JP2009168339A - Air conditioner and its control method - Google Patents

Air conditioner and its control method Download PDF

Info

Publication number
JP2009168339A
JP2009168339A JP2008007256A JP2008007256A JP2009168339A JP 2009168339 A JP2009168339 A JP 2009168339A JP 2008007256 A JP2008007256 A JP 2008007256A JP 2008007256 A JP2008007256 A JP 2008007256A JP 2009168339 A JP2009168339 A JP 2009168339A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
pressure
compressor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008007256A
Other languages
Japanese (ja)
Inventor
Kojiro Nakamura
康次郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2008007256A priority Critical patent/JP2009168339A/en
Publication of JP2009168339A publication Critical patent/JP2009168339A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To determine excess or shortage of the amount of sealed refrigerant at low costs without adding a special component. <P>SOLUTION: This air conditioner comprises a refrigerating cycle having a compressor, a radiator, a pressure reducer and an evaporator, and applying a carbon dioxide gas as a refrigerant, and further comprises a pressure sensor for detecting a discharged refrigerant pressure Pd of the compressor, a first refrigerant temperature sensor for detecting a discharged refrigerant temperature Td of the compressor, and a low pressure-side pressure recognizing means for estimating a refrigerant pressure Ps at a low pressure side of the refrigerating cycle. A maximum allowable discharge refrigerant temperature Td' is determined from the low pressure-side refrigerant pressure Ps recognized by the low pressure-side pressure recognizing means and the discharge refrigerant pressure Pd of the compressor detected by the pressure sensor, and the excess or shortage of the amount of refrigerant sealed in the refrigerating cycle is determined by comparing the allowable discharge refrigerant temperature Td' and the detected discharge refrigerant temperature Td detected by the discharge refrigerant temperature detecting means. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷媒を封入した冷凍サイクルを備えた空気調和装置及びその制御方法に関する。   The present invention relates to an air conditioner including a refrigeration cycle in which a refrigerant is sealed, and a control method thereof.

この種の従来の空気調和装置としては、特許文献1に開示されたものがある。この空気調和装置は、冷媒を圧縮する圧縮機と、圧縮機で圧縮された冷媒と空気との間で熱交換し、冷媒に放熱させる放熱器と、放熱器で冷却された冷媒を減圧する膨張弁と、膨張弁によって減圧された冷媒と空気との間で熱交換し、冷媒に吸熱させる蒸発器とを有する冷凍サイクルを備えている。又、空気調和装置は、冷凍サイクルの放熱器と膨張弁との間に介在され、高圧側の冷媒圧力を検知する圧力センサと、外気温度を検知する外気温度センサと、外気温度センサが検知した外気温度と圧力センサが検知した高圧側圧力に基づいて封入冷媒量の過少を判定する始動前冷媒不足判定手段とを備えている。   A conventional air conditioner of this type is disclosed in Patent Document 1. This air conditioner includes a compressor that compresses a refrigerant, a heat exchanger that exchanges heat between the refrigerant compressed by the compressor and air, and that radiates heat to the refrigerant, and an expansion that depressurizes the refrigerant cooled by the radiator. A refrigeration cycle having a valve and an evaporator that exchanges heat between the refrigerant decompressed by the expansion valve and the air and absorbs heat by the refrigerant is provided. The air conditioner is interposed between the radiator and the expansion valve of the refrigeration cycle, and is detected by a pressure sensor that detects a refrigerant pressure on the high pressure side, an outside air temperature sensor that detects an outside air temperature, and an outside air temperature sensor. Pre-starting refrigerant shortage determining means for determining whether the amount of the enclosed refrigerant is too low based on the outside air temperature and the high pressure side pressure detected by the pressure sensor.

始動前冷媒不足判定手段は、外気温度に対する冷媒の飽和圧力に基づいて許容冷媒圧力を求め、許容冷媒圧力より実際の高圧側圧力が小さい場合に封入冷媒量が過少であると判定する。   The pre-starting refrigerant shortage determining means obtains the allowable refrigerant pressure based on the refrigerant saturation pressure with respect to the outside air temperature, and determines that the amount of enclosed refrigerant is too small when the actual high-pressure side pressure is smaller than the allowable refrigerant pressure.

この従来例によれば、外気温度に応じて冷媒の飽和圧力が変化することに着目して封入冷媒量の過少を判定するため、外気温度に関わらず封入冷媒量の過少を正確に判定できる。
実開平5−3865号公報
According to this conventional example, since it is determined whether or not the amount of the encapsulated refrigerant is small by focusing on the fact that the saturation pressure of the refrigerant changes according to the outside air temperature, it is possible to accurately determine whether or not the amount of the encapsulated refrigerant is small regardless of the outside air temperature.
Japanese Utility Model Publication No. 5-3865

しかしながら、従来例の空気調和装置では、高圧側冷媒圧力に着目して封入冷媒量の過少を判定しているが、例えばシステム容積3100cm、規定封入量600gとした場合に、冷媒温度が高い場合(例えば20degC)と低い場合(例えば5degC)では、飽和圧力が0.2MPa変化するのに、冷媒温度が高い場合には冷媒量100g以下の減少で足りるのに、冷媒温度が低い場合には冷媒量250g以上の減少が必要である。従って、精度を求めるために圧力センサとして高精度のものを用いないと、誤検知する可能性が高いため、高コストになるという問題があった。 However, in the air conditioning apparatus of the conventional example, the excess refrigerant amount is determined by paying attention to the high-pressure side refrigerant pressure. For example, when the system volume is 3100 cm 3 and the specified enclosure amount is 600 g, the refrigerant temperature is high. When the temperature is low (for example, 20 degC) (for example, 5 degC), the saturation pressure changes by 0.2 MPa, but when the refrigerant temperature is high, a decrease in the refrigerant amount of 100 g or less is sufficient, but when the refrigerant temperature is low, the refrigerant A reduction of more than 250 g is necessary. Therefore, if a high-precision pressure sensor is not used to obtain accuracy, there is a high possibility of erroneous detection, resulting in a high cost.

そこで、本発明は、特別な部品を追加することなく低コストに封入冷媒量の過少を判定できる空気調和装置及びその制御方法を提供することを目的とする。   Then, an object of this invention is to provide the air conditioning apparatus which can determine the amount of enclosure refrigerant | coolants being insufficient, and its control method at low cost, without adding a special component.

上記目的を達成する請求項1の発明は、冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された冷媒と空気との間で熱交換し、冷媒に放熱させる放熱器と、前記放熱器で冷却された冷媒を減圧する減圧手段と、前記減圧手段によって減圧された冷媒と空気との間で熱交換し、冷媒に吸熱させる蒸発器とを少なくとも有する冷凍サイクルを備えた空気調和装置であって、前記圧縮機の吐出冷媒圧力を検知する高圧側圧力検知手段と、前記圧縮機の吐出冷媒温度を検知する吐出冷媒温度検知手段と、前記冷凍サイクルの低圧側の冷媒圧力を認識する低圧側圧力認識手段と、前記低圧側圧力認識手段によって認識した低圧側の冷媒圧力と前記高圧側圧力検知手段が検知した前記圧縮機の吐出冷媒圧力とから最大限許容される許容吐出冷媒温度を求め、この許容吐出冷媒温度と前記吐出冷媒温度検知手段が検知した検知吐出冷媒温度とを比較することにより前記冷凍サイクル内の封入冷媒量が過少であるか否かを判定する冷媒量過少判定手段とを備えたことを備えたことを特徴とする空気調和装置である。   The invention of claim 1 that achieves the above object includes a compressor that compresses a refrigerant, a radiator that exchanges heat between the refrigerant compressed by the compressor and air, and dissipates heat to the refrigerant, and the radiator. An air conditioner including a refrigeration cycle having at least a decompression unit that decompresses a cooled refrigerant, and an evaporator that exchanges heat between the refrigerant decompressed by the decompression unit and air and absorbs heat from the refrigerant. A high pressure side pressure detecting means for detecting a refrigerant pressure discharged from the compressor, a discharge refrigerant temperature detecting means for detecting a refrigerant temperature discharged from the compressor, and a low pressure side pressure recognizing a low pressure side refrigerant pressure of the refrigeration cycle A maximum allowable discharge refrigerant temperature is obtained from the low pressure side refrigerant pressure recognized by the recognition means, the low pressure side pressure recognition means, and the discharge refrigerant pressure of the compressor detected by the high pressure side pressure detection means; Comparing an allowable discharge refrigerant temperature with a detected discharge refrigerant temperature detected by the discharge refrigerant temperature detection means, a refrigerant quantity under-determination means for judging whether or not an amount of enclosed refrigerant in the refrigeration cycle is too small. An air conditioner characterized by comprising the above.

請求項2の発明は、請求項1記載の空気調和装置であって、前記低圧側冷媒圧力認識手段は、前記蒸発器を通過する空気が空調空気とされる冷房モードでは、前記蒸発器を通過した空気温度より低圧側の冷媒圧力を推定することを特徴とする空気調和装置である。   A second aspect of the present invention is the air conditioner according to the first aspect, wherein the low-pressure side refrigerant pressure recognition means passes through the evaporator in a cooling mode in which air passing through the evaporator is conditioned air. It is an air conditioner characterized by estimating the refrigerant | coolant pressure of a low pressure side from the measured air temperature.

請求項3の発明は、請求項1記載の空気調和装置であって、前記低圧側冷媒圧力認識手段は、前記蒸発器を通過する空気が外気とされる暖房モードでは、前記蒸発器が載置される周辺の空気温度より低圧側の冷媒圧力を推定することを特徴とする空気調和装置である。   A third aspect of the present invention is the air conditioning apparatus according to the first aspect, wherein the low-pressure side refrigerant pressure recognition means is configured such that the evaporator is placed in a heating mode in which air passing through the evaporator is outside air. It is an air conditioner characterized by estimating the refrigerant | coolant pressure of a low pressure side from the surrounding air temperature.

請求項4の発明は、請求項1〜請求項3のいずれかに記載の空気調和装置であって、前記冷媒量過少判定手段は、前記圧縮機の稼働開始から一定時間以内に封入冷媒量の過少の判定を行うことを特徴とする空気調和装置である。   Invention of Claim 4 is an air conditioning apparatus in any one of Claims 1-3, Comprising: The said refrigerant | coolant amount low determination means is the amount of enclosed refrigerant | coolants within a fixed time from the operation start of the said compressor. It is an air conditioner characterized by performing an under-determination.

請求項5の発明は、請求項1〜請求項4のいずれかに記載の空気調和装置であって、前記冷媒量過少判定手段は、前記吐出冷媒温度検知手段が検知した検知吐出冷媒温度より前記圧縮機のモータコイル温度が低い場合に、封入冷媒量の過少の判定を行うことを特徴とする空気調和装置である。   Invention of Claim 5 is an air conditioning apparatus in any one of Claims 1-4, Comprising: The said refrigerant | coolant amount under-determination means is said from the detection discharge refrigerant temperature which the said discharge refrigerant temperature detection means detected. When the motor coil temperature of the compressor is low, the air conditioner is characterized by determining whether the amount of the enclosed refrigerant is too low.

請求項6の発明は、請求項1〜請求項5のいずれかに記載の空気調和装置であって、前記冷媒量過少判定手段は、前記吐出冷媒温度検知手段が検知した検知吐出冷媒温度より前記圧縮機のモータコイル温度が高い場合に、許容吐出冷媒温度に前記圧縮機のモータコイル温度を補償した温度値によって封入冷媒量の過少を判定することを特徴とする空気調和装置である。   Invention of Claim 6 is an air conditioning apparatus in any one of Claims 1-5, Comprising: The said refrigerant | coolant amount under-decision means is said from the detection discharge refrigerant temperature which the said discharge refrigerant temperature detection means detected. When the motor coil temperature of the compressor is high, the air conditioner is characterized in that the amount of the enclosed refrigerant is determined based on a temperature value obtained by compensating the motor coil temperature of the compressor with the allowable discharge refrigerant temperature.

請求項7の発明は、請求項1〜請求項6のいずれかに記載の空気調和装置であって、前記冷媒量過少判定手段は、許容吐出冷媒温度に前記圧縮機のモータの印加電力による熱損失温度値を補償した温度値によって封入冷媒量の過少を判定することを特徴とする空気調和装置である。   A seventh aspect of the present invention is the air conditioner according to any one of the first to sixth aspects, wherein the refrigerant amount under-determination means is configured to heat the allowable discharge refrigerant temperature to the allowable discharge refrigerant temperature by the electric power applied to the compressor motor. The air conditioner is characterized in that the amount of the enclosed refrigerant is determined based on a temperature value compensated for the loss temperature value.

請求項8の発明は、冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された冷媒と空気との間で熱交換し、冷媒に放熱させる放熱器と、前記放熱器で冷却された冷媒を減圧する減圧手段と、前記減圧手段によって減圧された冷媒と空気との間で熱交換し、冷媒に吸熱させる蒸発器とを少なくとも有する冷凍サイクルを備えた空気調和装置の制御方法であって、前記圧縮機の吐出冷媒圧力を検知する高圧側圧力検知手段と、前記圧縮機の吐出冷媒温度を検知する吐出冷媒温度検知手段と、前記冷凍サイクルの低圧側の冷媒圧力を認識する低圧側圧力認識手段とを備え、前記低圧側圧力認識手段によって認識した低圧側の冷媒圧力と前記高圧側圧力検知手段が検知した前記圧縮機の吐出冷媒圧力とから最大限許容される許容吐出冷媒温度を求め、この許容吐出冷媒温度と前記吐出冷媒温度検知手段が検知した検知吐出冷媒温度とを比較することにより前記冷凍サイクル内の封入冷媒量が過少であるか否かを判定することを備えたことを特徴とする空気調和装置の制御方法である。   According to an eighth aspect of the present invention, there is provided a compressor that compresses a refrigerant, a heat exchanger that exchanges heat between the refrigerant compressed by the compressor and air, and dissipates heat to the refrigerant, and a refrigerant that is cooled by the radiator. A control method for an air conditioner comprising a refrigeration cycle having at least a decompression unit that decompresses, and an evaporator that exchanges heat between the refrigerant decompressed by the decompression unit and air and absorbs heat by the refrigerant, High pressure side pressure detection means for detecting the discharge refrigerant pressure of the compressor, discharge refrigerant temperature detection means for detecting the discharge refrigerant temperature of the compressor, and low pressure side pressure recognition means for recognizing the refrigerant pressure on the low pressure side of the refrigeration cycle An allowable discharge refrigerant temperature that is allowed to a maximum extent from a low-pressure-side refrigerant pressure recognized by the low-pressure-side pressure recognition means and a discharge refrigerant pressure of the compressor detected by the high-pressure-side pressure detection means, It is characterized by determining whether or not the amount of the enclosed refrigerant in the refrigeration cycle is too small by comparing the discharge refrigerant temperature with the detected discharge refrigerant temperature detected by the discharge refrigerant temperature detection means. It is the control method of the air conditioning apparatus.

請求項9の発明は、請求項8記載の空気調和装置の制御方法であって、前記低圧側冷媒圧力認識手段は、前記蒸発器を通過する空気が空調空気とされる冷房モードでは、前記蒸発器を通過した空気温度より低圧側の冷媒圧力を推定することを特徴とする空気調和装置である。   A ninth aspect of the invention is the control method for an air conditioner according to the eighth aspect, wherein the low-pressure side refrigerant pressure recognition means performs the evaporation in a cooling mode in which air passing through the evaporator is conditioned air. It is an air conditioner characterized by estimating the refrigerant | coolant pressure of a low pressure side from the air temperature which passed the container.

請求項10の発明は、請求項8記載の空気調和装置の制御方法であって、前記低圧側冷媒圧力認識手段は、前記蒸発器を通過する空気が外気とされる暖房モードでは、前記蒸発器が載置される周辺の空気温度より低圧側の冷媒圧力を推定することを特徴とする空気調和装置の制御方法である。   A tenth aspect of the present invention is the control method for an air conditioner according to the eighth aspect, wherein the low-pressure side refrigerant pressure recognition means is configured such that in the heating mode in which the air passing through the evaporator is outside air, the evaporator This is a control method for an air conditioner, wherein the refrigerant pressure on the low-pressure side is estimated from the temperature of the surrounding air.

請求項11の発明は、請求項8〜請求項10のいずれかに記載の空気調和装置の制御方法であって、前記圧縮機の稼働開始から一定時間以内に封入冷媒量の過少の判定を行うことを特徴とする空気調和装置の制御方法である。   The invention according to claim 11 is the control method for an air conditioner according to any one of claims 8 to 10, wherein the determination of whether the amount of the enclosed refrigerant is too small is made within a certain time from the start of operation of the compressor. It is the control method of the air conditioning apparatus characterized by this.

請求項12の発明は、請求項8〜請求項11のいずれかに記載の空気調和装置の制御方法であって、前記吐出冷媒温度検知手段が検知した検知吐出冷媒温度より前記圧縮機のモータコイル温度が低い場合に、封入冷媒量の過少の判定を行うことを特徴とする空気調和装置の制御方法である。   A twelfth aspect of the invention is a method for controlling an air conditioner according to any one of the eighth to eleventh aspects, wherein the motor coil of the compressor is detected from the detected discharge refrigerant temperature detected by the discharge refrigerant temperature detection means. A control method for an air conditioner characterized in that when the temperature is low, the amount of the enclosed refrigerant is determined to be insufficient.

請求項13の発明は、請求項8〜請求項12のいずれかに記載の空気調和装置の制御方法であって、前記吐出冷媒温度検知手段が検知した検知吐出冷媒温度より前記圧縮機のモータコイル温度が高い場合に、許容吐出冷媒温度に前記圧縮機のモータコイル温度を補償した温度値によって封入冷媒量の過少を判定することを特徴とする空気調和装置の制御方法である。   A thirteenth aspect of the present invention is the control method for an air conditioner according to any one of the eighth to twelfth aspects, wherein the motor coil of the compressor is detected from the detected discharged refrigerant temperature detected by the discharged refrigerant temperature detecting means. When the temperature is high, the control method of the air conditioner is characterized in that the amount of the enclosed refrigerant is determined based on a temperature value obtained by compensating the motor coil temperature of the compressor with the allowable discharge refrigerant temperature.

請求項14の発明は、請求項8〜請求項13のいずれかに記載の空気調和装置の制御方法であって、許容吐出冷媒温度に前記圧縮機のモータの印加電力による熱損失温度値を補償した温度値によって封入冷媒量の過少を判定することを特徴とする空気調和装置の制御方法。   The invention of claim 14 is the method of controlling an air conditioner according to any one of claims 8 to 13, wherein the allowable discharge refrigerant temperature is compensated for the heat loss temperature value due to the electric power applied to the motor of the compressor. A control method for an air conditioner, wherein a determination is made as to whether the amount of the encapsulated refrigerant is excessive or not based on the measured temperature value.

請求項1の発明によれば、冷凍サイクルの低圧側圧力に圧縮機の吸入過熱度(スーパーヒート)と断熱効率を規定すると、圧縮機の吐出冷媒圧力(冷凍サイクルの高圧側圧力)に対する圧縮機の吐出冷媒温度が物性的に求まるが、冷凍サイクル内の封入冷媒量が過少状態になると、圧縮機の吸入過熱度の増大と断熱効率の低下をもたらすことから許容可能な圧縮機の吐出冷媒温度を求めることができる。このことに着目して、低圧側圧力認識手段より低圧側の冷媒圧力を認識し、高圧側圧力検知手段により圧縮機の実際の吐出冷媒圧力を検知し、これらから最大限許容される許容吐出冷媒温度を求め、この許容吐出冷媒温度と検知吐出冷媒温度とを比較することにより冷凍サイクル内の封入冷媒量が過少であるか否かを判定する。従って、封入冷媒量の過少判定を外気温度に基づく圧力レベルによって判定するのではないため、高精度な圧力センサを用いる必要がないと共に、必要とする検知情報は空気調和装置に通常付設される検知手段を用いて得ることができる。従って、特別な部品を追加することなく低コストに封入冷媒量の過少を判定できる。   According to the invention of claim 1, when the suction superheat degree (superheat) and the heat insulation efficiency of the compressor are defined in the low pressure side pressure of the refrigeration cycle, the compressor with respect to the refrigerant discharge refrigerant pressure (high pressure side pressure of the refrigeration cycle) The discharge refrigerant temperature of the compressor can be obtained physically, but if the amount of the enclosed refrigerant in the refrigeration cycle becomes too small, the intake superheat degree of the compressor will increase and the adiabatic efficiency will decrease, so the allowable discharge refrigerant temperature of the compressor Can be requested. Paying attention to this, the low pressure side pressure recognition means recognizes the low pressure side refrigerant pressure, the high pressure side pressure detection means detects the actual discharge refrigerant pressure of the compressor, and the maximum allowable discharge refrigerant from these. The temperature is obtained, and it is determined whether or not the amount of the enclosed refrigerant in the refrigeration cycle is too small by comparing the allowable discharge refrigerant temperature and the detected discharge refrigerant temperature. Therefore, it is not necessary to use a high-precision pressure sensor because the determination of the amount of the enclosed refrigerant amount is not based on the pressure level based on the outside air temperature, and the necessary detection information is a detection usually attached to the air conditioner. It can be obtained using means. Therefore, it is possible to determine whether the amount of the enclosed refrigerant is too low at a low cost without adding special parts.

請求項2及び請求項9の発明によれば、蒸発器を通過した空気の温度を検知するための温度センサを利用して冷凍サイクルの低圧側の圧力を推定する。従って、冷凍サイクルの低圧側の圧力を認識するのに、冷凍サイクルの冷圧側に圧力センサを付設する必要がないため、システムのシンプル化、コスト削減等になる。   According to invention of Claim 2 and Claim 9, the pressure of the low pressure side of a refrigerating cycle is estimated using the temperature sensor for detecting the temperature of the air which passed the evaporator. Therefore, in order to recognize the pressure on the low pressure side of the refrigeration cycle, it is not necessary to attach a pressure sensor on the cold pressure side of the refrigeration cycle, which simplifies the system and reduces costs.

請求項3及び請求項10の発明によれば、蒸発器が設置される周辺の空気温度を検知するための温度センサを利用して冷凍サイクルの低圧側の圧力を推定する。従って、冷凍サイクルの低圧側の圧力を認識するのに、冷凍サイクルの冷圧側に圧力センサを付設する必要がないため、システムのシンプル化、コスト削減等になる。   According to the third and tenth aspects of the present invention, the pressure on the low pressure side of the refrigeration cycle is estimated using the temperature sensor for detecting the temperature of the air around the evaporator. Therefore, in order to recognize the pressure on the low pressure side of the refrigeration cycle, it is not necessary to attach a pressure sensor on the cold pressure side of the refrigeration cycle, which simplifies the system and reduces costs.

請求項4及び請求項11の発明によれば、圧縮機の稼働時の熱による悪影響を受けることなく、封入冷媒量の過少を正確に判定できる。   According to the fourth and eleventh aspects of the present invention, it is possible to accurately determine whether the amount of the enclosed refrigerant is insufficient without being adversely affected by heat during operation of the compressor.

請求項5及び請求項12の発明によれば、圧縮機のモータコイルの熱による悪影響を受けることなく、封入冷媒量の過少を判定できる。   According to the fifth and twelfth aspects of the present invention, it is possible to determine whether the amount of the enclosed refrigerant is too low without being adversely affected by the heat of the motor coil of the compressor.

請求項6及び請求項13の発明によれば、圧縮機の稼働中であれば、封入冷媒量の過少判定の時期を制限されることなく、圧縮機のモータコイルの熱による影響を受けない正確な判定ができる。   According to the sixth and thirteenth aspects of the present invention, if the compressor is in operation, the timing for determining the underfilled refrigerant amount is not limited, and the compressor is not affected by the heat of the motor coil accurately. Can be judged.

請求項7及び請求項14の発明によれば、圧縮機の稼働中であれば、封入冷媒量の過少判定の時期を制限されることなく、圧縮機のモータコイルの熱による影響を受けない正確な判定ができる。   According to the seventh and fourteenth aspects of the present invention, if the compressor is in operation, the timing for determining the underfilled refrigerant amount is not limited, and the compressor is not affected by the heat of the motor coil accurately. Judgment can be made.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態)
図1〜図5は本発明の実施の形態を示し、図1は車両用空気調和装置の構成図、図2は本発明の制御に関わる部分の回路ブロック図、図3はモリエル線図と冷凍サイクルの挙動線図、図4は冷却モード時における封入冷媒量の過少判定フローチャート、図5は暖房モード時における封入冷媒量の過少判定フローチャートである。
(Embodiment)
1 to 5 show an embodiment of the present invention, FIG. 1 is a block diagram of a vehicle air conditioner, FIG. 2 is a circuit block diagram of a part related to the control of the present invention, and FIG. 3 is a Mollier diagram and a refrigeration. FIG. 4 is a flow chart of cycle behavior, FIG. 4 is a flowchart for determining the amount of the enclosed refrigerant in the cooling mode, and FIG. 5 is a flowchart for determining the amount of the enclosed refrigerant in the heating mode.

図1に示すように、空気調和装置である車両用空気調和装置1は、冷凍サイクル2を有する。この冷凍サイクル2は、冷房と暖房を兼用できるものであり、超臨界冷媒である炭酸ガス(例えばR744)を冷媒とする。   As shown in FIG. 1, a vehicle air conditioner 1 that is an air conditioner has a refrigeration cycle 2. The refrigeration cycle 2 can be used for both cooling and heating, and uses carbon dioxide gas (for example, R744), which is a supercritical refrigerant, as a refrigerant.

冷凍サイクル2は、炭酸ガスからなる冷媒を圧縮する圧縮機3と、空調ダクト40内で、且つ、エアミックスドア41より上流に配置された室内熱交換器4と、空調ダクト40内で、且つ、エアミックスドア41より下流に配置された室内放熱器5と、エンジンルーム内に配置された室外熱交換器6と、高圧側の冷媒と低圧側の冷媒間で熱交換させる内部熱交換器7と、冷媒を減圧し、減圧レベルが外部からの制御によって調整可能な減圧手段である第1減圧器8及び第2減圧器9と、冷凍サイクル2内の余分な冷媒を一時的に溜め、且つ、圧縮機3にガス冷媒のみを戻すためのアキュムレータ10と、冷媒を冷房モード時と暖房モード時で異なる循環経路を通って循環させる三方弁11、電磁弁12及び複数の逆止弁13,14,15とを備えている。   The refrigeration cycle 2 includes a compressor 3 for compressing a refrigerant made of carbon dioxide, an air conditioning duct 40, an indoor heat exchanger 4 disposed upstream of the air mix door 41, an air conditioning duct 40, and , The indoor radiator 5 disposed downstream of the air mix door 41, the outdoor heat exchanger 6 disposed in the engine room, and the internal heat exchanger 7 for exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant. The first decompressor 8 and the second decompressor 9 which are decompression means that decompress the refrigerant and the decompression level can be adjusted by external control, and temporarily accumulate excess refrigerant in the refrigeration cycle 2, and , An accumulator 10 for returning only the gas refrigerant to the compressor 3, a three-way valve 11, a solenoid valve 12, and a plurality of check valves 13, 14 for circulating the refrigerant through different circulation paths in the cooling mode and the heating mode. , 15 and Eteiru.

第1減圧器8及び第2減圧器9の開閉状態(減圧レベル)、三方弁11及び電磁弁12の切替位置は、下記する制御部30(図2に示す)によって制御される。   The open / close state (pressure reduction level) of the first pressure reducer 8 and the second pressure reducer 9 and the switching position of the three-way valve 11 and the electromagnetic valve 12 are controlled by a control unit 30 (shown in FIG. 2) described below.

具体的には、冷房モードが選択されると、第2減圧器9が閉状態に、三方弁11及び電磁弁12が冷媒を室外熱交換器6に流す切替位置とされる。これによって、冷房モード時では、圧縮機3で圧縮された冷媒は、室内放熱器5、室外熱交換器6、内部熱交換器7、第1減圧器8、室内熱交換器4、内部熱交換器7を通る経路で循環する。圧縮機3より吐出された高温高圧の冷媒は、室内放熱器5、室外熱交換器6で放熱される。室内放熱器5は、冷媒と空調ダクト40内を通過する空気との間で熱交換させて冷媒に放熱させる。冷媒の放熱によって、空調ダクト40内を通過する空気は暖風とされる。又、室外熱交換器6は、冷媒と外気との間で熱交換させて冷媒に放熱させる。つまり、室外熱交換器6は、冷房モード時には、室内放熱器5と共に放熱器として使用される。内部熱交換器7で高圧側の冷媒と低圧側の冷媒間で熱交換される。内部熱交換器7から出た冷媒は、第1減圧器8で減圧されて室内熱交換器4に入る。室内熱交換器4は、冷媒と空調ダクト40内を通過する空気との間で熱交換させて冷媒に吸熱させる。冷媒の吸熱によって、空調ダクト40内を通過する空気は冷風とされる。つまり、室内熱交換器4は、冷房モード時には蒸発器として使用される。冷房モード時には、空調ダクト40内を流れる空気は、室内熱交換器4によって作成された冷風と室内放熱器5によって作成された暖風との割合がエアミックスドア41によって調整されることによって所望温度の冷風となって車室内に吹き出される。   Specifically, when the cooling mode is selected, the second pressure reducer 9 is closed, and the three-way valve 11 and the electromagnetic valve 12 are set to a switching position where the refrigerant flows to the outdoor heat exchanger 6. Thus, in the cooling mode, the refrigerant compressed by the compressor 3 is converted into the indoor radiator 5, the outdoor heat exchanger 6, the internal heat exchanger 7, the first decompressor 8, the indoor heat exchanger 4, and the internal heat exchange. It circulates along the path through the vessel 7. The high-temperature and high-pressure refrigerant discharged from the compressor 3 is radiated by the indoor radiator 5 and the outdoor heat exchanger 6. The indoor radiator 5 causes the refrigerant to radiate heat by exchanging heat between the refrigerant and the air passing through the air conditioning duct 40. The air passing through the air conditioning duct 40 is heated by the heat release of the refrigerant. The outdoor heat exchanger 6 exchanges heat between the refrigerant and the outside air to dissipate heat to the refrigerant. That is, the outdoor heat exchanger 6 is used as a radiator together with the indoor radiator 5 in the cooling mode. Heat is exchanged between the high-pressure side refrigerant and the low-pressure side refrigerant in the internal heat exchanger 7. The refrigerant discharged from the internal heat exchanger 7 is decompressed by the first decompressor 8 and enters the indoor heat exchanger 4. The indoor heat exchanger 4 causes the refrigerant to absorb heat by exchanging heat between the refrigerant and the air passing through the air conditioning duct 40. The air passing through the air conditioning duct 40 is cooled by the heat absorbed by the refrigerant. That is, the indoor heat exchanger 4 is used as an evaporator in the cooling mode. In the cooling mode, the air flowing in the air conditioning duct 40 is adjusted to a desired temperature by adjusting the ratio of the cold air created by the indoor heat exchanger 4 and the warm air created by the indoor radiator 5 by the air mix door 41. The cold wind is blown into the passenger compartment.

暖房モードが選択されると、第1減圧器8が閉状態に、三方弁11及び電磁弁12が冷媒を内部熱交換器7に流す切替位置とされる。これによって、暖房モード時では、圧縮機3で圧縮された冷媒は、室内放熱器5、内部熱交換器7、第2減圧器9、室外熱交換器6、内部熱交換器7を通る経路で循環する。圧縮機3より吐出された高温高圧の冷媒は、室内放熱器5で放熱される。室内放熱器5は、冷媒と空調ダクト40内を通過する空気との間で熱交換させて冷媒に放熱させる。これにより、空調ダクト40内を通過する空気が暖風とされる。内部熱交換器7で高圧側の冷媒と低圧側の冷媒間で熱交換される。内部熱交換器7から出た冷媒は、第2減圧器9で減圧されて室外熱交換器6に入り、ここで室外熱交換器6を通過する外気と熱交換して吸熱される。つまり、室外熱交換器6は、暖房モード時には蒸発器として使用される。暖房モード時には、空調ダクト40内を流れる空気と室内放熱器5によって作成される暖風との割合がエアミックスドア41によって調整されることによって所望温度の暖風となって車室内に吹き出される。   When the heating mode is selected, the first pressure reducer 8 is closed, and the three-way valve 11 and the electromagnetic valve 12 are set to a switching position where the refrigerant flows to the internal heat exchanger 7. Thereby, in the heating mode, the refrigerant compressed by the compressor 3 passes through the indoor radiator 5, the internal heat exchanger 7, the second decompressor 9, the outdoor heat exchanger 6, and the internal heat exchanger 7. Circulate. The high-temperature and high-pressure refrigerant discharged from the compressor 3 is radiated by the indoor radiator 5. The indoor radiator 5 causes the refrigerant to radiate heat by exchanging heat between the refrigerant and the air passing through the air conditioning duct 40. As a result, the air passing through the air conditioning duct 40 is heated. Heat is exchanged between the high-pressure side refrigerant and the low-pressure side refrigerant in the internal heat exchanger 7. The refrigerant discharged from the internal heat exchanger 7 is decompressed by the second decompressor 9 and enters the outdoor heat exchanger 6 where heat is exchanged with the outside air passing through the outdoor heat exchanger 6 and absorbed. That is, the outdoor heat exchanger 6 is used as an evaporator in the heating mode. In the heating mode, the ratio of the air flowing through the air-conditioning duct 40 and the warm air created by the indoor radiator 5 is adjusted by the air mix door 41 so that warm air of a desired temperature is blown into the vehicle interior. .

また、車両用空気調和装置1には、冷凍サイクル2の運転状況を検知するための各種のセンサが付設されている。冷媒圧力を検知するものとしては、冷凍サイクル2の高圧側の冷媒圧力を検知する高圧側圧力検知手段である圧力センサ20が圧縮機3の冷媒吐出側に設けられている。冷媒温度を検知するものとしては、圧縮機3の吐出冷媒温度を検知する吐出冷媒温度検知手段である第1冷媒温度センサ21と、室内放熱器5の出口冷媒温度を検知する第2冷媒温度センサ22と、冷房時に室外熱交換器6の出口冷媒温度を検知する第3冷媒温度センサ23とが設けられている。空気温度を検知するものとしては、室内放熱器5を通過した空気の温度を検知する第1空気温度センサ24と、室外熱交換器6が設置された周囲の空気温度(外気温度)を検知する第2空気温度センサ25と、室内熱交換器4を通過した空気の温度を検知する第3空気温度センサ26が設けられている。   In addition, the vehicle air conditioner 1 is provided with various sensors for detecting the operation status of the refrigeration cycle 2. For detecting the refrigerant pressure, a pressure sensor 20 which is a high-pressure side pressure detecting means for detecting the refrigerant pressure on the high-pressure side of the refrigeration cycle 2 is provided on the refrigerant discharge side of the compressor 3. The refrigerant temperature is detected by a first refrigerant temperature sensor 21 which is a discharge refrigerant temperature detecting means for detecting a refrigerant temperature discharged from the compressor 3 and a second refrigerant temperature sensor which detects an outlet refrigerant temperature of the indoor radiator 5. 22 and a third refrigerant temperature sensor 23 for detecting the outlet refrigerant temperature of the outdoor heat exchanger 6 during cooling. For detecting the air temperature, the first air temperature sensor 24 that detects the temperature of the air that has passed through the indoor radiator 5 and the ambient air temperature (outside air temperature) where the outdoor heat exchanger 6 is installed are detected. A second air temperature sensor 25 and a third air temperature sensor 26 that detects the temperature of the air that has passed through the indoor heat exchanger 4 are provided.

これら各種のセンサ20〜26の出力は、制御部30に導かれている。制御部30は、これらセンサ20〜26の検知情報、ユーザの空調入力情報等に基づいて圧縮機3、第1減圧器8、第2減圧器9、三方弁11、電磁弁12等を制御する。例えば、冷房モード時には、第3冷媒温度センサ23より冷媒温度を検知し、当該冷媒温度に最適な高圧側の圧力となるよう第1減圧器8の開度を制御し、又、第3空気温度センサ26より室内熱交換器4(蒸発器)を通過した空気温度を検知し、当該空気温度を基にシステム性能(圧縮機3の吐出冷媒量、空調ダクト40内の図示しない送風ファンの風量等)を制御する。暖房モード時には、第2冷媒温度センサ22より冷媒温度を検知し、当該冷媒温度に最適な高圧側の圧力となるよう第2減圧器9の開度を制御し、又、第1空気温度センサ24より室内放熱器5を通過した空気温度を検知し、当該空気温度を基にシステム性能(圧縮機3の吐出冷媒量、空調ダクト40内の図示しない送風ファンの風量等)を制御する。第1冷媒温度センサ21より圧縮機3の吐出冷媒温度を検知し、圧縮機3が異常高温にならないよう制御する。   Outputs of these various sensors 20 to 26 are guided to the control unit 30. The control unit 30 controls the compressor 3, the first pressure reducer 8, the second pressure reducer 9, the three-way valve 11, the electromagnetic valve 12, and the like based on the detection information of the sensors 20 to 26, the user air conditioning input information, and the like. . For example, in the cooling mode, the refrigerant temperature is detected by the third refrigerant temperature sensor 23, the opening degree of the first pressure reducer 8 is controlled so that the pressure on the high-pressure side is optimal for the refrigerant temperature, and the third air temperature The air temperature that has passed through the indoor heat exchanger 4 (evaporator) is detected by the sensor 26, and the system performance (the amount of refrigerant discharged from the compressor 3, the air volume of a blower fan (not shown) in the air conditioning duct 40, etc.) based on the air temperature. ) To control. In the heating mode, the refrigerant temperature is detected by the second refrigerant temperature sensor 22, the opening of the second pressure reducer 9 is controlled so that the pressure on the high-pressure side is optimal for the refrigerant temperature, and the first air temperature sensor 24 is used. Further, the temperature of the air that has passed through the indoor radiator 5 is detected, and the system performance (the amount of refrigerant discharged from the compressor 3, the air volume of a blower fan (not shown) in the air conditioning duct 40, etc.) is controlled based on the air temperature. The first refrigerant temperature sensor 21 detects the refrigerant temperature discharged from the compressor 3 and controls so that the compressor 3 does not reach an abnormally high temperature.

制御部30は、図2に示すように、低圧側冷媒圧力認識手段30aを内蔵する。低圧側冷媒圧力認識手段30aは、室内熱交換器4を通過する空気が空調空気とされる冷房モードでは、室内熱交換器4を通過した空気温度を第3空気温度センサ26より取得し、取得した空気温度Tintより低圧側の冷媒圧力を推定する。つまり、室内熱交換器4を通過した空気温度Tintと、室内熱交換器4の出口冷媒温度とは相関関係にあり、例えばTint−3K(3℃)≒室内熱交換器4の出口冷媒温度と推定できる。そして、室内熱交換器4を出た冷媒は飽和状態であるため、Tint−3Kでの飽和圧力が低圧側圧力Psと推定できる。   As shown in FIG. 2, the control unit 30 incorporates a low-pressure side refrigerant pressure recognition means 30a. In the cooling mode in which the air passing through the indoor heat exchanger 4 is conditioned air, the low pressure side refrigerant pressure recognizing means 30a acquires the air temperature that has passed through the indoor heat exchanger 4 from the third air temperature sensor 26, and acquires it. The refrigerant pressure on the low pressure side is estimated from the air temperature Tint. That is, the air temperature Tint that has passed through the indoor heat exchanger 4 and the outlet refrigerant temperature of the indoor heat exchanger 4 are correlated, for example, Tint-3K (3 ° C.) ≈the outlet refrigerant temperature of the indoor heat exchanger 4 Can be estimated. And since the refrigerant | coolant which exited the indoor heat exchanger 4 is a saturated state, the saturation pressure in Tint-3K can be estimated to be the low pressure side pressure Ps.

又、低圧側冷媒圧力認識手段30aは、室外熱交換器6を通過する空気が外気とされる暖房モードでは、室外熱交換器6が載置される周辺の空気温度を第2空気温度センサ25より取得し、取得した空気温度Tambより低圧側の冷媒圧力を推定する。つまり、基本的には外気温度Tambと室外熱交換器6の出口冷媒温度は相関関係にあり、例えば、実験結果よりTamb−12K(12℃)≒室外熱交換器6の出口冷媒温度とすることができる。そして、室外熱交換器6の出口冷媒は飽和状態であるため、Tamb−12Kでの飽和圧力が低圧側圧力と推定できる。より詳細には、室外熱交換器6の出口から圧縮機3の吸入位置までの圧力損失を考慮して低圧側圧力Psを推定する。   In the heating mode in which the air passing through the outdoor heat exchanger 6 is outside air, the low pressure side refrigerant pressure recognizing means 30a determines the temperature of the air around the outdoor heat exchanger 6 on the second air temperature sensor 25. And the refrigerant pressure on the lower pressure side than the acquired air temperature Tamb is estimated. That is, basically, the outdoor air temperature Tamb and the outlet refrigerant temperature of the outdoor heat exchanger 6 have a correlation, for example, Tamb-12K (12 ° C.) ≈outlet refrigerant temperature of the outdoor heat exchanger 6 from the experimental results. Can do. And since the exit refrigerant | coolant of the outdoor heat exchanger 6 is a saturated state, the saturation pressure in Tam-12K can be estimated as a low pressure side pressure. More specifically, the low pressure side pressure Ps is estimated in consideration of the pressure loss from the outlet of the outdoor heat exchanger 6 to the suction position of the compressor 3.

また、制御部30は、冷媒量過少判定手段30bを内蔵する。冷媒量過少判定手段30bは、冷凍サイクル2の高圧側の圧力Pdと推定した低圧側の圧力Psを基に、圧縮機3の吸入過熱度(スーパーヒート)と断熱効率より最大限許容される圧縮機3の許容吐出冷媒温度Td’を算出する。   Moreover, the control part 30 incorporates the refrigerant | coolant amount low determination means 30b. The refrigerant amount under-determination means 30b is based on the high pressure side pressure Pd of the refrigeration cycle 2 and the low pressure side pressure Ps, and the maximum allowable compression is based on the suction superheat degree (superheat) of the compressor 3 and the adiabatic efficiency. An allowable discharge refrigerant temperature Td ′ of the machine 3 is calculated.

ここで、圧縮機3の許容吐出冷媒温度Td’を算出できる理由を説明する。図3において、冷凍サイクル2の低圧側圧力Psに圧縮機3の吸入過熱度SH1と断熱効率(図3ではC1線の傾斜角度α1によって現れる)を規定すると、圧縮機3の吐出冷媒圧力Pd(冷凍サイクル2の高圧側圧力)に対する圧縮機3の吐出冷媒温度Tdが物性的に求まる。これを利用して圧縮機3の許容吐出冷媒温度Td’を算出する。   Here, the reason why the allowable discharge refrigerant temperature Td 'of the compressor 3 can be calculated will be described. In FIG. 3, when the suction superheat degree SH1 and the heat insulation efficiency (shown by the inclination angle α1 of the C1 line in FIG. 3) are defined as the low pressure Ps of the refrigeration cycle 2, the discharge refrigerant pressure Pd ( The discharge refrigerant temperature Td of the compressor 3 with respect to the high-pressure side pressure of the refrigeration cycle 2 is obtained physically. Using this, the allowable discharge refrigerant temperature Td 'of the compressor 3 is calculated.

ここで、冷凍サイクル2内の封入冷媒量が過少状態になると、圧縮機3の吸入過熱度の増大(図3のSH1→SH2)と断熱効率の低下(図3のα1→α2)をもたらし、その結果として圧縮機3の吐出冷媒温度Tdが上昇する。このことに着目して、冷媒量過少判定手段30bが封入冷媒量の過少を判定する。以上のことを図3を用いて説明する。図3において、理想的な圧縮機3の吸入過熱度をSH1、断熱圧縮を傾斜角α1とした場合、圧縮機3の吐出冷媒温度Ptはt1となる。冷媒封入量が許容できる最低封入量の場合、圧縮機3の吸入過熱度がSH1からSH2に増大し、断熱効率がα1からα2に低下するものとする。これによって、許容吐出冷媒温度Td’としてt3が算出される。このt3は、圧縮機3の性能等より決定される。検知吐出冷媒温度Tdがt3を越えれば(例えば図3のt4)、封入冷媒量の過少と判定する。検知吐出冷媒温度Tdがt3を越えなければ(例えば図3のt2)、過少でないと判定する。   Here, when the amount of the enclosed refrigerant in the refrigeration cycle 2 becomes too small, the intake superheat degree of the compressor 3 increases (SH1 → SH2 in FIG. 3) and the heat insulation efficiency decreases (α1 → α2 in FIG. 3). As a result, the discharge refrigerant temperature Td of the compressor 3 increases. Paying attention to this, the refrigerant amount under-determining means 30b determines whether the amount of the enclosed refrigerant is too small. The above will be described with reference to FIG. In FIG. 3, when the ideal superheat degree of the compressor 3 is SH1 and the adiabatic compression is the inclination angle α1, the discharged refrigerant temperature Pt of the compressor 3 is t1. When the refrigerant charging amount is an allowable minimum charging amount, the suction superheat degree of the compressor 3 increases from SH1 to SH2, and the heat insulation efficiency decreases from α1 to α2. Thus, t3 is calculated as the allowable discharge refrigerant temperature Td '. This t3 is determined by the performance of the compressor 3 and the like. If the detected discharge refrigerant temperature Td exceeds t3 (eg, t4 in FIG. 3), it is determined that the amount of enclosed refrigerant is too small. If the detected discharge refrigerant temperature Td does not exceed t3 (for example, t2 in FIG. 3), it is determined that it is not too low.

制御部30は、冷房モード時には図4のフローチャートを、暖房モード時には図5のフローチャートをそれぞれ実行して冷凍サイクル2の封入冷媒量の過少を判定する。封入冷媒量が過少と判定した場合には、圧縮機3の停止、必要に応じて表示、アラーム等の報知手段31に出力する。   The control unit 30 executes the flowchart of FIG. 4 in the cooling mode, and executes the flowchart of FIG. 5 in the heating mode, respectively, to determine whether the amount of refrigerant enclosed in the refrigeration cycle 2 is too small. When it is determined that the amount of the enclosed refrigerant is too small, the compressor 3 is stopped, and if necessary, it is output to a notification means 31 such as a display or an alarm.

次に、冷房モード時における封入冷媒量の判定動作を説明する。図4において、圧縮機3が稼働中であるか否かをチェックし(ステップS0)、稼働中でなければ稼働中になるまで待つ。圧縮機3が稼働中であることを条件として、圧力センサ20より冷凍サイクル2の高圧側冷媒圧力Pd、第1冷媒温度センサ21より冷凍サイクル2の高圧側冷媒温度Td、第3空気温度センサ26より室内熱交換器4を通過した空気温度Tintを検知する(ステップS10)。次に、第3空気温度センサ26の検知温度より低圧側の冷媒圧力Psを推定する(ステップS11)。次に、高圧側の冷媒圧力Pdと推定した低圧側の冷媒圧力Psを基に、圧縮機3の吸入過熱度と断熱効率より許容冷媒吐出温度Td’を算出する。例えば、圧縮機3の吸入過熱度35deg、断熱効率75%を規定し、その時の圧縮機3の吐出冷媒圧力Pdに対する圧縮機3の吐出冷媒温度Td’を算出する。空気温度Tintが3degCにおいて、吐出冷媒圧力Pdが8MP時の場合は116degC、8.5MP時の場合は122degCというように、空気温度Tintが5degCにおいて、吐出冷媒圧力Pdが8MP時の場合は112degC、8.5MP時の場合は118degCというように例えば算出される。   Next, the operation for determining the amount of enclosed refrigerant in the cooling mode will be described. In FIG. 4, it is checked whether or not the compressor 3 is in operation (step S0). On condition that the compressor 3 is in operation, the high pressure side refrigerant pressure Pd of the refrigeration cycle 2 from the pressure sensor 20, the high pressure side refrigerant temperature Td of the refrigeration cycle 2 from the first refrigerant temperature sensor 21, and the third air temperature sensor 26. The air temperature Tint that has passed through the indoor heat exchanger 4 is detected (step S10). Next, the refrigerant pressure Ps on the lower pressure side than the temperature detected by the third air temperature sensor 26 is estimated (step S11). Next, the allowable refrigerant discharge temperature Td ′ is calculated from the suction superheat degree of the compressor 3 and the adiabatic efficiency based on the low-pressure side refrigerant pressure Ps estimated as the high-pressure side refrigerant pressure Pd. For example, the suction superheat degree 35 deg of the compressor 3 and the heat insulation efficiency 75% are defined, and the discharge refrigerant temperature Td ′ of the compressor 3 with respect to the discharge refrigerant pressure Pd of the compressor 3 at that time is calculated. When the air temperature Tint is 3 degC and the discharge refrigerant pressure Pd is 8 MP, 116 degC, when the discharge refrigerant pressure Pd is 8.5 MP, 122 degC, and when the air temperature Tint is 5 degC and the discharge refrigerant pressure Pd is 8 MP, 112 degC, In the case of 8.5 MP, for example, 118 degC is calculated.

次に、圧縮機3の実際の吐出冷媒温度Tdと算出した許容吐出冷媒温度Td’とを比較し(ステップS13)、Td’よりTdが越えた値であれば、冷媒量が過少であると判定する(ステップS14)。冷媒量が過少と判定した場合には、圧縮機3を停止すると共に報知手段31によって冷媒量の過少を知らせるべく出力する。Tdの値がTd’の値以下であれば、冷媒量が過少でないと判定し、上述した動作を繰り返す。   Next, the actual discharge refrigerant temperature Td of the compressor 3 is compared with the calculated allowable discharge refrigerant temperature Td ′ (step S13), and if the value exceeds Td from Td ′, the refrigerant amount is too small. Determination is made (step S14). When it is determined that the refrigerant amount is too small, the compressor 3 is stopped and the notification means 31 outputs to notify that the refrigerant amount is insufficient. If the value of Td is equal to or less than the value of Td ', it is determined that the refrigerant amount is not too small, and the above-described operation is repeated.

次に、暖房モード時における封入冷媒量の判定動作を説明する。図5において、圧縮機3が稼働中であるか否かをチェックし(ステップS0)、稼働中でなければ稼働中になるまで待機する。圧縮機3が稼働中の場合には、圧力センサ20より冷凍サイクル2の高圧側冷媒圧力Pd、第1冷媒温度センサ21より冷凍サイクル2の高圧側冷媒温度Td、第2空気温度センサ25より室外熱交換器6を通過した空気温度Tambを検知する(ステップS30)。次に、第2空気温度センサ25の検知温度Tambより低圧側の冷媒圧力Psを推定する(ステップS31)。次に、高圧側の冷媒圧力Pdと推定した低圧側の冷媒圧力Psを基に、圧縮機3の吸入過熱度と断熱効率より許容冷媒吐出温度Td’を算出する。例えば、圧縮機3の吸入過熱度30deg、断熱効率80%を規定し、その時の圧縮機3の吐出冷媒圧力Pdに対する圧縮機3の吐出冷媒温度Td’を算出する。空気温度Tambが10degCにおいて、吐出冷媒圧力Pdが8MP時の場合は129degC、8.5MP時の場合は136degCというように、空気温度Tambが5degCにおいて、吐出冷媒圧力Pdが8MP時の場合は138degC、8.5MP時の場合は145degCというように例えば算出される。   Next, the operation for determining the amount of refrigerant in the heating mode will be described. In FIG. 5, it is checked whether or not the compressor 3 is in operation (step S0). When the compressor 3 is in operation, the high pressure side refrigerant pressure Pd of the refrigeration cycle 2 from the pressure sensor 20, the high pressure side refrigerant temperature Td of the refrigeration cycle 2 from the first refrigerant temperature sensor 21, and the outdoor from the second air temperature sensor 25. The air temperature Tamb that has passed through the heat exchanger 6 is detected (step S30). Next, the refrigerant pressure Ps on the lower pressure side than the detected temperature Tamb of the second air temperature sensor 25 is estimated (step S31). Next, the allowable refrigerant discharge temperature Td ′ is calculated from the suction superheat degree of the compressor 3 and the adiabatic efficiency based on the low-pressure side refrigerant pressure Ps estimated as the high-pressure side refrigerant pressure Pd. For example, the suction superheat degree 30 deg of the compressor 3 and the heat insulation efficiency 80% are defined, and the discharge refrigerant temperature Td ′ of the compressor 3 with respect to the discharge refrigerant pressure Pd of the compressor 3 at that time is calculated. When the air temperature Tamb is 10 degC and the discharge refrigerant pressure Pd is 8 MP, it is 129 degC. When the discharge refrigerant pressure Pd is 8.5 MP, it is 136 degC. When the air temperature Tamb is 5 degC and the discharge refrigerant pressure Pd is 8 MP, 138 degC. In the case of 8.5 MP, for example, 145 degC is calculated.

次に、圧縮機3の実際の吐出冷媒温度Tdと算出した許容吐出冷媒温度Td’とを比較し(ステップS13)、Td’よりTdが越えた値であれば、冷媒量が過少であると判定する(ステップS14)。冷媒量が過少と判定した場合には、圧縮機3を停止すると共に報知手段31によって冷媒量の過少を知らせるべく出力する。Td’よりTdが越えない値であれば、冷媒量が過少でないと判定し、上述した動作を繰り返す。   Next, the actual discharge refrigerant temperature Td of the compressor 3 is compared with the calculated allowable discharge refrigerant temperature Td ′ (step S13), and if the value exceeds Td from Td ′, the refrigerant amount is too small. Determination is made (step S14). When it is determined that the refrigerant amount is too small, the compressor 3 is stopped and the notification means 31 outputs to notify that the refrigerant amount is insufficient. If Td does not exceed Td ', it is determined that the refrigerant amount is not too small, and the above-described operation is repeated.

以上説明したように、本実施の形態では、圧縮機3の吐出冷媒圧力を検知する圧力センサ20と、圧縮機3の吐出冷媒温度を検知する第1冷媒温度センサ21と、冷凍サイクル2の低圧側の冷媒圧力を認識する低圧側圧力認識手段30aとから得られる情報を基に冷媒量の過少を判定したので、封入冷媒量の過少判定を従来例のように外気温度に基づく圧力レベルによって判定するのではないため、高精度な圧力センサを用いる必要がないと共に、必要とする検知情報は車両用空気調和装置1に通常付設される検知手段を用いて得ることができる。従って、特別な部品を追加することなく低コストに封入冷媒量の過少を判定できる。   As described above, in the present embodiment, the pressure sensor 20 that detects the refrigerant discharge pressure of the compressor 3, the first refrigerant temperature sensor 21 that detects the refrigerant discharge temperature of the compressor 3, and the low pressure of the refrigeration cycle 2. Since the low refrigerant amount is determined based on the information obtained from the low pressure side pressure recognizing means 30a for recognizing the refrigerant pressure on the side, the under determination of the filled refrigerant amount is determined by the pressure level based on the outside air temperature as in the conventional example. Therefore, it is not necessary to use a high-precision pressure sensor, and necessary detection information can be obtained by using a detection unit that is normally attached to the vehicle air conditioner 1. Therefore, it is possible to determine whether the amount of the enclosed refrigerant is too low at a low cost without adding special parts.

(第1変形例)
図6及び図7は前記実施の形態の第1変形例を示し、図6は冷媒モード時における封入冷媒量の過少判定フローチャート、図7は圧縮機の稼働時の熱を受けた場合のモリエル線図と冷凍サイクルの挙動線図である。
(First modification)
6 and 7 show a first modification of the above embodiment, FIG. 6 is a flowchart for determining the amount of the enclosed refrigerant in the refrigerant mode, and FIG. 7 is a Mollier wire when receiving heat during operation of the compressor. It is a behavior line figure of a figure and a refrigerating cycle.

図6において、圧縮機3の稼働判別ステップ(ステップS0)の後に、圧縮機3の稼働開始から5分以内の間であるか否かの判別ステップ(ステップS4)が挿入されている。圧縮機3の稼働開始から5分以内の間でのみ封入冷媒量の過少判定を行う。他のステップは、前記実施の形態と同一であるため、重複説明を省略する。   In FIG. 6, after the operation determination step (step S0) of the compressor 3, a determination step (step S4) for determining whether it is within 5 minutes from the start of operation of the compressor 3 is inserted. Only within 5 minutes from the start of operation of the compressor 3, the amount of the enclosed refrigerant is determined to be insufficient. The other steps are the same as those in the above embodiment, and a duplicate description is omitted.

つまり、図7に示すように、圧縮機3が稼働されると、圧縮機3自体の温度が上昇し、内部の圧縮機構部で圧縮された吐出冷媒の温度(a点)であっても、圧縮機3より吐出されるまでに加温された温度(b点)となる。そこで、圧縮機3が加熱される前に封入冷媒量の過少判定を行う。従って、この第1変形例によれば、圧縮機の稼働時の熱による悪影響を受けることなく、封入冷媒量の過少を正確に判定できる。   That is, as shown in FIG. 7, when the compressor 3 is operated, the temperature of the compressor 3 itself rises, and even if it is the temperature of the discharged refrigerant (point a) compressed by the internal compression mechanism, It becomes the temperature (point b) heated before being discharged from the compressor 3. Therefore, before the compressor 3 is heated, the amount of the enclosed refrigerant is determined to be too small. Therefore, according to the first modification, it is possible to accurately determine whether the amount of the enclosed refrigerant is insufficient without being adversely affected by heat during operation of the compressor.

尚、暖房モード時における封入冷媒量の過少判定も同様に、圧縮機3の起動開始から5分以内の間にのみ行うようにすれば、同様の効果が得られる。   It should be noted that the same effect can be obtained if the determination of the amount of the enclosed refrigerant in the heating mode is similarly performed only within 5 minutes from the start of the start of the compressor 3.

(第2変形例)
図8は前記実施の形態の第2変形例を係る、冷媒モード時における封入冷媒量の過少判定フローチャートである。
(Second modification)
FIG. 8 is a flowchart for determining whether the amount of the enclosed refrigerant is insufficient in the refrigerant mode according to the second modification of the embodiment.

図8において、第1変形例と同様に、圧縮機3の稼働判別ステップ(ステップS0)の後に、圧縮機3の稼働開始から5分以内の間であるか否かの判別ステップ(ステップS4)が挿入されている。その上、許容吐出冷媒温度Td’の算出ステップ(ステップS12)の後に、第1冷媒温度センサ21が検知した検知吐出冷媒温度Tdと圧縮機3のモータコイル温度Tcoilとを比較するステップ(ステップS5)が挿入されている。第1冷媒温度センサ21が検知した検知吐出冷媒温度Tdより圧縮機3のモータコイル温度が低い場合にのみ、封入冷媒量の過少の判定を行う。他のステップは、前記実施の形態と同一であるため、重複説明を省略する。   In FIG. 8, similarly to the first modification, after the operation determining step (step S0) for the compressor 3, a determining step for determining whether it is within 5 minutes from the start of operation of the compressor 3 (step S4). Has been inserted. In addition, after the step of calculating the allowable discharge refrigerant temperature Td ′ (step S12), the detected discharge refrigerant temperature Td detected by the first refrigerant temperature sensor 21 and the motor coil temperature Tcoil of the compressor 3 are compared (step S5). ) Is inserted. Only when the motor coil temperature of the compressor 3 is lower than the detected discharge refrigerant temperature Td detected by the first refrigerant temperature sensor 21, it is determined whether the amount of the enclosed refrigerant is too small. The other steps are the same as those in the above embodiment, and a duplicate description is omitted.

つまり、圧縮機3が電動モータ内蔵の場合には、上記と同様の理由によって吐出冷媒がモータコイルの熱で加温される。そこで、モータコイルの熱で加温されない状況でのみ封入冷媒量の過少を判定する。これにより、モータコイルの熱による悪影響を受けることなく、封入冷媒量の過少を正確に判定できる。   That is, when the compressor 3 includes an electric motor, the discharged refrigerant is heated by the heat of the motor coil for the same reason as described above. Therefore, it is determined whether the amount of the enclosed refrigerant is too low only in a situation where the motor coil is not heated by the heat. Thereby, it is possible to accurately determine whether the amount of the enclosed refrigerant is insufficient without being adversely affected by the heat of the motor coil.

尚、暖房モード時における封入冷媒量の過少判定も同様に、第1冷媒温度センサ21が検知した検知吐出冷媒温度Tdより圧縮機3のモータコイル温度が低い場合にのみ行うようにすれば、同様の効果が得られる。   Similarly, the determination of whether the amount of the enclosed refrigerant in the heating mode is too low is similarly performed only when the motor coil temperature of the compressor 3 is lower than the detected discharge refrigerant temperature Td detected by the first refrigerant temperature sensor 21. The effect is obtained.

(第3変形例)
図9は前記実施の形態の第3変形例を係る、冷媒モード時における封入冷媒量の過少判定フローチャートである。
(Third Modification)
FIG. 9 is a flowchart for determining whether the amount of the enclosed refrigerant is insufficient in the refrigerant mode according to the third modification of the embodiment.

図9において、前記第2変形例と同様に、第1冷媒温度センサ21が検知した検知吐出冷媒温度Tdと圧縮機3のモータコイル温度Tcoilとを比較するステップ(ステップS5)が挿入されている。そして、検知吐出冷媒温度Tdより圧縮機3のモータコイル温度Tcoilが低い場合には、補正値α=ゼロとし(ステップS51)、圧縮機3のモータコイル温度Tcoilが検知吐出冷媒温度Td以上であれば、補正値α=(Tcoil−Td’)/2とする(ステップS52)。次のステップで許容吐出冷媒温度Td’と上記補正値を加えた値と実際の検知吐出冷媒温度Tdとを比較する(ステップS53)。他のステップは、前記実施の形態と同一であるため、重複説明を省略する。   In FIG. 9, the step (step S5) for comparing the detected discharge refrigerant temperature Td detected by the first refrigerant temperature sensor 21 with the motor coil temperature Tcoil of the compressor 3 is inserted as in the second modification. . When the motor coil temperature Tcoil of the compressor 3 is lower than the detected discharge refrigerant temperature Td, the correction value α is set to zero (step S51), and the motor coil temperature Tcoil of the compressor 3 is equal to or higher than the detected discharge refrigerant temperature Td. For example, the correction value α = (Tcoil−Td ′) / 2 is set (step S52). In the next step, the allowable discharge refrigerant temperature Td ', the value obtained by adding the correction value, and the actual detected discharge refrigerant temperature Td are compared (step S53). The other steps are the same as those in the above embodiment, and a duplicate description is omitted.

この第3変形例では、許容吐出冷媒温度Td’に圧縮機3のモータコイル温度を補償した温度値によって封入冷媒量の過少を判定するので、圧縮機3の稼働中であれば、封入冷媒量の過少判定の時期を制限されることなく、圧縮機3のモータコイルの熱による影響を受けない正確な判定ができる。   In this third modified example, since it is determined whether the amount of enclosed refrigerant is excessive or not based on a temperature value obtained by compensating the motor coil temperature of the compressor 3 with the allowable discharge refrigerant temperature Td ′, the amount of enclosed refrigerant is determined if the compressor 3 is in operation. Therefore, it is possible to make an accurate determination without being affected by the heat of the motor coil of the compressor 3 without being limited in the timing of the underdetermination.

尚、暖房モード時における封入冷媒量の過少判定も同様に、許容吐出冷媒温度Td’に圧縮機3のモータコイル温度を補償した温度値によって封入冷媒量の過少判定を行うようにすれば、同様の効果が得られる。   Similarly, the determination of the amount of the enclosed refrigerant in the heating mode is similarly performed if the determination of the amount of the enclosed refrigerant is performed based on the temperature value obtained by compensating the motor coil temperature of the compressor 3 with the allowable discharge refrigerant temperature Td ′. The effect is obtained.

(第4変形例)
図10は前記実施の形態の第4変形例を係る、冷媒モード時における封入冷媒量の過少判定フローチャートである。
(Fourth modification)
FIG. 10 is a flowchart for determining whether the amount of the enclosed refrigerant is insufficient in the refrigerant mode according to the fourth modification of the embodiment.

図10において、許容吐出冷媒温度Td’の算出ステップ(ステップS12)の後に、圧縮機3の電力Pcompを検知するステップ(ステップS6)と、電力Pcompに応じた値β=(Pcomp×(1−0.9))/100を加算するステップ(ステップS61)とが挿入されている。そして、許容吐出冷媒温度Tdに圧縮機3のモータに印加されている電力による熱損失温度値βを補償した温度値(Td’+β)と、検知吐出冷媒温度Tdとを比較する(ステップS62)。他のステップは、前記実施の形態と同一であるため、重複説明を省略する。   In FIG. 10, after the step of calculating the allowable discharge refrigerant temperature Td ′ (step S12), a step of detecting the power Pcomp of the compressor 3 (step S6), and a value β = (Pcomp × (1− 0.9)) / 100 is added (step S61). Then, the detected discharge refrigerant temperature Td is compared with the temperature value (Td ′ + β) obtained by compensating the allowable discharge refrigerant temperature Td for the heat loss temperature value β due to the electric power applied to the motor of the compressor 3 (step S62). . The other steps are the same as those in the above embodiment, and a duplicate description is omitted.

つまり、圧縮機3が電動モータ内蔵の場合には、上記と同様の理由によって吐出冷媒がモータコイルの熱で加温される。そこで、モータコイルの熱で加温された温度に基づいて封入冷媒量の過少を判定する。   That is, when the compressor 3 includes an electric motor, the discharged refrigerant is heated by the heat of the motor coil for the same reason as described above. Therefore, it is determined whether the amount of the enclosed refrigerant is too small based on the temperature heated by the heat of the motor coil.

この第4変形例では、許容吐出冷媒温度Td’に圧縮機3のモータに印加されている電力による熱損失温度値を補償した温度値によって封入冷媒量の過少を判定するので、圧縮機3の稼働中であれば、封入冷媒量の過少判定の時期を制限されることなく、圧縮機3のモータコイルの熱による影響を受けない正確な判定ができる。   In this fourth modified example, since the amount of the enclosed refrigerant is determined based on the temperature value obtained by compensating the allowable discharge refrigerant temperature Td ′ for the heat loss temperature value due to the electric power applied to the motor of the compressor 3, If it is in operation, it is possible to make an accurate determination without being affected by the heat of the motor coil of the compressor 3 without being limited in the timing of the determination of the amount of the refrigerant to be filled.

尚、暖房モード時の封入冷媒量の過少判定も同様に、第1冷媒温度センサ21が検知した検知吐出冷媒温度Tdより圧縮機3のモータコイル温度が低い場合にのみ行うようにすれば、同様の効果が得られる。   Similarly, if the amount of the enclosed refrigerant in the heating mode is determined to be too low, the determination is made only when the motor coil temperature of the compressor 3 is lower than the detected discharge refrigerant temperature Td detected by the first refrigerant temperature sensor 21. The effect is obtained.

(その他)
前記実施の形態等では、低圧側冷媒圧力認識手段30aは、室内熱交換器4を通過する空気が空調空気とされる冷房モードでは、室内熱交換器4を通過した空気温度より低圧側の冷媒圧力を推定するので、室内熱交換器4の出口側の過熱度(スーパーヒート)を検知するための第3空気温度センサ26を利用して冷凍サイクル2の低圧側の圧力を推定する。従って、冷凍サイクル2の低圧側の圧力を認識するのに、冷凍サイクルの低圧側に圧力センサを付設する必要がないため、システムのシンプル化、コスト削減等になる。
(Other)
In the embodiment and the like, the low-pressure side refrigerant pressure recognition means 30a is a refrigerant having a pressure lower than the temperature of the air that has passed through the indoor heat exchanger 4 in the cooling mode in which the air that passes through the indoor heat exchanger 4 is conditioned air. Since the pressure is estimated, the pressure on the low-pressure side of the refrigeration cycle 2 is estimated using the third air temperature sensor 26 for detecting the degree of superheat (superheat) on the outlet side of the indoor heat exchanger 4. Therefore, in order to recognize the pressure on the low pressure side of the refrigeration cycle 2, there is no need to attach a pressure sensor on the low pressure side of the refrigeration cycle, which simplifies the system and reduces costs.

実施の形態等では、低圧側冷媒圧力認識手段30aは、室外熱交換器6を通過する空気が外気とされる暖房モードでは、室外熱交換器6が載置される周辺の空気温度より低圧側の冷媒圧力を推定する。従って、室外熱交換器6が設置される周辺の空気温度を検知するための第2空気温度センサ25を利用して冷凍サイクル2の低圧側の圧力を推定する。従って、冷凍サイクル2の低圧側の圧力を認識するのに、冷凍サイクル2の冷圧側に圧力センサを付設する必要がないため、システムのシンプル化、コスト削減等になる。   In the embodiment and the like, the low-pressure side refrigerant pressure recognition means 30a is lower than the ambient air temperature on which the outdoor heat exchanger 6 is placed in the heating mode in which the air passing through the outdoor heat exchanger 6 is outside air. The refrigerant pressure is estimated. Therefore, the pressure on the low pressure side of the refrigeration cycle 2 is estimated using the second air temperature sensor 25 for detecting the temperature of the air around the outdoor heat exchanger 6. Therefore, it is not necessary to attach a pressure sensor to the cold pressure side of the refrigeration cycle 2 in order to recognize the pressure on the low pressure side of the refrigeration cycle 2, thereby simplifying the system and reducing costs.

尚、低圧側冷媒圧力認識手段30aは、冷凍サイクル2の低圧側の圧力を検知する圧力センサより構成しても良いことはもちろんである。   Of course, the low-pressure side refrigerant pressure recognition means 30a may be constituted by a pressure sensor that detects the pressure on the low-pressure side of the refrigeration cycle 2.

尚、前記実施の形態等では、車両用空気調和装置1は、冷房モードと暖房モードを選択的に使用できる構成であるが、冷房モードのみ、又は、暖房モードのみに使用できるものであっても本発明が適用できることはもちろんである。   In addition, in the said embodiment etc., although the air conditioning apparatus 1 for vehicles is the structure which can selectively use a cooling mode and a heating mode, even if it can be used only for a cooling mode or only a heating mode, Of course, the present invention is applicable.

尚、前記実施の形態等では、車両用空気調和装置1の冷凍サイクル2は、臨界点を超える炭酸ガスを冷媒としているが、本発明は臨界点を超えない冷媒ガスを冷媒とするものであっても同様に適用できるものである。   In the embodiment and the like, the refrigeration cycle 2 of the vehicle air conditioner 1 uses the carbon dioxide gas exceeding the critical point as the refrigerant, but the present invention uses the refrigerant gas not exceeding the critical point as the refrigerant. However, the same applies.

本発明の実施の形態を示し、車両用空気調和装置の構成図である。1 shows an embodiment of the present invention and is a configuration diagram of a vehicle air conditioner. FIG. 本発明の実施の形態を示し、本発明の制御に関わる部分の回路ブロック図である。FIG. 3 is a circuit block diagram of a portion related to the control of the present invention, showing the embodiment of the present invention. 本発明の実施の形態を示し、モリエル線図と冷凍サイクルの挙動線図である。The embodiment of the present invention is shown, and is a Mollier diagram and a behavior diagram of a refrigeration cycle. 本発明の実施の形態を示し、冷却モード時における封入冷媒量の過少判定フローチャートである。FIG. 5 is a flowchart for determining an insufficient amount of an enclosed refrigerant in a cooling mode according to an embodiment of the present invention. 本発明の実施の形態を示し、暖房モード時における封入冷媒量の過少判定フローチャートである。FIG. 6 is a flowchart for determining the amount of refrigerant enclosed in the heating mode during the heating mode according to the embodiment of the present invention. 第1変形例に係る、冷媒モード時における封入冷媒量の過少判定フローチャートである。It is an under determination flow chart of the amount of encapsulated refrigerant at the time of refrigerant mode concerning the 1st modification. 第1変形例に係る、圧縮機の稼働時の熱を受けた場合のモリエル線図と冷凍サイクルの挙動線図である。It is a Mollier diagram at the time of receiving the heat at the time of operation of a compressor concerning the 1st modification, and a behavior diagram of a refrigerating cycle. 第2変形例に係る、冷媒モード時における封入冷媒量の過少判定フローチャートである。It is an under determination flow chart of the amount of encapsulated refrigerant at the time of refrigerant mode concerning the 2nd modification. 第3変形例に係る、冷媒モード時における封入冷媒量の過少判定フローチャートである。It is an under determination flow chart of the amount of encapsulated refrigerant at the time of refrigerant mode concerning the 3rd modification. 第4変形例に係る、冷媒モード時における封入冷媒量の過少判定フローチャートである。It is an under determination flow chart of the amount of encapsulated refrigerant at the time of a refrigerant mode concerning the 4th modification.

符号の説明Explanation of symbols

1 車両用空気調和装置(空気調和装置)
2 冷凍サイクル
3 圧縮機
4 室内熱交換器(蒸発器)
5 室内放熱器(放熱器)
6 室外熱交換器(放熱器、蒸発器)
8 第1減圧器(減圧手段)
9 第2減圧器(減圧手段)
20 圧力センサ(高圧側圧力検知手段)
21 第1冷媒温度センサ(吐出冷媒温度検知手段)
25 第2空気温度センサ
26 第3空気温度センサ
30 制御部
30a 低圧側冷媒圧力認識手段
30b 冷媒量過少判定手段
1 Vehicle air conditioner (air conditioner)
2 Refrigeration cycle 3 Compressor 4 Indoor heat exchanger (evaporator)
5 Indoor radiator (heat radiator)
6 Outdoor heat exchanger (heat radiator, evaporator)
8 First decompressor (pressure reducing means)
9 Second decompressor (pressure reducing means)
20 Pressure sensor (high pressure side pressure detection means)
21 1st refrigerant | coolant temperature sensor (discharge refrigerant | coolant temperature detection means)
25 2nd air temperature sensor 26 3rd air temperature sensor 30 Control part 30a Low pressure side refrigerant pressure recognition means 30b Refrigerant amount under-determination means

Claims (14)

冷媒を圧縮する圧縮機(3)と、前記圧縮機(3)で圧縮された冷媒と空気との間で熱交換し、冷媒に放熱させる放熱器(5),(6)と、前記放熱器(5),(6)で冷却された冷媒を減圧する減圧手段(8),(9)と、前記減圧手段(8),(9)によって減圧された冷媒と空気との間で熱交換し、冷媒に吸熱させる蒸発器(4),(6)とを少なくとも有する冷凍サイクル(2)を備えた空気調和装置(1)であって、
前記圧縮機の吐出冷媒圧力を検知する高圧側圧力検知手段(20)と、前記圧縮機(3)の吐出冷媒温度を検知する吐出冷媒温度検知手段(21)と、前記冷凍サイクル(2)の低圧側の冷媒圧力を認識する低圧側圧力認識手段(30a)と、前記低圧側圧力認識手段(30a)によって認識した低圧側の冷媒圧力と前記高圧側圧力検知手段(20)が検知した前記圧縮機(3)の吐出冷媒圧力とから最大限許容される許容吐出冷媒温度を求め、この許容吐出冷媒温度と前記吐出冷媒温度検知手段(21)が検知した検知吐出冷媒温度とを比較することにより前記冷凍サイクル(2)内の封入冷媒量が過少であるか否かを判定する冷媒量過少判定手段(30b)とを備えたことを備えたことを特徴とする空気調和装置(1)。
A compressor (3) for compressing refrigerant, heat radiators (5), (6) for exchanging heat between the refrigerant compressed by the compressor (3) and air, and radiating heat to the refrigerant, and the radiator Heat exchange is performed between the decompression means (8), (9) for decompressing the refrigerant cooled in (5), (6), and the air decompressed by the decompression means (8), (9). An air conditioner (1) comprising a refrigeration cycle (2) having at least evaporators (4) and (6) for absorbing heat by a refrigerant,
High pressure side pressure detection means (20) for detecting the discharge refrigerant pressure of the compressor, discharge refrigerant temperature detection means (21) for detecting the discharge refrigerant temperature of the compressor (3), and the refrigeration cycle (2). Low pressure side pressure recognition means (30a) for recognizing low pressure side refrigerant pressure, low pressure side refrigerant pressure recognized by the low pressure side pressure recognition means (30a), and compression detected by the high pressure side pressure detection means (20) By determining the maximum allowable discharge refrigerant temperature from the discharge refrigerant pressure of the machine (3) and comparing the allowable discharge refrigerant temperature with the detected discharge refrigerant temperature detected by the discharge refrigerant temperature detection means (21). An air conditioner (1) comprising: a refrigerant quantity under-determination means (30b) for judging whether or not the amount of refrigerant enclosed in the refrigeration cycle (2) is too small.
請求項1記載の空気調和装置(1)であって、
前記低圧側冷媒圧力認識手段(30a)は、前記蒸発器(4)を通過する空気が空調空気とされる冷房モードでは、前記蒸発器(4)を通過した空気温度より低圧側の冷媒圧力を推定することを特徴とする空気調和装置(1)。
An air conditioner (1) according to claim 1,
In the cooling mode in which the air passing through the evaporator (4) is conditioned air, the low-pressure side refrigerant pressure recognizing means (30a) sets the refrigerant pressure on the low-pressure side from the air temperature passing through the evaporator (4). An air conditioner (1) characterized by estimating.
請求項1記載の空気調和装置(1)であって、
前記低圧側冷媒圧力認識手段(30a)は、前記蒸発器(6)を通過する空気が外気とされる暖房モードでは、前記蒸発器(6)が載置される周辺の空気温度より低圧側の冷媒圧力を推定することを特徴とする空気調和装置(1)。
An air conditioner (1) according to claim 1,
In the heating mode in which the air passing through the evaporator (6) is outside air, the low-pressure side refrigerant pressure recognizing means (30a) has a lower pressure side than the ambient air temperature on which the evaporator (6) is placed. An air conditioner (1) characterized by estimating a refrigerant pressure.
請求項1〜請求項3のいずれかに記載の空気調和装置(1)であって、
前記冷媒量過少判定手段(30b)は、前記圧縮機(3)の稼働開始から一定時間以内に封入冷媒量の過少の判定を行うことを特徴とする空気調和装置(1)。
It is an air conditioning apparatus (1) in any one of Claims 1-3,
The air conditioner (1) characterized in that the refrigerant amount under-determination means (30b) determines whether the amount of encapsulated refrigerant is insufficient within a predetermined time from the start of operation of the compressor (3).
請求項1〜請求項4のいずれかに記載の空気調和装置(1)であって、
前記冷媒量過少判定手段(30b)は、前記吐出冷媒温度検知手段(21)が検知した検知吐出冷媒温度より前記圧縮機(3)のモータコイル温度が低い場合に、封入冷媒量の過少の判定を行うことを特徴とする空気調和装置(1)。
It is an air conditioning apparatus (1) in any one of Claims 1-4, Comprising:
When the motor coil temperature of the compressor (3) is lower than the detected discharged refrigerant temperature detected by the discharged refrigerant temperature detecting means (21), the refrigerant amount underdetermined determining means (30b) determines whether the enclosed refrigerant amount is too low. An air conditioner (1) characterized in that
請求項1〜請求項5のいずれかに記載の空気調和装置(1)であって、
前記冷媒量過少判定手段(30b)は、前記吐出冷媒温度検知手段(21)が検知した検知吐出冷媒温度より前記圧縮機(3)のモータコイル温度が高い場合に、許容吐出冷媒温度に前記圧縮機(3)のモータコイル温度を補償した温度値によって封入冷媒量の過少を判定することを特徴とする空気調和装置(1)。
It is an air conditioning apparatus (1) in any one of Claims 1-5, Comprising:
When the motor coil temperature of the compressor (3) is higher than the detected discharged refrigerant temperature detected by the discharged refrigerant temperature detecting means (21), the refrigerant amount under-determining means (30b) is compressed to the allowable discharged refrigerant temperature. An air conditioner (1) characterized in that the amount of enclosed refrigerant is determined to be low based on a temperature value compensated for the motor coil temperature of the machine (3).
請求項1〜請求項6のいずれかに記載の空気調和装置(1)であって、
前記冷媒量過少判定手段(30b)は、許容吐出冷媒温度に前記圧縮機(3)のモータの印加電力による熱損失温度値を補償した温度値によって封入冷媒量の過少を判定することを特徴とする空気調和装置(1)。
It is an air conditioning apparatus (1) in any one of Claims 1-6, Comprising:
The refrigerant quantity under-determining means (30b) is characterized in that the quantity of the enclosed refrigerant quantity is judged based on a temperature value obtained by compensating an allowable discharge refrigerant temperature for a heat loss temperature value due to electric power applied to the motor of the compressor (3). An air conditioner (1) to perform.
冷媒を圧縮する圧縮機(3)と、前記圧縮機(3)で圧縮された冷媒と空気との間で熱交換し、冷媒に放熱させる放熱器(5),(6)と、前記放熱器(5),(6)で冷却された冷媒を減圧する減圧手段(8),(9)と、前記減圧手段(8),(9)によって減圧された冷媒と空気との間で熱交換し、冷媒に吸熱させる蒸発器(4),(6)とを少なくとも有する冷凍サイクル(2)を備えた空気調和装置(1)の制御方法であって、
前記圧縮機(3)の吐出冷媒圧力を検知する高圧側圧力検知手段(20)と、前記圧縮機(3)の吐出冷媒温度を検知する吐出冷媒温度検知手段(21)と、前記冷凍サイクル(2)の低圧側の冷媒圧力を認識する低圧側圧力認識手段(30a)とを備え、
前記低圧側圧力認識手段(30a)によって認識した低圧側の冷媒圧力と前記高圧側圧力検知手段(20)が検知した前記圧縮機(3)の吐出冷媒圧力とから最大限許容される許容吐出冷媒温度を求め、この許容吐出冷媒温度と前記吐出冷媒温度検知手段(21)が検知した検知吐出冷媒温度とを比較することにより前記冷凍サイクル(2)内の封入冷媒量が過少であるか否かを判定することを備えたことを特徴とする空気調和装置(1)の制御方法。
A compressor (3) for compressing refrigerant, heat radiators (5), (6) for exchanging heat between the refrigerant compressed by the compressor (3) and air, and radiating heat to the refrigerant, and the radiator Heat exchange is performed between the decompression means (8), (9) for decompressing the refrigerant cooled in (5), (6), and the air decompressed by the decompression means (8), (9). A control method for an air conditioner (1) including a refrigeration cycle (2) having at least evaporators (4) and (6) for absorbing heat by a refrigerant,
High pressure side pressure detection means (20) for detecting the discharge refrigerant pressure of the compressor (3), discharge refrigerant temperature detection means (21) for detecting the discharge refrigerant temperature of the compressor (3), and the refrigeration cycle ( 2) low pressure side pressure recognition means (30a) for recognizing the low pressure side refrigerant pressure;
Allowable discharge refrigerant allowed to the maximum from the refrigerant pressure on the low pressure side recognized by the low pressure side pressure recognition means (30a) and the discharge refrigerant pressure of the compressor (3) detected by the high pressure side pressure detection means (20). Whether or not the amount of the enclosed refrigerant in the refrigeration cycle (2) is too small by determining the temperature and comparing the allowable discharge refrigerant temperature with the detected discharge refrigerant temperature detected by the discharge refrigerant temperature detection means (21). A method for controlling the air conditioner (1), comprising:
請求項8記載の空気調和装置(1)の制御方法であって、
前記低圧側冷媒圧力認識手段(30a)は、前記蒸発器(4)を通過する空気が空調空気とされる冷房モードでは、前記蒸発器(4)を通過した空気温度より低圧側の冷媒圧力を推定することを特徴とする空気調和装置(1)の制御方法。
A control method for an air conditioner (1) according to claim 8,
In the cooling mode in which the air passing through the evaporator (4) is conditioned air, the low-pressure side refrigerant pressure recognizing means (30a) sets the refrigerant pressure on the low-pressure side from the air temperature passing through the evaporator (4). A control method for an air conditioner (1) characterized by estimating.
請求項8記載の空気調和装置(1)の制御方法であって、
前記低圧側冷媒圧力認識手段(30a)は、前記蒸発器(6)を通過する空気が外気とされる暖房モードでは、前記蒸発器(6)が載置される周辺の空気温度より低圧側の冷媒圧力を推定することを特徴とする空気調和装置(1)の制御方法。
A control method for an air conditioner (1) according to claim 8,
In the heating mode in which the air passing through the evaporator (6) is outside air, the low-pressure side refrigerant pressure recognizing means (30a) has a lower pressure side than the ambient air temperature on which the evaporator (6) is placed. A control method for an air conditioner (1), wherein the refrigerant pressure is estimated.
請求項8〜請求項10のいずれかに記載の空気調和装置(1)の制御方法であって、
前記圧縮機(3)の稼働開始から一定時間以内に封入冷媒量の過少の判定を行うことを特徴とする空気調和装置(1)の制御方法。
It is a control method of the air harmony device (1) in any one of Claims 8-10,
The control method for the air conditioner (1), wherein the determination of whether the amount of the enclosed refrigerant is too small is made within a predetermined time from the start of operation of the compressor (3).
請求項8〜請求項11のいずれかに記載の空気調和装置(1)の制御方法であって、
前記吐出冷媒温度検知手段(30b)が検知した検知吐出冷媒温度より前記圧縮機(3)のモータコイル温度が低い場合に、封入冷媒量の過少の判定を行うことを特徴とする空気調和装置(1)の制御方法。
It is a control method of the air harmony device (1) in any one of Claims 8-11,
An air conditioner that determines whether the amount of enclosed refrigerant is too low when the motor coil temperature of the compressor (3) is lower than the detected discharged refrigerant temperature detected by the discharged refrigerant temperature detecting means (30b). The control method of 1).
請求項8〜請求項12のいずれかに記載の空気調和装置(1)の制御方法であって、
前記吐出冷媒温度検知手段(30b)が検知した検知吐出冷媒温度より前記圧縮機(3)のモータコイル温度が高い場合に、許容吐出冷媒温度に前記圧縮機(3)のモータコイル温度を補償した温度値によって封入冷媒量の過少を判定することを特徴とする空気調和装置(1)の制御方法。
It is a control method of the air conditioning apparatus (1) in any one of Claims 8-12,
When the motor coil temperature of the compressor (3) is higher than the detected discharge refrigerant temperature detected by the discharge refrigerant temperature detection means (30b), the motor coil temperature of the compressor (3) is compensated for the allowable discharge refrigerant temperature. A control method for an air conditioner (1), wherein the amount of the enclosed refrigerant is determined to be low based on a temperature value.
請求項8〜請求項13のいずれかに記載の空気調和装置(1)の制御方法であって、
許容吐出冷媒温度に前記圧縮機(3)のモータの印加電力による熱損失温度値を補償した温度値によって封入冷媒量の過少を判定することを特徴とする空気調和装置(1)の制御方法。
It is a control method of the air harmony device (1) in any one of Claims 8-13,
The control method of the air conditioner (1), wherein the amount of the enclosed refrigerant is determined based on a temperature value obtained by compensating an allowable discharge refrigerant temperature for a heat loss temperature value caused by electric power applied to the motor of the compressor (3).
JP2008007256A 2008-01-16 2008-01-16 Air conditioner and its control method Pending JP2009168339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007256A JP2009168339A (en) 2008-01-16 2008-01-16 Air conditioner and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008007256A JP2009168339A (en) 2008-01-16 2008-01-16 Air conditioner and its control method

Publications (1)

Publication Number Publication Date
JP2009168339A true JP2009168339A (en) 2009-07-30

Family

ID=40969725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007256A Pending JP2009168339A (en) 2008-01-16 2008-01-16 Air conditioner and its control method

Country Status (1)

Country Link
JP (1) JP2009168339A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255353A (en) * 2017-07-28 2017-10-17 广东美的暖通设备有限公司 Multiple on-line system and its abnormal diagnostic method of delivery temperature detection, device
CN107421071A (en) * 2017-07-28 2017-12-01 广东美的暖通设备有限公司 Diagnostic method, the device of multiple on-line system and its delivery temperature detection exception
CN107631527A (en) * 2017-09-04 2018-01-26 四川长虹空调有限公司 Whether detection frequency conversion refrigeration plant lacks the method and system of refrigerant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255353A (en) * 2017-07-28 2017-10-17 广东美的暖通设备有限公司 Multiple on-line system and its abnormal diagnostic method of delivery temperature detection, device
CN107421071A (en) * 2017-07-28 2017-12-01 广东美的暖通设备有限公司 Diagnostic method, the device of multiple on-line system and its delivery temperature detection exception
CN107255353B (en) * 2017-07-28 2020-09-04 广东美的暖通设备有限公司 Multi-split system and method and device for diagnosing exhaust temperature detection abnormality of multi-split system
CN107631527A (en) * 2017-09-04 2018-01-26 四川长虹空调有限公司 Whether detection frequency conversion refrigeration plant lacks the method and system of refrigerant
CN107631527B (en) * 2017-09-04 2023-12-22 四川长虹空调有限公司 Method and system for detecting whether variable-frequency refrigeration equipment lacks refrigerant

Similar Documents

Publication Publication Date Title
JP4613526B2 (en) Supercritical heat pump cycle equipment
JP6493370B2 (en) Heat pump system
JP6794964B2 (en) Refrigeration cycle equipment
US11279205B2 (en) Method for operating a coolant circuit and vehicle air-conditioning system
US10427497B2 (en) Air conditioner for vehicle
JP6332193B2 (en) Air conditioner for vehicles
WO2011108567A1 (en) Air conditioning apparatus for vehicle and method for switching operation thereof
US20110167850A1 (en) Air conditioner for vehicle
US8205464B2 (en) Refrigeration device
US20100050672A1 (en) Refrigeration device
US8171747B2 (en) Refrigeration device
JP2006306320A (en) Air-conditioner for vehicle
WO2020050040A1 (en) Refrigeration cycle device
JP2018103720A (en) Air conditioner
JP2009168339A (en) Air conditioner and its control method
JP2008045792A (en) Refrigerant quantity detecting method, refrigerant quantity detecting device and air conditioner including refrigerant quantity detecting device
WO2017187790A1 (en) Coolant quantity insufficiency sensing device and refrigeration cycle device
JP6167891B2 (en) Heat pump cycle device.
JP2014163628A (en) Refrigeration cycle device
WO2009090834A1 (en) Air conditioner and method of controlling the same
WO2019171840A1 (en) Refrigerant amount estimating device, and refrigeration cycle device
WO2009084327A1 (en) Air conditioner and air conditioning method
WO2024101061A1 (en) Heat pump cycle device
JP2019105409A (en) Heat pump cycle
WO2022038951A1 (en) Refrigeration cycle device