JP2016161244A - Refrigerant shortage determination device, refrigeration cycle having the same, and refrigerant shortage determination method of refrigeration cycle - Google Patents

Refrigerant shortage determination device, refrigeration cycle having the same, and refrigerant shortage determination method of refrigeration cycle Download PDF

Info

Publication number
JP2016161244A
JP2016161244A JP2015041885A JP2015041885A JP2016161244A JP 2016161244 A JP2016161244 A JP 2016161244A JP 2015041885 A JP2015041885 A JP 2015041885A JP 2015041885 A JP2015041885 A JP 2015041885A JP 2016161244 A JP2016161244 A JP 2016161244A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
pressure
refrigeration cycle
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015041885A
Other languages
Japanese (ja)
Other versions
JP6289403B2 (en
Inventor
浩之 石野
Hiroyuki Ishino
浩之 石野
悟 中島
Satoru Nakajima
悟 中島
光彦 赤星
Mitsuhiko Akaboshi
光彦 赤星
輝明 辻
Teruaki Tsuji
輝明 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Japan Co Ltd
Original Assignee
Valeo Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Japan Co Ltd filed Critical Valeo Japan Co Ltd
Priority to JP2015041885A priority Critical patent/JP6289403B2/en
Publication of JP2016161244A publication Critical patent/JP2016161244A/en
Application granted granted Critical
Publication of JP6289403B2 publication Critical patent/JP6289403B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant shortage determination technology which prevents the erroneous determination of the shortage of a refrigerant amount even if the refrigerant amount in a refrigeration cycle is proper, and can accurately determine the presence or absence of the shortage of the refrigerant amount in a short time.SOLUTION: A refrigerant shortage determination device comprises: first determination means which temporarily determines the shortage of a refrigerant amount in a refrigeration cycle when a difference between a temperature Tev which is detected by an evaporator temperature detection sensor and a target temperature To reaches a first prescribed value α or higher; and second determination means which temporarily determines the shortage of the refrigerant amount in the refrigeration cycle when a difference between first refrigerant saturation pressure PHL which is introduced from an outside temperature which is detected by an outside temperature detection sensor, and second refrigerant saturation pressure PSa being the pressure of a refrigerant which is detected by a refrigerant pressure detection sensor reaches a second prescribed value β1 or higher. When the first determination means temporarily determines that the refrigerant amount in the refrigeration cycle is in shortage, and the second detection means determines that the refrigerant amount in the refrigeration cycle is in shortage, the refrigerant shortage determination device defines the determination of the shortage of the refrigerant amount in the refrigeration cycle.SELECTED DRAWING: Figure 2

Description

本発明は、車両用空調装置等に用いられる冷凍サイクルの冷媒不足の有無を正確に判定する技術に関する。   The present invention relates to a technique for accurately determining the presence or absence of refrigerant shortage in a refrigeration cycle used in a vehicle air conditioner or the like.

車両用空調装置に用いられる冷凍サイクルは、サイクル内を循環する冷媒量が不足すると、以下のような不都合が生じる。
すなわち、サイクル内を循環する冷媒量が不足すると、
1. 圧縮機から冷媒と共に吐出される潤滑油が圧縮機に十分に戻らなくなり、圧縮機内の潤滑油が不足して圧縮機の焼き付きが生じる、または、
2. 蒸発器での吸熱効果が低下し、十分な冷却能力が得られなくなる。
The refrigeration cycle used in the vehicle air conditioner has the following inconveniences when the amount of refrigerant circulating in the cycle is insufficient.
That is, if the amount of refrigerant circulating in the cycle is insufficient,
1. Lubricating oil discharged from the compressor together with the refrigerant does not return sufficiently to the compressor, the lubricating oil in the compressor is insufficient, and the compressor is seized, or
2. The endothermic effect in the evaporator is reduced and sufficient cooling capacity cannot be obtained.

そこで、従来においては、圧縮機を起動させる前に(冷凍サイクルを稼動させる前に)、サイクル内部の圧力を検出し、この検出冷媒圧が外気温によって決定される冷媒の飽和蒸気圧から所定範囲を超えて減少している場合に、冷凍サイクル内の冷媒量が不足しているとして、圧縮機を起動させないようにする技術が提案されている(特許文献1参照)。   Therefore, conventionally, before starting the compressor (before operating the refrigeration cycle), the pressure inside the cycle is detected, and the detected refrigerant pressure is within a predetermined range from the saturated vapor pressure of the refrigerant determined by the outside air temperature. In the case where the amount of refrigerant in the refrigeration cycle is insufficient, a technique for preventing the compressor from starting is proposed (see Patent Document 1).

このような技術は、冷凍サイクル内の冷媒量が圧縮機の焼き付きを誘発するほど不足している状態を検知する場合には有効であるが、圧縮機が焼き付きを起こさずに作動するものの蒸発器の冷却能力が低下して蒸発器で冷却された空気温度が目標温度から乖離してくる程度に冷凍サイクル内の冷媒量が少なくなっている状態を有効に検知することができない。   Such a technique is effective when detecting a state in which the amount of refrigerant in the refrigeration cycle is insufficient to induce burn-in of the compressor, but an evaporator that operates without causing the burn-in of the compressor. It is not possible to effectively detect a state in which the amount of refrigerant in the refrigeration cycle is reduced to such an extent that the cooling capacity of the refrigerant decreases and the temperature of the air cooled by the evaporator deviates from the target temperature.

そこで、従来においては、蒸発器を通過した直後の空気温度が、蒸発器での蒸発圧力に基づいて決定される所定温度(目標温度)より高いときに、冷媒量の不足を判定する技術が提案されている(特許文献2参照)。また、外気温センサで検出された外気温度と高圧センサで検出された冷凍サイクルの高圧圧力とに基づき、検出された高圧圧力が外気温度によって決定される高圧圧力の適正範囲以下であれば、冷媒が漏れていると判定する技術も公知となっている(特許文献3参照)。   Therefore, conventionally, a technique has been proposed in which when the air temperature immediately after passing through the evaporator is higher than a predetermined temperature (target temperature) determined based on the evaporation pressure in the evaporator, the refrigerant amount is insufficient. (See Patent Document 2). If the detected high pressure is below the appropriate range of the high pressure determined by the outside temperature based on the outside temperature detected by the outside temperature sensor and the high pressure of the refrigeration cycle detected by the high pressure sensor, the refrigerant A technique for determining that a leak has occurred is also known (see Patent Document 3).

特開平2−78874号公報Japanese Patent Laid-Open No. 2-78874 特開平10−185372号公報JP 10-185372 A 特開平6−123529号公報JP-A-6-123529

しかしながら、蒸発器を通過した直後の空気温度と目標温度との乖離をもって冷媒量の不足を判定する従来構成(特許文献2で示す構成)においては、冷凍サイクル内の冷媒量が適正であっても冷媒量が不足していると誤判定される場合がある。   However, in the conventional configuration (configuration shown in Patent Document 2) that determines the shortage of the refrigerant amount by the difference between the air temperature immediately after passing through the evaporator and the target temperature, even if the refrigerant amount in the refrigeration cycle is appropriate There are cases where it is erroneously determined that the amount of refrigerant is insufficient.

この点を、冷凍サイクル内の冷媒量とサイクル稼動時の蒸発器の温度(又は、蒸発器を通過した直後の空気温度)との関係を示す図7を用いて説明すると、外気温度が低い低熱負荷時においては(外部の熱負荷が高くない場合には)、実線で示されるように、圧縮機が固定容量型である場合は、冷凍サイクル内の冷媒量が適正状態から徐々に減ってくると、それにほぼ比例してサイクル稼動時の蒸発器の温度(又は、蒸発器を通過した直後の空気温度)が高くなってくる。また、圧縮機が可変容量型である場合は、容量可変が可能な範囲にあっては、冷媒量が不足しても目標温度を維持することは可能であるが、冷媒量が容量可変で対応できなくなるほど減ってくると、冷媒量の減少にほぼ比例してサイクル稼動時の蒸発器の温度(又は、蒸発器を通過した直後の空気温度)が高くなってくる。したがって、熱負荷が高くない場合は、実際の蒸発器の温度(又は、蒸発器を通過した直後の空気温度)が目標温度から所定の許容範囲を超えて高くなった時点で警報を発令すれば、冷媒量の不足を的確に捉えることが可能となる。   This point will be described with reference to FIG. 7 showing the relationship between the refrigerant amount in the refrigeration cycle and the temperature of the evaporator during cycle operation (or the air temperature immediately after passing through the evaporator). At the time of load (when the external heat load is not high), as indicated by the solid line, when the compressor is a fixed capacity type, the amount of refrigerant in the refrigeration cycle gradually decreases from the appropriate state. The temperature of the evaporator at the time of cycle operation (or the air temperature immediately after passing through the evaporator) becomes higher in proportion to this. In addition, if the compressor is a variable capacity type, the target temperature can be maintained even if the amount of refrigerant is insufficient as long as the capacity can be varied. If it decreases so that it cannot be performed, the temperature of the evaporator at the time of cycle operation (or the air temperature immediately after passing through the evaporator) increases in proportion to the decrease in the refrigerant amount. Therefore, if the heat load is not high, an alarm should be issued when the actual evaporator temperature (or the air temperature immediately after passing through the evaporator) becomes higher than the target temperature. It becomes possible to accurately grasp the shortage of the refrigerant amount.

しかしながら、外気温度が高い高熱負荷時においては(外部の熱負荷が高い場合には)、凝縮器での放熱量が不十分となり、冷凍サイクル内の冷媒量が適正であっても、蒸発器の温度(又は、蒸発器を通過した直後の空気温度)が目標温度に到達せず、破線で示すように、目標温度から所定の許容範囲を超えて高くなると、冷媒量の不足を示す警報が誤って発令される不都合がある。   However, when the outside air temperature is high and the heat load is high (when the external heat load is high), the amount of heat released from the condenser is insufficient, and even if the amount of refrigerant in the refrigeration cycle is appropriate, the evaporator If the temperature (or the air temperature immediately after passing through the evaporator) does not reach the target temperature and becomes higher than the target temperature, as shown by the broken line, the alarm indicating that the refrigerant amount is insufficient is false. There is an inconvenience that is issued.

これに対して、検出された高圧圧力が外気温度によって決定される高圧圧力の適正範囲以下である場合に冷媒が不足していると判定する構成を利用して冷凍サイクル内の冷媒量の不足の有無を判定する場合は、図8に示されるように行なわれる。   On the other hand, when the detected high pressure is below the appropriate range of the high pressure determined by the outside air temperature, the refrigerant amount in the refrigeration cycle is insufficient due to the configuration that determines that the refrigerant is insufficient. The presence / absence determination is performed as shown in FIG.

図8は、冷凍サイクル内の冷媒量とサイクル稼動時の高圧側ラインの冷媒圧力(冷媒飽和圧力)との関係を示すものであるが、外気温度が低い低熱負荷時においては(外部の熱負荷が高くない場合には)、実線で示されるように、圧縮機が固定容量型である場合は、冷凍サイクル内の冷媒量が適正状態から徐々に減ってくると、それにほぼ比例してサイクル稼動時の高圧側ラインの冷媒圧力(冷媒飽和圧力)が外気温度から導かれる冷媒飽和圧力(冷媒量が適正時の冷媒飽和圧力)よりも低下してくる。また、圧縮機が可変容量型である場合は、容量可変が可能な範囲にあっては、冷媒量が不足しても冷媒量が適正時の飽和圧力を維持することは可能であるが、冷凍サイクル内の冷媒量が容量可変では対応できなくなるほど減ってくると、冷媒量の減少にほぼ比例してサイクル稼動時の高圧側ラインの冷媒圧力(冷媒飽和圧力)も外気温度から導かれる冷媒飽和圧力(冷媒量が適正時の冷媒飽和圧力)よりも低下してくる。
したがって、熱負荷が高くない場合には、サイクル稼動時の高圧側ラインの冷媒圧力(冷媒飽和圧力)が適正範囲を外れて低くなった時点で警報を発令すれば、冷媒量が不足していることを捉えることが可能となる。
FIG. 8 shows the relationship between the amount of refrigerant in the refrigeration cycle and the refrigerant pressure (refrigerant saturation pressure) in the high-pressure side line during cycle operation, but at the time of low heat load with low outside air temperature (external heat load). If the compressor is a fixed capacity type, as shown by the solid line, when the refrigerant amount in the refrigeration cycle gradually decreases from the appropriate state, the cycle operation is almost proportional to it. The refrigerant pressure (refrigerant saturation pressure) in the high-pressure side line at that time is lower than the refrigerant saturation pressure (refrigerant saturation pressure when the amount of refrigerant is appropriate) derived from the outside air temperature. In addition, when the compressor is a variable capacity type, it is possible to maintain the saturation pressure when the refrigerant amount is appropriate even if the refrigerant amount is insufficient within the range in which the capacity can be varied. When the amount of refrigerant in the cycle decreases to a point where it cannot be handled with a variable capacity, the refrigerant pressure (refrigerant saturation pressure) in the high-pressure side line during the cycle operation is also approximately proportional to the decrease in refrigerant amount. It becomes lower than the pressure (refrigerant saturation pressure when the amount of refrigerant is appropriate).
Therefore, if the heat load is not high, if the alarm is issued when the refrigerant pressure (refrigerant saturation pressure) on the high-pressure side line during the cycle operation falls outside the appropriate range and becomes low, the refrigerant amount is insufficient. It becomes possible to capture this.

また、外気温度が高い高熱負荷時においても(外部の熱負荷が高い場合には)、冷凍サイクル内の冷媒量が適正状態から徐々に減ってくると、圧縮機が固定容量型か可変容量型かに関わらず、破線で示されるように、それにほぼ比例してサイクル稼動時の高圧側ラインの冷媒圧力(冷媒飽和圧力)が外気温度から導かれる冷媒飽和圧力(冷媒量が適正時の冷媒飽和圧力)よりも低下してくるので、冷凍サイクル内の高圧側ラインの冷媒圧力(冷媒飽和圧力)が適正範囲を外れて低くなった時点で警報を発令すれば、冷媒量が不足していることを捉えることが可能となる。
したがって、この判定手法を用いれば、外気温度が高い高熱負荷時(外部の熱負荷が高い場合)においても、冷媒量の不足を示す警報が誤って発令される不都合がなくなる。
Even when the outside air temperature is high and the heat load is high (when the external heat load is high), if the refrigerant amount in the refrigeration cycle gradually decreases from the appropriate state, the compressor is either a fixed capacity type or a variable capacity type. Regardless of this, as indicated by the broken line, the refrigerant pressure (refrigerant saturation pressure) of the high-pressure side line during cycle operation is derived from the outside air temperature in proportion to the refrigerant saturation pressure (refrigerant saturation when the amount of refrigerant is appropriate). If the alarm is issued when the refrigerant pressure (refrigerant saturation pressure) in the high-pressure side line in the refrigeration cycle falls outside the proper range and becomes low, the refrigerant amount is insufficient. Can be captured.
Therefore, when this determination method is used, there is no inconvenience that an alarm indicating that the refrigerant amount is insufficient is erroneously issued even when the outside air temperature is high and the heat load is high (when the external heat load is high).

しかしながら、このような構成においては、熱負荷の変動による判定のばらつきは少なくなるものの、検出された高圧圧力が低い原因が冷媒の漏れ(冷媒量の不足)に起因するものであるのかそれ以外の要因に起因するものであるのか判然としない不都合がある。例えば、外気温センサは車両の前方に配置されることが多いところ、車両が停車したときにエンジンルームの熱風が外気温センサに伝わることがあり、その場合、外気温度から導かれる冷媒飽和圧力が高めに設定されることとなる。そして、冷媒の漏れが無いとしても、高圧側ラインの冷媒圧力から導かれる冷媒飽和圧力が適正範囲を外れて低くなったと看做して、冷媒量の不足を示す警報が誤って発令される確率が上昇する。また、高圧側ラインの冷媒圧力は、走行用エンジンの回転数、車両の速度、車両周囲の風向き等の要因により常に変動しており、冷媒量の不足を検知するうえで、精度は高くない。
このように、冷却能力が低下しているか否かの評価は、蒸発器の温度(又は、蒸発器を通過した直後の空気温度)に基づいて行なう方がより直接的である。
However, in such a configuration, although the variation of the determination due to the fluctuation of the heat load is reduced, whether the detected high pressure is low is due to the leakage of refrigerant (insufficient amount of refrigerant) or other There is an inconvenience that is unclear whether it is caused by a factor. For example, the outside air temperature sensor is often arranged in front of the vehicle. When the vehicle stops, the hot air in the engine room may be transmitted to the outside air temperature sensor. In this case, the refrigerant saturation pressure derived from the outside air temperature is It will be set higher. Even if there is no refrigerant leakage, it is considered that the refrigerant saturation pressure derived from the refrigerant pressure in the high-pressure side line has fallen out of the proper range and is low, and the probability that an alarm indicating that the refrigerant amount is insufficient is erroneously issued. Rises. Further, the refrigerant pressure in the high-pressure side line is constantly fluctuating due to factors such as the number of revolutions of the traveling engine, the speed of the vehicle, the wind direction around the vehicle, etc., and the accuracy is not high in detecting the shortage of the refrigerant amount.
Thus, it is more direct to evaluate whether or not the cooling capacity is lowered based on the temperature of the evaporator (or the air temperature immediately after passing through the evaporator).

そこで、特許文献3においては、外気温センサの検出値と高圧センサの検出値とに基づき冷媒の過不足を複数回チェックし、チェック結果に基づいて冷媒減少傾向の有無を判定し、減少傾向であると判定された場合に、その判定結果を表示し、又は、警報を発する手法が提案されている。   Therefore, in Patent Document 3, the excess or deficiency of the refrigerant is checked a plurality of times based on the detection value of the outside air temperature sensor and the detection value of the high pressure sensor, and the presence or absence of the refrigerant decreasing tendency is determined based on the check result. When it is determined that there is a method, a method of displaying the determination result or issuing an alarm has been proposed.

しかし、このような手法によれば、冷媒漏れ(冷媒不足)の検出精度を向上できるが、外気温センサの検出値と高圧センサの検出値とに基づき冷媒の過不足を時間をおいて複数回チェックし、冷媒減少傾向の有無を判定する必要があるので、判定結果を得るまでに時間を要する不都合がある。   However, according to such a method, the detection accuracy of refrigerant leakage (refrigerant shortage) can be improved, but the refrigerant excess / deficiency is determined several times over time based on the detection value of the outside air temperature sensor and the detection value of the high pressure sensor. Since it is necessary to check and determine whether or not there is a tendency to decrease the refrigerant, there is a disadvantage that it takes time to obtain a determination result.

本発明は係る事情に鑑みてなされたものであり、冷凍サイクル内の冷媒量が適正であっても冷媒量が不足しているとの誤判定を防ぎ、また、時間をかけずに冷媒量の不足の有無を正確に判定することが可能な冷媒不足判定技術を提供することを主たる課題としている。   The present invention has been made in view of such circumstances, and prevents erroneous determination that the amount of refrigerant is insufficient even when the amount of refrigerant in the refrigeration cycle is appropriate. The main object is to provide a refrigerant shortage determination technique capable of accurately determining whether there is a shortage.

上記課題を達成するために、本発明に係る冷媒不足判定装置は、冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された冷媒を凝縮する凝縮器と、前記凝縮器で凝縮された冷媒を減圧する膨張装置と、前記膨張装置から流出する冷媒を蒸発する蒸発器と、を有する冷凍サイクルに用いられる冷媒不足判定装置であって、前記圧縮機と前記膨張装置との間の冷媒経路を流れる冷媒の圧力を検出する冷媒圧力検出器と、前記蒸発器の温度、又は、前記蒸発器を通過した直後の空気温度を検出する蒸発器温度検出器と、被空調空間の外部の熱負荷を検出する外部熱負荷検出器と、前記被空調空間の内部の熱負荷を検出する内部熱負荷検出器と、前記被空調空間の制御温度を設定する温度設定器と、前記外部熱負荷検出器により検出された熱負荷、前記内部負荷検出器により検出された熱負荷、および前記温度設定器で設定された制御温度により、前記蒸発器、又は、前記蒸発器を通過した直後の空気の目標温度を演算する目標温度演算手段と、前記蒸発器温度検出器により検出された温度と前記目標温度演算手段により演算された目標温度との差が第1の所定値以上となった場合に前記冷凍サイクル内の冷媒量の不足を仮判定する第1の判定手段と、前記外部熱負荷検出器により検出された熱負荷から導かれる第1冷媒飽和圧力と前記冷媒圧力検出器により検出された冷媒の圧力である第2冷媒飽和圧力との差が第2の所定値以上となった場合に前記冷凍サイクル内の冷媒量の不足を仮判定する第2の判定手段と、前記第1の判定手段により前記冷凍サイクル内の冷媒量が不足していると仮判定され、且つ、前記第2の判定手段により前記冷凍サイクル内の冷媒量が不足していると仮判定された場合に、前記冷凍サイクル内の冷媒量の不足判定を確定する冷媒不足判定確定手段と、を具備することを特徴としている。   In order to achieve the above object, a refrigerant shortage determination apparatus according to the present invention includes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, and a refrigerant condensed by the condenser. A refrigerant shortage determination device used in a refrigeration cycle having an expansion device that decompresses and an evaporator that evaporates refrigerant flowing out of the expansion device, and flows through a refrigerant path between the compressor and the expansion device A refrigerant pressure detector for detecting the pressure of the refrigerant, an evaporator temperature detector for detecting the temperature of the evaporator or the air temperature immediately after passing through the evaporator, and a thermal load outside the air-conditioned space are detected. Detected by the external thermal load detector, the internal thermal load detector that detects the internal thermal load of the air-conditioned space, the temperature setting device that sets the control temperature of the air-conditioned space, and the external thermal load detector Heat load, The target temperature calculation means for calculating the target temperature of the air immediately after passing through the evaporator or the evaporator based on the thermal load detected by the internal load detector and the control temperature set by the temperature setter When the difference between the temperature detected by the evaporator temperature detector and the target temperature calculated by the target temperature calculating means is equal to or greater than a first predetermined value, the refrigerant amount in the refrigeration cycle is insufficient. First determination means for temporary determination, a first refrigerant saturation pressure derived from a thermal load detected by the external thermal load detector, and a second refrigerant saturation pressure that is a refrigerant pressure detected by the refrigerant pressure detector When the difference between the refrigerant amount and the second predetermined value is equal to or greater than a second predetermined value, the refrigerant amount in the refrigeration cycle is temporarily determined by a second determination unit that provisionally determines that the refrigerant amount is insufficient in the refrigeration cycle, and the first determination unit. It is insufficient When the provisional determination is made and the second determination means temporarily determines that the amount of refrigerant in the refrigeration cycle is insufficient, the refrigerant shortage determination is confirmed to determine the refrigerant amount shortage determination in the refrigeration cycle. And means.

したがって、第1の判定手段により、蒸発器温度検出器により検出された温度と目標温度設定手段により設定された目標温度との差が第1の所定値以上となって冷凍サイクル内の冷媒量の不足が仮判定され、また、第2の判定手段により、外部熱負荷検出器により検出された熱負荷から導かれる第1冷媒飽和圧力と冷媒圧力検出器により検出された冷媒の圧力である第2冷媒飽和圧力との差が第2の所定値以上となって冷凍サイクル内の冷媒量の不足が仮判定された場合に、冷媒不足判定確定手段によって冷凍サイクル内の冷媒量の不足判定が確定するので、冷凍サイクル内の冷媒量の不足の有無を、冷却能力に直接影響する蒸発器の温度(又は、蒸発器を通過した直後の空気温度)に基づく評価と、熱負荷の変動による判定のばらつきが少ない冷媒飽和圧力に基づく評価との両方から行なうことが可能となり、冷凍サイクル内の冷媒量が適正であっても不足していると誤判定されることを防ぐことが可能となる。   Therefore, the difference between the temperature detected by the evaporator temperature detector and the target temperature set by the target temperature setting means is greater than or equal to the first predetermined value by the first determination means, and the amount of refrigerant in the refrigeration cycle is increased. Insufficient provisional determination is made, and the second determination means determines the first refrigerant saturation pressure derived from the thermal load detected by the external thermal load detector and the refrigerant pressure detected by the refrigerant pressure detector. When the difference from the refrigerant saturation pressure is equal to or greater than the second predetermined value and it is temporarily determined that the refrigerant amount is insufficient in the refrigeration cycle, the refrigerant shortage determination determining unit determines whether the refrigerant amount is insufficient in the refrigeration cycle. Therefore, whether there is a shortage of refrigerant in the refrigeration cycle is evaluated based on the temperature of the evaporator that directly affects the cooling capacity (or the air temperature immediately after passing through the evaporator), and variations in judgment due to fluctuations in the heat load Less There it is possible to perform both of the evaluation based on the refrigerant saturation pressure, it is possible to prevent the refrigerant quantity in the refrigerant cycle is erroneously determined to be insufficient even appropriate.

即ち、第1の判定手段によって冷凍サイクル内の冷媒量の不足が仮判定された状態においては、外部熱負荷が高い場合において、蒸発器温度検出器により検出された温度が目標温度に到達せず、誤判定する恐れがあるが、これに熱負荷の変動による判定のばらつきが少ない第2の判定手段による判定がさらに加味されるので、誤判定の恐れが無くなる。   That is, in the state where the first determination means temporarily determines that the refrigerant amount is insufficient in the refrigeration cycle, the temperature detected by the evaporator temperature detector does not reach the target temperature when the external heat load is high. Although there is a risk of erroneous determination, since the determination by the second determination means with little determination variation due to fluctuations in the thermal load is further added to this, the risk of erroneous determination is eliminated.

また、第1の判定手段による判定も第2の判定手段による判定も時間を空けて行なう必要がないため、冷凍サイクル内の冷媒量の不足の有無の判定結果を時間をかけずに行なうことが可能となり、しかも、冷媒圧力検出器として冷媒の高圧側流路に配置される圧力センサ、蒸発器温度検出器として蒸発器又はその直後に配置されるサーモセンサ、外部熱負荷検出器として車両に搭載されている車室外温度センサ、内部熱負荷検出器として車両に搭載されている車室内温度センサなど、既存のセンサを流用できるので、追加部品を不要とすることも可能となる。   In addition, since it is not necessary to perform the determination by the first determination unit and the determination by the second determination unit with a time lapse, it is possible to perform the determination result of whether or not the refrigerant amount is insufficient in the refrigeration cycle without taking time. In addition, it can be installed in a vehicle as a pressure sensor arranged in the high-pressure side flow path of the refrigerant as a refrigerant pressure detector, an evaporator as an evaporator temperature detector or a thermo sensor arranged immediately after it, and an external thermal load detector. Since existing sensors such as a vehicle interior temperature sensor and a vehicle interior temperature sensor installed in a vehicle as an internal thermal load detector can be used, additional components can be eliminated.

ここで、前記冷凍サイクル内の冷媒量の不足を仮判定する第2の判定手段は、前記第1冷媒飽和圧力に代えて前記外部熱負荷検出器により検出された熱負荷から導かれる第1冷媒飽和温度を用い、また、前記第2冷媒飽和圧力に代えて該第2冷媒飽和圧力から決定される第2冷媒飽和温度を用いるようにしてもよい。
飽和状態の冷媒は圧力と温度とが一義的に対応する関係にあるので、第2の判定手段において、飽和圧力のみならず飽和温度を用いることも可能であり、判定手段の設計自由度を広げることが可能となる。
Here, the second determination means for temporarily determining the shortage of the refrigerant amount in the refrigeration cycle is the first refrigerant derived from the thermal load detected by the external thermal load detector instead of the first refrigerant saturation pressure. A saturation temperature may be used, and a second refrigerant saturation temperature determined from the second refrigerant saturation pressure may be used instead of the second refrigerant saturation pressure.
Since the saturated refrigerant has a relationship in which pressure and temperature uniquely correspond to each other, it is possible to use not only the saturation pressure but also the saturation temperature in the second determination means, and the design flexibility of the determination means is expanded. It becomes possible.

また、前記被空調空間の外部の熱負荷の大きさに応じて前記第2の所定値の大きさを変更させるようにしてもよい。
このような構成においては、第2の判定手段の冷媒量の不足の有無を判定する閾値が、被空調空間の外部の熱負荷の大きさに応じて変更されるので、冷媒不足の有無の誤判定の可能性を一層なくすことが可能となる。
Further, the magnitude of the second predetermined value may be changed according to the magnitude of the heat load outside the air-conditioned space.
In such a configuration, the threshold value for determining whether or not the refrigerant amount is insufficient in the second determination means is changed according to the magnitude of the heat load outside the air-conditioned space. It becomes possible to further eliminate the possibility of determination.

さらに、前記圧縮機を起動させる前の前記冷媒圧力検出器により検出された冷媒圧力が所定の圧力値よりも低いか否かを判定する第3の判定手段を更に備え、前記第3の判定手段により前記圧縮機を起動する前の冷媒圧力が所定の圧力値よりも低いと判定された場合に、前記圧縮機を起動させないようにするとよい。
このような構成により、圧縮機が焼き付くほどの冷媒不足を圧縮機を稼動させる前に判定することができ、圧縮機が作動して焼き付く不都合を回避することが可能となる。
Furthermore, the apparatus further comprises third determination means for determining whether or not the refrigerant pressure detected by the refrigerant pressure detector before starting the compressor is lower than a predetermined pressure value. When it is determined that the refrigerant pressure before starting the compressor is lower than a predetermined pressure value, it is preferable not to start the compressor.
With such a configuration, it is possible to determine a refrigerant shortage enough to burn in the compressor before operating the compressor, and it is possible to avoid inconvenience that the compressor operates and burns in.

なお、上述した冷媒不足判定装置が用いられる圧縮機は、固定容量型であっても、可変容量型であってもよい。また、上述した冷媒不足判定装置は冷凍サイクルと一体化させるようにしてもよい。   Note that the compressor in which the above-described refrigerant shortage determination device is used may be a fixed capacity type or a variable capacity type. Moreover, you may make it integrate the refrigerant | coolant shortage determination apparatus mentioned above with a refrigerating cycle.

また、上記課題を達成するために、本発明に係る冷凍サイクルの冷媒不足判定方法は、冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された冷媒を凝縮する凝縮器と、前記凝縮器で凝縮された冷媒を減圧する膨張装置と、前記膨張装置から流出する冷媒を蒸発する蒸発器と、を有する冷凍サイクルと、前記圧縮機と前記膨張装置との間の冷媒経路を流れる冷媒の圧力を検出する冷媒圧力検出器と、前記蒸発器の温度、又は、前記蒸発器を通過した直後の空気温度を検出する温度検出器と、被空調空間の外部の熱負荷を検出する外部熱負荷検出器と、前記被空調空間の内部の熱負荷を検出する内部熱負荷検出器と、前記被空調空間の制御温度を設定する温度設定器と、前記外部熱負荷検出器により検出された熱負荷、前記内部負荷検出器により検出された熱負荷、および前記温度設定器で設定された制御温度により、前記蒸発器、又は、前記蒸発器を通過した直後の空気の目標温度を演算する目標温度演算手段と、を備えて構成される方法であって、前記蒸発器温度検出器により検出された温度と前記目標温度演算手段により演算された目標温度との差が第1の所定値以上と判定され、且つ、前記外部熱負荷検出器により検出された熱負荷から導かれる第1冷媒飽和圧力と前記冷媒圧力検出器により検出された冷媒の圧力である第2冷媒飽和圧力との差が第2の所定値以上と判定された場合に、前記冷凍サイクル内の冷媒量が不足であると判定することを特徴としている。   In order to achieve the above object, a refrigerant shortage determination method for a refrigeration cycle according to the present invention includes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, and the condenser. A refrigerating cycle having an expansion device for depressurizing the condensed refrigerant, an evaporator for evaporating the refrigerant flowing out of the expansion device, and a pressure of the refrigerant flowing through a refrigerant path between the compressor and the expansion device. A refrigerant pressure detector to detect, a temperature detector to detect the temperature of the evaporator, or an air temperature immediately after passing through the evaporator, and an external thermal load detector to detect a heat load outside the air-conditioned space An internal thermal load detector that detects a thermal load inside the air-conditioned space, a temperature setter that sets a control temperature of the air-conditioned space, a thermal load detected by the external thermal load detector, For internal load detector Target temperature calculating means for calculating a target temperature of air immediately after passing through the evaporator or the evaporator, based on the detected thermal load and the control temperature set by the temperature setter. The difference between the temperature detected by the evaporator temperature detector and the target temperature calculated by the target temperature calculation means is determined to be greater than or equal to a first predetermined value, and the external heat The difference between the first refrigerant saturation pressure derived from the thermal load detected by the load detector and the second refrigerant saturation pressure, which is the refrigerant pressure detected by the refrigerant pressure detector, is determined to be greater than or equal to a second predetermined value. In this case, it is determined that the amount of refrigerant in the refrigeration cycle is insufficient.

ここで、前記第1冷媒飽和圧力に代えて前記外部熱負荷検出器により検出された熱負荷から導かれる第1冷媒飽和温度を用い、前記第2冷媒飽和圧力に代えて該第2冷媒飽和圧力から決定される第2冷媒飽和温度を用いてもよい。
また、誤判定の可能性を一層なくすために、前記被空調空間の外部の熱負荷の大きさに応じて前記第2の所定値の大きさを変更させるようにするとよい。
Here, instead of the first refrigerant saturation pressure, the first refrigerant saturation temperature derived from the thermal load detected by the external thermal load detector is used, and the second refrigerant saturation pressure is substituted for the second refrigerant saturation pressure. The second refrigerant saturation temperature determined from the above may be used.
In order to further eliminate the possibility of erroneous determination, the magnitude of the second predetermined value may be changed according to the magnitude of the thermal load outside the air-conditioned space.

さらに、圧縮機の焼き付きを回避するために、前記圧縮機を起動する前の前記冷媒圧力検出器により検出された冷媒圧力が所定の圧力値よりも低いと判定された場合に、前記圧縮機を起動させないようにするとよい。   Further, in order to avoid the burn-in of the compressor, when it is determined that the refrigerant pressure detected by the refrigerant pressure detector before starting the compressor is lower than a predetermined pressure value, the compressor is It is better not to start.

以上述べたように、本発明によれば、蒸発器温度検出器により検出された温度と目標温度設定手段により設定された目標温度との差が第1の所定値以上となった場合に冷凍サイクル内の冷媒量の不足を仮判定し、また、外部熱負荷検出器により検出された熱負荷から導かれる第1冷媒飽和圧力(又は、第1冷媒飽和温度)と冷媒圧力検出器により検出された冷媒の圧力である第2冷媒飽和圧力(又は、第2冷媒飽和圧力から決定される第2冷媒飽和温度)との差が第2の所定値以上となった場合に冷凍サイクル内の冷媒量の不足を仮判定し、これら両方の仮判定がされた場合に、冷凍サイクル内の冷媒量の不足判定を確定するようにしたので、冷凍サイクル内の冷媒量が適正であっても不足していると誤判定することを防ぐことが可能となる。   As described above, according to the present invention, when the difference between the temperature detected by the evaporator temperature detector and the target temperature set by the target temperature setting means becomes equal to or greater than the first predetermined value, the refrigeration cycle. Tentatively determined that the amount of refrigerant in the tank is insufficient, and was detected by the first refrigerant saturation pressure (or first refrigerant saturation temperature) derived from the thermal load detected by the external thermal load detector and the refrigerant pressure detector. When the difference from the second refrigerant saturation pressure (or the second refrigerant saturation temperature determined from the second refrigerant saturation pressure), which is the pressure of the refrigerant, exceeds the second predetermined value, the refrigerant amount in the refrigeration cycle When the shortage is provisionally determined and both of these provisional determinations are made, the shortage determination of the refrigerant amount in the refrigeration cycle is fixed, so that even if the refrigerant amount in the refrigeration cycle is appropriate, the refrigerant amount is insufficient. It is possible to prevent erroneous determination

また、第1の判定手段による判定と第2の判定手段による判定を同時に行なうことが可能であるので、冷凍サイクル内の冷媒量の不足の有無の判定結果を瞬時に行なうことが可能となり、短時間で冷媒量の不足の有無を正確に判定することが可能となる。   In addition, since the determination by the first determination unit and the determination by the second determination unit can be performed at the same time, it is possible to instantaneously perform the determination result of whether or not the refrigerant amount is insufficient in the refrigeration cycle. It becomes possible to accurately determine whether or not the refrigerant amount is insufficient in time.

しかも、冷媒圧力検出器として冷媒の高圧側流路に配置される圧力センサ、蒸発器温度検出器として蒸発器サーモセンサ、外部熱負荷検出器として車室外温度センサ、内部熱負荷検出器として車室内温度センサなど、従来から用いているセンサを流用できるので、追加部品を不要とすることが可能となり、コストの増加を避けることが可能となる。   In addition, a pressure sensor arranged in the high-pressure side flow path of the refrigerant as a refrigerant pressure detector, an evaporator thermosensor as an evaporator temperature detector, an outside temperature sensor as an external heat load detector, and a vehicle interior as an internal heat load detector Conventionally used sensors such as a temperature sensor can be used, so that additional parts can be dispensed with, and an increase in cost can be avoided.

ここで、被空調空間の外部の熱負荷の大きさに応じて第2の所定値(第2の判定手段の前記冷媒量の不足を判定する閾値)の大きさを変更させることで、被空調空間の外部の熱負荷に応じて冷媒量の不足の有無を適切に判定することが可能となり、誤判定の可能性を一層なくすことが可能となる。   Here, the size of the second predetermined value (threshold value for determining the shortage of the refrigerant amount of the second determination means) is changed in accordance with the size of the heat load outside the air-conditioned space. Whether or not the refrigerant amount is insufficient can be appropriately determined according to the heat load outside the space, and the possibility of erroneous determination can be further eliminated.

また、圧縮機を起動させる前の冷媒圧力が所定の圧力値よりも低い場合に、圧縮機を起動させないようにすることで、圧縮機が焼き付くほどの冷媒不足を圧縮機を起動させる前に判定でき、圧縮機が作動して焼き付く不都合を回避することが可能となる。   In addition, when the refrigerant pressure before starting the compressor is lower than a predetermined pressure value, by not starting the compressor, it is determined before starting the compressor that the refrigerant is short enough to burn the compressor. It is possible to avoid the disadvantage that the compressor operates and burns in.

図1は、車両に搭載された冷凍サイクルの全体構成を示す図であるFIG. 1 is a diagram showing an overall configuration of a refrigeration cycle mounted on a vehicle. 図2は、冷凍サイクル内の冷媒量の不足を判定する処理フローである。FIG. 2 is a processing flow for determining the shortage of the refrigerant amount in the refrigeration cycle. 図3は、冷凍サイクル内の冷媒量の変化に対する、サイクル稼動時の蒸発器の温度(又は、蒸発器を通過した直後の空気温度)の変化を示す特性線図である。FIG. 3 is a characteristic diagram showing a change in the temperature of the evaporator during the cycle operation (or the air temperature immediately after passing through the evaporator) with respect to the change in the refrigerant amount in the refrigeration cycle. 図4は、冷凍サイクル内の冷媒量の変化に対する、サイクル稼動時の高圧側ラインの冷媒圧力(冷媒飽和圧力)の変化を示す特性線図である。FIG. 4 is a characteristic diagram showing a change in refrigerant pressure (refrigerant saturation pressure) in the high-pressure side line during cycle operation with respect to a change in refrigerant amount in the refrigeration cycle. 図5は、冷凍サイクルの冷媒量の不足を判定する他の処理フローである。FIG. 5 is another processing flow for determining the shortage of the refrigerant amount in the refrigeration cycle. 図6は、冷凍サイクル内の冷媒量の変化に対する、サイクル稼動時の高圧側ラインの冷媒温度(冷媒飽和温度)の変化を示す特性線図である。FIG. 6 is a characteristic diagram showing a change in refrigerant temperature (refrigerant saturation temperature) in the high-pressure side line during cycle operation with respect to a change in refrigerant amount in the refrigeration cycle. 図7は、冷凍サイクル内の冷媒量とサイクル稼動時の蒸発器の温度(又は、蒸発器を通過した直後の空気温度)との関係を示す特性線図であり、冷媒量の不足の有無を判定する従来の手法を説明する図である。FIG. 7 is a characteristic diagram showing the relationship between the amount of refrigerant in the refrigeration cycle and the temperature of the evaporator during cycle operation (or the air temperature immediately after passing through the evaporator). It is a figure explaining the conventional method to determine. 図8は、冷凍サイクル内の冷媒量とサイクル稼動時の高圧側ラインの冷媒圧力(冷媒飽和圧力)との関係を示す特性線図であり、冷媒量の不足の有無を判定する従来の手法を説明する図である。FIG. 8 is a characteristic diagram showing the relationship between the refrigerant amount in the refrigeration cycle and the refrigerant pressure (refrigerant saturation pressure) in the high-pressure side line during the cycle operation, and shows a conventional method for determining whether or not the refrigerant amount is insufficient. It is a figure explaining.

以下、本発明の冷媒不足判定装置について、図面を参照して説明する。   Hereinafter, the refrigerant shortage determination device of the present invention will be described with reference to the drawings.

図1には、車両に搭載される車両用空調装置の一例が示されている。
この車両用空調装置1は、HVACユニット2と、冷凍サイクル3と、冷凍サイクル3を監視・制御する制御ユニット4とを有して構成されている。
FIG. 1 shows an example of a vehicle air conditioner mounted on a vehicle.
The vehicle air conditioner 1 includes an HVAC unit 2, a refrigeration cycle 3, and a control unit 4 that monitors and controls the refrigeration cycle 3.

HVACユニット2は、車両のエンジンルームとキャビンルームとを仕切るファイヤーボード(図示せず)よりも、キャビンルーム側に配置されるもので、空気流路が内部に形成された空調ケース21を備え、この空調ケース21に冷凍サイクル3の一部を構成する蒸発器34やエンジンの冷却水を熱源とする図示しない加熱用熱交換器が収納されると共に、空気流路の蒸発器34よりも上流側に送風機22が配置されている。   The HVAC unit 2 is disposed closer to the cabin room than a fire board (not shown) that partitions the engine room and the cabin of the vehicle, and includes an air conditioning case 21 in which an air flow path is formed. The air conditioning case 21 houses an evaporator 34 constituting a part of the refrigeration cycle 3 and a heat exchanger for heating (not shown) that uses engine cooling water as a heat source, and is upstream of the evaporator 34 in the air flow path. The blower 22 is arranged in the front.

そして、送風機22よりも上流側には、空調ケース21内に導入される空気の導入口を外気導入口と内気導入口とに切り替える図示しないインテークドアが配置されている。したがって、送風機22の回転により、インテークドアによって選択された外気導入口または内気導入口を介して空調ケース内に空気が導入され、導入された空気は空気流路の下流側に圧送される。   Further, an intake door (not shown) that switches the inlet of the air introduced into the air-conditioning case 21 between the outside air inlet and the inside air inlet is arranged upstream of the blower 22. Therefore, air is introduced into the air conditioning case through the outside air inlet or the inside air inlet selected by the intake door by the rotation of the blower 22, and the introduced air is pumped to the downstream side of the air flow path.

冷凍サイクル3は、図示しない走行用エンジンからの動力を受けて回転する圧縮機31と、この圧縮機31によって圧縮された高温高圧の冷媒を放熱・凝縮する凝縮器32と、この凝縮器32によって冷却された冷媒を減圧して低温低圧の気液混合冷媒にする膨張装置33と、この膨張装置33から送られる低温低圧の気液混合冷媒を蒸発気化する前記空調ケース21内に収容された蒸発器34とを、この順で配管接続して構成されている。   The refrigeration cycle 3 includes a compressor 31 that rotates by receiving power from a traveling engine (not shown), a condenser 32 that radiates and condenses the high-temperature and high-pressure refrigerant compressed by the compressor 31, and the condenser 32. An expansion device 33 that decompresses the cooled refrigerant to form a low-temperature and low-pressure gas-liquid mixed refrigerant, and an evaporation housed in the air conditioning case 21 that evaporates and vaporizes the low-temperature and low-pressure gas-liquid mixed refrigerant sent from the expansion device 33. The unit 34 is connected by piping in this order.

圧縮機31は、走行用エンジンの回転に伴ってベルト駆動されるプーリ31aを有し、該プーリ31aと圧縮機31の回転軸とが電磁クラッチ31bを介して接続・切断されることで、その駆動が制御される。また、圧縮機31が可変容量型である場合には、この圧縮機31の吐出容量を外部制御信号に基づいて制御する容量可変機構が設けられる。   The compressor 31 has a pulley 31a that is belt-driven as the traveling engine rotates, and the pulley 31a and the rotation shaft of the compressor 31 are connected and disconnected via an electromagnetic clutch 31b. Drive is controlled. Further, when the compressor 31 is a variable capacity type, a capacity variable mechanism for controlling the discharge capacity of the compressor 31 based on an external control signal is provided.

したがって、圧縮機31が稼動して冷凍サイクル3内の冷媒が圧縮機31に吸引されて圧縮されると、圧縮機31によって圧縮された冷媒は、凝縮器32において放熱・凝縮して低温、高圧の冷媒となり、膨張装置33において膨張して更に低温、低圧の冷媒となって蒸発器34に供給され、この蒸発器34において通過する空気から吸熱して蒸発し、しかる後に再び圧縮機31に吸引される。   Therefore, when the compressor 31 is operated and the refrigerant in the refrigeration cycle 3 is sucked into the compressor 31 and compressed, the refrigerant compressed by the compressor 31 dissipates heat and condenses in the condenser 32, and has a low temperature and high pressure. The refrigerant expands in the expansion device 33 and is supplied to the evaporator 34 as a low-temperature and low-pressure refrigerant, which absorbs heat from the air passing through the evaporator 34 and evaporates, and is then sucked into the compressor 31 again. Is done.

制御ユニット4は、図示しない中央演算処理装置(CPU)、読出専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、入出力ポート(I/O)等を備え、圧縮機31の電磁クラッチ31bをオンオフ制御する制御信号を形成すると共に、冷凍サイクル3内の冷媒量を監視するようにしている。   The control unit 4 includes a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), an input / output port (I / O), and the like (not shown), and turns on and off the electromagnetic clutch 31b of the compressor 31. A control signal to be controlled is formed, and the refrigerant amount in the refrigeration cycle 3 is monitored.

即ち、冷凍サイクル3の高圧側ライン(圧縮機31の吐出口から凝縮器32を介して膨張装置33に至る冷媒経路)の冷媒圧力(Pref)を検知する冷媒圧力検出センサ41と、蒸発器34のフィン間、又は、蒸発器34の下流側直近に配置されて蒸発器34の温度、又は、蒸発器34を通過した直後の空気温度(Tev)を検出する蒸発器温度検出センサ42と、外気温度(Tamb)を検出する外気温度検出センサ43、車室内温度(Tinc)を検出する車室内温度検出センサ44等の各センサからの信号や、操作パネル45上の温度設定器46の操作によって設定された設定温度(Tset)を入力し、メモリに与えられた所定のプログラムにしたがって各種入力信号を処理し、圧縮機31の電磁クラッチ31bを駆動回路47を介してオンオフ制御すると共に、冷凍サイクル3内の冷媒量を監視するようにしている。
ここで、冷媒圧力検出センサ41により検知される高圧側ラインの圧力は、例えば、圧縮機31の吐出口と凝縮器32との間や凝縮器32と膨張装置33との間の配管に設けられた圧力センサにより検出するとよい(この例では、凝縮器32と膨張装置33との間の配管に設けられている)。
That is, the refrigerant pressure detection sensor 41 for detecting the refrigerant pressure (Pref) in the high-pressure side line of the refrigeration cycle 3 (the refrigerant path from the discharge port of the compressor 31 to the expansion device 33 via the condenser 32), and the evaporator 34 An evaporator temperature detection sensor 42 which is disposed between the fins of the two or near the downstream side of the evaporator 34 and detects the temperature of the evaporator 34 or the air temperature (Tev) immediately after passing through the evaporator 34; Set by signals from sensors such as an outside air temperature detection sensor 43 for detecting the temperature (Tamb), a vehicle interior temperature detection sensor 44 for detecting the vehicle interior temperature (Tinc), and the operation of the temperature setting unit 46 on the operation panel 45. The set temperature (Tset) is input, various input signals are processed in accordance with a predetermined program given to the memory, and the electromagnetic clutch 31b of the compressor 31 is controlled to be turned on / off via the drive circuit 47. Rutotomoni, and so as to monitor the amount of refrigerant in the refrigeration cycle 3.
Here, the pressure of the high-pressure side line detected by the refrigerant pressure detection sensor 41 is provided, for example, in a pipe between the discharge port of the compressor 31 and the condenser 32 or between the condenser 32 and the expansion device 33. It may be detected by a pressure sensor (in this example, provided in a pipe between the condenser 32 and the expansion device 33).

本発明に係る冷媒不足判定装置は、車両用空調装置や車両に搭載されている上述した既存の各種センサや温度設定器46からの情報に基づき、冷凍サイクル3とは別体に設けられた、又は、冷凍サイクル3と一体化された制御ユニット4により、以下のような処理を行う装置として構成されている。   The refrigerant shortage determination device according to the present invention is provided separately from the refrigeration cycle 3 based on information from the above-described various sensors and the temperature setting unit 46 mounted on the vehicle air conditioner and the vehicle. Or it is comprised by the control unit 4 integrated with the refrigerating cycle 3 as an apparatus which performs the following processes.

図2において、制御ユニット4による処理例がフローチャートとして示され、以下、このフローチャートに基づき、圧縮機31の制御動作、及び、冷凍サイクル3の冷媒量の不足判定について説明する。   In FIG. 2, a processing example by the control unit 4 is shown as a flowchart. Hereinafter, the control operation of the compressor 31 and the determination of the refrigerant amount shortage in the refrigeration cycle 3 will be described based on this flowchart.

ここで示す処理例は、イグニッションスイッチが投入された後に所定の初期設定を経て実行されるもので、先ず、ステップ50において、冷媒圧力検出センサ41で検出された高圧側ラインの冷媒圧力(冷凍サイクルの停止時の平衡状態にある場合の冷媒圧)Prefが、許容できる所定の冷媒圧γより低くなっているか否かを判定する。このステップ50において、Prefが所定の冷媒圧γより低くなっている場合には、冷凍サイクル3内の冷媒量が許容できない程度まで減っているので、このまま圧縮機31を起動させると、圧縮機31が焼き付く恐れがあるため、冷媒不足であることを示す警報を発信して注意喚起を行い(ステップ52)、圧縮機31を稼動させずに停止状態を維持する(ステップ54)。   The processing example shown here is executed after a predetermined initial setting after the ignition switch is turned on. First, in step 50, the refrigerant pressure (refrigeration cycle) of the high-pressure side line detected by the refrigerant pressure detection sensor 41 is used. It is determined whether or not (refrigerant pressure Pref in the equilibrium state at the time of stopping) is lower than a predetermined allowable refrigerant pressure γ. In Step 50, when Pref is lower than the predetermined refrigerant pressure γ, the refrigerant amount in the refrigeration cycle 3 has decreased to an unacceptable level. Therefore, when the compressor 31 is started as it is, the compressor 31 Therefore, a warning indicating that the refrigerant is insufficient is issued to call attention (step 52), and the compressor 31 is not operated and the stopped state is maintained (step 54).

これに対して、このステップ50において、高圧側ラインの冷媒圧力Prefが所定圧力γ以上であると判定された場合には、圧縮機31を稼動させても焼き付きの恐れがないため、圧縮機31を起動し(ステップ56)、蒸発器温度検出センサ42で検出された温度Tevと目標温度Toとの差が所定値:α以上であるか否か(Tev−To≧α)を判定する(ステップ58)。   On the other hand, if it is determined in step 50 that the refrigerant pressure Pref in the high-pressure side line is equal to or higher than the predetermined pressure γ, there is no fear of seizure even if the compressor 31 is operated. Is started (step 56), and it is determined whether or not the difference between the temperature Tev detected by the evaporator temperature detection sensor 42 and the target temperature To is a predetermined value: α or more (Tev−To ≧ α) (step). 58).

なお、目標温度Toは、例えば、下記の(1)式において演算されるもので、外気温度検出センサ43により検出された外気温度(Tamb)、車室内温度検出センサ44により検出された車室内温度(Tinc)、および温度設定器46を介して設定された設定温度(Tset)により演算された蒸発器、又は、蒸発器を通過した直後の空気の目標温度である。
To=A・Tset+B・Tamb+C・Tinc+D ・・・・(1)
ここで、A,B,Cはそれぞれの信号の重み付けの演算定数であり、Dは補正項である。このように目標温度Toは、外気温度検出センサ43により検出された外気温度(Tamb)だけでなく、車室内温度(Tinc)や設定温度(Tset)も用いて演算されるものなので、仮にエンジンルームの熱風が外気温度検出センサ43に伝わり外気温度検出センサ43が正確な外気温度を検出しない場合であっても、正確な温度からの逸脱量は限定的なものとなる。
The target temperature To is calculated by the following equation (1), for example, the outside air temperature (Tamb) detected by the outside air temperature detection sensor 43, and the vehicle interior temperature detected by the vehicle interior temperature detection sensor 44. (Tinc) and the target temperature of the air just after passing through the evaporator calculated by the set temperature (Tset) set via the temperature setter 46.
To = A · Tset + B · Tamb + C · Tinc + D (1)
Here, A, B, and C are calculation constants for weighting the respective signals, and D is a correction term. As described above, the target temperature To is calculated using not only the outside air temperature (Tamb) detected by the outside air temperature detecting sensor 43 but also the vehicle interior temperature (Tinc) and the set temperature (Tset). Even when the hot air is transmitted to the outside air temperature detection sensor 43 and the outside air temperature detection sensor 43 does not detect the accurate outside air temperature, the amount of deviation from the accurate temperature is limited.

このステップ58は、冷凍サイクル3内の冷媒量の不足を仮判定する第1の判定手段を構成するもので、冷凍サイクル3の冷媒量の不足を蒸発器温度検出センサ42で検出された温度Tevに基づき評価しようとするものである。   This step 58 constitutes a first determination means for temporarily determining the shortage of the refrigerant amount in the refrigeration cycle 3, and the temperature Tev detected by the evaporator temperature detection sensor 42 as a shortage of the refrigerant amount in the refrigeration cycle 3. Is to be evaluated based on

即ち、図3に示されるように、冷凍サイクル3内の冷媒量とサイクル稼動時の蒸発器34の温度(又は、蒸発器34を通過した直後の空気温度)との関係を見ると、外部の熱負荷が高くない場合には、実線で示されるように、圧縮機31が固定容量型である場合は、冷媒量が適正にある状態から徐々に減ってくると、それにほぼ比例してサイクル稼動時の蒸発器34の温度(又は、蒸発器34を通過した直後の空気温度)が高くなってくる。また、圧縮機が可変容量型である場合においても、容量可変が可能な範囲にあっては、冷媒量が不足しても目標温度Toを維持することは可能であるが、冷媒量が容量可変で対応できなくなるほど減ってくると、冷媒量の減少にほぼ比例してサイクル稼動時の蒸発器34の温度(又は、蒸発器34を通過した直後の空気温度)が高くなってくる。したがって、熱負荷が高くない場合には、実際の蒸発器34の温度(又は、蒸発器34を通過した直後の空気温度)が目標温度Toから所定の許容範囲:αを超えて高くなったか否かを判定すれば、冷媒量の不足の有無を捉えることが可能となる。   That is, as shown in FIG. 3, when the relationship between the refrigerant amount in the refrigeration cycle 3 and the temperature of the evaporator 34 during the cycle operation (or the air temperature immediately after passing through the evaporator 34) is seen, When the heat load is not high, as shown by the solid line, when the compressor 31 is a fixed capacity type, the cycle operation is almost proportional to the refrigerant amount gradually decreasing from the proper state. The temperature of the evaporator 34 at the time (or the air temperature immediately after passing through the evaporator 34) becomes higher. Further, even when the compressor is of a variable capacity type, the target temperature To can be maintained even if the amount of refrigerant is insufficient within the range in which the capacity can be varied. If the pressure decreases so as to become unacceptable, the temperature of the evaporator 34 during the cycle operation (or the air temperature immediately after passing through the evaporator 34) increases in proportion to the decrease in the refrigerant amount. Therefore, when the heat load is not high, whether or not the actual temperature of the evaporator 34 (or the air temperature immediately after passing through the evaporator 34) has increased from the target temperature To beyond a predetermined allowable range: α. If it is determined, whether or not the refrigerant amount is insufficient can be captured.

そこで、このステップ58において、蒸発器温度検出センサ42で検出された温度Tevと目標温度Toとの差が第1の所定値:αより小さい場合には、蒸発器温度検出センサ42で検出された温度の目標温度Toからの乖離は許容範囲内であることから、冷凍サイクル3内の冷媒量は適正範囲内であるとみなして、正常状態であることを示す表示等を行なう等の正常時のオペレーションを継続する(ステップ60)。   Therefore, in step 58, when the difference between the temperature Tev detected by the evaporator temperature detection sensor 42 and the target temperature To is smaller than the first predetermined value: α, the difference is detected by the evaporator temperature detection sensor 42. Since the deviation of the temperature from the target temperature To is within the allowable range, the refrigerant amount in the refrigeration cycle 3 is considered to be within the appropriate range, and a normal state such as displaying the normal state is performed. Operation continues (step 60).

しかしながら、外気温度が高い高熱負荷時においては(外部の熱負荷が高い場合には)、凝縮器32での放熱量が不十分となり、冷凍サイクル3内の冷媒量が適正であっても、蒸発器34の温度(又は、蒸発器34を通過した直後の空気温度)が目標温度Toに到達せず、破線で示すように、目標温度Toから所定の許容範囲:αを超えて高くなると、誤って冷媒量が不足していると判定される恐れがある。   However, when the outside air temperature is high and the heat load is high (when the external heat load is high), the amount of heat dissipated in the condenser 32 becomes insufficient, and even if the amount of refrigerant in the refrigeration cycle 3 is appropriate, evaporation occurs. If the temperature of the vessel 34 (or the air temperature immediately after passing through the evaporator 34) does not reach the target temperature To and becomes higher than the target temperature To exceed the predetermined allowable range α, as indicated by the broken line, an error occurs. Therefore, it may be determined that the refrigerant amount is insufficient.

そこで、ステップ58において、蒸発器温度検出センサ42で検出された温度Tevと目標温度Toとの差が第1の所定値:α以上であると判定された場合には、冷凍サイクル3内の冷媒量が不足している可能性はあるものの、この判定結果が冷凍サイクル3の冷媒量の不足に起因するものであるのか、熱負荷に起因するものであるのか判然としないので、この段階では冷凍サイクルの冷媒量が不足であるとの判定を確定せず、ステップ62へ進む。   Therefore, if it is determined in step 58 that the difference between the temperature Tev detected by the evaporator temperature detection sensor 42 and the target temperature To is equal to or greater than the first predetermined value: α, the refrigerant in the refrigeration cycle 3 Although there is a possibility that the amount is insufficient, it is not clear whether this determination result is due to a lack of refrigerant amount in the refrigeration cycle 3 or due to heat load. The determination that the amount of refrigerant in the cycle is insufficient is not confirmed and the routine proceeds to step 62.

ステップ62においては、外気温度検出センサ43により検出された外気温(Tamb)から導かれる冷媒飽和圧力(第1冷媒飽和圧力PHL)と冷媒圧力検出センサ41により検出された高圧側ラインの冷媒の圧力(圧縮機が稼働している状態にある場合の高圧側ラインの冷媒圧であって、第2冷媒飽和圧力Psa)との差が第2の所定値:β1以上であるか否か(PHL−Psa≧β1)を判定する(ステップ62)。 In step 62, the refrigerant saturation pressure (first refrigerant saturation pressure P HL ) derived from the outside air temperature (Tamb) detected by the outside air temperature detection sensor 43 and the refrigerant in the high-pressure side line detected by the refrigerant pressure detection sensor 41 are detected. Whether or not the difference between the pressure (the refrigerant pressure of the high-pressure side line when the compressor is in operation and the second refrigerant saturation pressure Psa) is a second predetermined value: β1 or more (P HL− Psa ≧ β1) is determined (step 62).

このステップ62は、冷凍サイクル3内の冷媒量の不足を仮判定する第2の判定手段を構成するもので、冷凍サイクル3の冷媒量の不足を冷媒圧力検出センサ41で検出された冷凍サイクル3の高圧側ラインの圧力Psaに基づき評価しようとするものである。   This step 62 constitutes a second determination means for temporarily determining the shortage of the refrigerant amount in the refrigeration cycle 3, and the refrigeration cycle 3 in which the refrigerant pressure detection sensor 41 detects the shortage of the refrigerant amount in the refrigeration cycle 3. Is to be evaluated based on the pressure Psa of the high-pressure side line.

即ち、図4に示されるように、冷凍サイクル3内の冷媒量とサイクル稼動時の高圧側ラインの冷媒圧力との関係を見ると、外気温度が低い低熱負荷時においては(外部の熱負荷が高くない場合には)、実線で示されるように、圧縮機が固定容量型である場合は、冷凍サイクル内の冷媒量が適正状態から徐々に減ってくると、それにほぼ比例してサイクル稼動時の高圧側ラインの冷媒圧力(冷媒飽和圧力)が外気温度から導かれる冷媒飽和圧力(冷媒量が適正時の冷媒飽和圧力)よりも低下してくる。また、圧縮機が可変容量型である場合においても、容量可変が可能な範囲にあっては、冷媒量が不足しても冷媒量が適正時の飽和圧力を維持することは可能であるが、冷凍サイクル内の冷媒量が容量可変では対応できなくなるほど減ってくると、冷媒量の減少にほぼ比例してサイクル稼動時の高圧側ラインの冷媒圧力(冷媒飽和圧力)も外気温度から導かれる冷媒飽和圧力(冷媒量が適正時の冷媒飽和圧力)よりも低下してくる。したがって、熱負荷が高くない場合には、サイクル稼動時の高圧側ラインの冷媒圧力(冷媒飽和圧力)が適正範囲:β1を外れて低くなったか否かを判定すれば、冷媒量の不足の有無を捉えることが可能となる。   That is, as shown in FIG. 4, when the relationship between the refrigerant amount in the refrigeration cycle 3 and the refrigerant pressure in the high-pressure side line during the cycle operation is seen, at the time of low heat load where the outside air temperature is low (external heat load is If the compressor is a fixed capacity type, the refrigerant amount in the refrigeration cycle gradually decreases from the proper state as shown by the solid line (when it is not high). The refrigerant pressure (refrigerant saturation pressure) in the high-pressure side line of the refrigerant is lower than the refrigerant saturation pressure (refrigerant saturation pressure when the amount of refrigerant is appropriate) derived from the outside air temperature. Further, even when the compressor is a variable capacity type, it is possible to maintain the saturation pressure when the refrigerant amount is appropriate, even if the refrigerant amount is insufficient, within the range in which the capacity can be varied. When the amount of refrigerant in the refrigeration cycle decreases to a point where it cannot be handled with variable capacity, the refrigerant pressure (refrigerant saturation pressure) in the high-pressure side line during cycle operation is also derived from the outside air temperature in proportion to the decrease in refrigerant amount. It becomes lower than the saturation pressure (refrigerant saturation pressure when the amount of refrigerant is appropriate). Therefore, if the heat load is not high, whether or not the refrigerant amount is insufficient is determined by determining whether or not the refrigerant pressure (refrigerant saturation pressure) in the high-pressure side line during the cycle operation has fallen below the appropriate range: β1. Can be captured.

また、外気温度が高い高熱負荷時においても(外部の熱負荷が高い場合においても)、冷凍サイクル内の冷媒量が適正状態から徐々に減ってくると、破線で示されるように、それにほぼ比例してサイクル稼動時の高圧側ラインの冷媒圧力(冷媒飽和圧力)が外気温度から導かれる冷媒飽和圧力(冷媒量が適正時の冷媒飽和圧力)よりも低下してくるので、冷凍サイクル3内の高圧側ラインの冷媒圧力(冷媒飽和圧力)が適正範囲:β1を外れて低くなったか否かを判定すれば、冷媒量の不足の有無を捉えることが可能となる(熱負荷の変動によって判定にばらつきが生じることがなくなる)。   Even when the outside air temperature is high and the heat load is high (even when the external heat load is high), if the refrigerant amount in the refrigeration cycle gradually decreases from the appropriate state, as shown by the broken line, it is almost proportional to it. Then, the refrigerant pressure (refrigerant saturation pressure) in the high-pressure side line during the cycle operation is lower than the refrigerant saturation pressure (refrigerant saturation pressure when the amount of refrigerant is appropriate) derived from the outside air temperature. If it is determined whether or not the refrigerant pressure (refrigerant saturation pressure) in the high-pressure side line has fallen below the appropriate range: β1, it is possible to detect whether or not the refrigerant amount is insufficient (the determination is based on fluctuations in the heat load). No variation occurs).

そこで、このステップ62において、外気温度検出センサ43により検出された外気温Tambから導かれる冷媒飽和圧力(第1冷媒飽和圧力PHL)と冷媒圧力検出センサ41により検出された高圧側ラインの冷媒圧力(第2冷媒飽和圧力Psa)との差が第2の所定値:β1より小さいと判定された場合には、高圧側ラインの冷媒圧力Psaが、外気温度検出センサ43により検出された外気温Tambから導かれる冷媒飽和圧力PHLから乖離していても許容範囲内であることから、ステップ58で蒸発器温度検出センサ42で検出された温度Tevと目標温度Toとの差が第1の所定値:α以上であると判定されたにも拘らず、この判定結果は冷媒量の不足に起因するものではないことが確認できたので、冷凍サイクル内の冷媒量は適正範囲内であると判定し、正常時のオペレーションを継続する(ステップ60)。 Therefore, in step 62, the refrigerant saturation pressure (first refrigerant saturation pressure P HL ) derived from the outside air temperature Tam detected by the outside air temperature detection sensor 43 and the refrigerant pressure in the high-pressure side line detected by the refrigerant pressure detection sensor 41. When it is determined that the difference from (second refrigerant saturation pressure Psa) is smaller than the second predetermined value: β1, the refrigerant pressure Psa of the high-pressure side line is detected by the outside air temperature detection sensor 43. since even deviate within the allowable range from the refrigerant saturation pressure P HL derived from the difference between the detected temperature Tev and the target temperature to the evaporator temperature sensor 42 in step 58 is the first predetermined value : Despite being determined to be greater than or equal to α, it has been confirmed that this determination result is not due to a shortage of refrigerant amount, so the refrigerant amount in the refrigeration cycle is determined to be within the appropriate range. The normal operation is continued (step 60).

これに対して、ステップ62において、外気温度検出センサ43により検出された外気温から導かれる冷媒飽和圧力(第1冷媒飽和圧力PHL)と冷媒圧力検出センサ41により検出された高圧側ラインの冷媒の圧力(第2冷媒飽和圧力Psa)との差が所定値:β1以上であると判定された場合には、車室外の熱負荷から導かれた冷媒飽和圧力と高圧側ラインの実際の冷媒圧力との差に基づいて冷媒量の不足の有無を判定した場合でも、冷凍サイクル内の冷媒不足があると判定された場合であるので、冷凍サイクル内の冷媒量が不足していることは間違いないと看做して、冷媒量が不足しているとの判定を確定し(ステップ64)、前記操作パネル45に冷媒不足であることを表示したり搭乗者に対して冷媒不足であることを示す警報を発信したりする等の注意喚起を行う(ステップ66)。 In contrast, in step 62, the refrigerant saturation pressure (first refrigerant saturation pressure P HL ) derived from the outside air temperature detected by the outside air temperature detection sensor 43 and the refrigerant in the high-pressure side line detected by the refrigerant pressure detection sensor 41. Is determined to be equal to or greater than a predetermined value: β1, the refrigerant saturation pressure derived from the heat load outside the passenger compartment and the actual refrigerant pressure in the high-pressure side line are determined. Even if it is determined whether or not the refrigerant amount is insufficient based on the difference between the refrigerant amount and the refrigerant amount in the refrigeration cycle is determined to be insufficient, there is no doubt that the refrigerant amount in the refrigeration cycle is insufficient. And confirming that the amount of refrigerant is insufficient (step 64), indicating that the refrigerant is insufficient on the operation panel 45 or indicating that the refrigerant is insufficient. Sent an alarm Reminders, such as to carry out (step 66).

したがって、以上の冷媒不足判定装置によれば、ステップ58において、蒸発器温度検出センサ42で検出された温度Tevと目標温度Toとの乖離があった場合でも、必ずしも冷凍サイクル3の冷媒量の不足に起因しているとは言えない場合があることから、ステップ62において、熱負荷の変動による判定のばらつきが少ない冷媒飽和圧力に基づく判定(車室外の熱負荷に基づいて決定される冷媒飽和圧力からの高圧側ラインの冷媒圧力の乖離状態に基づく冷媒量の不足の有無の判定)を加味して冷媒不足の有無を再度確認し、いずれの判定においても冷媒不足の条件を満たした場合に、冷媒不足であるとの判定を確定するようにしたので、誤判定をなくすことが可能となる。   Therefore, according to the above refrigerant shortage determination device, even if there is a difference between the temperature Tev detected by the evaporator temperature detection sensor 42 and the target temperature To in step 58, the refrigerant amount of the refrigeration cycle 3 is not necessarily insufficient. In step 62, the determination based on the refrigerant saturation pressure with a small variation in the determination due to the variation in the thermal load (the refrigerant saturation pressure determined based on the thermal load outside the passenger compartment). If the refrigerant shortage condition is satisfied in any of the determinations, the refrigerant shortage condition is determined again by taking into account the refrigerant pressure deficiency state of the high pressure side line from the Since the determination that the refrigerant is insufficient is fixed, it is possible to eliminate erroneous determination.

また、上述の構成においては、冷凍サイクル3内の冷媒量が不足しているか否かを判定するにあたり、冷却能力に直接影響する蒸発器の温度、又は、蒸発器を通過した直後の空気温度に基づいて評価する判定(ステップ58の第1の判定手段による判定)を先に行い、その後、冷凍サイクル3の高圧側ラインの圧力に基づいて評価する判定(ステップ62の第2の判定手段による判定)を行なって第1の判定手段による判定の適否を確認するようにしたので、蒸発器による冷却能力から評価した判定結果を重視しつつ、その判定結果を過信することによる不都合を回避できる。仮に、第1の判定手段による判定と第2の判定手段による判定との順序を逆とし、ステップ62の第2の判定手段による判定を先に行い、その後、ステップ58の第1の判定手段による判定を行って第2の判定手段による判定の適否を確認するようにすると、冷却能力に直接影響せず、車両や周囲の環境により常に変動する高圧側ラインの冷媒圧力に基づいた判定結果を重視することになるので、冷媒量の不足を高い精度で判定することができない不都合がある。
したがって、本発明では、乗員に対する注意喚起がなされる場合でも、冷凍サイクル内の冷媒量の不足を冷却能力の不足によって捉える点を基準としているので、高い精度で判定することができ、かつ、乗員の感覚に沿ったものとなる。
In the above configuration, when determining whether or not the amount of refrigerant in the refrigeration cycle 3 is insufficient, the temperature of the evaporator that directly affects the cooling capacity or the air temperature immediately after passing through the evaporator is used. The determination to be performed based on the determination (determination by the first determination unit in step 58) is performed first, and then the determination to be performed based on the pressure in the high-pressure side line of the refrigeration cycle 3 (determination by the second determination unit in step 62). ) To confirm the suitability of the determination by the first determination means, so that the inconvenience caused by overconfidence of the determination result can be avoided while placing importance on the determination result evaluated from the cooling capacity of the evaporator. Temporarily, the order of the determination by the first determination means and the determination by the second determination means is reversed, the determination by the second determination means in step 62 is performed first, and then by the first determination means in step 58. When the determination is made and the suitability of the determination by the second determination means is confirmed, the determination result based on the refrigerant pressure of the high-pressure side line that does not directly affect the cooling capacity and constantly varies depending on the vehicle and the surrounding environment is emphasized. Therefore, there is an inconvenience that the shortage of the refrigerant amount cannot be determined with high accuracy.
Therefore, in the present invention, even when warning is given to the occupant, since it is based on the point that the shortage of the refrigerant amount in the refrigeration cycle is caught by the lack of cooling capacity, it can be determined with high accuracy, and the occupant In line with the sense of

さらに、冷媒量の不足判定を行なうに当たり、蒸発器の温度(又は、蒸発器を通過した直後の空気温度)に基づく評価と、冷凍サイクルの高圧側ラインの圧力(冷媒飽和圧力)に基づく評価とは、時間を空けて行なう必要がないため、冷凍サイクル内の冷媒量の不足の有無の判定結果を時間をかけずに行なうことが可能となる。
しかも、冷媒量の不足判定を行なうにあたり、既存のセンサ(冷媒圧力検出センサ41、蒸発器温度検出センサ42、外気温度検出センサ43、車室内温度検出センサ44)を用いて対応できるので、新たなセンサの追加が不要となり、コストをかけずに冷媒量の不足の有無の正確な判定が可能となる。
Furthermore, in determining whether the refrigerant amount is insufficient, an evaluation based on the temperature of the evaporator (or the air temperature immediately after passing through the evaporator) and an evaluation based on the pressure of the high-pressure side line of the refrigeration cycle (refrigerant saturation pressure) Since it is not necessary to perform the measurement after a certain amount of time, it is possible to perform the determination result as to whether or not the refrigerant amount is insufficient in the refrigeration cycle without taking time.
Moreover, since it is possible to use the existing sensors (refrigerant pressure detection sensor 41, evaporator temperature detection sensor 42, outside air temperature detection sensor 43, vehicle interior temperature detection sensor 44) in determining whether or not the refrigerant amount is insufficient, a new It is not necessary to add a sensor, and it is possible to accurately determine whether or not the amount of refrigerant is insufficient without incurring costs.

なお、以上の構成のおいては、第2の判定手段であるステップ62において、外気温度検出センサ43により検出された外気温から導かれる冷媒飽和圧力(第1冷媒飽和圧力)と冷媒圧力検出センサ41により検出された高圧側ラインの冷媒の圧力(第2冷媒飽和圧力)との差が所定値:β1以上であると判定された場合に、冷凍サイクル内の冷媒量の不足を仮判定するようにしているが、冷媒飽和圧力と冷媒飽和温度とは一義的に対応する関係にあるので、図5及び図6に示されるように、外気温度検出センサ43により検出された外気温から導かれる冷媒飽和圧力(第1冷媒飽和圧力)に代えて外気温度検出センサ43により検出された外気温から導かれる冷媒飽和温度(第1冷媒飽和温度)THLを用い、冷媒圧力検出センサ41により検出された高圧側ラインの冷媒の圧力(第2冷媒飽和圧力)に代えて該第2冷媒飽和圧力Psaから決定される第2冷媒飽和温度Tsaを用いるようにしてもよい。 In the above configuration, the refrigerant saturation pressure (first refrigerant saturation pressure) derived from the outside air temperature detected by the outside air temperature detection sensor 43 and the refrigerant pressure detection sensor in step 62 as the second determination means. When it is determined that the difference between the refrigerant pressure (second refrigerant saturation pressure) in the high-pressure side line detected by 41 is a predetermined value: β1 or more, a shortage of refrigerant amount in the refrigeration cycle is provisionally determined. However, since the refrigerant saturation pressure and the refrigerant saturation temperature have a uniquely corresponding relationship, as shown in FIGS. 5 and 6, the refrigerant derived from the outside air temperature detected by the outside air temperature detection sensor 43. using saturation pressure refrigerant saturation temperature derived from the outdoor temperature detected by the outside air temperature detection sensor 43 in place of the (first refrigerant saturation pressure) (first refrigerant saturation temperature) T HL, test the refrigerant pressure sensor 41 It may be used second refrigerant saturation temperature Tsa determined from the second refrigerant saturation pressure Psa instead pressure of the refrigerant on the high pressure side line (second refrigerant saturation pressure).

即ち、図5に示されるステップ62を、外気温度検出センサ43により検出された外気温から導かれる冷媒の飽和温度(第1冷媒飽和温度THL)と冷媒圧力検出センサ41により検出された高圧側ラインの冷媒の圧力から決定される冷媒の飽和温度(第2冷媒飽和温度Tsa)との差が所定値:β2以上であると判定された場合には、冷媒量が不足していると仮判定し、前記ステップ58において冷媒量が不足していると仮判定されていることを前提として、冷凍サイクル3の冷媒量が不足しているとの判定を確定し(ステップ64)、前記操作パネル45に冷媒不足であることを表示したり、搭乗者に対して冷媒不足であることを示す警報を発信したりする等の注意喚起を行うようにしてもよい(ステップ66)。 That is, step 62 shown in FIG. 5 is performed by using the refrigerant saturation temperature (first refrigerant saturation temperature T HL ) derived from the outside air temperature detected by the outside air temperature detection sensor 43 and the high pressure side detected by the refrigerant pressure detection sensor 41. If it is determined that the difference from the refrigerant saturation temperature (second refrigerant saturation temperature Tsa) determined from the refrigerant pressure in the line is equal to or greater than a predetermined value: β2, it is temporarily determined that the refrigerant amount is insufficient. Then, on the assumption that the refrigerant amount is insufficient in step 58, it is determined that the refrigerant amount in the refrigeration cycle 3 is insufficient (step 64), and the operation panel 45 is determined. The user may be alerted such as displaying the fact that the refrigerant is insufficient or sending an alarm indicating that the refrigerant is insufficient to the passenger (step 66).

また、以上の構成においては、冷媒量の不足を仮判定する閾値(β1及びβ2)を車室外の熱負荷の大きさに拘らず所定値として設定した例を示したが、車室外の熱負荷の大きさに応じて閾値の大きさを変更させるようにしてもよい。例えば、車室外の熱負荷が大きいほど、閾値(β1及びβ2)を小さく設定すれば、冷房機能が重要な高い熱負荷のときに、冷媒量の不足をより精度よく検知することができる。このように外部の熱負荷に応じてそれぞれの閾値を可変させることで、冷媒不足の有無の判定をより正確に行なうことが可能となり、誤判定の可能性を一層低減することが可能となる。   In the above configuration, the example in which the thresholds (β1 and β2) for temporarily determining the shortage of the refrigerant amount are set as predetermined values regardless of the magnitude of the heat load outside the passenger compartment is shown. The threshold value may be changed in accordance with the size of. For example, if the threshold values (β1 and β2) are set to be smaller as the heat load outside the passenger compartment is larger, it is possible to more accurately detect the shortage of the refrigerant amount at a high heat load where the cooling function is important. Thus, by varying the respective threshold values according to the external heat load, it is possible to more accurately determine whether there is a refrigerant shortage, and further reduce the possibility of erroneous determination.

3 冷凍サイクル
31 圧縮機
32 凝縮器
33 膨張装置
34 蒸発器
41 冷媒圧力検出センサ
42 蒸発器温度検出センサ
43 外気温度検出センサ
44 車室内温度検出センサ
46 温度設定器
DESCRIPTION OF SYMBOLS 3 Refrigeration cycle 31 Compressor 32 Condenser 33 Expansion device 34 Evaporator 41 Refrigerant pressure detection sensor 42 Evaporator temperature detection sensor 43 Outside temperature detection sensor 44 Car interior temperature detection sensor 46 Temperature setter

Claims (11)

冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された冷媒を凝縮する凝縮器と、前記凝縮器で凝縮された冷媒を減圧する膨張装置と、前記膨張装置から流出する冷媒を蒸発する蒸発器と、を有する冷凍サイクルに用いられる冷媒不足判定装置であって、
前記圧縮機と前記膨張装置との間の冷媒経路を流れる冷媒の圧力を検出する冷媒圧力検出器と、
前記蒸発器の温度、又は、前記蒸発器を通過した直後の空気温度を検出する蒸発器温度検出器と、
被空調空間の外部の熱負荷を検出する外部熱負荷検出器と、
前記被空調空間の内部の熱負荷を検出する内部熱負荷検出器と、
前記被空調空間の制御温度を設定する温度設定器と、
前記外部熱負荷検出器により検出された熱負荷、前記内部負荷検出器により検出された熱負荷、および前記温度設定器で設定された制御温度により、前記蒸発器、又は、前記蒸発器を通過した直後の空気の目標温度を演算する目標温度演算手段と、
前記蒸発器温度検出器により検出された温度と前記目標温度演算手段により演算された目標温度との差が第1の所定値以上となった場合に前記冷凍サイクル内の冷媒量の不足を仮判定する第1の判定手段と、
前記外部熱負荷検出器により検出された熱負荷から導かれる第1冷媒飽和圧力と前記冷媒圧力検出器により検出された冷媒の圧力である第2冷媒飽和圧力との差が第2の所定値以上となった場合に前記冷凍サイクル内の冷媒量の不足を仮判定する第2の判定手段と、
前記第1の判定手段により前記冷凍サイクル内の冷媒量が不足していると仮判定され、且つ、前記第2の判定手段により前記冷凍サイクル内の冷媒量が不足していると仮判定された場合に、前記冷凍サイクル内の冷媒量の不足判定を確定する冷媒不足判定確定手段と、
を具備することを特徴とする冷媒不足判定装置。
A compressor that compresses the refrigerant; a condenser that condenses the refrigerant compressed by the compressor; an expansion device that depressurizes the refrigerant condensed by the condenser; and an evaporator that evaporates the refrigerant flowing out of the expansion device And a refrigerant shortage determination device used in a refrigeration cycle having:
A refrigerant pressure detector for detecting the pressure of the refrigerant flowing in the refrigerant path between the compressor and the expansion device;
An evaporator temperature detector for detecting the temperature of the evaporator or the air temperature immediately after passing through the evaporator;
An external thermal load detector that detects the thermal load outside the air-conditioned space;
An internal thermal load detector for detecting the thermal load inside the air-conditioned space;
A temperature setter for setting a control temperature of the air-conditioned space;
Passed through the evaporator or the evaporator according to the thermal load detected by the external thermal load detector, the thermal load detected by the internal load detector, and the control temperature set by the temperature setter. Target temperature calculation means for calculating the target temperature of the air immediately after,
When the difference between the temperature detected by the evaporator temperature detector and the target temperature calculated by the target temperature calculating means is equal to or greater than a first predetermined value, it is temporarily determined that the refrigerant amount is insufficient in the refrigeration cycle. First determining means for
The difference between the first refrigerant saturation pressure derived from the thermal load detected by the external thermal load detector and the second refrigerant saturation pressure, which is the refrigerant pressure detected by the refrigerant pressure detector, is equal to or greater than a second predetermined value. A second determination means for temporarily determining the shortage of the refrigerant amount in the refrigeration cycle when
The first determination means tentatively determines that the refrigerant amount in the refrigeration cycle is insufficient, and the second determination means tentatively determines that the refrigerant amount in the refrigeration cycle is insufficient. A refrigerant shortage determination determination means for determining a shortage determination of the refrigerant amount in the refrigeration cycle,
A refrigerant shortage determination device comprising:
前記冷凍サイクル内の冷媒量の不足を仮判定する第2の判定手段は、前記第1冷媒飽和圧力に代えて前記外部熱負荷検出器により検出された熱負荷から導かれる第1冷媒飽和温度を用い、前記第2冷媒飽和圧力に代えて該第2冷媒飽和圧力から決定される第2冷媒飽和温度を用いることを特徴とする請求項1記載の冷媒不足判定装置。   The second determination means for temporarily determining the shortage of the refrigerant amount in the refrigeration cycle replaces the first refrigerant saturation pressure with the first refrigerant saturation temperature derived from the thermal load detected by the external thermal load detector. 2. The refrigerant shortage determination device according to claim 1, wherein a second refrigerant saturation temperature determined from the second refrigerant saturation pressure is used instead of the second refrigerant saturation pressure. 前記被空調空間の外部の熱負荷の大きさに応じて前記第2の所定値の大きさを変更させることを特徴とする請求項1又は2記載の冷媒不足判定装置。   The refrigerant shortage determination device according to claim 1 or 2, wherein the second predetermined value is changed in accordance with a heat load outside the air-conditioned space. 前記圧縮機を起動する前の前記冷媒圧力検出器により検出された冷媒圧力が所定の圧力値よりも低いか否かを判定する第3の判定手段を更に備え、
前記第3の判定手段により前記圧縮機を起動する前の冷媒圧力が所定の圧力値よりも低いと判定された場合に、前記圧縮機を起動させないことを特徴とする請求項1乃至3のいずれかに記載の冷媒不足判定装置。
Further comprising third determination means for determining whether or not the refrigerant pressure detected by the refrigerant pressure detector before starting the compressor is lower than a predetermined pressure value;
4. The compressor according to claim 1, wherein the compressor is not started when it is determined by the third determination means that the refrigerant pressure before starting the compressor is lower than a predetermined pressure value. The refrigerant shortage determination device according to claim 1.
前記圧縮機は、固定容量型であることを特徴とする請求項1乃至4のいずれかに記載の冷媒不足判定装置。   The refrigerant shortage determination device according to claim 1, wherein the compressor is of a fixed capacity type. 前記圧縮機は、可変容量型であることを特徴とする請求項1乃至4のいずれかに記載の冷媒不足判定装置。   The refrigerant shortage determination device according to claim 1, wherein the compressor is a variable capacity type. 請求項1乃至6のいずれかに記載の冷媒不足判定装置を備えた冷凍サイクル。   The refrigerating cycle provided with the refrigerant | coolant shortage determination apparatus in any one of Claims 1 thru | or 6. 冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された冷媒を凝縮する凝縮器と、前記凝縮器で凝縮された冷媒を減圧する膨張装置と、前記膨張装置から流出する冷媒を蒸発する蒸発器と、を有する冷凍サイクルと、
前記圧縮機と前記膨張装置との間の冷媒経路を流れる冷媒の圧力を検出する冷媒圧力検出器と、
前記蒸発器の温度、又は、前記蒸発器を通過した直後の空気温度を検出する温度検出器と、
被空調空間の外部の熱負荷を検出する外部熱負荷検出器と、
前記被空調空間の内部の熱負荷を検出する内部熱負荷検出器と、
前記被空調空間の制御温度を設定する温度設定器と、
前記外部熱負荷検出器により検出された熱負荷、前記内部負荷検出器により検出された熱負荷、および前記温度設定器で設定された制御温度により、前記蒸発器、又は、前記蒸発器を通過した直後の空気の目標温度を演算する目標温度演算手段と、
を備えて構成される前記冷凍サイクルの冷媒不足判定方法であって、
前記蒸発器温度検出器により検出された温度と前記目標温度演算手段により演算された目標温度との差が第1の所定値以上と判定され、且つ、前記外部熱負荷検出器により検出された熱負荷から導かれる第1冷媒飽和圧力と前記冷媒圧力検出器により検出された冷媒の圧力である第2冷媒飽和圧力との差が第2の所定値以上と判定された場合に、前記冷凍サイクル内の冷媒量が不足であると判定することを特徴とする冷凍サイクルの冷媒不足判定方法。
A compressor that compresses the refrigerant; a condenser that condenses the refrigerant compressed by the compressor; an expansion device that depressurizes the refrigerant condensed by the condenser; and an evaporator that evaporates the refrigerant flowing out of the expansion device And a refrigeration cycle having
A refrigerant pressure detector for detecting the pressure of the refrigerant flowing in the refrigerant path between the compressor and the expansion device;
A temperature detector for detecting the temperature of the evaporator or the air temperature immediately after passing through the evaporator;
An external thermal load detector that detects the thermal load outside the air-conditioned space;
An internal thermal load detector for detecting the thermal load inside the air-conditioned space;
A temperature setter for setting a control temperature of the air-conditioned space;
Passed through the evaporator or the evaporator according to the thermal load detected by the external thermal load detector, the thermal load detected by the internal load detector, and the control temperature set by the temperature setter. Target temperature calculation means for calculating the target temperature of the air immediately after,
A refrigerant shortage determination method of the refrigeration cycle configured to include:
The difference between the temperature detected by the evaporator temperature detector and the target temperature calculated by the target temperature calculation means is determined to be greater than or equal to a first predetermined value, and the heat detected by the external thermal load detector When the difference between the first refrigerant saturation pressure derived from the load and the second refrigerant saturation pressure, which is the refrigerant pressure detected by the refrigerant pressure detector, is determined to be greater than or equal to a second predetermined value, A refrigerant shortage determination method for a refrigeration cycle, wherein the refrigerant amount is determined to be insufficient.
前記第1冷媒飽和圧力に代えて前記外部熱負荷検出器により検出された熱負荷から導かれる第1冷媒飽和温度を用い、前記第2冷媒飽和圧力に代えて該第2冷媒飽和圧力から決定される第2冷媒飽和温度を用いることを特徴とする請求項8記載の冷凍サイクルの冷媒不足判定方法。   Instead of the first refrigerant saturation pressure, the first refrigerant saturation temperature derived from the thermal load detected by the external thermal load detector is used, and the first refrigerant saturation pressure is determined from the second refrigerant saturation pressure instead of the second refrigerant saturation pressure. The refrigerant shortage determination method for a refrigeration cycle according to claim 8, wherein the second refrigerant saturation temperature is used. 前記被空調空間の外部の熱負荷の大きさに応じて前記第2の所定値の大きさを変更させることを特徴とする請求項8又は9記載の冷凍サイクルの冷媒不足判定方法。   10. The refrigerant shortage determination method for a refrigeration cycle according to claim 8, wherein the second predetermined value is changed according to a heat load outside the air-conditioned space. 前記圧縮機を起動させる前の前記冷媒圧力検出器により検出された冷媒圧力が所定の圧力値よりも低いと判定された場合に、前記圧縮機を起動させないことを特徴とする請求項8乃至10のいずれかに記載の冷凍サイクルの冷媒不足判定方法。
11. The compressor is not started when it is determined that the refrigerant pressure detected by the refrigerant pressure detector before starting the compressor is lower than a predetermined pressure value. The refrigerant shortage determination method for the refrigeration cycle according to any one of the above.
JP2015041885A 2015-03-04 2015-03-04 Refrigerant shortage determination device, refrigeration cycle provided with the same, and refrigerant shortage determination method for refrigeration cycle Expired - Fee Related JP6289403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041885A JP6289403B2 (en) 2015-03-04 2015-03-04 Refrigerant shortage determination device, refrigeration cycle provided with the same, and refrigerant shortage determination method for refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041885A JP6289403B2 (en) 2015-03-04 2015-03-04 Refrigerant shortage determination device, refrigeration cycle provided with the same, and refrigerant shortage determination method for refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2016161244A true JP2016161244A (en) 2016-09-05
JP6289403B2 JP6289403B2 (en) 2018-03-07

Family

ID=56846586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041885A Expired - Fee Related JP6289403B2 (en) 2015-03-04 2015-03-04 Refrigerant shortage determination device, refrigeration cycle provided with the same, and refrigerant shortage determination method for refrigeration cycle

Country Status (1)

Country Link
JP (1) JP6289403B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107300279A (en) * 2017-08-09 2017-10-27 珠海格力电器股份有限公司 For detecting the method that frequency cooling by wind lacks refrigerant of determining
WO2018225545A1 (en) * 2017-06-08 2018-12-13 株式会社デンソー Refrigeration cycle device
WO2022239521A1 (en) * 2021-05-12 2022-11-17 株式会社デンソー Refrigeration cycle device
WO2023113301A1 (en) * 2021-12-14 2023-06-22 한온시스템 주식회사 Control method for vehicle air conditioning system, and compressor having control method for vehicle air conditioning system applied thereto

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213565A (en) * 1985-03-20 1986-09-22 株式会社デンソー Pressure switch for refrigeration cycle
JPS6256752A (en) * 1985-09-05 1987-03-12 日産自動車株式会社 Refrigerant-shortage alarm device
JPH023520A (en) * 1988-06-21 1990-01-09 Diesel Kiki Co Ltd Air conditioner for automobile
JPH053865U (en) * 1991-07-03 1993-01-22 日本電子機器株式会社 Air conditioner
JPH0618130A (en) * 1992-06-30 1994-01-25 Nippondenso Co Ltd Device for sensing lack of refrigerant in freezing cycle
JPH08313123A (en) * 1995-05-17 1996-11-29 Nissan Motor Co Ltd Heat pump type cooler and heater for vehicle
JPH10111052A (en) * 1996-10-04 1998-04-28 Daikin Ind Ltd Freezer
JP2005041252A (en) * 2003-07-22 2005-02-17 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP2006010176A (en) * 2004-06-24 2006-01-12 Mitsubishi Heavy Ind Ltd Refrigerant leakage detection control of vehicular air conditioner
JP2008267761A (en) * 2007-04-25 2008-11-06 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2009137320A (en) * 2007-12-03 2009-06-25 Denso Corp Refrigeration cycle device and air conditioner for vehicle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213565A (en) * 1985-03-20 1986-09-22 株式会社デンソー Pressure switch for refrigeration cycle
JPS6256752A (en) * 1985-09-05 1987-03-12 日産自動車株式会社 Refrigerant-shortage alarm device
JPH023520A (en) * 1988-06-21 1990-01-09 Diesel Kiki Co Ltd Air conditioner for automobile
JPH053865U (en) * 1991-07-03 1993-01-22 日本電子機器株式会社 Air conditioner
JPH0618130A (en) * 1992-06-30 1994-01-25 Nippondenso Co Ltd Device for sensing lack of refrigerant in freezing cycle
JPH08313123A (en) * 1995-05-17 1996-11-29 Nissan Motor Co Ltd Heat pump type cooler and heater for vehicle
JPH10111052A (en) * 1996-10-04 1998-04-28 Daikin Ind Ltd Freezer
JP2005041252A (en) * 2003-07-22 2005-02-17 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP2006010176A (en) * 2004-06-24 2006-01-12 Mitsubishi Heavy Ind Ltd Refrigerant leakage detection control of vehicular air conditioner
JP2008267761A (en) * 2007-04-25 2008-11-06 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2009137320A (en) * 2007-12-03 2009-06-25 Denso Corp Refrigeration cycle device and air conditioner for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225545A1 (en) * 2017-06-08 2018-12-13 株式会社デンソー Refrigeration cycle device
CN107300279A (en) * 2017-08-09 2017-10-27 珠海格力电器股份有限公司 For detecting the method that frequency cooling by wind lacks refrigerant of determining
WO2022239521A1 (en) * 2021-05-12 2022-11-17 株式会社デンソー Refrigeration cycle device
WO2023113301A1 (en) * 2021-12-14 2023-06-22 한온시스템 주식회사 Control method for vehicle air conditioning system, and compressor having control method for vehicle air conditioning system applied thereto

Also Published As

Publication number Publication date
JP6289403B2 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
US10527332B2 (en) Refrigeration system with superheating, sub-cooling and refrigerant charge level control
US6981384B2 (en) Monitoring refrigerant charge
CN109983286B (en) Method for fault mitigation in a vapor compression system
WO2011155346A1 (en) Vehicle air-conditioning device, and refrigerant leakage diagnosis method for vehicle air-conditioning device
JP5249821B2 (en) Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus
JP6289403B2 (en) Refrigerant shortage determination device, refrigeration cycle provided with the same, and refrigerant shortage determination method for refrigeration cycle
JP5787604B2 (en) Vehicle air conditioner failure diagnosis system and failure diagnosis device
JP2016003848A (en) Air conditioning system and control method for the same
US20060048524A1 (en) Refrigeration unit
JP2008249239A (en) Control method of cooling device, cooling device and refrigerating storage
CN112424545B (en) Low refrigerant charge detection in a transport refrigeration system
JP2013151181A (en) Motor-driven compressor that controls temperature of evaporator in vehicle air-conditioner
WO2017086343A1 (en) Refrigeration cycle for vehicular air-conditioning device, and vehicle equipped therewith
CN110382979B (en) Refrigerant leak detection device and refrigeration cycle device
JP6702267B2 (en) Refrigerant amount estimation device, refrigeration cycle device
JP6373475B2 (en) Refrigerant amount abnormality detection device and refrigeration device
WO2020235990A1 (en) System and method for determining refrigerant charge status of an air conditioner
JP5989534B2 (en) Refrigeration system apparatus and air conditioner
JP5119071B2 (en) Control device for refrigeration cycle equipment
WO2019171840A1 (en) Refrigerant amount estimating device, and refrigeration cycle device
JP2008249288A (en) Air conditioner
US20240123790A1 (en) Thermal management system, control method therefor, and compressor included therein
JP6717343B2 (en) Monitoring system
KR100606267B1 (en) Air conditioner capable of continuous cooling operation
JP2008249240A (en) Condensing unit and refrigerating device comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180206

R150 Certificate of patent or registration of utility model

Ref document number: 6289403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees