG. 3, on the input side of the refrigerant quantity estimation device 30, an outside air temperature sensor 301 that detects the outside air temperature, an inside air temperature sensor 302 that detects the inside air temperature, an air conditioning control device 40 that controls the refrigeration cycle apparatus 20, An engine control device 50 and the like for controlling the engine 10 are connected.
 冷媒量推定装置30は、空調制御装置40が有する空調制御情報、およびエンジン制御装置50が有する走行制御情報が取得可能なように、空調制御装置40およびエンジン制御装置50に対して接続されている。 The refrigerant amount estimation device 30 is connected to the air conditioning control device 40 and the engine control device 50 so that the air conditioning control information of the air conditioning control device 40 and the travel control information of the engine control device 50 can be acquired. .
 空調制御装置40は、その入力側に循環回路200を流れる冷媒の温度、圧力といった冷媒の状態量を検出する各種センサが接続されている。具体的には、空調制御装置40には、放熱器22から流出した高圧冷媒の圧力および温度を検出する高圧側圧力センサ41および高圧側温度センサ42が接続されている。また、空調制御装置40は、蒸発器24から流出した低圧冷媒の圧力および温度を検出する低圧側圧力センサ43および低圧側温度センサ44が接続されている。 The air conditioning control device 40 is connected to various sensors for detecting state quantities of the refrigerant such as the temperature and pressure of the refrigerant flowing through the circulation circuit 200 on the input side. Specifically, a high-pressure side pressure sensor 41 and a high-pressure side temperature sensor 42 that detect the pressure and temperature of the high-pressure refrigerant that has flowed out of the radiator 22 are connected to the air conditioning control device 40. The air conditioning control device 40 is connected to a low-pressure side pressure sensor 43 and a low-pressure side temperature sensor 44 that detect the pressure and temperature of the low-pressure refrigerant that has flowed out of the evaporator 24.
 本実施形態の冷媒量推定装置30は、高圧側圧力センサ41、高圧側温度センサ42、低圧側圧力センサ43、低圧側温度センサ44が検出した情報を空調制御情報として空調制御装置40から取得可能となっている。 The refrigerant amount estimation device 30 of the present embodiment can acquire information detected by the high pressure side pressure sensor 41, the high pressure side temperature sensor 42, the low pressure side pressure sensor 43, and the low pressure side temperature sensor 44 from the air conditioning control device 40 as air conditioning control information. It has become.
 エンジン制御装置50は、その入力側に、エンジン10の回転数を検出する回転数センサ51、自動車1の走行速度を検出する車速センサ52等が接続されている。本実施形態の冷媒量推定装置30は、回転数センサ51および車速センサ52が検出した情報をエンジン制御情報としてエンジン制御装置50から取得可能となっている。 The engine control device 50 is connected to its input side with a rotation speed sensor 51 that detects the rotation speed of the engine 10, a vehicle speed sensor 52 that detects the traveling speed of the automobile 1, and the like. The refrigerant amount estimation device 30 of the present embodiment can acquire information detected by the rotation speed sensor 51 and the vehicle speed sensor 52 from the engine control device 50 as engine control information.
 ここで、冷凍サイクル装置20は、圧縮機21がエンジン10からの出力される回転駆動力によって駆動される構成となっている。このため、エンジン10の回転数は、冷凍サイクル装置20の圧縮機21に作動に大きく影響する因子となる。 Here, the refrigeration cycle apparatus 20 has a configuration in which the compressor 21 is driven by the rotational driving force output from the engine 10. For this reason, the rotation speed of the engine 10 is a factor that greatly affects the operation of the compressor 21 of the refrigeration cycle apparatus 20.
 また、冷凍サイクル装置20は、放熱器22が自動車1の走行時のラム圧によって外気導入される構成となっている。このため、自動車1の走行速度は、冷凍サイクル装置20における放熱器22の放熱量に影響する因子となる。 Further, the refrigeration cycle apparatus 20 is configured such that the heat radiator 22 is introduced to the outside air by the ram pressure when the automobile 1 is traveling. For this reason, the traveling speed of the automobile 1 is a factor that affects the heat radiation amount of the radiator 22 in the refrigeration cycle apparatus 20.
 このように、回転数センサ51および車速センサ52で検出される情報は、自動車1の稼働状態のうち、冷凍サイクル装置20の作動に関連性を有する状態量となる。本実施形態では、回転数センサ51および車速センサ52で検出される情報が、移動体の稼働状態のうち、冷凍サイクル装置20の作動に関連性を有する移動体状態量に相当する。 Thus, the information detected by the rotation speed sensor 51 and the vehicle speed sensor 52 is a state quantity that is relevant to the operation of the refrigeration cycle apparatus 20 among the operating states of the automobile 1. In the present embodiment, information detected by the rotation speed sensor 51 and the vehicle speed sensor 52 corresponds to a moving body state quantity that is relevant to the operation of the refrigeration cycle apparatus 20 among the operating states of the moving body.
 冷媒量推定装置30は、その出力側に、圧縮機21の電磁クラッチ214、ユーザに対して異常を報知する報知装置60等が接続されている。報知装置60は、図示しないが、冷凍サイクル装置20の各種異常情報を視覚的に表示する表示パネルを有している。報知装置60は、冷媒量推定装置30から異常状態を示す異常信号が入力された際に、表示パネルに異常を示す情報を表示する。なお、報知装置60は、異常情報を視覚的に報知する構成に限らず、異常情報を聴覚的に報知する構成となっていてもよい。 The refrigerant amount estimation device 30 is connected to the output side thereof, such as an electromagnetic clutch 214 of the compressor 21, a notification device 60 that notifies the user of the abnormality. Although not shown, the notification device 60 has a display panel that visually displays various abnormality information of the refrigeration cycle device 20. The notification device 60 displays information indicating an abnormality on the display panel when an abnormal signal indicating an abnormal state is input from the refrigerant amount estimation device 30. Note that the notification device 60 is not limited to a configuration that visually notifies abnormality information, and may be configured to notify the abnormality information audibly.
 また、本実施形態の冷媒量推定装置30は、自動車1に搭載された無線通信機70に接続されている。無線通信機70は、基地局80およびインターネット85を介して外部サーバ90と通信可能に構成されている。 Further, the refrigerant amount estimation device 30 of the present embodiment is connected to a wireless communication device 70 mounted on the automobile 1. The wireless communication device 70 is configured to be able to communicate with the external server 90 via the base station 80 and the Internet 85.
 本実施形態の冷媒量推定装置30は、無線通信機70を介して、記憶部31に記憶された各種情報等を外部サーバ90に出力可能に構成されている。本実施形態では、外部サーバ90が外部のデータ蓄積装置として機能する。 The refrigerant amount estimation device 30 of the present embodiment is configured to be able to output various information stored in the storage unit 31 to the external server 90 via the wireless communication device 70. In the present embodiment, the external server 90 functions as an external data storage device.
 このように構成された冷媒量推定装置30は、入力側から入力された各種信号等を、予め記憶部31に記憶されたプログラムに従って演算処理し、当該演算処理の結果等に基づいて、出力側に接続された各種制御対象機器を制御する。 The refrigerant amount estimation device 30 configured as described above performs arithmetic processing on various signals or the like input from the input side according to a program stored in the storage unit 31 in advance, and based on the result of the arithmetic processing or the like, Control various devices to be controlled connected to.
 具体的には、冷媒量推定装置30は、入力された情報、および所定の推定パラメータに基づいて、循環回路200内の冷媒量を推定する。本実施形態の冷媒量推定装置30は、冷凍サイクル装置20を構成する機能品の個体差による誤差を小さくするために、冷媒量を推定する際に用いる推定パラメータを補正する構成となっている。 Specifically, the refrigerant amount estimation device 30 estimates the refrigerant amount in the circulation circuit 200 based on the input information and a predetermined estimation parameter. The refrigerant amount estimation device 30 of the present embodiment is configured to correct an estimation parameter used when estimating the refrigerant amount in order to reduce an error due to individual differences of functional products constituting the refrigeration cycle apparatus 20.
 また、本実施形態の冷媒量推定装置30は、推定した冷媒量に基づいて、循環回路200内の冷媒量が適正基準量以下となる異常状態であるか否かを判定し、冷媒量が不足する異常状態となった際に当該異常状態に対する所定の対策を実行する。 Further, the refrigerant amount estimation device 30 of the present embodiment determines whether or not the refrigerant amount in the circulation circuit 200 is in an abnormal state that is equal to or less than the appropriate reference amount based on the estimated refrigerant amount, and the refrigerant amount is insufficient. When an abnormal state occurs, a predetermined measure against the abnormal state is executed.
 さらに、本実施形態の冷媒量推定装置30は、冷媒漏れが異常漏れであるか否かを判定する際に用いた各種情報等を、無線通信機70、インターネット85等を利用して外部サーバ90に出力する。 Furthermore, the refrigerant amount estimation device 30 of the present embodiment uses the wireless server 70, the Internet 85, and the like to store various information used when determining whether the refrigerant leak is abnormal or not, using the external server 90. Output to.
 ここで、冷媒量推定装置30には、各種演算処理を実行するハードウェアおよびソフトフェアで構成される処理実行部、各種制御対象機器を制御するハードウェアおよびソフトフェアで構成される制御部等が集約されている。 Here, the refrigerant amount estimation device 30 includes a processing execution unit configured by hardware and software for executing various arithmetic processes, a control unit configured by hardware and software for controlling various control target devices, and the like. It has been aggregated.
 冷媒量推定装置30には、循環回路200内の冷媒量を推定する冷媒量推定部30a、冷媒量を推定する際に用いる推定パラメータを補正するパラメータ補正部30bが集約されている。 The refrigerant amount estimation device 30 includes a refrigerant amount estimation unit 30a that estimates the refrigerant amount in the circulation circuit 200 and a parameter correction unit 30b that corrects an estimation parameter used when estimating the refrigerant amount.
 また、冷媒量推定装置30には、循環回路200内の冷媒量が不足する異常状態であるか否かを判定する異常判定部30c、異常状態となった際に所定の対策を実行する対策実行部30dが集約されている。 In addition, the refrigerant amount estimation device 30 includes an abnormality determination unit 30c that determines whether or not the refrigerant amount in the circulation circuit 200 is in an abnormal state, and executes a countermeasure to execute a predetermined countermeasure when an abnormal state occurs. The unit 30d is aggregated.
 さらに、冷媒量推定装置30には、冷媒漏れが異常漏れであるか否かを判定する際に用いた各種情報等を、無線通信機70等を利用して外部サーバ90に出力する出力部30eが集約されている。 Further, the refrigerant amount estimation device 30 outputs various information used when determining whether or not the refrigerant leak is an abnormal leak to the external server 90 using the wireless communication device 70 or the like. Are aggregated.
 次に、本実施形態の冷凍サイクル装置20の作動について、図4を参照して説明する。エンジン10が稼働した状態で車両用空調装置の運転が開始されると、空調制御装置40が、電磁クラッチ214をオンして圧縮機21を作動させる。 Next, the operation of the refrigeration cycle apparatus 20 of the present embodiment will be described with reference to FIG. When the operation of the vehicle air conditioner is started while the engine 10 is operating, the air conditioning control device 40 turns on the electromagnetic clutch 214 to operate the compressor 21.
 これにより、図4の実線で示すように、圧縮機21から吐出された冷媒(すなわち、図4のA1点)は、放熱器22に流入し、放熱器22において外気との熱交換によって放熱される(すなわち、図4のA1点→A2点)。 As a result, as indicated by the solid line in FIG. 4, the refrigerant discharged from the compressor 21 (that is, the point A1 in FIG. 4) flows into the radiator 22 and is radiated by heat exchange with the outside air in the radiator 22. (That is, point A1 → point A2 in FIG. 4).
 放熱器22から流出した冷媒(すなわち、図4のA2点)は、減圧機器23に流入し、減圧機器23において所定の圧力となるまで減圧膨張される(すなわち、図4のA2点→A3点)。 The refrigerant that has flowed out of the radiator 22 (that is, point A2 in FIG. 4) flows into the decompression device 23 and is decompressed and expanded until it reaches a predetermined pressure in the decompression device 23 (that is, point A2 → A3 in FIG. 4). ).
 減圧機器23から流出した冷媒(すなわち、図4のA3点)は、蒸発器24に流入し、蒸発器24において車室内への送風空気から吸熱して蒸発する(すなわち、図4のA3点→A4点)。これにより、車室内への送風空気が冷却される。そして、蒸発器24から流出した冷媒(すなわち、図4のA4点)は、圧縮機21の冷媒吸入側へと流れて、再び圧縮機21で圧縮される(すわなち、図4のA4点→A1点)。 The refrigerant that has flowed out of the decompression device 23 (that is, point A3 in FIG. 4) flows into the evaporator 24, and in the evaporator 24, absorbs heat from the air blown into the passenger compartment and evaporates (that is, point A3 in FIG. 4). A4 points). Thereby, the air blown into the passenger compartment is cooled. Then, the refrigerant flowing out of the evaporator 24 (that is, point A4 in FIG. 4) flows to the refrigerant suction side of the compressor 21 and is compressed again by the compressor 21 (that is, point A4 in FIG. 4). → A1 point).
 ここで、冷凍サイクル装置20では、循環回路200内の冷媒量が減少すると、図4の破線で示すように、圧縮機21に吸入される低圧冷媒の圧力が低下する。そして、蒸発器24の冷媒出口側における冷媒の過熱度SHが大きくなる(すなわち、図4のA4点→B4点)。本発明者らの知見によれば、低圧冷媒の圧力の低下量ΔPLおよび冷媒の過熱度SHの増加量ΔSHは、循環回路200内の冷媒量が減少するにつれて大きくなる傾向がある。 Here, in the refrigeration cycle apparatus 20, when the amount of refrigerant in the circulation circuit 200 decreases, the pressure of the low-pressure refrigerant sucked into the compressor 21 decreases as shown by the broken line in FIG. And the superheat degree SH of the refrigerant | coolant in the refrigerant | coolant exit side of the evaporator 24 becomes large (namely, A4 point-> B4 point of FIG. 4). According to the knowledge of the present inventors, the pressure decrease amount ΔPL of the low pressure refrigerant and the refrigerant superheat degree SH increase amount ΔSH tend to increase as the refrigerant amount in the circulation circuit 200 decreases.
 また、冷媒量の減少によって圧縮機21に吸入される冷媒の圧力が低下すると、圧縮機21から吐出される高圧冷媒の圧力が低下すると共に、放熱器22の冷媒出口側における冷媒の過冷却度SCが小さくなる(すなわち、図4のA2点→B2点)。本発明者らの知見によれば、高圧冷媒の圧力の低下量ΔPHおよび冷媒の過冷却度SCの減少量ΔSCは、循環回路200内の冷媒量が減少するにつれて大きくなる傾向がある。 Further, when the pressure of the refrigerant sucked into the compressor 21 is decreased due to the decrease in the refrigerant amount, the pressure of the high-pressure refrigerant discharged from the compressor 21 is decreased and the degree of supercooling of the refrigerant on the refrigerant outlet side of the radiator 22 is reduced. SC becomes small (that is, point A2 → point B2 in FIG. 4). According to the knowledge of the present inventors, the amount of decrease ΔPH in the pressure of the high-pressure refrigerant and the amount of decrease ΔSC in the refrigerant supercooling degree SC tend to increase as the amount of refrigerant in the circulation circuit 200 decreases.
 このように、冷凍サイクル装置20では、循環回路200における冷媒量と、循環回路200における冷媒の温度および圧力といった冷媒の状態量との間に強い相関性がある。 Thus, in the refrigeration cycle apparatus 20, there is a strong correlation between the refrigerant amount in the circulation circuit 200 and the refrigerant state quantity such as the refrigerant temperature and pressure in the circulation circuit 200.
 次に、本実施形態の冷凍サイクル装置20における冷媒量の継時的な変化について図5を参照して説明する。前述したように、本実施形態の冷凍サイクル装置20は、循環回路200の一部に冷媒の透過性を有する配管が採用されると共に、開放型の圧縮機21が採用されているため、冷媒のスローリークが避けられない。すなわち、本実施形態の冷凍サイクル装置20では、図5の実線で示すように、循環回路200における冷媒量Mが経時的に減少する。 Next, the change over time of the refrigerant amount in the refrigeration cycle apparatus 20 of the present embodiment will be described with reference to FIG. As described above, the refrigeration cycle apparatus 20 according to the present embodiment employs a refrigerant-permeable pipe in a part of the circulation circuit 200 and employs an open-type compressor 21. A slow leak is inevitable. That is, in the refrigeration cycle apparatus 20 of the present embodiment, the refrigerant amount M in the circulation circuit 200 decreases with time as shown by the solid line in FIG.
 そして、循環回路200内の冷媒量Mが、適正基準量M_th以下となると、循環回路200における冷媒量が不足した異常状態となる。この異常状態では、冷凍サイクル装置20における冷却能力不足等の不具合が生じ易くなる。 Then, when the refrigerant amount M in the circulation circuit 200 is equal to or less than the appropriate reference amount M_th, an abnormal state in which the refrigerant amount in the circulation circuit 200 is insufficient is obtained. In this abnormal state, problems such as insufficient cooling capacity in the refrigeration cycle apparatus 20 are likely to occur.
 そこで、本実施形態の冷媒量推定装置30は、冷媒の状態量、および自動車1の状態量を含む物理量を変数として、所定の推定パラメータを用いた推定式に代入することで冷媒量を推定する構成となっている。 Therefore, the refrigerant quantity estimation device 30 of the present embodiment estimates the refrigerant quantity by substituting the refrigerant state quantity and the physical quantity including the automobile 1 state quantity as variables into an estimation equation using a predetermined estimation parameter. It has a configuration.
 冷媒量を推定する推定式としては、冷凍サイクル装置20の試験機や、冷凍サイクル装置20を模したシミュレータで実施した試験結果に基づいて決定した推定パラメータを用いた汎用推定式を採用することが考えられる。なお、推定パラメータは、冷媒量の推定に用いる変数毎に設定された各係数の総称である。 As an estimation formula for estimating the refrigerant amount, a general-purpose estimation formula using an estimation parameter determined based on a test result of a test machine of the refrigeration cycle apparatus 20 or a simulator simulating the refrigeration cycle apparatus 20 may be adopted. Conceivable. The estimation parameter is a generic name for each coefficient set for each variable used for estimating the refrigerant amount.
 しかしながら、汎用推定式を採用する場合、例えば、実機である冷凍サイクル装置20を構成する機能品の個体差による誤差が生ずるため、冷媒量の推定精度を確保することができない。 However, when the general-purpose estimation formula is adopted, for example, an error due to individual differences of functional products constituting the refrigeration cycle apparatus 20 that is an actual machine occurs, so that the estimation accuracy of the refrigerant amount cannot be ensured.
 そこで、本実施形態の冷媒量推定装置30では、汎用推定式における推定パラメータを補正するための補正係数ΔMを決定し、汎用推定式および補正係数ΔMを用いた補正推定式によって、冷媒量を推定する構成となっている。 Therefore, in the refrigerant amount estimation device 30 of the present embodiment, the correction coefficient ΔM for correcting the estimation parameter in the general-purpose estimation formula is determined, and the refrigerant quantity is estimated by the correction estimation formula using the general-purpose estimation formula and the correction coefficient ΔM. It is the composition to do.
 以下、本実施形態の冷媒量推定装置30が実行する補正係数決定処理および冷媒量推定処理について、図6、図7を参照して説明する。なお、図6、図7に示す制御処理の各制御ステップは、冷媒量推定装置30が実行する各種機能を実現する機能実現部を構成している。 Hereinafter, the correction coefficient determination process and the refrigerant quantity estimation process executed by the refrigerant quantity estimation device 30 of the present embodiment will be described with reference to FIGS. 6 and 7. In addition, each control step of the control process shown in FIG. 6 and FIG. 7 constitutes a function realization unit that realizes various functions executed by the refrigerant amount estimation device 30.
 まず、本実施形態の冷媒量推定装置30が実行する補正係数算出処理の概要について、図6に示すフローチャートを用いて説明する。本実施形態の冷媒量推定装置30は、製品の出荷段階やメンテナンスにおいて、規定量の冷媒が循環回路200に充填された後、初回に冷凍サイクル装置20を稼働させた際に、補正係数算出処理を実行する。 First, the outline of the correction coefficient calculation process executed by the refrigerant quantity estimation device 30 of the present embodiment will be described with reference to the flowchart shown in FIG. The refrigerant quantity estimation device 30 according to the present embodiment performs correction coefficient calculation processing when the refrigeration cycle apparatus 20 is operated for the first time after a specified amount of refrigerant is filled in the circulation circuit 200 in the product shipping stage or maintenance. Execute.
 具体的には、図6に示すように、冷媒量推定装置30は、ステップS100にて、冷媒の充填時に計量された実冷媒量Mを読み込む。なお、実冷媒量Mは、冷媒を充填する冷媒充填機にて計量された冷媒量であり、予め空調制御装置40等に記憶されている。 Specifically, as shown in FIG. 6, the refrigerant quantity estimating device 30, at step S100, reads the actual refrigerant amount M R which is weighed at the time of filling of the refrigerant. Incidentally, the actual refrigerant amount M R is an amount of refrigerant which is metered by the refrigerant filling machine for filling a refrigerant is stored in advance in the air conditioning controller 40 or the like.
 続いて、冷媒量推定装置30は、ステップS110にて、空調制御装置40を介して冷凍サイクル装置20を稼働させる。本実施形態の冷媒量推定装置30は、室内送風機241の出力、室外送風機221の出力、圧縮機21の吐出容量それぞれが最大となるように、冷凍サイクル装置20を稼働させる。 Subsequently, the refrigerant amount estimation device 30 operates the refrigeration cycle device 20 via the air conditioning control device 40 in step S110. The refrigerant quantity estimation device 30 of the present embodiment operates the refrigeration cycle apparatus 20 so that the output of the indoor blower 241, the output of the outdoor blower 221, and the discharge capacity of the compressor 21 are maximized.
 続いて、冷媒量推定装置30は、ステップS120にて、タイマAによって、冷凍サイクル装置20を稼働させてからの経過時間Cnt1をカウントする。なお、タイマAは、計時手段であって、予め冷媒量推定装置30に内蔵されている。 Subsequently, the refrigerant amount estimation device 30 counts the elapsed time Cnt1 after the refrigeration cycle device 20 is operated by the timer A in step S120. The timer A is a time measuring means and is built in the refrigerant quantity estimating device 30 in advance.
 また、冷媒量推定装置30は、ステップS130にて、タイマAでカウントしている経過時間Cnt1が、予め設定された第1基準時間Cnt_th1を経過したか否かを判定する。 Further, in step S130, the refrigerant amount estimating apparatus 30 determines whether or not the elapsed time Cnt1 counted by the timer A has passed a preset first reference time Cnt_th1.
 ここで、第1基準時間Cnt_th1は、冷凍サイクル装置20を稼働させてから冷凍サイクル装置20における冷媒の状態量の変動が所定の範囲内に収まる安定状態になるまでに要する時間に設定されている。このため、ステップS130の処理は、冷凍サイクル装置20における冷媒の挙動が安定したか否かを判定する判定処理と解釈することができる。 Here, the first reference time Cnt_th1 is set to a time required from when the refrigeration cycle apparatus 20 is operated until a change in state quantity of the refrigerant in the refrigeration cycle apparatus 20 reaches a stable state within a predetermined range. . For this reason, the process of step S130 can be interpreted as a determination process for determining whether or not the behavior of the refrigerant in the refrigeration cycle apparatus 20 is stable.
 ステップS130の判定処理の結果、経過時間Cnt1が第1基準時間Cnt_th1を経過している場合、冷媒量推定装置30は、ステップS140にて、予め記憶部31に記憶された汎用推定式M(t)によって冷媒量Mを推定する。なお、汎用推定式M(t)は、図5の実線で示すように、経過時間tの増加に伴って冷媒量Mが減少するように設定されている。 When the elapsed time Cnt1 has passed the first reference time Cnt_th1 as a result of the determination process in step S130, the refrigerant amount estimation device 30 uses the general-purpose estimation equation M 1 (preliminarily stored in the storage unit 31 in step S140). estimating the refrigerant quantity M 1 by t). Note that the general-purpose estimation formula M 1 (t) is set so that the refrigerant amount M 1 decreases as the elapsed time t increases, as shown by the solid line in FIG.
 本実施形態では、汎用推定式M(t)として、冷媒量との相関性が強い放熱器22の冷媒出口側の冷媒の温度Tdおよび圧力Pd、蒸発器24の冷媒出口側の冷媒の温度Tsおよび圧力Ps、経過時間t等を変数とする以下の数式F1を採用している。 In the present embodiment, as the general-purpose estimation equation M 1 (t), the refrigerant temperature Td and pressure Pd of the refrigerant outlet side of the radiator 22 having a strong correlation with the refrigerant amount, the refrigerant temperature of the refrigerant outlet side of the evaporator 24 The following formula F1 with Ts, pressure Ps, elapsed time t, etc. as variables is adopted.
 M(t)=f[Pd、Ps、Td、Ts、Ne、Vs、t]…F1
 ここで、放熱器22の冷媒出口側の冷媒の温度Tdおよび圧力Pd、蒸発器24の冷媒出口側の冷媒の温度Tsおよび圧力Psは、自動車1の走行速度Vs、エンジン10の回転数Neの変動によって変化する。このため、上述の数式F1では、自動車1の走行速度Vsおよびエンジン10の回転数Neといった自動車1の状態量についても変数に追加している。
M 1 (t) = f [Pd, Ps, Td, Ts, Ne, Vs, t]... F1
Here, the temperature Td and pressure Pd of the refrigerant on the refrigerant outlet side of the radiator 22 and the temperature Ts and pressure Ps of the refrigerant on the refrigerant outlet side of the evaporator 24 are the traveling speed Vs of the automobile 1 and the rotational speed Ne of the engine 10. It changes by fluctuation. For this reason, in the above-described mathematical formula F1, the state quantities of the automobile 1 such as the traveling speed Vs of the automobile 1 and the rotational speed Ne of the engine 10 are also added to the variables.
 また、汎用推定式M(t)には、冷凍サイクル装置20の試験機等で実施した試験結果に基づいて決定した推定パラメータが設定されている。なお、推定パラメータは、例えば、以下の数式F2に示すように、変数毎に設定された各係数α1~α7として定義される。 Further, the universal estimation formula M 1 (t) is the estimated parameter is set which is determined on the basis of the test results performed by the testing machine or the like of the refrigeration cycle apparatus 20. The estimation parameter is defined as each coefficient α1 to α7 set for each variable, for example, as shown in the following formula F2.
 M(t)=α1×Pd+α2×Ps+α3×Td+α4×Ts+α5×Ne+α6×Vs-α7×t…F2
 このように、本実施形態の冷媒量推定装置30は、ステップS140にて、冷媒の状態量および自動車1の状態量を含む物理量を所定の推定パラメータを用いた汎用推定式M(t)に代入することで冷媒量Mを推定する。そして、冷媒量推定装置30は、汎用推定式M(t)で推定したMを記憶部31に記憶する。
M 1 (t) = α1 × Pd + α2 × Ps + α3 × Td + α4 × Ts + α5 × Ne + α6 × Vs−α7 × t... F2
As described above, the refrigerant quantity estimation device 30 according to the present embodiment converts the physical quantity including the refrigerant state quantity and the state quantity of the automobile 1 into the general-purpose estimation equation M 1 (t) using the predetermined estimation parameter in step S140. substituted estimates the refrigerant quantity M 1 by. Then, the refrigerant quantity estimation apparatus 30 stores the M 1 estimated by the generic estimation formula M 1 (t) in the storage unit 31.
 続いて、冷媒量推定装置30は、ステップS150にて、タイマAとは異なるタイマBによって、冷凍サイクル装置20が安定状態となってからの経過時間Cnt2をカウントする。なお、タイマBは、計時手段であって、予め冷媒量推定装置30に内蔵されている。 Subsequently, in step S150, the refrigerant amount estimation device 30 counts an elapsed time Cnt2 after the refrigeration cycle apparatus 20 is in a stable state by a timer B different from the timer A. The timer B is a time measuring means and is built in the refrigerant quantity estimating device 30 in advance.
 また、冷媒量推定装置30は、ステップS160にて、タイマBでカウントしている経過時間Cnt2が、予め設定された第2基準時間Cnt_th2を経過したか否かを判定する。 Further, in step S160, the refrigerant quantity estimating device 30 determines whether or not the elapsed time Cnt2 counted by the timer B has passed a preset second reference time Cnt_th2.
 ここで、第2基準時間Cnt_th2は、汎用推定式M(t)で推定した冷媒量Mのサンプル数が、後述する回帰分析に必要となる必要数に達するまでに必要な時間に設定されている。サンプル数の必要数としては、例えば、推定パラメータを構成する各係数の数の10倍以上とすることが望ましい。 Here, the second reference time Cnt_th2 the sample number of the generic estimation formula M 1 (t) the refrigerant quantity M 1 estimated in is set to the time required to reach the required number required for regression analysis to be described later ing. The required number of samples is preferably, for example, 10 times or more the number of coefficients constituting the estimation parameter.
 ステップS160の判定処理の結果、経過時間Cnt2が第2基準時間Cnt_th2を経過していない場合、冷媒量推定装置30は、ステップS140に戻り、汎用推定式M(t)で冷媒量Mを推定する。 Determination processing result of the step S160, if the elapsed time Cnt2 has not passed the second reference time Cnt_th2, refrigerant quantity estimation apparatus 30 returns to step S140, the refrigerant quantity M 1 in the general-purpose estimation formula M 1 (t) presume.
 一方、ステップS160の判定処理の結果、経過時間Cnt2が第2基準時間Cnt_th2を経過している場合、冷媒量推定装置30は、ステップS170にて、実冷媒量Mと冷媒量M(t)との差分量ΔM(t)を算出する。 On the other hand, the result of the determination process of step S160, if the elapsed time Cnt2 has passed the second reference time Cnt_th2, refrigerant quantity estimation apparatus 30, at step S170, the actual refrigerant amount M R and the refrigerant quantity M 1 (t The difference amount ΔM (t) is calculated.
 冷媒量推定装置30は、例えば、以下の数式F3により実冷媒量Mと冷媒量M(t)との差分量ΔM(t)を算出する。 Refrigerant quantity estimating device 30, for example, calculates a difference amount .DELTA.M (t) between the actual refrigerant amount M R and the refrigerant quantity M 1 (t) by the following equation F3.
 ΔM(t)=M-M(t)…F3
 続いて、冷媒量推定装置30は、ステップS180にて、差分量ΔM(t)に関する数理モデルΔMを算出する。本実施形態の冷媒量推定装置30は、差分量ΔM(t)を目的変数とし、汎用推定式M(t)で冷媒量Mを推定した際の冷媒の温度、圧力を含む物理量を説明変数とする回帰分析により差分量ΔM(t)に関する数理モデルΔMを算出する。
ΔM (t) = M R −M 1 (t)... F3
Subsequently, the refrigerant quantity estimation device 30 calculates a mathematical model ΔM related to the difference quantity ΔM (t) in step S180. The refrigerant quantity estimation device 30 of the present embodiment describes physical quantities including the refrigerant temperature and pressure when the refrigerant quantity M 1 is estimated by the general-purpose estimation equation M 1 (t) using the difference amount ΔM (t) as an objective variable. A mathematical model ΔM related to the difference amount ΔM (t) is calculated by regression analysis using variables.
 本実施形態では、汎用推定式M(t)における変数として、放熱器22の冷媒出口側の冷媒の温度Tdおよび圧力Pd、蒸発器24の冷媒出口側の冷媒の温度Tsおよび圧力Ps、自動車1の走行速度Vs、エンジン10の回転数Neを採用している。 In the present embodiment, as variables in the general estimation equation M 1 (t), the refrigerant temperature Td and pressure Pd on the refrigerant outlet side of the radiator 22, the refrigerant temperature Ts and pressure Ps on the refrigerant outlet side of the evaporator 24, the automobile A traveling speed Vs of 1 and a rotational speed Ne of the engine 10 are employed.
 このため、冷媒量推定装置30は、回帰分析の説明変数として、放熱器22の冷媒出口側の冷媒の温度Tdおよび圧力Pd、蒸発器24の冷媒出口側の冷媒の温度Tsおよび圧力Ps、自動車1の走行速度Vs、エンジン10の回転数Neを採用している。 For this reason, the refrigerant amount estimation device 30 uses, as explanatory variables for regression analysis, the refrigerant temperature Td and pressure Pd of the refrigerant outlet side of the radiator 22, the refrigerant temperature Ts and pressure Ps of the refrigerant outlet side of the evaporator 24, and the automobile. A traveling speed Vs of 1 and a rotational speed Ne of the engine 10 are employed.
 具体的には、ステップS180で算出する数理モデルΔMは、以下の数式F4で示すように、自動車1の走行速度Vs、エンジン10の回転数Neを変数に含む数式となっている。 Specifically, the mathematical model ΔM calculated in step S180 is a mathematical expression that includes the traveling speed Vs of the automobile 1 and the rotational speed Ne of the engine 10 as variables, as represented by the following mathematical expression F4.
 ΔM=g[Pd、Ps、Td、Ts、Ne、Vs]…F4
 上述の数式F4では、回帰分析により算出された補正パラメータが設定されている。なお、補正パラメータは、例えば、以下の数式F5に示すように、変数毎に設定された各係数β1~β6として定義される。
ΔM = g [Pd, Ps, Td, Ts, Ne, Vs]... F4
In the above mathematical formula F4, the correction parameter calculated by the regression analysis is set. The correction parameters are defined as coefficients β1 to β6 set for each variable, for example, as shown in the following formula F5.
 ΔM=β1×Pd+β2×Ps+β3×Td+β4×Ts+β5×Ne+β6×Vs…F5
 続いて、冷媒量推定装置30は、ステップS190にて、数理モデルΔMにより汎用推定式M(t)の推定パラメータを補正した補正推定式M(t)を算出する。具体的には、冷媒量推定装置30は、以下の数式F6に示すように、汎用推定式M(t)に対して数理モデルΔMを追加することで、補正推定式M(t)を算出する。
ΔM = β1 × Pd + β2 × Ps + β3 × Td + β4 × Ts + β5 × Ne + β6 × Vs... F5
Subsequently, in step S190, the refrigerant quantity estimation device 30 calculates a corrected estimation formula M 2 (t) obtained by correcting the estimation parameter of the general-purpose estimation formula M 1 (t) by the mathematical model ΔM. Specifically, the refrigerant quantity estimation device 30 adds the mathematical model ΔM to the general-purpose estimation formula M 1 (t) as shown in the following formula F6, thereby obtaining the corrected estimation formula M 2 (t). calculate.
 M(t)=M(t)+ΔM…F6
 なお、上述の数式F6における推定パラメータは、以下の数式F7で示すように、汎用推定式M1(t)の推定パラメータα1~α6に対して、数理モデルΔMの補正パラメータβ1~β6を追加したものとなる。
M 2 (t) = M 1 (t) + ΔM... F6
Note that the estimation parameters in the above equation F6 are obtained by adding correction parameters β1 to β6 of the mathematical model ΔM to the estimation parameters α1 to α6 of the general estimation equation M1 (t) as shown in the following equation F7. It becomes.
 M(t)=(α1+β1)×Pd+(α2+β2)×Ps+(α3+β3)×Td+(α4+β4)×Ts+(α5+β5)×Ne+(α6+β6)×Vs-α7×t…F7
 続いて、冷媒量推定装置30は、ステップS200にて、実冷媒量Mと補正推定式M(t)で算出した冷媒量Mとの差分の絶対値が予め設定された誤差許容値e_th未満であるか否かを判定する。
M 2 (t) = (α1 + β1) × Pd + (α2 + β2) × Ps + (α3 + β3) × Td + (α4 + β4) × Ts + (α5 + β5) × Ne + (α6 + β6) × Vs−α7 × t... F7
Subsequently, the refrigerant quantity estimation apparatus 30, at step S200, the actual refrigerant amount M R and the correction estimation formula M 2 error tolerance the absolute value of the difference is set in advance between the refrigerant quantity M 2 calculated in (t) It is determined whether it is less than e_th.
 この結果、実冷媒量Mと冷媒量Mとの差分の絶対値が誤差許容値e_th以上となる場合、冷媒量推定装置30は、ステップS210にて、タイマAおよびタイマBをリセットすると共に、汎用推定式M(t)を補正推定式M(t)に置き換える。そして、冷媒量推定装置30は、再び、ステップS140にて、汎用推定式M(t)によって冷媒量Mを推定する。なお、ステップS210にて汎用推定式M(t)を補正推定式M(t)に置き換えているので、ステップS140の処理では、汎用推定式M(t)によって冷媒量Mを推定することになる。 As a result, if the absolute value of the difference between the actual refrigerant amount M R and the refrigerant quantity M 2 is error tolerance e_th above, the refrigerant quantity estimation apparatus 30, at step S210, resets the timer A and timer B The general-purpose estimation formula M 1 (t) is replaced with the corrected estimation formula M 2 (t). Then, the refrigerant quantity estimation apparatus 30, again, in step S140, to estimate the refrigerant quantity M 1 by the function estimation formula M 1 (t). Since the general-purpose estimation formula M 1 (t) is replaced with the corrected estimation formula M 2 (t) in step S210, the refrigerant amount M 1 is estimated by the general-purpose estimation formula M 2 (t) in the process of step S140. Will do.
 一方、実冷媒量MRと冷媒量M2との差分の絶対値が誤差許容値e_th未満となる場合、冷媒量推定装置30は、ステップS220にて、ステップS180で算出した数理モデルΔMを汎用推定式M(t)の推定パラメータを補正する補正係数に決定する。 On the other hand, when the absolute value of the difference between the actual refrigerant amount MR and the refrigerant amount M2 is less than the allowable error value e_th, the refrigerant amount estimation device 30 uses the general-purpose estimation formula for the mathematical model ΔM calculated in step S180 in step S220. A correction coefficient for correcting the estimation parameter of M 1 (t) is determined.
 続いて、冷媒量推定装置30は、ステップS230にて、本制御処理で算出したデータを、無線通信機70等を利用して外部サーバ90に出力する。具体的には、冷媒量推定装置30は、補正した推定パラメータに関する情報(例えば、補正係数ΔM)を、自動車1を識別する識別情報(例えば、車両識別番号)に関連付けた状態で、無線通信機70等を利用して外部サーバ90に出力する。 Subsequently, the refrigerant quantity estimation device 30 outputs the data calculated in this control process to the external server 90 using the wireless communication device 70 or the like in step S230. Specifically, the refrigerant amount estimation device 30 associates information related to the corrected estimation parameter (for example, the correction coefficient ΔM) with identification information (for example, a vehicle identification number) for identifying the automobile 1, and the wireless communication device 70 and the like are output to the external server 90.
 以上までが補正係数算出処理の概要であり、以下、冷媒量推定装置30が実行する冷媒量推定処理の概要について、図7を参照して説明する。本実施形態の冷媒量推定装置30は、冷凍サイクル装置20が稼働している際に、所定の開始条件が成立すると冷媒量推定処理を実行する。 The above is the outline of the correction coefficient calculation process. Hereinafter, the outline of the refrigerant quantity estimation process executed by the refrigerant quantity estimation device 30 will be described with reference to FIG. The refrigerant quantity estimation device 30 of the present embodiment performs a refrigerant quantity estimation process when a predetermined start condition is satisfied while the refrigeration cycle apparatus 20 is operating.
 図7に示すように、冷媒量推定装置30は、ステップS300にて、空調制御装置40、エンジン制御装置50等を介して各種センサ出力を読み込む。そして、冷媒量推定装置30は、ステップS310にて、補正推定式M(t)によって循環回路200内の冷媒量Mを推定する。 As shown in FIG. 7, the refrigerant quantity estimation device 30 reads various sensor outputs via the air conditioning control device 40, the engine control device 50, and the like in step S300. Then, the refrigerant quantity estimating device 30, at step S310, the estimating the refrigerant quantity M 2 in the circulation circuit 200 by the correction estimation formula M 2 (t).
 本実施形態では、補正推定式M(t)として、以下の数式F8で示すように、汎用推定式M(t)に対して補正係数ΔMを追加したものを採用している。 In the present embodiment, as the correction estimation equation M 2 (t), a correction coefficient ΔM added to the general-purpose estimation equation M 1 (t) is adopted as shown by the following equation F8.
 M=M(t)+ΔM…F8
 具体的には、冷媒量推定装置30は、上述の数式F8に対して、放熱器22の冷媒出口側の冷媒の温度Tdおよび圧力Pd、蒸発器24の冷媒出口側の冷媒の温度Tsおよび圧力Ps、走行速度Vs、エンジン10の回転数Neを代入して冷媒量Mを推定する。
M 2 = M 1 (t) + ΔM... F8
Specifically, the refrigerant amount estimation device 30 uses the temperature Td and pressure Pd of the refrigerant on the refrigerant outlet side of the radiator 22 and the temperature Ts and pressure of the refrigerant on the refrigerant outlet side of the evaporator 24 with respect to the above formula F8. ps, running speed Vs, estimates the refrigerant quantity M 2 by substituting the rotation speed Ne of the engine 10.
 続いて、冷媒量推定装置30は、ステップS320にて、冷媒量Mが予め設定された冷媒の適正基準量M_th以下であるか否かを判定する。なお、適正基準量M_thは、冷凍サイクル装置20の作動(例えば、冷却能力)に影響し始める冷媒量に設定されている。 Subsequently, the refrigerant quantity estimation apparatus 30, at step S320, determines whether or not the refrigerant quantity M 2 is equal to or less than the proper reference amount M_th preset refrigerant. The appropriate reference amount M_th is set to a refrigerant amount that starts to affect the operation (for example, cooling capacity) of the refrigeration cycle apparatus 20.
 この結果、冷媒量Mが適正基準量M_thを超えている場合、冷媒量推定装置30は、ステップS330にて、冷媒量の状態を示す状態フラグを冷媒量が不足していない状態を示す適正状態に設定し、本処理を抜ける。 As a result, when the refrigerant quantity M 2 exceeds the appropriate reference amount M_th, the refrigerant quantity estimating device 30, at step S330, appropriate to the status flag indicating the state of the refrigerant quantity indicating a state where no shortage of amount of refrigerant Set to state and exit this process.
 一方、冷媒量Mが適正基準量M_th以下の場合、冷媒量推定装置30は、ステップS340にて、冷媒量の状態を示す状態フラグを冷媒量が不足していることを示す異常状態に設定する。 On the other hand, when the refrigerant quantity M 2 is less appropriate reference amount M_th, the refrigerant quantity estimating device 30, at step S340, sets a status flag indicating the state of the refrigerant quantity in the abnormal state indicating that the amount of refrigerant is insufficient To do.
 続いて、冷媒量推定装置30は、ステップS350にて、報知装置60によって冷媒の漏れ状態が異常漏れ状態となっている旨をユーザに対して報知する報知処理を実行する。具体的には、冷媒量推定装置30は、報知装置60に対して冷媒量が異常状態となっていることを示す異常信号を出力する。この報知処理では、異常状態となっていることに加えて、冷媒の充填を喚起する情報を報知装置60によってユーザに報知することが望ましい。 Subsequently, in step S350, the refrigerant quantity estimation device 30 performs a notification process for notifying the user that the refrigerant leakage state is an abnormal leakage state by the notification device 60. Specifically, the refrigerant amount estimation device 30 outputs an abnormal signal indicating that the refrigerant amount is in an abnormal state to the notification device 60. In this notification process, in addition to being in an abnormal state, it is desirable that the notification device 60 notifies the user of information that prompts the charging of the refrigerant.
 また、冷媒量推定装置30は、ステップS360にて、冷凍サイクル装置20の作動を制限する作動制限処理を実行する。この作動制限処理では、電磁クラッチ214をオフして、冷凍サイクル装置20の作動を停止させる。これによれば、冷媒不足によって冷凍サイクル装置20に生ずる各種不具合を抑制することができる。 Further, the refrigerant quantity estimation device 30 executes an operation restriction process for restricting the operation of the refrigeration cycle apparatus 20 in step S360. In this operation restriction process, the electromagnetic clutch 214 is turned off and the operation of the refrigeration cycle apparatus 20 is stopped. According to this, various malfunctions that occur in the refrigeration cycle apparatus 20 due to a lack of refrigerant can be suppressed.
 以上説明した冷媒量推定装置30は、実機である冷凍サイクル装置20を稼働させた際に推定した冷媒量が実冷媒量Mに近付くように、冷媒量の推定に用いる推定パラメータを補正する構成となっている。これによると、冷凍サイクル装置20を構成する機能品の個体差による誤差を小さくすることができるので、冷媒量の推定精度を向上させることができる。 Refrigerant quantity estimation apparatus 30 described above, as the amount of the refrigerant estimated when the operate the refrigeration cycle apparatus 20 is actual approaches the actual refrigerant quantity M R, configured to correct the estimated parameters used to estimate the refrigerant quantity It has become. According to this, since the error due to individual differences in functional products constituting the refrigeration cycle apparatus 20 can be reduced, the estimation accuracy of the refrigerant amount can be improved.
 具体的には、本実施形態の冷媒量推定装置30は、実冷媒量Mと推定した冷媒量との差分を目的変数とし、冷媒の状態量および自動車1の状態量を説明変数とする回帰分析により差分量に関する数理モデル(すなわち、補正係数ΔM)を決定する。そして、冷媒量推定装置30は、回帰分析により決定した補正係数ΔMによって汎用推定式M(t)の推定パラメータを補正する構成となっている。これによると、冷凍サイクル装置20を構成する機能品の個体差に起因する冷媒量の推定誤差を小さくすることができる。 Specifically, the refrigerant quantity estimation apparatus 30 of this embodiment, the difference between the refrigerant amount estimated the actual refrigerant amount M R and objective variable, a state amount and the state quantity of the motor vehicle 1 of the refrigerant and the explanatory variable regression The mathematical model (that is, the correction coefficient ΔM) relating to the difference amount is determined by analysis. Then, the refrigerant quantity estimation apparatus 30 is configured to correct the estimated parameters of the function estimation formula M 1 (t) by the correction coefficient ΔM determined by regression analysis. According to this, it is possible to reduce the estimation error of the refrigerant amount due to the individual difference between the functional products constituting the refrigeration cycle apparatus 20.
 ここで、冷凍サイクル装置20の起動時等のように、循環回路200内の冷媒の状態が不安定となる状態において、推定パラメータを補正する補正係数ΔMを決定すると、補正した推定パラメータの信頼性を確保することができない。 Here, when the correction coefficient ΔM for correcting the estimated parameter is determined in a state where the state of the refrigerant in the circulation circuit 200 becomes unstable, such as when the refrigeration cycle apparatus 20 is started, the reliability of the corrected estimated parameter is determined. Can not be secured.
 これに対して、本実施形態の冷媒量推定装置30は、冷媒の状態量の変動が所定の範囲内に収まる安定状態で冷凍サイクル装置20が稼働している状態で、推定パラメータを補正する補正係数ΔMを決定する構成となっている。これによると、補正した推定パラメータの信頼性を確保することができる。 On the other hand, the refrigerant quantity estimation device 30 of the present embodiment corrects the estimation parameter in a state where the refrigeration cycle apparatus 20 is operating in a stable state where fluctuations in the refrigerant state quantity fall within a predetermined range. The coefficient ΔM is determined. According to this, the reliability of the corrected estimated parameter can be ensured.
 また、本実施形態の冷媒量推定装置30は、冷媒の充填後において、冷凍サイクル装置20の初回の稼働時に、推定パラメータを補正する補正係数ΔMを決定する構成となっている。このように、実際に循環回路200内に存する冷媒量と実冷媒量Mとのずれが殆どない状況で補正係数ΔMを決定する構成とすれば、補正した推定パラメータの信頼性を充分に確保することができる。 Further, the refrigerant amount estimation device 30 of the present embodiment is configured to determine a correction coefficient ΔM for correcting the estimation parameter when the refrigeration cycle apparatus 20 is operated for the first time after the refrigerant is charged. Thus, if indeed the deviation of the amount of refrigerant existing in the circulation circuit 200 and the actual refrigerant amount M R determines the correction coefficient ΔM in little circumstances configuration, sufficiently ensure the reliability of the corrected estimated parameters can do.
 さらに、本実施形態の冷媒量推定装置30は、補正した推定パラメータを用いた補正推定式M(t)によって推定した水分量Mと冷媒の適正基準量M_thとを比較して、冷媒量が異常状態であるか否かを判定する構成となっている。 Further, the refrigerant amount estimation device 30 of the present embodiment compares the moisture amount M 2 estimated by the corrected estimation formula M 2 (t) using the corrected estimation parameter with the refrigerant proper reference amount M_th, and compares the refrigerant amount. Is configured to determine whether or not is in an abnormal state.
 これによると、スローリーク等によって循環回路200内の冷媒量が不足した異常状態を把握可能となるので、冷凍サイクル装置20における冷却能力の低下等の不具合を予防し易くなるといった利点がある。 According to this, an abnormal state in which the amount of refrigerant in the circulation circuit 200 is insufficient due to a slow leak or the like can be grasped, and there is an advantage that it is easy to prevent problems such as a decrease in cooling capacity in the refrigeration cycle apparatus 20.
 また、本実施形態の冷媒量推定装置30は、冷媒の状態量だけでなく、自動車1の走行速度Vsおよびエンジン10の回転数Neといった自動車1の状態量を含む物理量に基づいて、冷媒量を推定する構成となっている。これよると、冷媒量推定装置30における冷媒の推定精度を向上させることができる。 Further, the refrigerant amount estimation device 30 of the present embodiment calculates the refrigerant amount based not only on the refrigerant state quantity but also on the physical quantity including the state quantity of the automobile 1 such as the running speed Vs of the automobile 1 and the rotational speed Ne of the engine 10. The configuration is to be estimated. According to this, the estimation accuracy of the refrigerant in the refrigerant quantity estimation device 30 can be improved.
 さらに、本実施形態の冷媒量推定装置30は、補正した推定パラメータに関する情報を、自動車1の識別情報に関連付けた状態で、無線通信機70等を利用して外部サーバ90に出力する構成となっている。これによると、例えば、外部の外部サーバ90に蓄積されたデータを、自動車1に搭載された冷凍サイクル装置20を構成する機能品の個体差が生ずる傾向の把握等に有効活用することができる。 Furthermore, the refrigerant amount estimation device 30 of the present embodiment is configured to output the information related to the corrected estimation parameter to the external server 90 using the wireless communication device 70 or the like in a state in which the information is associated with the identification information of the automobile 1. ing. According to this, for example, the data stored in the external server 90 can be effectively used for grasping the tendency of individual differences in functional products constituting the refrigeration cycle apparatus 20 mounted on the automobile 1.
 ここで、本実施形態では、補正係数算出処理におけるステップS110にて、室内送風機241の出力、室外送風機221の出力、圧縮機21の吐出容量それぞれが最大となるように、冷凍サイクル装置20を稼働させる例について説明したが、これに限定されない。 Here, in this embodiment, in step S110 in the correction coefficient calculation process, the refrigeration cycle apparatus 20 is operated so that the output of the indoor fan 241, the output of the outdoor fan 221, and the discharge capacity of the compressor 21 are maximized. Although the example to make was demonstrated, it is not limited to this.
 冷媒量推定装置30は、補正係数算出処理におけるステップS110にて、例えば、室内送風機241の出力、室外送風機221の出力、圧縮機21の吐出容量それぞれが予め定めた設定値となるように、冷凍サイクル装置20を稼働させる構成となっていてもよい。 In step S110 in the correction coefficient calculation process, the refrigerant amount estimation device 30 performs refrigeration so that, for example, the output of the indoor blower 241, the output of the outdoor blower 221, and the discharge capacity of the compressor 21 are set to predetermined values. The cycle device 20 may be configured to operate.
 (第2実施形態)
 次に、第2実施形態について、図8、図9を参照して説明する。本実施形態では、冷媒量推定装置30が実行する補正係数算出処理の内容が第1実施形態と相違している。その他の構成については、基本的に第1実施形態と同様である。このため、本実施形態では、主に第1実施形態と異なる部分について説明する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. In this embodiment, the content of the correction coefficient calculation process which the refrigerant | coolant amount estimation apparatus 30 performs differs from 1st Embodiment. Other configurations are basically the same as those in the first embodiment. For this reason, in this embodiment, a different part from 1st Embodiment is mainly demonstrated.
 本実施形態の冷媒量推定装置30は、図6で示した補正係数算出処理に代えて、図8に示す補正係数算出処理を実行する。なお、図8に示す各ステップのうち、図6で示したステップと同じ符号が付されたステップは、特に言及しない限り、同じ処理内容となっている。 The refrigerant quantity estimation device 30 of the present embodiment executes a correction coefficient calculation process shown in FIG. 8 instead of the correction coefficient calculation process shown in FIG. Of the steps shown in FIG. 8, steps denoted by the same reference numerals as those shown in FIG. 6 have the same processing contents unless otherwise specified.
 本実施形態の冷媒量推定装置30は、製品の出荷段階やメンテナンスにおいて、規定量の冷媒が循環回路200に充填された後、ユーザが冷凍サイクル装置20を稼働させた際に、補正係数算出処理を実行する。 The refrigerant amount estimation device 30 according to the present embodiment performs correction coefficient calculation processing when a user operates the refrigeration cycle apparatus 20 after a specified amount of refrigerant is filled in the circulation circuit 200 in a product shipping stage or maintenance. Execute.
 具体的には、図8に示すように、本実施形態の冷媒量推定装置30は、ステップS100で実冷媒量Mを読み込んだ後、ステップS110Aにて、ユーザによって冷凍サイクル装置20が起動された否かを判定する。 Specifically, as shown in FIG. 8, the refrigerant quantity estimation apparatus 30 of this embodiment, after reading the actual refrigerant quantity M R in step S100, in step S110A, the refrigeration cycle apparatus 20 is activated by the user Judge whether or not.
 ステップS110Aの判定処理の結果、ユーザによって冷凍サイクル装置20が起動された場合、冷媒量推定装置30は、ステップS120Aにて、汎用推定式M(t)によって冷媒量Mを推定する。このステップS120Aの処理は、図6のステップS140の処理と同様であるため、その説明を省略する。なお、冷媒量推定装置30は、今回推定した冷媒量Mを記憶部31に記憶する。 Step S110A determination process result, if the refrigeration cycle apparatus 20 is activated by the user, the refrigerant quantity estimation apparatus 30, at step S120A, estimates the refrigerant quantity M 1 by the function estimation formula M 1 (t). Since the process of step S120A is the same as the process of step S140 of FIG. 6, the description thereof is omitted. Incidentally, the refrigerant quantity estimation apparatus 30 stores the refrigerant quantity M 1 estimated time in the storage unit 31.
 ここで、冷凍サイクル装置20の起動時等のように、循環回路200内の冷媒の状態量が不安定状態となっている場合、汎用推定式M(t)で推定する冷媒量Mは、図9に示すように大きく変動する。このため、循環回路200内の冷媒の状態量が不安定状態となっている場合に汎用推定式M(t)で推定した冷媒量Mは、その信頼性が充分に確保されているとはいえない。 Here, when the state quantity of the refrigerant in the circulation circuit 200 is in an unstable state, such as when the refrigeration cycle apparatus 20 is activated, the refrigerant quantity M 1 estimated by the general-purpose estimation equation M 1 (t) is As shown in FIG. For this reason, when the state quantity of the refrigerant in the circulation circuit 200 is in an unstable state, the refrigerant quantity M 1 estimated by the general-purpose estimation equation M 1 (t) is sufficiently reliable. I can't say that.
 一方、循環回路200内の冷媒の状態量が安定状態となっている場合、汎用推定式M(t)で推定する冷媒量Mの変動が所定の範囲に収束する。すなわち、循環回路200内の冷媒の状態量が安定状態となっている場合に汎用推定式M(t)で推定した冷媒量Mは、その信頼性を充分に確保することができる。 On the other hand, when the state quantity of the refrigerant in the circulation circuit 200 is in a stable state, the fluctuation of the refrigerant quantity M 1 estimated by the general-purpose estimation equation M 1 (t) converges to a predetermined range. That is, when the state quantity of the refrigerant in the circulation circuit 200 is in a stable state, the refrigerant quantity M 1 estimated by the general-purpose estimation equation M 1 (t) can sufficiently ensure the reliability.
 そこで、本実施形態では、冷媒量推定装置30は、ステップS130Aにて、今回推定した冷媒量Mと前回推定した冷媒量M_oldとの差分が、予め設定された基準差分量e未満であるか否かを判定する。なお、前回推定した冷媒量M_oldが記憶部31に記憶されてない場合は、ステップS130Aの判定が実施できない。このため、前回推定した冷媒量M_oldが記憶部31に記憶されてない場合は、強制的にステップS120Aの処理に戻るようにすればよい。 Therefore, in the present embodiment, the refrigerant quantity estimation apparatus 30, at step S130A, the difference between the currently estimated refrigerant quantity M 1 and the previous estimated refrigerant quantity M 1 _old is preset smaller than the reference difference amount e M It is determined whether or not. In the case where the refrigerant quantity M 1 _old the previously estimated is not stored in the storage unit 31, can not be performed, the determination at Step S130A. Therefore, when the refrigerant quantity M 1 _old the previously estimated is not stored in the storage unit 31, forcibly may be to return to the process of step S120A.
 ステップS130Aの判定処理の結果、今回推定した冷媒量Mと前回推定した冷媒量M_oldとの差分が基準差分量eを超えている場合、冷媒量推定装置30は、ステップS120Aにて、再び汎用推定式M(t)によって冷媒量Mを推定する。この際、冷媒量推定装置30は、汎用推定式M(t)によって冷媒量Mを推定する前に、前回推定した冷媒量MをM_oldとして記憶部31に記憶する。 Step S130A determination process results, when the difference between a currently estimated refrigerant quantity M 1 and the previous estimated refrigerant quantity M 1 _old exceeds the reference difference amount e M, the refrigerant quantity estimation apparatus 30, at step S120A Then, the refrigerant quantity M 1 is estimated again by the general-purpose estimation formula M 1 (t). At this time, the refrigerant quantity estimation apparatus 30 stores before estimating the refrigerant quantity M 1 by the function estimation formula M 1 (t), the refrigerant quantity M 1 of the previously estimated in the storage unit 31 as the M 1 _old.
 一方、今回推定した冷媒量Mと前回推定した冷媒量M_oldとの差分が基準差分量e未満となる場合、冷媒量推定装置30は、ステップS140にて、汎用推定式M(t)によって冷媒量Mを推定する。なお、ステップS140以降の処理は、図6で示す処理と同じであるため、その説明を省略する。 On the other hand, if the difference between the current estimated refrigerant quantity M 1 and the previous estimated refrigerant quantity M 1 _old is less than the reference difference amount e M, the refrigerant quantity estimation apparatus 30, at step S140, a general purpose estimation formula M 1 ( estimating the refrigerant quantity M 1 by t). In addition, since the process after step S140 is the same as the process shown in FIG. 6, the description is abbreviate | omitted.
 以上説明した本実施形態の冷媒量推定装置30は、第1実施形態と共通の構成から奏される作用効果を第1実施形態と同様に得ることができる。特に、本実施形態の冷媒量推定装置30は、ユーザが冷凍サイクル装置20を稼働させたタイミングで補正係数算出処理を実行する構成となっており、冷凍サイクル装置20を強制的に稼働させる必要がない。このことは、例えば、製品出荷やメンテナンスに要する時間を短縮可能になるといった利点がある。 As described above, the refrigerant amount estimation device 30 of the present embodiment can obtain the same effects as the first embodiment with the same configuration as that of the first embodiment. In particular, the refrigerant amount estimation device 30 of the present embodiment is configured to execute the correction coefficient calculation process at the timing when the user operates the refrigeration cycle apparatus 20, and it is necessary to force the refrigeration cycle apparatus 20 to operate. Absent. This has the advantage that, for example, the time required for product shipment and maintenance can be shortened.
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
(Other embodiments)
As mentioned above, although typical embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, for example, can be variously changed as follows.
 上述の各実施形態では、補正された推定パラメータを用いた補正推定式を用いて、循環回路200内の冷媒量を算出する例について説明したが、これに限定されない。冷媒量推定装置30は、例えば、冷媒の状態量、自動車1の状態量、冷媒量、および補正された推定パラメータそれぞれを関連付けた制御マップを用いて、循環回路200内の冷媒量を算出する構成となっていてもよい。 In each of the above-described embodiments, the example of calculating the refrigerant amount in the circulation circuit 200 using the corrected estimation formula using the corrected estimation parameter has been described, but the present invention is not limited to this. The refrigerant quantity estimation device 30 is configured to calculate the refrigerant quantity in the circulation circuit 200 using, for example, a control map that associates the refrigerant state quantity, the state quantity of the automobile 1, the refrigerant quantity, and the corrected estimated parameter. It may be.
 上述の各実施形態では、回帰分析により数理モデルΔMを算出する例について説明したが、これに限定されない。冷媒量推定装置30は、例えば、ニューラルネットワーク等の機械学習によって数理モデルΔMを算出する構成となっていてもよい。 In each of the above-described embodiments, the example in which the mathematical model ΔM is calculated by regression analysis has been described. However, the present invention is not limited to this. The refrigerant quantity estimation device 30 may be configured to calculate the mathematical model ΔM by machine learning such as a neural network, for example.
 上述の各実施形態の如く、冷凍サイクル装置20における冷媒の状態が安定状態となっている際に、推定パラメータを補正する補正係数ΔMを決定することが望ましいが、これに限定されない。冷媒量推定装置30は、例えば、冷凍サイクル装置20における冷媒の状態が安定状態であるか否かに関わらず、推定パラメータを補正する補正係数ΔMを決定する構成となっていてもよい。 As in the above-described embodiments, it is desirable to determine the correction coefficient ΔM for correcting the estimation parameter when the refrigerant state in the refrigeration cycle apparatus 20 is in a stable state, but the present invention is not limited to this. For example, the refrigerant amount estimation device 30 may be configured to determine the correction coefficient ΔM for correcting the estimation parameter regardless of whether or not the refrigerant state in the refrigeration cycle apparatus 20 is a stable state.
 上述の各実施形態の如く、冷媒の充填後において冷凍サイクル装置20の初回の稼働時に、推定パラメータを補正することが望ましいが、これに限定されない。冷媒量推定装置30は、例えば、冷媒の充填後における任意のタイミングで推定パラメータを補正する構成となっていてもよい。 As in each of the above-described embodiments, it is desirable to correct the estimation parameter when the refrigeration cycle apparatus 20 is operated for the first time after charging the refrigerant, but the present invention is not limited to this. The refrigerant quantity estimation device 30 may be configured to correct the estimation parameter at an arbitrary timing after charging the refrigerant, for example.
 上述の各実施形態では、冷凍サイクル装置20が稼働している際の冷媒の状態量および自動車1の状態量を含む物理量を変数として、循環回路200内の冷媒量を推定する例について説明したが、これに限定されない。冷媒量推定装置30は、例えば、冷凍サイクル装置20が稼働している際の冷媒の状態量に関する物理量に基づいて、循環回路200内の冷媒量を推定する構成となっていてもよい。 In each of the above-described embodiments, the example in which the refrigerant quantity in the circulation circuit 200 is estimated using the state quantity of the refrigerant when the refrigeration cycle apparatus 20 is operating and the physical quantity including the state quantity of the automobile 1 as variables has been described. However, the present invention is not limited to this. The refrigerant quantity estimation device 30 may be configured to estimate the refrigerant quantity in the circulation circuit 200 based on, for example, a physical quantity related to the state quantity of the refrigerant when the refrigeration cycle apparatus 20 is operating.
 また、上述の各実施形態では、冷媒量の推定時の変数となる冷媒の状態量として、放熱器22の冷媒出口側の冷媒の温度Tdおよび圧力Pd、蒸発器24の冷媒出口側の冷媒の温度Tsおよび圧力Psを例示したが、これに限定されない。 Further, in each of the above-described embodiments, the refrigerant state quantity serving as a variable at the time of estimating the refrigerant quantity is the refrigerant temperature Td and pressure Pd of the refrigerant outlet side of the radiator 22, and the refrigerant outlet side refrigerant of the evaporator 24. Although temperature Ts and pressure Ps were illustrated, it is not limited to this.
 冷媒量の推定時の変数は、直接的な冷媒の状態量に限らず、冷媒の状態量に強い相関性を有する物理量が採用されていてもよい。例えば、放熱器22の冷媒出口側の冷媒の温度Tdは、外気温度に強い相関性を有する。また、蒸発器24の冷媒出口側の冷媒の温度Tsは、内気温度に強い相関性を有する。このため、冷媒量の推定時の変数としては、例えば、放熱器22の冷媒出口側の冷媒の温度Tdおよび蒸発器24の冷媒出口側の冷媒の温度Tsに代えて、外気温度および内気温度が採用されていてもよい。また、冷媒量の推定時の変数には、例えば、過冷却度SCおよび過熱度SH等が含まれていてもよい。 The variable at the time of estimating the refrigerant amount is not limited to the direct refrigerant state quantity, and a physical quantity having a strong correlation with the refrigerant state quantity may be employed. For example, the refrigerant temperature Td on the refrigerant outlet side of the radiator 22 has a strong correlation with the outside air temperature. Further, the refrigerant temperature Ts on the refrigerant outlet side of the evaporator 24 has a strong correlation with the inside air temperature. For this reason, as the variables at the time of estimating the refrigerant quantity, for example, instead of the refrigerant temperature Td on the refrigerant outlet side of the radiator 22 and the refrigerant temperature Ts on the refrigerant outlet side of the evaporator 24, the outside air temperature and the inside air temperature are used. It may be adopted. Further, the variables at the time of estimating the refrigerant amount may include, for example, the degree of supercooling SC and the degree of superheating SH.
 上述の各実施形態の如く、推定した冷媒量に基づいて、循環回路200内の冷媒量が不足した異常状態であるか否かを判定する構成となっていることが望ましいが、これに限定されない。冷媒量推定装置30は、例えば、単に、推定した冷媒量を表示装置等に出力する構成となっていてもよい。この場合、表示装置に適正基準量M_thが表示される構成となっていることが望ましい。 As in each of the above-described embodiments, it is preferable to determine whether or not the refrigerant amount in the circulation circuit 200 is in an abnormal state based on the estimated refrigerant amount, but is not limited thereto. . The refrigerant quantity estimation device 30 may simply be configured to output the estimated refrigerant quantity to a display device or the like, for example. In this case, it is desirable that the appropriate reference amount M_th is displayed on the display device.
 上述の各実施形態の如く、補正した推定パラメータに関する情報を、自動車1を識別する識別情報に関連付けた状態で、無線通信機70等を利用して外部サーバ90に出力する構成になっていることが望ましいが、これに限定されない。冷媒量推定装置30は、単に、冷媒量を推定するだけで、補正した推定パラメータに関する情報等を外部サーバ90に出力しない構成となっていてもよい。 As in each of the above-described embodiments, information related to the corrected estimated parameter is output to the external server 90 using the wireless communication device 70 or the like in a state in which the information is associated with identification information for identifying the automobile 1. However, the present invention is not limited to this. The refrigerant quantity estimation device 30 may be configured to simply estimate the refrigerant quantity and not output information regarding the corrected estimation parameter or the like to the external server 90.
 上述の各実施形態では、外部のエンジン10から出力される回転駆動力によって駆動される圧縮機21を例示したが、これに限定されない。圧縮機21は、例えば、電動機から出力される回転駆動力によって駆動される構成となっていてもよい。 In each of the above-described embodiments, the compressor 21 driven by the rotational driving force output from the external engine 10 is exemplified, but the present invention is not limited to this. For example, the compressor 21 may be configured to be driven by a rotational driving force output from an electric motor.
 上述の各実施形態では、冷凍サイクル装置20が移動体である自動車1に搭載される例について説明したが、これに限定されない。冷凍サイクル装置20は、例えば、鉄道車両や、トレーラのような移動体に搭載されていてもよい。 In each of the above-described embodiments, the example in which the refrigeration cycle apparatus 20 is mounted on the automobile 1 that is a moving body has been described. The refrigeration cycle apparatus 20 may be mounted on a moving body such as a railway vehicle or a trailer, for example.
 上述の各実施形態では、循環回路200に充填される冷媒として、HFC系冷媒であるR134aが採用された例について説明したが、これに限定されない。冷凍サイクル装置20は、例えば、地球温暖化係数GWPが低いR1234yfが採用されていてもよい。 In each of the above-described embodiments, the example in which R134a, which is an HFC-based refrigerant, is employed as the refrigerant charged in the circulation circuit 200 has been described. However, the present invention is not limited to this. For example, R1234yf having a low global warming potential GWP may be employed for the refrigeration cycle apparatus 20.
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 In the above-described embodiment, it is needless to say that elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered to be essential in principle.
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。 In the above-described embodiment, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is particularly limited to a specific number when clearly indicated as essential and in principle. Except in some cases, the number is not limited.
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。 In the above embodiment, when referring to the shape, positional relationship, etc. of the component, etc., the shape, positional relationship, etc. unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to etc.
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、冷媒量推定装置は、冷媒量推定部と、パラメータ補正部と、を備える。冷媒推定部は、冷凍サイクル装置の稼働時における冷媒の状態量を含む物理量、および所定の推定パラメータに基づいて、循環回路内の冷媒量を推定する。また、パラメータ補正部は、冷媒量推定部で推定された冷媒量が冷媒の充填時に測定された実冷媒量に近付くように推定パラメータを補正する。
(Summary)
According to the 1st viewpoint shown by one part or all part of the above-mentioned embodiment, a refrigerant | coolant amount estimation apparatus is provided with a refrigerant | coolant amount estimation part and a parameter correction | amendment part. A refrigerant | coolant estimation part estimates the refrigerant | coolant amount in a circulation circuit based on the physical quantity containing the state quantity of the refrigerant | coolant at the time of operation | movement of a refrigerating-cycle apparatus, and a predetermined estimated parameter. The parameter correction unit corrects the estimated parameter so that the refrigerant amount estimated by the refrigerant amount estimation unit approaches the actual refrigerant amount measured when the refrigerant is charged.
 第2の観点によれば、パラメータ補正部は、実冷媒量と冷媒量推定部で推定された冷媒量との差分量を目的変数とし、冷媒量推定部にて冷媒量を推定した際の冷媒の状態量を含む物理量を説明変数とする回帰分析により差分量に関する数理モデルを決定する。そして、パラメータ補正部は、回帰分析により決定した数理モデルによって推定パラメータを補正する。これによると、冷凍サイクル装置を構成する機能品の個体差に起因する冷媒量の推定誤差を小さくすることが可能となる。 According to the second aspect, the parameter correction unit uses the difference amount between the actual refrigerant amount and the refrigerant amount estimated by the refrigerant amount estimation unit as an objective variable, and the refrigerant when the refrigerant amount is estimated by the refrigerant amount estimation unit The mathematical model for the difference is determined by regression analysis using the physical quantity including the state quantity as an explanatory variable. The parameter correction unit corrects the estimated parameter using a mathematical model determined by regression analysis. According to this, it becomes possible to reduce the estimation error of the refrigerant amount due to the individual difference of the functional products constituting the refrigeration cycle apparatus.
 第3の観点によれば、パラメータ補正部は、冷凍サイクル装置が冷媒の状態量を含む物理量の変動が所定の範囲に収まる安定状態で稼働している際に、推定パラメータを補正する。 According to the third aspect, the parameter correction unit corrects the estimated parameter when the refrigeration cycle apparatus is operating in a stable state in which the fluctuation of the physical quantity including the refrigerant state quantity falls within a predetermined range.
 冷凍サイクル装置の起動時等のように、循環回路内の冷媒の状態量が不安定となる状態において、推定パラメータを補正すると、補正した推定パラメータの信頼性を確保することができない。このため、冷凍サイクル装置が冷媒の状態量を含む物理量の変動が所定の範囲に収まる安定状態で稼働している際に、推定パラメータを補正することが望ましい。 If the estimated parameter is corrected in a state where the state quantity of the refrigerant in the circulation circuit becomes unstable, such as when the refrigeration cycle apparatus is started up, the reliability of the corrected estimated parameter cannot be ensured. For this reason, it is desirable to correct the estimation parameter when the refrigeration cycle apparatus is operating in a stable state in which the fluctuation of the physical quantity including the refrigerant state quantity falls within a predetermined range.
 第4の観点によれば、パラメータ補正部は、冷媒の充填後において冷凍サイクル装置の初回の稼働時に、推定パラメータを補正する。このように、実際に循環回路内に存する冷媒量と実冷媒量とのずれが殆どない状況で推定パラメータを補正すれば、補正した推定パラメータの信頼性を確保することができる。 According to the fourth aspect, the parameter correction unit corrects the estimated parameter when the refrigeration cycle apparatus is operated for the first time after the refrigerant is charged. Thus, if the estimated parameter is corrected in a situation where there is almost no deviation between the refrigerant amount actually present in the circulation circuit and the actual refrigerant amount, the reliability of the corrected estimated parameter can be ensured.
 第5の観点によれば、冷媒量推定装置は、冷媒量推定部で推定された冷媒量に基づいて、循環回路内の冷媒量が予め適正基準量以下であるか否かを判定する異常判定部を備えている。これによると、スローリーク等によって循環回路内の冷媒量が不足した異常状態を把握可能となるので、冷凍サイクル装置における冷却能力の低下等の不具合を予防し易くなるといった利点がある。 According to the fifth aspect, the refrigerant amount estimation device determines whether the refrigerant amount in the circulation circuit is less than or equal to the appropriate reference amount in advance based on the refrigerant amount estimated by the refrigerant amount estimation unit. Department. According to this, an abnormal state in which the amount of refrigerant in the circulation circuit is insufficient due to slow leak or the like can be grasped, and there is an advantage that it is easy to prevent problems such as a decrease in cooling capacity in the refrigeration cycle apparatus.
 第6の観点によれば、冷媒量推定装置は、物理量に、移動体の稼働状態のうち、冷凍サイクル装置の作動に関連性を有する移動体状態量が含まれている。これによると、冷媒推定部における冷媒量の推定精度の向上させることができる。 According to the sixth aspect, in the refrigerant quantity estimation device, the physical quantity includes a moving body state quantity that is related to the operation of the refrigeration cycle apparatus among the operating states of the moving body. According to this, it is possible to improve the estimation accuracy of the refrigerant amount in the refrigerant estimation unit.
 第7の観点によれば、冷媒量推定装置は、パラメータ補正部で補正された推定パラメータ、移動体を識別する識別情報に関連付けた状態で、外部のデータ蓄積装置に出力する出力部を備えている。これによると、例えば、外部のデータ蓄積装置に蓄積されたデータを、冷凍サイクル装置を構成する機能品の個体差が生ずる傾向の把握等に有効活用することができる。 According to the seventh aspect, the refrigerant amount estimation device includes an output unit that outputs to the external data storage device in a state associated with the estimation parameter corrected by the parameter correction unit and the identification information for identifying the moving object. Yes. According to this, for example, the data stored in the external data storage device can be effectively used for grasping the tendency of individual differences among functional products constituting the refrigeration cycle device.
 第8の観点によれば、冷媒量推定装置は、圧縮機、放熱器、減圧機器、蒸発器を含んで構成される冷凍サイクル装置に適用されている。そして、冷媒量推定部は、少なくとも放熱器の冷媒出口側の冷媒の温度および圧力、蒸発器の冷媒出口側の冷媒の温度および圧力、およびパラメータ補正部にて補正された推定パラメータに基づいて、循環回路内の冷媒量を推定する。 According to the eighth aspect, the refrigerant quantity estimation device is applied to a refrigeration cycle device including a compressor, a radiator, a decompression device, and an evaporator. The refrigerant amount estimation unit is based on at least the temperature and pressure of the refrigerant on the refrigerant outlet side of the radiator, the temperature and pressure of the refrigerant on the refrigerant outlet side of the evaporator, and the estimation parameter corrected by the parameter correction unit. Estimate the amount of refrigerant in the circulation circuit.
 このように、循環回路内の冷媒量に強い相関性を有する放熱器の冷媒出口側の冷媒の温度および圧力、蒸発器の冷媒出口側の冷媒の温度および圧力に基づいて、循環回路内の冷媒量を推定する構成とすれば、冷媒量の推定精度を向上させることができる。 Thus, based on the temperature and pressure of the refrigerant on the refrigerant outlet side of the radiator having a strong correlation with the amount of refrigerant in the circulation circuit and the temperature and pressure of the refrigerant on the refrigerant outlet side of the evaporator, the refrigerant in the circulation circuit If the amount is estimated, the accuracy of estimating the amount of refrigerant can be improved.
 上述の実施形態の一部または全部で示された第9の観点によれば、冷凍サイクル装置は、冷媒が循環する循環回路と、循環回路内を循環する冷媒量を推定する冷媒量推定装置と、を備える。冷媒量推定装置は、冷媒量推定部と、パラメータ補正部と、を含んで構成されている。冷媒量推定部は、冷凍サイクル装置の稼働時における冷媒の状態量を含む物理量、および所定の推定パラメータに基づいて、循環回路内の冷媒量を推定する。また、パラメータ補正部は、冷媒量推定部で推定された冷媒量が、冷媒の充填時に測定された実冷媒量に近付くように、推定パラメータを補正する。 According to the ninth aspect shown in part or all of the above embodiments, the refrigeration cycle apparatus includes a circulation circuit in which the refrigerant circulates, and a refrigerant amount estimation device that estimates the amount of refrigerant circulated in the circulation circuit. . The refrigerant quantity estimation device includes a refrigerant quantity estimation unit and a parameter correction unit. The refrigerant quantity estimation unit estimates the refrigerant quantity in the circulation circuit based on the physical quantity including the refrigerant state quantity during operation of the refrigeration cycle apparatus and a predetermined estimation parameter. The parameter correction unit corrects the estimated parameter so that the refrigerant amount estimated by the refrigerant amount estimation unit approaches the actual refrigerant amount measured when the refrigerant is charged.

Claims (9)

  1.  移動体(1)に搭載され、冷媒の循環回路(200)を有する蒸気圧縮式の冷凍サイクル装置(20)に適用される冷媒量推定装置であって、
     前記冷凍サイクル装置の稼働時における冷媒の状態量を含む物理量、および所定の推定パラメータに基づいて、前記循環回路内の冷媒量を推定する冷媒量推定部(30a)と、
     前記冷媒量推定部で推定された冷媒量が冷媒の充填時に計量された実冷媒量に近付くように、前記推定パラメータを補正するパラメータ補正部(30b)と、を備え、
     前記冷媒量推定部は、冷媒の状態量を含む物理量、および前記パラメータ補正部にて補正された前記推定パラメータに基づいて、前記循環回路内の冷媒量を推定する冷媒量推定装置。
    A refrigerant amount estimation device applied to a vapor compression refrigeration cycle apparatus (20) mounted on a moving body (1) and having a refrigerant circulation circuit (200),
    A refrigerant quantity estimation unit (30a) for estimating a refrigerant quantity in the circulation circuit based on a physical quantity including a refrigerant state quantity during operation of the refrigeration cycle apparatus and a predetermined estimation parameter;
    A parameter correction unit (30b) that corrects the estimated parameter so that the refrigerant amount estimated by the refrigerant amount estimation unit approaches the actual refrigerant amount measured when the refrigerant is charged,
    The refrigerant quantity estimation unit is a refrigerant quantity estimation device that estimates a refrigerant quantity in the circulation circuit based on a physical quantity including a refrigerant state quantity and the estimation parameter corrected by the parameter correction unit.
  2.  前記パラメータ補正部は、前記実冷媒量と前記冷媒量推定部で推定された冷媒量との差分量を目的変数とし、前記冷媒量推定部にて冷媒量を推定した際の冷媒の状態量を含む物理量を説明変数とする回帰分析により前記差分量に関する数理モデルを決定し、決定した前記数理モデルによって前記推定パラメータを補正する請求項1に記載の冷媒量推定装置。 The parameter correction unit uses a difference amount between the actual refrigerant amount and the refrigerant amount estimated by the refrigerant amount estimation unit as an objective variable, and calculates a refrigerant state quantity when the refrigerant amount is estimated by the refrigerant amount estimation unit. The refrigerant quantity estimation apparatus according to claim 1, wherein a mathematical model related to the difference amount is determined by regression analysis using an included physical quantity as an explanatory variable, and the estimation parameter is corrected by the determined mathematical model.
  3.  前記パラメータ補正部は、冷媒の状態量を含む物理量の変動が所定の範囲内に収まる安定状態で前記冷凍サイクル装置が稼働している状態で、前記推定パラメータを補正する請求項1または2に記載の冷媒量推定装置。 The said parameter correction | amendment part correct | amends the said estimation parameter in the state which the said refrigerating-cycle apparatus is operating in the stable state where the fluctuation | variation of the physical quantity containing the state quantity of a refrigerant | coolant is settled in the predetermined range. Refrigerant quantity estimation device.
  4.  前記パラメータ補正部は、冷媒の充填後において前記冷凍サイクル装置の初回の稼働時に、前記推定パラメータを補正する請求項1ないし3のいずれか1つに記載の冷媒量推定装置。 4. The refrigerant quantity estimation device according to claim 1, wherein the parameter correction unit corrects the estimation parameter when the refrigeration cycle apparatus is operated for the first time after the refrigerant is charged.
  5.  前記冷媒量推定部で推定された冷媒量に基づいて、前記循環回路内の冷媒量が予め定めた適正基準量以下であるか否かを判定する異常判定部(30c)を備える請求項1ないし4のいずれか1つに記載の冷媒量推定装置。 The abnormality determination part (30c) which determines whether the refrigerant | coolant amount in the said circulation circuit is below a predetermined appropriate reference amount based on the refrigerant | coolant amount estimated by the said refrigerant | coolant amount estimation part is provided. The refrigerant quantity estimation device according to any one of 4.
  6.  前記物理量には、前記移動体の稼働状態のうち、前記冷凍サイクル装置の作動に関連性を有する移動体状態量が含まれている請求項1ないし5のいずれか1つに記載の冷媒量推定装置。 The refrigerant quantity estimation according to any one of claims 1 to 5, wherein the physical quantity includes a moving body state quantity that is relevant to the operation of the refrigeration cycle apparatus among operating states of the moving body. apparatus.
  7.  前記パラメータ補正部で補正した前記推定パラメータに関する情報を、前記移動体を識別する識別情報に関連付けた状態で、外部のデータ蓄積装置(90)に出力する出力部(30e)を備える請求項1ないし6のいずれか1つに記載の冷媒量推定装置。 An output unit (30e) that outputs information related to the estimated parameter corrected by the parameter correction unit to an external data storage device (90) in a state associated with identification information for identifying the mobile object. The refrigerant quantity estimation device according to any one of 6.
  8.  前記冷凍サイクル装置は、圧縮機(21)、放熱器(22)、減圧機器(23)、蒸発器(24)を含んで構成されており、
     前記冷媒量推定部は、少なくとも前記放熱器の冷媒出口側の冷媒の温度および圧力、前記蒸発器の冷媒出口側の冷媒の温度および圧力、および前記パラメータ補正部にて補正された前記推定パラメータに基づいて、前記循環回路内の冷媒量を推定する請求項1ないし7のいずれか1つに記載の冷媒量推定装置。
    The refrigeration cycle apparatus includes a compressor (21), a radiator (22), a decompression device (23), and an evaporator (24).
    The refrigerant amount estimation unit includes at least the temperature and pressure of the refrigerant on the refrigerant outlet side of the radiator, the temperature and pressure of the refrigerant on the refrigerant outlet side of the evaporator, and the estimated parameter corrected by the parameter correction unit. The refrigerant quantity estimation device according to any one of claims 1 to 7, wherein the refrigerant quantity in the circulation circuit is estimated based on the refrigerant quantity.
  9.  移動体(1)に搭載される蒸気圧縮式の冷凍サイクル装置(20)であって、
     冷媒が循環する循環回路(200)と、
     前記循環回路内の冷媒量を推定する冷媒量推定装置(30)と、を備え、
     前記冷媒量推定装置は、
     前記冷凍サイクル装置の稼働時における冷媒の状態量を含む物理量、および所定の推定パラメータに基づいて、前記循環回路内の冷媒量を推定する冷媒量推定部(30a)と、
     前記冷媒量推定部で推定された冷媒量が、冷媒の充填時における実冷媒量に近付くように、前記推定パラメータを補正するパラメータ補正部(30b)と、を含んで構成されており、
     前記冷媒量推定部は、冷媒の状態量を含む物理量、および前記パラメータ補正部にて補正された前記推定パラメータに基づいて、前記循環回路内の冷媒量を推定する冷凍サイクル装置。
    A vapor compression refrigeration cycle apparatus (20) mounted on a moving body (1),
    A circulation circuit (200) through which the refrigerant circulates;
    A refrigerant amount estimation device (30) for estimating a refrigerant amount in the circulation circuit,
    The refrigerant quantity estimating device is
    A refrigerant quantity estimation unit (30a) for estimating a refrigerant quantity in the circulation circuit based on a physical quantity including a refrigerant state quantity during operation of the refrigeration cycle apparatus and a predetermined estimation parameter;
    A parameter correction unit (30b) that corrects the estimated parameter so that the refrigerant amount estimated by the refrigerant amount estimation unit approaches the actual refrigerant amount at the time of charging the refrigerant,
    The refrigerant quantity estimation unit is a refrigeration cycle apparatus that estimates a refrigerant quantity in the circulation circuit based on a physical quantity including a refrigerant state quantity and the estimation parameter corrected by the parameter correction unit.
PCT/JP2018/017070 2017-06-06 2018-04-26 Refrigerant volume estimation device and refrigeration cycle device WO2018225419A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-111860 2017-06-06
JP2017111860A JP6702267B2 (en) 2017-06-06 2017-06-06 Refrigerant amount estimation device, refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2018225419A1 true WO2018225419A1 (en) 2018-12-13

Family

ID=64566258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017070 WO2018225419A1 (en) 2017-06-06 2018-04-26 Refrigerant volume estimation device and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6702267B2 (en)
WO (1) WO2018225419A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114341562A (en) * 2019-09-09 2022-04-12 大金工业株式会社 Refrigerant amount determination device, method, and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7358194B2 (en) 2019-10-28 2023-10-10 株式会社東芝 Diagnostic device and method for vehicle air conditioners
KR20220137460A (en) 2021-04-02 2022-10-12 한온시스템 주식회사 Thermal management system, control method therefor, and compressor included therein

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263885A (en) * 2000-03-24 2001-09-26 Japan Climate Systems Corp Device for detecting insufficient quantity of refrigerant for air-conditioning vehicle
JP2006275303A (en) * 2005-03-28 2006-10-12 Daikin Ind Ltd Abnormality detection system
JP2006313057A (en) * 2005-04-07 2006-11-16 Daikin Ind Ltd System of determining refrigerant amount of air conditioner
JP2008164250A (en) * 2006-12-28 2008-07-17 Daikin Ind Ltd Air conditioner
JP2008232579A (en) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp Refrigerant filling method
JP2012229893A (en) * 2011-04-27 2012-11-22 Mitsubishi Electric Corp Refrigerating air conditioning device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263885A (en) * 2000-03-24 2001-09-26 Japan Climate Systems Corp Device for detecting insufficient quantity of refrigerant for air-conditioning vehicle
JP2006275303A (en) * 2005-03-28 2006-10-12 Daikin Ind Ltd Abnormality detection system
JP2006313057A (en) * 2005-04-07 2006-11-16 Daikin Ind Ltd System of determining refrigerant amount of air conditioner
JP2008164250A (en) * 2006-12-28 2008-07-17 Daikin Ind Ltd Air conditioner
JP2008232579A (en) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp Refrigerant filling method
JP2012229893A (en) * 2011-04-27 2012-11-22 Mitsubishi Electric Corp Refrigerating air conditioning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114341562A (en) * 2019-09-09 2022-04-12 大金工业株式会社 Refrigerant amount determination device, method, and program

Also Published As

Publication number Publication date
JP2018204885A (en) 2018-12-27
JP6702267B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6737295B2 (en) Refrigerant leak detection device, refrigeration cycle device
WO2018225419A1 (en) Refrigerant volume estimation device and refrigeration cycle device
US5987903A (en) Method and device to detect the charge level in air conditioning systems
Li et al. Development, evaluation, and demonstration of a virtual refrigerant charge sensor
US20140260342A1 (en) System for refrigerant charge verification
JP2002213847A (en) Method for monitoring refrigerant filling level
WO2018186105A1 (en) Refrigerant leakage detection device, and refrigeration cycle device
CN112424545B (en) Low refrigerant charge detection in a transport refrigeration system
US20200086719A1 (en) Refrigeration cycle apparatus
JP2016161244A (en) Refrigerant shortage determination device, refrigeration cycle having the same, and refrigerant shortage determination method of refrigeration cycle
WO2018186106A1 (en) Refrigerant leakage detection device, and refrigeration cycle device
WO2019171840A1 (en) Refrigerant amount estimating device, and refrigeration cycle device
CN112292574B (en) Inspection system, information processing apparatus
JP4380730B2 (en) Compressor suction pressure estimation device for refrigeration cycle equipment
EP3417219B1 (en) Compressor floodback protection system
WO2022109603A1 (en) Autofill overfill protection temperature sensing air conditioning coolant recharge
JP2009168339A (en) Air conditioner and its control method
US20240077237A1 (en) Method of evaluating refrigerant charge within a refrigeration circuit
JP2021134941A (en) Refrigerant shortage determination device
KR102019872B1 (en) Stuck Diagnosis system for cooling fan of vehicle air conditioner and method thereof
JP2008162438A (en) Vehicular air-conditioner
US20240123790A1 (en) Thermal management system, control method therefor, and compressor included therein
WO2022085691A1 (en) Air conditioner
JP6717343B2 (en) Monitoring system
WO2019026587A1 (en) Monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813878

Country of ref document: EP

Kind code of ref document: A1