WO2018225361A1 - Photovoltaic generation element - Google Patents

Photovoltaic generation element Download PDF

Info

Publication number
WO2018225361A1
WO2018225361A1 PCT/JP2018/014309 JP2018014309W WO2018225361A1 WO 2018225361 A1 WO2018225361 A1 WO 2018225361A1 JP 2018014309 W JP2018014309 W JP 2018014309W WO 2018225361 A1 WO2018225361 A1 WO 2018225361A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion cell
layer
electrode
cell
Prior art date
Application number
PCT/JP2018/014309
Other languages
French (fr)
Japanese (ja)
Inventor
岩崎 孝
和正 鳥谷
充 稲垣
斉藤 健司
義哉 安彦
永井 陽一
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2018225361A1 publication Critical patent/WO2018225361A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Definitions

  • the present invention relates to a photovoltaic device.
  • This application claims priority based on Japanese Patent Application No. 2017-113100 filed on June 8, 2017, and incorporates all the description content described in the above Japanese application.
  • Patent Document 1 discloses a three-junction solar cell element in which a Ge cell, a GaAs cell, and an AlInGaP cell are joined by a tunnel junction layer.
  • the photovoltaic device which is one embodiment is a photovoltaic device including at least a first photoelectric conversion cell and a second photoelectric conversion cell, wherein the first photoelectric conversion cell, the second photoelectric conversion cell, Are stacked via an insulating layer that insulates the first photoelectric conversion cell from the second photoelectric conversion cell.
  • FIG. 1 is a plan view of the photovoltaic device according to the first embodiment.
  • FIG. 2 is a diagram showing a part of a cross section taken along line II-II in FIG.
  • FIG. 3A is a diagram for explaining a method for manufacturing a photovoltaic device, and is a partial cross-sectional view of a Ge substrate used for the photovoltaic device 1
  • FIG. 3B is a diagram of a first stacked body in which each semiconductor layer is formed.
  • FIG. 3C is a partial cross-sectional view of the first stacked body after etching.
  • FIG. 4A is a diagram for explaining another method for manufacturing a photovoltaic device, and is a partial cross-sectional view of a laminated body corresponding to each photoelectric conversion cell, and FIG.
  • FIG. 4B is obtained by joining the laminated bodies. It is a partial sectional view of the 1st layered product.
  • FIG. 5 is a plan view of the photovoltaic device according to the second embodiment.
  • FIG. 6 is a diagram showing a part of a cross section taken along line VI-VI in FIG.
  • each cell is bonded and laminated by a tunnel junction layer, and power is supplied from a surface electrode provided on the surface of the solar cell element and a back electrode provided on the back surface of the solar cell element.
  • a surface electrode provided on the surface of the solar cell element
  • a back electrode provided on the back surface of the solar cell element.
  • the sunlight that reaches the solar cell element increases or decreases due to changes in the surrounding environment such as changes in solar altitude due to time and season, atmospheric conditions, and the presence of aerosols. For this reason, the current output from each cell varies depending on changes in the surrounding environment. At this time, the components in the short wavelength region among the components contained in the sunlight are greatly affected by changes in the surrounding environment, and therefore, relative to the components in other wavelength regions before reaching the solar cell element. May decrease significantly.
  • the amount of decrease in current value due to changes in the surrounding environment is relatively greater than the amount of decrease in current value of other cells. Therefore, the difference between the currents output by each cell increases, and the power generation efficiency of the entire multi-junction solar cell element may decrease.
  • each cell is connected in series, so that the current value of the entire photovoltaic device is the smallest current value among the current values output by each cell. Therefore, power generation efficiency may be reduced due to environmental changes.
  • the present disclosure has been made in view of such circumstances, and an object thereof is to provide a photovoltaic device capable of suppressing a decrease in power generation efficiency.
  • a photovoltaic device is a photovoltaic device including at least a first photoelectric conversion cell and a second photoelectric conversion cell, wherein the first photoelectric conversion cell and the second photoelectric conversion cell are included.
  • the conversion cell is laminated through an insulating layer that insulates the first photoelectric conversion cell and the second photoelectric conversion cell.
  • the first photoelectric conversion cell and the second photoelectric conversion cell are stacked via the insulating layer, the first photoelectric conversion cell and the second photoelectric conversion cell are independently photovoltaic. It can be used as an element. As a result, the first photoelectric conversion cell and the second photoelectric conversion cell can be connected in parallel, or can be connected to independent paths. Thereby, it is possible to output current in an optimal state for each cell. As a result, it is possible to suppress a decrease in power generation efficiency as a whole photovoltaic power generation element.
  • a p-side electrode and an n-side electrode are provided in each of the first photoelectric conversion cell and the second photoelectric conversion cell.
  • a 1st photoelectric conversion cell and a 2nd photoelectric conversion cell can also be connected in parallel, and can also be connected to a mutually independent path
  • the insulating layer may be a non-doped layer. In this case, an insulating layer can be easily provided between the first photoelectric conversion cell and the second photoelectric conversion cell.
  • At least one of the first photoelectric conversion cell and the second photoelectric conversion cell may be configured by joining a plurality of subcells. In this case, the freedom degree of the combination of a photoelectric conversion cell can be raised.
  • At least one of the first photoelectric conversion cell and the second photoelectric conversion cell may be made of a compound semiconductor.
  • one of the photoelectric conversion cells can be formed together with the insulating layer by a vapor deposition method or the like, and the manufacture becomes easy.
  • FIG. 1 is a plan view of the photovoltaic device according to the first embodiment
  • FIG. 2 is a diagram showing a part of the section taken along line II-II in FIG. Is shown.
  • the photovoltaic device 1 is an element that generates electricity by photoelectric conversion by receiving light such as sunlight.
  • the photovoltaic device 1 has a rectangular shape in plan view.
  • the photovoltaic element 1 is configured by stacking a first photoelectric conversion cell 11, a second photoelectric conversion cell 12, and a third photoelectric conversion cell 13.
  • a step is formed by the end of each photoelectric conversion cell 11, 12, 13.
  • the photoelectric conversion cell is a semiconductor layer that includes a pn junction and generates power by photoelectric conversion based on incident light.
  • a first insulating layer 15 is interposed between the first photoelectric conversion cell 11 and the second photoelectric conversion cell 12. Further, a second insulating layer 16 is interposed between the second photoelectric conversion cell 12 and the third photoelectric conversion cell 13.
  • the light incident direction is a direction from the upper direction to the lower direction in the drawing, and in the following description, in each layer, the light incident side surface is referred to as the front surface and the opposite surface is referred to as the rear surface.
  • the first photoelectric conversion cell 11 includes a p-type Ge layer provided on the back surface side, and an n-type Ge layer provided on the p-type Ge layer and pn-junctioned with the p-type Ge layer.
  • the thickness of the first photoelectric conversion cell 11 is, for example, about 100 ⁇ m to 200 ⁇ m.
  • the 1st photoelectric conversion cell 11 is laminated
  • the first electrode 21 is made of, for example, an AuGeNi alloy.
  • the surface of the first photoelectric conversion cell 11 includes a laminated surface 23 on which the first insulating layer 15 is laminated and an exposed surface 24 exposed in the light incident direction.
  • the exposed surface 24 is provided on both edges along two sides parallel to each other on the surface of the first photoelectric conversion cell 11.
  • a second electrode 25 is provided on the exposed surface 24.
  • the second electrode 25 is formed on the exposed surfaces 24 on both sides, and is formed linearly along the longitudinal direction of the exposed surface 24.
  • the second electrode 25 is made of, for example, an AuGeNi alloy.
  • the second electrode 25 forms an n-side electrode of the first photoelectric conversion cell 11 by being provided on the exposed surface 24 of the first photoelectric conversion cell 11.
  • the 1st electrode 21 comprises the p side electrode of the 1st photoelectric conversion cell 11 by laminating
  • the second photoelectric conversion cell 12 is laminated on the surface of the first electrode layer 31 laminated on the surface of the first insulating layer 15. That is, the first electrode layer 31 is stacked between the second photoelectric conversion cell 12 and the first insulating layer 15. Therefore, the first insulating layer 15 and the first electrode layer 31 are interposed between the second photoelectric conversion cell 12 and the first photoelectric conversion cell 11.
  • the first electrode layer 31 is a semiconductor layer, and is composed of, for example, a p-type InGaAsP layer doped with Zn at a high concentration of about 10 19 to 10 20 cm ⁇ 3 . Since the first electrode layer 31 is doped at a high concentration, the incident light may be attenuated. For this reason, it is preferable that the thickness of the 1st electrode layer 31 is 0.1 micrometer or less. Thereby, attenuation of incident light by the first electrode layer 31 can be suppressed.
  • the surface of the first electrode layer 31 includes a stacked surface 33 on which the second photoelectric conversion cells 12 are stacked and an exposed surface 34 exposed in the light incident direction. As shown in FIG. 1, the exposed surface 34 is provided on both edges of the two sides along the exposed surface 24 on the surface of the first electrode layer 31. A third electrode 35 is provided on the exposed surface 34. The third electrode 35 is formed on the exposed surfaces 34 on both sides, and is formed linearly along the longitudinal direction of the exposed surface 34. The third electrode 35 is made of, for example, an AuGeNi alloy.
  • the second photoelectric conversion cell 12 includes a p-type InGaAs layer provided on the surface of the first electrode layer 31, and an n-type InGaAs layer provided on the p-type InGaAs layer and pn-junctioned with the p-type InGaAs layer. . That is, the second photoelectric conversion cell 12 constitutes a photoelectric conversion cell made of a compound semiconductor using InGaAs.
  • the thickness of the second photoelectric conversion cell 12 is, for example, about 2 ⁇ m to 5 ⁇ m.
  • the surface of the second photoelectric conversion cell 12 includes a stacked surface 36 on which the second insulating layer 16 is stacked and an exposed surface 37 exposed in the light incident direction. As shown in FIG.
  • the exposed surface 37 is provided on both edges of the two sides along the exposed surface 34 on the surface of the second photoelectric conversion cell 12.
  • a fourth electrode 38 is provided on the exposed surface 37.
  • the fourth electrode 38 is formed on the exposed surfaces 37 on both sides, and is formed in a linear shape along the longitudinal direction of the exposed surface 37.
  • the fourth electrode 38 is made of, for example, an AuGeNi alloy.
  • the fourth electrode 38 forms an n-side electrode of the second photoelectric conversion cell 12 by being provided on the exposed surface 37 of the second photoelectric conversion cell 12.
  • the first electrode layer 31 constitutes a p-type semiconductor layer in a state where the second photoelectric conversion cell 12 is laminated on the surface thereof. Therefore, the first electrode layer 31 and the third electrode 35 constitute a p-side electrode of the second photoelectric conversion cell 12.
  • the 1st electrode layer 31 is provided between the 2nd photoelectric conversion cell 12 and the 1st insulating layer 15, the 1st photoelectric conversion cell 11 and the 2nd photoelectric conversion are provided. Even if the cell 12 is stacked via the first insulating layer 15, a p-side electrode can be provided for the second photoelectric conversion cell 12.
  • the third photoelectric conversion cell 13 is stacked on the surface of the second electrode layer 41 stacked on the surface of the second insulating layer 16. That is, the second electrode layer 41 is stacked between the third photoelectric conversion cell 13 and the second insulating layer 16. Therefore, the second insulating layer 16 and the second electrode layer 41 are interposed between the third photoelectric conversion cell 13 and the second photoelectric conversion cell 12.
  • the second electrode layer 41 is a semiconductor layer, and is composed of a p-type InGaAsP layer doped with Zn at a high concentration of about 10 19 to 10 20 cm ⁇ 3 , for example, like the first electrode layer 31. Yes. Similarly to the first electrode layer 31, the second electrode layer 41 is also doped at a high concentration, so that there is a possibility that incident light may be attenuated. For this reason, it is preferable that the thickness of the 2nd electrode layer 41 is 0.1 micrometer or less. Thereby, attenuation of incident light by the first electrode layer 31 can be suppressed.
  • the surface of the second electrode layer 41 includes a stacked surface 43 on which the third photoelectric conversion cells 13 are stacked and an exposed surface 44 exposed in the light incident direction. As shown in FIG. 1, the exposed surface 44 is provided on both edges of the two sides along the exposed surface 37 on the surface of the second electrode layer 41. A fifth electrode 45 is provided on the exposed surface 44. The fifth electrode 45 is formed on the exposed surfaces 44 on both sides, and is formed linearly along the longitudinal direction of the exposed surface 44.
  • the fifth electrode 45 is made of, for example, an AuGeNi alloy.
  • the third photoelectric conversion cell 13 includes a p-type InGaP layer provided on the surface of the second electrode layer 41, and an n-type InGaP layer provided on the p-type InGaP layer and pn-junctioned with the p-type InGaP layer. . That is, the third photoelectric conversion cell 13 constitutes a photoelectric conversion cell made of a compound semiconductor using InGaP.
  • the thickness of the third photoelectric conversion cell 13 is, for example, about 2 ⁇ m to 5 ⁇ m.
  • a sixth electrode 46 is provided on the surface 47 of the third photoelectric conversion cell 13.
  • the sixth electrode 46 includes a plurality of linear electrode portions that extend in parallel to two sides along the exposed surfaces 44 on both sides and are arranged on the surface 47 at a predetermined interval.
  • the sixth electrode 46 is made of, for example, an AuGeNi alloy.
  • the sixth electrode 46 constitutes the n-side electrode of the third photoelectric conversion cell 13 by being provided on the surface 47 of the third photoelectric conversion cell 13.
  • the second electrode layer 41 constitutes a p-type semiconductor layer in a state where the third photoelectric conversion cell 13 is laminated on the surface thereof. Therefore, the second electrode layer 41 and the fifth electrode 45 constitute a p-side electrode of the third photoelectric conversion cell 13.
  • the 2nd electrode layer 41 is provided between the 3rd photoelectric conversion cell 13 and the 2nd insulating layer 16, the 2nd photoelectric conversion cell 12 and the 3rd photoelectric conversion are provided. Even if the cell 13 is stacked via the second insulating layer 16, a p-side electrode can be provided for the third photoelectric conversion cell 13.
  • the first insulating layer 15 is a semiconductor layer and is composed of a non-doped (not including dopant) InGaAs layer.
  • non-doped means that the semiconductor layer was formed without intentionally adding a dopant.
  • the non-doped InGaAs layer has a thickness of 0.01 ⁇ m to 0.2 ⁇ m and a dopant concentration of about 10 14 cm ⁇ 3 .
  • the first insulating layer 15 insulates between the first photoelectric conversion cell 11 and the first electrode layer 31 of the second photoelectric conversion cell 12.
  • the second insulating layer 16 is a semiconductor layer and is composed of a non-doped (not including dopant) InGaP layer. Similarly to the first insulating layer 15, the non-doped InGaP layer has a thickness of 0.01 ⁇ m to 0.2 ⁇ m and a dopant concentration of about 10 14 cm ⁇ 3 . Thereby, the second insulating layer 16 insulates between the second photoelectric conversion cell 12 and the second electrode layer 41 of the third photoelectric conversion cell 13.
  • the first photoelectric conversion cell 11 and the second photoelectric conversion cell 12 are stacked via the first insulating layer 15. Further, the second photoelectric conversion cell 12 and the third photoelectric conversion cell 13 are stacked via the second insulating layer 16. Therefore, each of the first photoelectric conversion cell 11, the second photoelectric conversion cell 12, and the third photoelectric conversion cell 13 can be used as an independent photovoltaic device.
  • each of the photoelectric conversion cells 11, 12, and 13 is provided with a p-side electrode and an n-side electrode. Therefore, the first photoelectric conversion cell 11 can output the current generated from the first electrode 21 and the second electrode 25. Further, the second photoelectric conversion cell 12 can output a current generated from the third electrode 35 and the fourth electrode 38. Further, the third photoelectric conversion cell 13 can output a current generated from the fifth electrode 45 and the sixth electrode 46.
  • the first photoelectric conversion cell 11, the second photoelectric conversion cell 12, and the third photoelectric conversion cell 13 can be connected in parallel to each other.
  • inverters I1, I2, and I3 are prepared for the photoelectric conversion cells 11, 12, and 13, respectively, and the photoelectric conversion cells 11, 12, and 13 are connected to independent paths to supply current. Can be output.
  • each photoelectric conversion cell 11, 12, 13 can be used as an independent photovoltaic device, and a current is output in an optimal state for each photoelectric conversion cell 11, 12, 13. be able to. As a result, it is possible to suppress a decrease in power generation efficiency as a whole of the photovoltaic device 1.
  • the 2nd photoelectric conversion cell 12 and the 3rd photoelectric conversion cell 13 consist of compound semiconductors, the 2nd photoelectric conversion cell 12 and the 3rd photoelectric conversion cell 13 are insulated so that it may mention later. It can be formed together with the layers 15 and 16 by vapor phase epitaxy and is easy to manufacture.
  • the first insulating layer 15, the first electrode layer 31, the second insulating layer 16, and the second insulating layer 16 are provided between the photoelectric conversion cells 11, 12, and 13. Since it is interposed, attenuation of incident light can be considered. However, since the first insulating layer 15 and the second insulating layer 16 are non-doped, the light transmittance is higher than that of the semiconductor layer doped. For this reason, incident light is not greatly attenuated.
  • the first electrode layer 31 and the second insulating layer 16 can suppress the attenuation of incident light by setting the thickness to 0.1 ⁇ m or less. As described above, the photovoltaic device 1 according to this embodiment can suppress the attenuation of incident light due to the insulating layers 15 and 16 and the electrode layers 31 and 41 provided.
  • FIG. 3A is a diagram for explaining a method of manufacturing the photovoltaic device 1 and is a partial cross-sectional view of a Ge substrate used for the photovoltaic device 1.
  • the right side of the drawing shows the end of the Ge substrate.
  • a Ge substrate 52 having an AuGeNi alloy layer 51 laminated on the back surface is prepared.
  • the Ge substrate 52 is previously configured to include a p-type Ge layer on the back surface side and an n-type Ge layer on the front surface side.
  • Each semiconductor layer is sequentially laminated on the surface of the Ge substrate 52 by a metal organic chemical vapor deposition method using MOCVD (Metal Organic Chemical Deposition).
  • MOCVD Metal Organic Chemical Deposition
  • FIG. 3B is a partial cross-sectional view of the first stacked body in which each semiconductor layer is formed.
  • the right side of the drawing shows the end of the Ge substrate (first stacked body).
  • a non-doped InGaAs layer that is the first insulating layer 15
  • a p-type InGaAsP layer that is the first electrode layer 31
  • an InGaAs layer that is the second photoelectric conversion cell 12.
  • P-type InGaAs layer and n-type InGaAs layer a non-doped InGaP layer that is the second insulating layer 16, a p-type InGaAsP layer that is the second electrode layer 41, and an InGaP layer that is the third photoelectric conversion cell 13 (p Type InGaP layer and n-type InGaP layer) are sequentially laminated.
  • the first stacked body 55 in which the respective semiconductor layers are stacked is obtained.
  • etching is performed on each layer of the first stacked body 55 to form exposed surfaces 24, 34, 37, and 44 at end portions of the respective layers.
  • FIG. 3C is a partial cross-sectional view of the first stacked body 55 after etching.
  • the right side of the drawing shows the end of the first stacked body 55.
  • the exposed surface 24 is formed on the surface of the first photoelectric conversion cell 11
  • the exposed surface 34 is formed on the surface of the first electrode layer 31
  • the first The exposed surface 37 is formed on the surface of the two photoelectric conversion cells 12, and the exposed surface 44 is formed on the surface of the second electrode layer 41.
  • the first electrode layer 31 and the second electrode layer 41 are InGaAsP layers, they can function as an etching stop layer. That is, the etching rate can be adjusted by adjusting the ratio of P, and the first electrode layer 31 and the second electrode layer 41 that are InGaAsP layers can be used as the etching stop layer. Thereby, the 1st electrode layer 31 and the 2nd electrode layer 41 of this embodiment can be functioned as an etching stop layer while functioning as an electrode.
  • the photovoltaic element 1 of this embodiment can be manufactured.
  • the photovoltaic device 1 of this embodiment can also be manufactured by the following method. That is, the first photoelectric conversion cell 11, the second photoelectric conversion cell 12, and the third photoelectric conversion cell 13 can be individually formed and manufactured by joining them.
  • FIG. 4A is a diagram for explaining another manufacturing method of the photovoltaic device 1, and is a partial cross-sectional view of a stacked body corresponding to each photoelectric conversion cell.
  • the second stacked body 57 corresponding to the first photoelectric conversion cell 11 includes an AuGeNi alloy layer 61 to be the first electrode 21 and a Ge substrate 62 to be the first photoelectric conversion cell 11. Yes.
  • the Ge substrate 62 includes a p-type Ge layer and an n-type Ge layer.
  • the third stacked body 58 corresponding to the second photoelectric conversion cell 12 includes a non-doped InGaAs layer 71 to be the first insulating layer 15, a p-type InGaAsP layer 72 to be the first electrode layer 31, the second photoelectric conversion cell 12, and The InGaAs layer 73 is formed.
  • the InGaAs layer 73 includes a p-type InGaAs layer and an n-type InGaAs layer.
  • the fourth stacked body 59 corresponding to the third photoelectric conversion cell 13 includes a non-doped InGaP layer 81 serving as the second insulating layer 16, a p-type InGaAsP layer 82 serving as the second electrode layer 41, and the third photoelectric conversion cell 13.
  • the InGaP layer 83 is formed.
  • the InGaP layer 83 includes a p-type InGaP layer and an n-type InGaP layer.
  • the laminated bodies 58 and 59 can be formed by sequentially laminating each semiconductor layer by a metal organic chemical vapor deposition method or the like, similar to the method described above.
  • annealing is performed in a state where these stacked bodies 57, 58, and 59 are stacked, thereby bonding the stacked bodies 57, 58, and 59 to each other.
  • a first stacked body 55 in which the respective semiconductor layers are stacked is obtained.
  • the photovoltaic element 1 can be obtained by the same method as the manufacturing method shown in FIG. 3C.
  • the photovoltaic device 1 of the present embodiment is also manufactured by individually forming the first photoelectric conversion cell 11, the second photoelectric conversion cell 12, and the third photoelectric conversion cell 13, and joining them. can do.
  • FIG. 5 is a plan view of the end portion of the photovoltaic device according to the second embodiment
  • FIG. 6 is a view showing a part of the cross section taken along line VI-VI in FIG. The cross section is shown.
  • the first photoelectric conversion cell 111 and the second photoelectric conversion cell 112 that are two photoelectric conversion cells are stacked, and the first photoelectric conversion cell 111 is the first photoelectric conversion cell.
  • the second embodiment is different from the first embodiment in that the subcell 122 and the second subcell 129 are configured.
  • an insulating layer 115 is interposed between the first photoelectric conversion cell 111 and the second photoelectric conversion cell 112. Similar to the first embodiment, this photovoltaic element 1 is also rectangular in plan view, and at its end, a step is formed by the ends of the photoelectric conversion cells 111 and 112 as shown in FIG. ing.
  • the first photoelectric conversion cell 111 includes a first subcell 122 provided on the back surface side, a second subcell 129 stacked on the first subcell 122, and a tunnel junction layer 128 that joins both the subcells 122 and 129. .
  • the 1st photoelectric conversion cell 111 is laminated
  • the first electrode 121 is made of, for example, an AuGeNi alloy.
  • the first subcell 122 includes a p-type Ge layer provided on the back surface side, and an n-type Ge layer provided on the p-type Ge layer and pn-junctioned with the p-type Ge layer.
  • the second subcell 129 includes a p-type InGaAs layer provided on the back surface side, and an n-type InGaAs layer provided on the p-type InGaAs layer and pn-junctioned with the p-type InGaAs layer.
  • the tunnel junction layer 128 is interposed and joined between the first subcell 122 and the second subcell 129.
  • Tunnel junction layer 128 includes an n-type InGaAs layer provided on the first subcell 122 side and a p-type InGaAs layer provided on the second subcell 129 side.
  • the surface of the first photoelectric conversion cell 111 includes a laminated surface 123 on which the insulating layer 115 is laminated and an exposed surface 124 exposed in the light incident direction. As shown in FIG. 5, the exposed surface 124 is provided on both edges along two sides parallel to each other on the surface of the first photoelectric conversion cell 111.
  • a second electrode 125 is provided on the exposed surface 124.
  • the second electrode 125 is formed on the exposed surfaces 124 on both sides, and is formed in a linear shape along the longitudinal direction of the exposed surface 124.
  • the second electrode 125 is made of, for example, an AuGeNi alloy.
  • the second electrode 125 constitutes an n-side electrode of the first photoelectric conversion cell 111 by being provided on the exposed surface 124 of the first photoelectric conversion cell 111.
  • the 1st electrode 121 comprises the p side electrode of the 1st photoelectric conversion cell 111 by laminating
  • the second photoelectric conversion cell 112 is laminated on the surface of the first electrode layer 131 laminated on the surface of the insulating layer 115. That is, the second photoelectric conversion cell 112 and the first photoelectric conversion cell 111 are stacked with the insulating layer 115 and the first electrode layer 131 interposed therebetween.
  • the first electrode layer 131 is composed of a p-type InGaAsP layer doped at a high concentration.
  • the first electrode layer 131 has the same configuration as the first electrode layer 31 of the first embodiment.
  • the surface of the first electrode layer 131 includes a stacked surface 133 on which the second photoelectric conversion cells 112 are stacked, and an exposed surface 134 exposed in the light incident direction. As shown in FIG. 5, the exposed surface 134 is provided on both edges of the two sides along the exposed surface 124 on the surface of the first electrode layer 131.
  • a third electrode 135 is provided on the exposed surface 134.
  • the third electrode 135 is formed on the exposed surfaces 134 on both sides, and is formed in a linear shape along the longitudinal direction of the exposed surface 134.
  • the third electrode 135 is made of, for example, an AuGeNi alloy.
  • the second photoelectric conversion cell 112 includes a p-type InGaP layer provided on the surface of the first electrode layer 131, and an n-type InGaP layer provided on the p-type InGaP layer and pn-junctioned with the p-type InGaP layer. .
  • a fourth electrode 138 is provided on the surface 139 of the second photoelectric conversion cell 112.
  • the fourth electrode 138 includes a plurality of linear electrode portions that extend parallel to two sides along the exposed surfaces 134 on both sides and are arranged on the surface 139 at a predetermined interval.
  • the fourth electrode 138 is made of, for example, an AuGeNi alloy.
  • the fourth electrode 138 forms the n-side electrode of the second photoelectric conversion cell 112 by being provided on the surface 139 of the second photoelectric conversion cell 112.
  • the first electrode layer 131 forms a p-type semiconductor layer with the second photoelectric conversion cell 112 stacked on the surface thereof. Therefore, the first electrode layer 131 and the third electrode 135 constitute a p-side electrode of the second photoelectric conversion cell 112.
  • the insulating layer 115 is composed of a non-doped InGaP layer. Thereby, the first insulating layer 15 insulates between the first photoelectric conversion cell 11 and the first electrode layer 31 of the second photoelectric conversion cell 12.
  • the insulating layer 115 has the same configuration as the first insulating layer 15 and the second insulating layer 16 of the first embodiment.
  • the 1st photoelectric conversion cell 111 and the 2nd photoelectric conversion cell 112 are laminated
  • the 1st photoelectric conversion cell 11 was comprised by the 1st subcell 122 and the 2nd subcell 129, the freedom degree of the combination of a photoelectric conversion cell can be raised.
  • the manufacturing method of this embodiment can be manufactured by the same method as the manufacturing method of 1st Embodiment.
  • the embodiment disclosed this time should be considered as illustrative in all points and not restrictive.
  • the photovoltaic device 1 may be configured by two photoelectric conversion cells, or photovoltaic power generation using four or more photoelectric conversion cells.
  • the element 1 may be configured.
  • the insulating layers 15, 16, and 115 are configured by non-doped semiconductor layers (InGaAs layers or InGaP layers).
  • the composition of the insulating layer can be appropriately set according to the composition of the adjacent semiconductor layer.
  • the second insulating layer 16 is composed of a non-doped InGaP layer, but may be composed of an InGaAs layer having the same composition as that of the second photoelectric conversion cell 12 adjacent to the second insulating layer 16. .
  • the insulating layer only needs to be able to insulate the photoelectric conversion cells on both sides, for example, Fe
  • the insulating layer can also be constituted by a doped semiconductor layer.
  • the photoelectric conversion cell In each of the above embodiments, the case where a Ge cell using a Ge layer, an InGaAs cell using an InGaAs layer, or an InGaP cell using an InGaP layer is used as the photoelectric conversion cell.
  • the present invention is not limited to this.
  • a photoelectric conversion cell made of a semiconductor material can also be used.
  • the electrode layers 31, 41 and 131 are exemplified by the semiconductor layer (InGaAsP layer) doped at a high concentration.
  • the electrode layer is formed of a metal such as an AuGeNi alloy. Also good.
  • Photoelectric power generation element 11 1st photoelectric conversion cell 12 2nd photoelectric conversion cell 13 3rd photoelectric conversion cell 15 1st insulating layer 16 2nd insulating layer 21 1st electrode 23 Laminated surface 24 Exposed surface 25 2nd electrode 31 1st electrode Layer 33 Laminated surface 34 Exposed surface 35 Third electrode 36 Laminated surface 37 Exposed surface 38 Fourth electrode 41 Second electrode layer 43 Laminated surface 44 Exposed surface 45 Fifth electrode 46 Sixth electrode 47 Surface 51 AuGeNi alloy layer 52 Ge substrate 55 First laminated body 57 Second laminated body 58 Third laminated body 59 Fourth laminated body 61 AuGeNi alloy layer 62 Ge substrate 111 First photoelectric conversion cell 112 Second photoelectric conversion cell 115 Insulating layer 121 First electrode 122 First subcell 123 Laminated surface 124 Exposed surface 125 Second electrode 128 Tunnel junction layer 129 Second subcell 131 First electrode layer 133 Laminated surface 13 Exposed surface 135 third electrode 138 fourth electrode 139 surface I1, I2, I

Abstract

The present invention is a photovoltaic generation element including at least a first photoelectric conversion cell and a second photoelectric conversion cell. The first photoelectric conversion cell and the second photoelectric conversion cell are layered one on the other with a first insulating layer therebetween, said first insulating layer insulating the first photoelectric conversion cell and the second photoelectric conversion cell.

Description

光発電素子Photovoltaic element
 本発明は、光発電素子に関する。
 本出願は、2017年6月8日出願の日本出願第2017-113100号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to a photovoltaic device.
This application claims priority based on Japanese Patent Application No. 2017-113100 filed on June 8, 2017, and incorporates all the description content described in the above Japanese application.
 近年、太陽光発電装置用の光発電素子として、複数の光電変換セルを積層してなる多接合型太陽電池素子が用いられることがある。
 この多接合型太陽電池素子は、複数の光電変換セルそれぞれのバンドギャップを異ならせることで、太陽光を幅広い波長域で吸収可能とし、高い発電効率が実現されている。
 例えば、特許文献1には、Geセル、GaAsセル、及びAlInGaPセルをトンネル接合層で接合した3接合型の太陽電池素子が開示されている。
In recent years, a multi-junction solar cell element in which a plurality of photoelectric conversion cells are stacked may be used as a photovoltaic element for a photovoltaic power generation apparatus.
This multi-junction solar cell element can absorb sunlight in a wide wavelength range by making the band gaps of the plurality of photoelectric conversion cells different, and high power generation efficiency is realized.
For example, Patent Document 1 discloses a three-junction solar cell element in which a Ge cell, a GaAs cell, and an AlInGaP cell are joined by a tunnel junction layer.
特開2005-136333号公報JP 2005-136333 A
 一実施形態である光発電素子は、少なくとも、第1光電変換セルと、第2光電変換セルと、を含む光発電素子であって、前記第1光電変換セルと、前記第2光電変換セルとは、前記第1光電変換セルと前記第2光電変換セルとを絶縁する絶縁層を介して積層されている。 The photovoltaic device which is one embodiment is a photovoltaic device including at least a first photoelectric conversion cell and a second photoelectric conversion cell, wherein the first photoelectric conversion cell, the second photoelectric conversion cell, Are stacked via an insulating layer that insulates the first photoelectric conversion cell from the second photoelectric conversion cell.
図1は、第1実施形態に係る光発電素子の平面図である。FIG. 1 is a plan view of the photovoltaic device according to the first embodiment. 図2は、図1中、II-II線矢視断面の一部を示す図である。FIG. 2 is a diagram showing a part of a cross section taken along line II-II in FIG. 図3Aは、光発電素子の製造方法を説明するための図であって、光発電素子1に用いるGe基板の一部断面図、図3Bは、各半導体層が形成された第1積層体の一部断面図、図3Cは、エッチング後の第1積層体の一部断面図である。FIG. 3A is a diagram for explaining a method for manufacturing a photovoltaic device, and is a partial cross-sectional view of a Ge substrate used for the photovoltaic device 1, and FIG. 3B is a diagram of a first stacked body in which each semiconductor layer is formed. FIG. 3C is a partial cross-sectional view of the first stacked body after etching. 図4Aは、光発電素子の他の製造方法を説明するための図であって、各光電変換セルに対応する積層体の一部断面図、図4Bは、各積層体を接合して得られた第1積層体の一部断面図である。FIG. 4A is a diagram for explaining another method for manufacturing a photovoltaic device, and is a partial cross-sectional view of a laminated body corresponding to each photoelectric conversion cell, and FIG. 4B is obtained by joining the laminated bodies. It is a partial sectional view of the 1st layered product. 図5は、第2実施形態に係る光発電素子の平面図である。FIG. 5 is a plan view of the photovoltaic device according to the second embodiment. 図6は、図5中、VI-VI線矢視断面の一部を示す図である。FIG. 6 is a diagram showing a part of a cross section taken along line VI-VI in FIG.
[本開示が解決しようとする課題]
 上記多接合型の太陽電池素子では、各セルをトンネル接合層で接合して積層し、太陽電池素子の表面に設けられた表面電極と、太陽電池素子の裏面に設けられた裏面電極とから電力を出力するように構成されており、各セルは直列に接続されている。
 よって、多接合型の太陽電池素子により出力される電流値は、各セルにより出力される電流値の内、最も小さい電流値に制限されてしまう。
 このため、多接合型の太陽電池素子は、各セルにより出力される電流にできるだけ差が生じないように設計される。
[Problems to be solved by the present disclosure]
In the multi-junction type solar cell element, each cell is bonded and laminated by a tunnel junction layer, and power is supplied from a surface electrode provided on the surface of the solar cell element and a back electrode provided on the back surface of the solar cell element. Are output, and each cell is connected in series.
Therefore, the current value output by the multi-junction solar cell element is limited to the smallest current value among the current values output by each cell.
For this reason, the multi-junction solar cell element is designed so that there is as little difference as possible in the current output by each cell.
 ここで、太陽電池素子に到達する太陽光は、時間や季節による太陽高度の変化や、大気の状態、エアロゾルの存在等、周囲環境の変化によって増減する。このため、各セルが出力する電流は、周囲環境の変化によって変動する。
 このとき、太陽光に含まれる成分のうちの短波長域の成分は、周囲環境の変化の影響を大きく受けるため、太陽電池素子に到達するまでの間に、他の波長域の成分よりも相対的に大きく減少することがある。
Here, the sunlight that reaches the solar cell element increases or decreases due to changes in the surrounding environment such as changes in solar altitude due to time and season, atmospheric conditions, and the presence of aerosols. For this reason, the current output from each cell varies depending on changes in the surrounding environment.
At this time, the components in the short wavelength region among the components contained in the sunlight are greatly affected by changes in the surrounding environment, and therefore, relative to the components in other wavelength regions before reaching the solar cell element. May decrease significantly.
 このため、各セルの内、主として短波長域の成分を吸収するセルにおいては、周囲環境の変化による電流値の減少量が、他のセルの電流値の減少量よりも相対的に大きくなる。
 よって、各セルにより出力される電流の間で差が大きくなり、多接合型太陽電池素子全体としての発電効率が低下してしまうことがある。
For this reason, in each cell that mainly absorbs components in the short wavelength region, the amount of decrease in current value due to changes in the surrounding environment is relatively greater than the amount of decrease in current value of other cells.
Therefore, the difference between the currents output by each cell increases, and the power generation efficiency of the entire multi-junction solar cell element may decrease.
 このように、従来の多接合型の光発電素子では、各セルが直列に接続されることで、光発電素子全体の電流値が、各セルにより出力される電流値の内、最も小さい電流値に制限されるため、環境変化の影響等によって発電効率が低下することがあった。 As described above, in the conventional multi-junction photovoltaic device, each cell is connected in series, so that the current value of the entire photovoltaic device is the smallest current value among the current values output by each cell. Therefore, power generation efficiency may be reduced due to environmental changes.
 本開示はこのような事情に鑑みてなされたものであり、発電効率の低下を抑制することができる光発電素子の提供を目的とする。 The present disclosure has been made in view of such circumstances, and an object thereof is to provide a photovoltaic device capable of suppressing a decrease in power generation efficiency.
[本開示の効果]
 本開示によれば、発電効率の低下を抑制することができる。
[Effects of the present disclosure]
According to the present disclosure, it is possible to suppress a decrease in power generation efficiency.
[実施形態の説明]
 最初に実施形態の内容を列記して説明する。
(1)一実施形態である光発電素子は、少なくとも、第1光電変換セルと、第2光電変換セルと、を含む光発電素子であって、前記第1光電変換セルと、前記第2光電変換セルとは、前記第1光電変換セルと前記第2光電変換セルとを絶縁する絶縁層を介して積層されている。
[Description of Embodiment]
First, the contents of the embodiment will be listed and described.
(1) A photovoltaic device according to an embodiment is a photovoltaic device including at least a first photoelectric conversion cell and a second photoelectric conversion cell, wherein the first photoelectric conversion cell and the second photoelectric conversion cell are included. The conversion cell is laminated through an insulating layer that insulates the first photoelectric conversion cell and the second photoelectric conversion cell.
 上記構成の光発電素子によれば、絶縁層を介して第1光電変換セルと第2光電変換セルとが積層されているので、第1光電変換セル及び第2光電変換セルを独立した光発電素子として用いることができる。
 この結果、第1光電変換セルと第2光電変換セルとを並列に接続することもできるし、それぞれ独立した経路に接続することもできる。これにより、各セルそれぞれについて最適な状態で電流を出力させることができる。この結果、光発電素子全体として発電効率の低下を抑制することができる。
According to the photovoltaic device having the above configuration, since the first photoelectric conversion cell and the second photoelectric conversion cell are stacked via the insulating layer, the first photoelectric conversion cell and the second photoelectric conversion cell are independently photovoltaic. It can be used as an element.
As a result, the first photoelectric conversion cell and the second photoelectric conversion cell can be connected in parallel, or can be connected to independent paths. Thereby, it is possible to output current in an optimal state for each cell. As a result, it is possible to suppress a decrease in power generation efficiency as a whole photovoltaic power generation element.
(2)上記光発電素子において、前記第1光電変換セル及び前記第2光電変換セルのそれぞれに、p側電極及びn側電極が設けられていることが好ましい。
 この場合、第1光電変換セルと第2光電変換セルとを並列に接続することもできるし、互いに独立した経路に接続することもできる。
(2) In the photovoltaic device, it is preferable that a p-side electrode and an n-side electrode are provided in each of the first photoelectric conversion cell and the second photoelectric conversion cell.
In this case, a 1st photoelectric conversion cell and a 2nd photoelectric conversion cell can also be connected in parallel, and can also be connected to a mutually independent path | route.
(3)上記光発電素子において、前記第1光電変換セル及び前記第2光電変換セルのうちのいずれか一方と、前記絶縁層との間には、前記p側電極又は前記n側電極のいずれか一方を構成する電極層が設けられていることが好ましい。
 これにより、第1光電変換セルと第2光電変換セルとを絶縁層を介して積層したとしても、一方の光電変換セルに対して電極を設けることができる。
(3) In the photovoltaic device, between the one of the first photoelectric conversion cell and the second photoelectric conversion cell and the insulating layer, either the p-side electrode or the n-side electrode It is preferable that an electrode layer constituting either of them is provided.
Thereby, even if a 1st photoelectric conversion cell and a 2nd photoelectric conversion cell are laminated | stacked through an insulating layer, an electrode can be provided with respect to one photoelectric conversion cell.
(4)また、上記光発電素子において、前記絶縁層は、ノンドープ層であってもよい。
 この場合、第1光電変換セルと第2光電変換セルとの間に、容易に絶縁層を設けることができる。
(4) In the photovoltaic device, the insulating layer may be a non-doped layer.
In this case, an insulating layer can be easily provided between the first photoelectric conversion cell and the second photoelectric conversion cell.
(5)また、上記光発電素子において、前記第1光電変換セル及び前記第2光電変換セルの内、少なくともいずれか一方が複数のサブセルを接合して構成されていてもよい。
 この場合、光電変換セルの組み合わせの自由度を高めることができる。
(5) In the photovoltaic device, at least one of the first photoelectric conversion cell and the second photoelectric conversion cell may be configured by joining a plurality of subcells.
In this case, the freedom degree of the combination of a photoelectric conversion cell can be raised.
(6)また、上記光発電素子において、前記第1光電変換セル及び前記第2光電変換セルの内、少なくともいずれか一方が化合物半導体からなるものであってもよい。
 この場合、一方の光電変換セルを、絶縁層とともに気相成長法等で形成することができ、製造が容易となる。
(6) In the photovoltaic device, at least one of the first photoelectric conversion cell and the second photoelectric conversion cell may be made of a compound semiconductor.
In this case, one of the photoelectric conversion cells can be formed together with the insulating layer by a vapor deposition method or the like, and the manufacture becomes easy.
[実施形態の詳細]
 以下、好ましい実施形態について図面を参照しつつ説明する。
 なお、以下に記載する各実施形態の少なくとも一部を任意に組み合わせてもよい。
[Details of the embodiment]
Hereinafter, preferred embodiments will be described with reference to the drawings.
Note that at least a part of each embodiment described below may be arbitrarily combined.
〔第1実施形態について〕
 図1は、第1実施形態に係る光発電素子の平面図、図2は、図1中、II-II線矢視断面の一部を示す図であって、光発電素子1の端部断面を示している。
 光発電素子1は、太陽光等の光を受光することで光電変換による発電を行う素子である。光発電素子1は、図1に示すように、平面視において矩形状とされている。
 光発電素子1は、図2に示すように、第1光電変換セル11と、第2光電変換セル12と、第3光電変換セル13とを積層して構成されている。光発電素子1の端部には、各光電変換セル11,12,13の端部によって段差が形成されている。
 なお、ここで、光電変換セルとは、pn接合を含む半導体層であって入射光に基づく光電変換によって発電する半導体層である。
[About the first embodiment]
FIG. 1 is a plan view of the photovoltaic device according to the first embodiment, and FIG. 2 is a diagram showing a part of the section taken along line II-II in FIG. Is shown.
The photovoltaic device 1 is an element that generates electricity by photoelectric conversion by receiving light such as sunlight. As shown in FIG. 1, the photovoltaic device 1 has a rectangular shape in plan view.
As shown in FIG. 2, the photovoltaic element 1 is configured by stacking a first photoelectric conversion cell 11, a second photoelectric conversion cell 12, and a third photoelectric conversion cell 13. At the end of the photovoltaic device 1, a step is formed by the end of each photoelectric conversion cell 11, 12, 13.
Here, the photoelectric conversion cell is a semiconductor layer that includes a pn junction and generates power by photoelectric conversion based on incident light.
 第1光電変換セル11と、第2光電変換セル12との間には、第1絶縁層15が介在している。
 また、第2光電変換セル12と、第3光電変換セル13との間には、第2絶縁層16が介在している。
 なお、図2において、光の入射方向は、紙面上方向から下方向に向く方向であり、以下の説明では、各層において、光の入射側面を表面、その反対面を裏面という。
A first insulating layer 15 is interposed between the first photoelectric conversion cell 11 and the second photoelectric conversion cell 12.
Further, a second insulating layer 16 is interposed between the second photoelectric conversion cell 12 and the third photoelectric conversion cell 13.
In FIG. 2, the light incident direction is a direction from the upper direction to the lower direction in the drawing, and in the following description, in each layer, the light incident side surface is referred to as the front surface and the opposite surface is referred to as the rear surface.
 第1光電変換セル11は、裏面側に設けられたp型Ge層と、p型Ge層上に設けられp型Ge層とpn接合されたn型Ge層とを含む。
 第1光電変換セル11の厚さは、例えば、100μm~200μm程度である。
 第1光電変換セル11は、層状に形成された第1電極21の表面に積層されている。第1電極21は、例えば、AuGeNi合金よりなる。
 第1光電変換セル11の表面は、第1絶縁層15が積層されている積層面23と、光の入射方向に露出している露出面24とを含む。
The first photoelectric conversion cell 11 includes a p-type Ge layer provided on the back surface side, and an n-type Ge layer provided on the p-type Ge layer and pn-junctioned with the p-type Ge layer.
The thickness of the first photoelectric conversion cell 11 is, for example, about 100 μm to 200 μm.
The 1st photoelectric conversion cell 11 is laminated | stacked on the surface of the 1st electrode 21 formed in the layer form. The first electrode 21 is made of, for example, an AuGeNi alloy.
The surface of the first photoelectric conversion cell 11 includes a laminated surface 23 on which the first insulating layer 15 is laminated and an exposed surface 24 exposed in the light incident direction.
 露出面24は、図1に示すように、第1光電変換セル11の表面において互いに平行な2辺に沿う縁部両方に設けられている。
 露出面24には、第2電極25が設けられている。第2電極25は、両側の露出面24に形成されており、露出面24の長手方向に沿って線状に形成されている。第2電極25は、例えば、AuGeNi合金よりなる。
 第2電極25は、第1光電変換セル11の露出面24に設けられることで第1光電変換セル11のn側電極を構成している。
 また、第1電極21は、その表面上に第1光電変換セル11が積層されることで第1光電変換セル11のp側電極を構成している。
As shown in FIG. 1, the exposed surface 24 is provided on both edges along two sides parallel to each other on the surface of the first photoelectric conversion cell 11.
A second electrode 25 is provided on the exposed surface 24. The second electrode 25 is formed on the exposed surfaces 24 on both sides, and is formed linearly along the longitudinal direction of the exposed surface 24. The second electrode 25 is made of, for example, an AuGeNi alloy.
The second electrode 25 forms an n-side electrode of the first photoelectric conversion cell 11 by being provided on the exposed surface 24 of the first photoelectric conversion cell 11.
Moreover, the 1st electrode 21 comprises the p side electrode of the 1st photoelectric conversion cell 11 by laminating | stacking the 1st photoelectric conversion cell 11 on the surface.
 第2光電変換セル12は、第1絶縁層15の表面に積層された第1電極層31の表面に積層されている。つまり、第2光電変換セル12と、第1絶縁層15との間には、第1電極層31が積層されている。よって、第2光電変換セル12と、第1光電変換セル11との間には、第1絶縁層15と、第1電極層31とが介在している。 The second photoelectric conversion cell 12 is laminated on the surface of the first electrode layer 31 laminated on the surface of the first insulating layer 15. That is, the first electrode layer 31 is stacked between the second photoelectric conversion cell 12 and the first insulating layer 15. Therefore, the first insulating layer 15 and the first electrode layer 31 are interposed between the second photoelectric conversion cell 12 and the first photoelectric conversion cell 11.
 第1電極層31は、半導体層であり、例えば、Znを1019~1020cm-3程度の高濃度でドーピングしたp型のInGaAsP層で構成されている。
 第1電極層31は、高濃度でドーピングされているため、入射光を減衰させるおそれがある。このため、第1電極層31の厚さは、0.1μm以下であることが好ましい。これにより、第1電極層31による入射光の減衰を抑制することができる。
The first electrode layer 31 is a semiconductor layer, and is composed of, for example, a p-type InGaAsP layer doped with Zn at a high concentration of about 10 19 to 10 20 cm −3 .
Since the first electrode layer 31 is doped at a high concentration, the incident light may be attenuated. For this reason, it is preferable that the thickness of the 1st electrode layer 31 is 0.1 micrometer or less. Thereby, attenuation of incident light by the first electrode layer 31 can be suppressed.
 第1電極層31の表面は、第2光電変換セル12が積層されている積層面33と、光の入射方向に露出している露出面34とを含む。
 露出面34は、図1に示すように、第1電極層31の表面において露出面24に沿う2辺の縁部両方に設けられている。
 露出面34には、第3電極35が設けられている。第3電極35は、両側の露出面34に形成されており、露出面34の長手方向に沿って線状に形成されている。第3電極35は、例えば、AuGeNi合金よりなる。
The surface of the first electrode layer 31 includes a stacked surface 33 on which the second photoelectric conversion cells 12 are stacked and an exposed surface 34 exposed in the light incident direction.
As shown in FIG. 1, the exposed surface 34 is provided on both edges of the two sides along the exposed surface 24 on the surface of the first electrode layer 31.
A third electrode 35 is provided on the exposed surface 34. The third electrode 35 is formed on the exposed surfaces 34 on both sides, and is formed linearly along the longitudinal direction of the exposed surface 34. The third electrode 35 is made of, for example, an AuGeNi alloy.
 第2光電変換セル12は、第1電極層31の表面上に設けられたp型InGaAs層と、p型InGaAs層上に設けられp型InGaAs層とpn接合されたn型InGaAs層とを含む。つまり、第2光電変換セル12は、InGaAsを用いた化合物半導体からなる光電変換セルを構成する。
 第2光電変換セル12の厚さは、例えば、2μm~5μm程度である。
 第2光電変換セル12の表面は、第2絶縁層16が積層されている積層面36と、光の入射方向に露出している露出面37とを含む。
 露出面37は、図1に示すように、第2光電変換セル12の表面において露出面34に沿う2辺の縁部両方に設けられている。
 露出面37には、第4電極38が設けられている。第4電極38は、両側の露出面37に形成されており、露出面37の長手方向に沿って線状に形成されている。第4電極38は、例えば、AuGeNi合金よりなる。
The second photoelectric conversion cell 12 includes a p-type InGaAs layer provided on the surface of the first electrode layer 31, and an n-type InGaAs layer provided on the p-type InGaAs layer and pn-junctioned with the p-type InGaAs layer. . That is, the second photoelectric conversion cell 12 constitutes a photoelectric conversion cell made of a compound semiconductor using InGaAs.
The thickness of the second photoelectric conversion cell 12 is, for example, about 2 μm to 5 μm.
The surface of the second photoelectric conversion cell 12 includes a stacked surface 36 on which the second insulating layer 16 is stacked and an exposed surface 37 exposed in the light incident direction.
As shown in FIG. 1, the exposed surface 37 is provided on both edges of the two sides along the exposed surface 34 on the surface of the second photoelectric conversion cell 12.
A fourth electrode 38 is provided on the exposed surface 37. The fourth electrode 38 is formed on the exposed surfaces 37 on both sides, and is formed in a linear shape along the longitudinal direction of the exposed surface 37. The fourth electrode 38 is made of, for example, an AuGeNi alloy.
 第4電極38は、第2光電変換セル12の露出面37に設けられることで第2光電変換セル12のn側電極を構成している。
 また、第1電極層31は、その表面上に第2光電変換セル12が積層された状態でp型の半導体層を構成している。よって、第1電極層31及び第3電極35は、第2光電変換セル12のp側電極を構成している。
The fourth electrode 38 forms an n-side electrode of the second photoelectric conversion cell 12 by being provided on the exposed surface 37 of the second photoelectric conversion cell 12.
The first electrode layer 31 constitutes a p-type semiconductor layer in a state where the second photoelectric conversion cell 12 is laminated on the surface thereof. Therefore, the first electrode layer 31 and the third electrode 35 constitute a p-side electrode of the second photoelectric conversion cell 12.
 このように、本実施形態では、第2光電変換セル12と、第1絶縁層15との間に、第1電極層31が設けられているので、第1光電変換セル11と第2光電変換セル12とを第1絶縁層15を介して積層したとしても、第2光電変換セル12に対してp側電極を設けることができる。 Thus, in this embodiment, since the 1st electrode layer 31 is provided between the 2nd photoelectric conversion cell 12 and the 1st insulating layer 15, the 1st photoelectric conversion cell 11 and the 2nd photoelectric conversion are provided. Even if the cell 12 is stacked via the first insulating layer 15, a p-side electrode can be provided for the second photoelectric conversion cell 12.
 第3光電変換セル13は、第2絶縁層16の表面に積層された第2電極層41の表面に積層されている。つまり、第3光電変換セル13と、第2絶縁層16との間には、第2電極層41が積層されている。よって、第3光電変換セル13と、第2光電変換セル12との間には、第2絶縁層16と、第2電極層41とが介在している。 The third photoelectric conversion cell 13 is stacked on the surface of the second electrode layer 41 stacked on the surface of the second insulating layer 16. That is, the second electrode layer 41 is stacked between the third photoelectric conversion cell 13 and the second insulating layer 16. Therefore, the second insulating layer 16 and the second electrode layer 41 are interposed between the third photoelectric conversion cell 13 and the second photoelectric conversion cell 12.
 第2電極層41は、半導体層であり、第1電極層31と同様に、例えば、Znを1019~1020cm-3程度の高濃度でドーピングされたp型のInGaAsP層で構成されている。
 第2電極層41も、第1電極層31と同様、高濃度でドーピングされているため、入射光を減衰させるおそれがある。このため、第2電極層41の厚さは、0.1μm以下であることが好ましい。これにより、第1電極層31による入射光の減衰を抑制することができる。
The second electrode layer 41 is a semiconductor layer, and is composed of a p-type InGaAsP layer doped with Zn at a high concentration of about 10 19 to 10 20 cm −3 , for example, like the first electrode layer 31. Yes.
Similarly to the first electrode layer 31, the second electrode layer 41 is also doped at a high concentration, so that there is a possibility that incident light may be attenuated. For this reason, it is preferable that the thickness of the 2nd electrode layer 41 is 0.1 micrometer or less. Thereby, attenuation of incident light by the first electrode layer 31 can be suppressed.
 第2電極層41の表面は、第3光電変換セル13が積層されている積層面43と、光の入射方向に露出している露出面44とを含む。
 露出面44は、図1に示すように、第2電極層41の表面において露出面37に沿う2辺の縁部両方に設けられている。
 露出面44には、第5電極45が設けられている。第5電極45は、両側の露出面44に形成されており、露出面44の長手方向に沿って線状に形成されている。第5電極45は、例えば、AuGeNi合金よりなる。
The surface of the second electrode layer 41 includes a stacked surface 43 on which the third photoelectric conversion cells 13 are stacked and an exposed surface 44 exposed in the light incident direction.
As shown in FIG. 1, the exposed surface 44 is provided on both edges of the two sides along the exposed surface 37 on the surface of the second electrode layer 41.
A fifth electrode 45 is provided on the exposed surface 44. The fifth electrode 45 is formed on the exposed surfaces 44 on both sides, and is formed linearly along the longitudinal direction of the exposed surface 44. The fifth electrode 45 is made of, for example, an AuGeNi alloy.
 第3光電変換セル13は、第2電極層41の表面上に設けられたp型InGaP層と、p型InGaP層上に設けられp型InGaP層とpn接合されたn型InGaP層とを含む。つまり、第3光電変換セル13は、InGaPを用いた化合物半導体からなる光電変換セルを構成する。
 第3光電変換セル13の厚さは、例えば、2μm~5μm程度である。
 第3光電変換セル13の表面47には、第6電極46が設けられている。第6電極46は、両側の露出面44に沿う2辺に対して平行に延びているとともに表面47に所定間隔で並べられている線状の電極部を複数備えている。第6電極46は、例えば、AuGeNi合金よりなる。
The third photoelectric conversion cell 13 includes a p-type InGaP layer provided on the surface of the second electrode layer 41, and an n-type InGaP layer provided on the p-type InGaP layer and pn-junctioned with the p-type InGaP layer. . That is, the third photoelectric conversion cell 13 constitutes a photoelectric conversion cell made of a compound semiconductor using InGaP.
The thickness of the third photoelectric conversion cell 13 is, for example, about 2 μm to 5 μm.
A sixth electrode 46 is provided on the surface 47 of the third photoelectric conversion cell 13. The sixth electrode 46 includes a plurality of linear electrode portions that extend in parallel to two sides along the exposed surfaces 44 on both sides and are arranged on the surface 47 at a predetermined interval. The sixth electrode 46 is made of, for example, an AuGeNi alloy.
 第6電極46は、第3光電変換セル13の表面47に設けられることで第3光電変換セル13のn側電極を構成している。
 また、第2電極層41は、その表面上に第3光電変換セル13が積層された状態でp型の半導体層を構成している。よって、第2電極層41及び第5電極45は、第3光電変換セル13のp側電極を構成している。
The sixth electrode 46 constitutes the n-side electrode of the third photoelectric conversion cell 13 by being provided on the surface 47 of the third photoelectric conversion cell 13.
The second electrode layer 41 constitutes a p-type semiconductor layer in a state where the third photoelectric conversion cell 13 is laminated on the surface thereof. Therefore, the second electrode layer 41 and the fifth electrode 45 constitute a p-side electrode of the third photoelectric conversion cell 13.
 このように、本実施形態では、第3光電変換セル13と、第2絶縁層16との間に、第2電極層41が設けられているので、第2光電変換セル12と第3光電変換セル13とを第2絶縁層16を介して積層したとしても、第3光電変換セル13に対してp側電極を設けることができる。 Thus, in this embodiment, since the 2nd electrode layer 41 is provided between the 3rd photoelectric conversion cell 13 and the 2nd insulating layer 16, the 2nd photoelectric conversion cell 12 and the 3rd photoelectric conversion are provided. Even if the cell 13 is stacked via the second insulating layer 16, a p-side electrode can be provided for the third photoelectric conversion cell 13.
 第1絶縁層15は、半導体層であり、ノンドープ(ドーパントを含まない)のInGaAs層で構成されている。なお、ノンドープとは、ドーパントを意図的に添加せずに半導体層を形成したことを意味する。ノンドープのInGaAs層は、例えば、その厚さが0.01μm~0.2μm、ドーパントの濃度が1014cm-3程度とされている。これにより、第1絶縁層15は、第1光電変換セル11と、第2光電変換セル12の第1電極層31との間を絶縁している。 The first insulating layer 15 is a semiconductor layer and is composed of a non-doped (not including dopant) InGaAs layer. Note that non-doped means that the semiconductor layer was formed without intentionally adding a dopant. For example, the non-doped InGaAs layer has a thickness of 0.01 μm to 0.2 μm and a dopant concentration of about 10 14 cm −3 . Thereby, the first insulating layer 15 insulates between the first photoelectric conversion cell 11 and the first electrode layer 31 of the second photoelectric conversion cell 12.
 第2絶縁層16は、半導体層であり、ノンドープ(ドーパントを含まない)のInGaP層で構成されている。ノンドープのInGaP層も、第1絶縁層15と同様、その厚さが0.01μm~0.2μm、ドーパントの濃度が1014cm-3程度とされている。これにより、第2絶縁層16は、第2光電変換セル12と、第3光電変換セル13の第2電極層41との間を絶縁している。 The second insulating layer 16 is a semiconductor layer and is composed of a non-doped (not including dopant) InGaP layer. Similarly to the first insulating layer 15, the non-doped InGaP layer has a thickness of 0.01 μm to 0.2 μm and a dopant concentration of about 10 14 cm −3 . Thereby, the second insulating layer 16 insulates between the second photoelectric conversion cell 12 and the second electrode layer 41 of the third photoelectric conversion cell 13.
 本実施形態の光発電素子1では、第1絶縁層15を介して第1光電変換セル11と第2光電変換セル12とが積層されている。また、第2絶縁層16を介して第2光電変換セル12と第3光電変換セル13とが積層されている。よって、第1光電変換セル11、第2光電変換セル12、及び第3光電変換セル13それぞれを独立した光発電素子として用いることができる。 In the photovoltaic device 1 of the present embodiment, the first photoelectric conversion cell 11 and the second photoelectric conversion cell 12 are stacked via the first insulating layer 15. Further, the second photoelectric conversion cell 12 and the third photoelectric conversion cell 13 are stacked via the second insulating layer 16. Therefore, each of the first photoelectric conversion cell 11, the second photoelectric conversion cell 12, and the third photoelectric conversion cell 13 can be used as an independent photovoltaic device.
 さらに、光発電素子1は、各光電変換セル11,12,13それぞれに、p側電極及びn側電極が設けられている。
 よって、第1光電変換セル11は、第1電極21及び第2電極25から発電した電流を出力することができる。また、第2光電変換セル12は、第3電極35及び第4電極38から発電した電流を出力することができる。さらに、第3光電変換セル13は、第5電極45及び第6電極46から発電した電流を出力することができる。
Furthermore, in the photovoltaic device 1, each of the photoelectric conversion cells 11, 12, and 13 is provided with a p-side electrode and an n-side electrode.
Therefore, the first photoelectric conversion cell 11 can output the current generated from the first electrode 21 and the second electrode 25. Further, the second photoelectric conversion cell 12 can output a current generated from the third electrode 35 and the fourth electrode 38. Further, the third photoelectric conversion cell 13 can output a current generated from the fifth electrode 45 and the sixth electrode 46.
 この結果、第1光電変換セル11、第2光電変換セル12、及び第3光電変換セル13を互いに並列に接続することもできる。
 また、図2に示すように、各光電変換セル11,12,13それぞれにインバータI1,I2,I3を用意し、各光電変換セル11,12,13それぞれを独立した経路に接続して電流を出力させることができる。
As a result, the first photoelectric conversion cell 11, the second photoelectric conversion cell 12, and the third photoelectric conversion cell 13 can be connected in parallel to each other.
In addition, as shown in FIG. 2, inverters I1, I2, and I3 are prepared for the photoelectric conversion cells 11, 12, and 13, respectively, and the photoelectric conversion cells 11, 12, and 13 are connected to independent paths to supply current. Can be output.
 このように、本実施形態では、各光電変換セル11,12,13それぞれを独立した光発電素子として用いることができ、各光電変換セル11,12,13それぞれについて最適な状態で電流を出力させることができる。この結果、光発電素子1全体として発電効率の低下を抑制することができる。 Thus, in this embodiment, each photoelectric conversion cell 11, 12, 13 can be used as an independent photovoltaic device, and a current is output in an optimal state for each photoelectric conversion cell 11, 12, 13. be able to. As a result, it is possible to suppress a decrease in power generation efficiency as a whole of the photovoltaic device 1.
 また、本実施形態では、第2光電変換セル12、及び第3光電変換セル13が化合物半導体からなるので、後述するように、第2光電変換セル12、及び第3光電変換セル13を、絶縁層15,16とともに気相成長法で形成することができ、製造が容易である。 Moreover, in this embodiment, since the 2nd photoelectric conversion cell 12 and the 3rd photoelectric conversion cell 13 consist of compound semiconductors, the 2nd photoelectric conversion cell 12 and the 3rd photoelectric conversion cell 13 are insulated so that it may mention later. It can be formed together with the layers 15 and 16 by vapor phase epitaxy and is easy to manufacture.
 なお、本実施形態の光発電素子1は、各光電変換セル11,12,13の間に、第1絶縁層15、第1電極層31、第2絶縁層16、及び第2絶縁層16を介在させたので、入射光の減衰が考えられる。
 しかし、第1絶縁層15及び第2絶縁層16は、ノンドープのため、光の透過率がドーピングされている半導体層と比較して高い。このため、入射光を大きく減衰させることがない。
 また、第1電極層31、及び第2絶縁層16は、厚さを0.1μm以下とすることで、入射光の減衰を抑制することができる。
 以上により、本実施形態の光発電素子1は、絶縁層15,16及び電極層31,41を設けたにもかかわらず、これらによる入射光の減衰を抑えることができる。
In the photovoltaic device 1 of the present embodiment, the first insulating layer 15, the first electrode layer 31, the second insulating layer 16, and the second insulating layer 16 are provided between the photoelectric conversion cells 11, 12, and 13. Since it is interposed, attenuation of incident light can be considered.
However, since the first insulating layer 15 and the second insulating layer 16 are non-doped, the light transmittance is higher than that of the semiconductor layer doped. For this reason, incident light is not greatly attenuated.
The first electrode layer 31 and the second insulating layer 16 can suppress the attenuation of incident light by setting the thickness to 0.1 μm or less.
As described above, the photovoltaic device 1 according to this embodiment can suppress the attenuation of incident light due to the insulating layers 15 and 16 and the electrode layers 31 and 41 provided.
 次に、本実施形態に係る光発電素子1の製造方法について説明する。
 図3Aは、光発電素子1の製造方法を説明するための図であって、光発電素子1に用いるGe基板の一部断面図である。なお、図3A中、紙面右側がGe基板の端部を示している。
 まず、図3Aに示すように、裏面にAuGeNi合金層51が裏面に積層されたGe基板52を用意する。このGe基板52は、予め、裏面側にp型Ge層、表面側にn型Ge層を含むように構成される。
Next, a method for manufacturing the photovoltaic device 1 according to this embodiment will be described.
FIG. 3A is a diagram for explaining a method of manufacturing the photovoltaic device 1 and is a partial cross-sectional view of a Ge substrate used for the photovoltaic device 1. In FIG. 3A, the right side of the drawing shows the end of the Ge substrate.
First, as shown in FIG. 3A, a Ge substrate 52 having an AuGeNi alloy layer 51 laminated on the back surface is prepared. The Ge substrate 52 is previously configured to include a p-type Ge layer on the back surface side and an n-type Ge layer on the front surface side.
 このGe基板52の表面に、MOCVD(Metal Organic Chemical Vapor Deposition)を用いた有機金属化学気相法等によって、各半導体層を順次積層する。 Each semiconductor layer is sequentially laminated on the surface of the Ge substrate 52 by a metal organic chemical vapor deposition method using MOCVD (Metal Organic Chemical Deposition).
 図3Bは、各半導体層が形成された第1積層体の一部断面図である。なお、図3B中、紙面右側がGe基板(第1積層体)の端部を示している。
 第1光電変換セル11となるGe基板52上には、第1絶縁層15であるノンドープのInGaAs層、第1電極層31であるp型のInGaAsP層、第2光電変換セル12であるInGaAs層(p型InGaAs層及びn型InGaAs層)、第2絶縁層16であるノンドープのInGaP層、第2電極層41であるp型のInGaAsP層、及び第3光電変換セル13であるInGaP層(p型InGaP層及びn型InGaP層)が順次積層される。
FIG. 3B is a partial cross-sectional view of the first stacked body in which each semiconductor layer is formed. In FIG. 3B, the right side of the drawing shows the end of the Ge substrate (first stacked body).
On the Ge substrate 52 to be the first photoelectric conversion cell 11, a non-doped InGaAs layer that is the first insulating layer 15, a p-type InGaAsP layer that is the first electrode layer 31, and an InGaAs layer that is the second photoelectric conversion cell 12. (P-type InGaAs layer and n-type InGaAs layer), a non-doped InGaP layer that is the second insulating layer 16, a p-type InGaAsP layer that is the second electrode layer 41, and an InGaP layer that is the third photoelectric conversion cell 13 (p Type InGaP layer and n-type InGaP layer) are sequentially laminated.
 このように、Ge基板52の表面に各半導体層を積層形成することで、各半導体層が積層された第1積層体55が得られる。
 次いで、第1積層体55の各層に対してエッチングを行い、各層の端部における露出面24,34,37,44を形成する。
In this manner, by forming each semiconductor layer on the surface of the Ge substrate 52, the first stacked body 55 in which the respective semiconductor layers are stacked is obtained.
Next, etching is performed on each layer of the first stacked body 55 to form exposed surfaces 24, 34, 37, and 44 at end portions of the respective layers.
 図3Cは、エッチング後の第1積層体55の一部断面図である。なお、図3C中、紙面右側が第1積層体55の端部を示している。
 図3Cに示すように、エッチング後の第1積層体55には、第1光電変換セル11の表面に露出面24が形成され、第1電極層31の表面に露出面34が形成され、第2光電変換セル12の表面に露出面37が形成され、第2電極層41の表面に露出面44が形成されている。
FIG. 3C is a partial cross-sectional view of the first stacked body 55 after etching. In FIG. 3C, the right side of the drawing shows the end of the first stacked body 55.
As shown in FIG. 3C, in the etched first stacked body 55, the exposed surface 24 is formed on the surface of the first photoelectric conversion cell 11, the exposed surface 34 is formed on the surface of the first electrode layer 31, and the first The exposed surface 37 is formed on the surface of the two photoelectric conversion cells 12, and the exposed surface 44 is formed on the surface of the second electrode layer 41.
 なお、このとき、第1電極層31及び第2電極層41をInGaAsP層とすることで、エッチングストップ層として機能させることができる。すなわち、Pの比率を調整することでエッチングレートを調整し、InGaAsP層である第1電極層31及び第2電極層41をエッチングストップ層とすることができる。
 これにより、本実施形態の第1電極層31及び第2電極層41は、電極として機能させるとともに、エッチングストップ層として機能させることができる。
At this time, if the first electrode layer 31 and the second electrode layer 41 are InGaAsP layers, they can function as an etching stop layer. That is, the etching rate can be adjusted by adjusting the ratio of P, and the first electrode layer 31 and the second electrode layer 41 that are InGaAsP layers can be used as the etching stop layer.
Thereby, the 1st electrode layer 31 and the 2nd electrode layer 41 of this embodiment can be functioned as an etching stop layer while functioning as an electrode.
 エッチングにより、各露出面24,34,37,44を形成した後、蒸着等によって、第2電極25、第3電極35、第4電極38、第5電極45、及び第6電極46を形成する。
 以上により、本実施形態の光発電素子1を製造することができる。
After the exposed surfaces 24, 34, 37, 44 are formed by etching, the second electrode 25, the third electrode 35, the fourth electrode 38, the fifth electrode 45, and the sixth electrode 46 are formed by vapor deposition or the like. .
As described above, the photovoltaic element 1 of this embodiment can be manufactured.
 また、本実施形態の光発電素子1は、以下の方法によっても製造することができる。
 すなわち、第1光電変換セル11、第2光電変換セル12、及び第3光電変換セル13を個別に形成し、これらを接合することによって製造することができる。
Moreover, the photovoltaic device 1 of this embodiment can also be manufactured by the following method.
That is, the first photoelectric conversion cell 11, the second photoelectric conversion cell 12, and the third photoelectric conversion cell 13 can be individually formed and manufactured by joining them.
 図4Aは、光発電素子1の他の製造方法を説明するための図であって、各光電変換セルに対応する積層体の一部断面図である。 FIG. 4A is a diagram for explaining another manufacturing method of the photovoltaic device 1, and is a partial cross-sectional view of a stacked body corresponding to each photoelectric conversion cell.
 図4A中、第1光電変換セル11に対応する第2積層体57は、第1電極21となるAuGeNi合金層61と、第1光電変換セル11となるGe基板62とを含んで構成されている。なお、Ge基板62は、p型Ge層、及びn型Ge層を含んでいる。
 第2光電変換セル12に対応する第3積層体58は、第1絶縁層15となるノンドープのInGaAs層71、第1電極層31となるp型のInGaAsP層72、第2光電変換セル12となるInGaAs層73を含んで構成されている。なお、InGaAs層73は、p型InGaAs層、及びn型InGaAs層を含んでいる。
 第3光電変換セル13に対応する第4積層体59は、第2絶縁層16となるノンドープのInGaP層81、第2電極層41となるp型のInGaAsP層82、及び第3光電変換セル13となるInGaP層83を含んで構成されている。なお、InGaP層83は、p型InGaP層、及びn型InGaP層を含んでいる。
In FIG. 4A, the second stacked body 57 corresponding to the first photoelectric conversion cell 11 includes an AuGeNi alloy layer 61 to be the first electrode 21 and a Ge substrate 62 to be the first photoelectric conversion cell 11. Yes. The Ge substrate 62 includes a p-type Ge layer and an n-type Ge layer.
The third stacked body 58 corresponding to the second photoelectric conversion cell 12 includes a non-doped InGaAs layer 71 to be the first insulating layer 15, a p-type InGaAsP layer 72 to be the first electrode layer 31, the second photoelectric conversion cell 12, and The InGaAs layer 73 is formed. The InGaAs layer 73 includes a p-type InGaAs layer and an n-type InGaAs layer.
The fourth stacked body 59 corresponding to the third photoelectric conversion cell 13 includes a non-doped InGaP layer 81 serving as the second insulating layer 16, a p-type InGaAsP layer 82 serving as the second electrode layer 41, and the third photoelectric conversion cell 13. The InGaP layer 83 is formed. The InGaP layer 83 includes a p-type InGaP layer and an n-type InGaP layer.
 積層体58,59は、上記で説明した方法と同様、有機金属化学気相法等によって、各半導体層を順次積層することで形成することができる。 The laminated bodies 58 and 59 can be formed by sequentially laminating each semiconductor layer by a metal organic chemical vapor deposition method or the like, similar to the method described above.
 次に、これら各積層体57,58,59を積層した状態でアニーリングを行うことで、各積層体57,58,59を互いに接合させる。
 これにより。図4Bに示すように、各半導体層が積層された第1積層体55が得られる。
 以降は、図3Cにて示した製造方法と同様の方法によって光発電素子1を得ることができる。
Next, annealing is performed in a state where these stacked bodies 57, 58, and 59 are stacked, thereby bonding the stacked bodies 57, 58, and 59 to each other.
By this. As shown in FIG. 4B, a first stacked body 55 in which the respective semiconductor layers are stacked is obtained.
Thereafter, the photovoltaic element 1 can be obtained by the same method as the manufacturing method shown in FIG. 3C.
 以上のように、本実施形態の光発電素子1は、第1光電変換セル11、第2光電変換セル12、及び第3光電変換セル13を個別に形成し、これらを接合することによっても製造することができる。 As described above, the photovoltaic device 1 of the present embodiment is also manufactured by individually forming the first photoelectric conversion cell 11, the second photoelectric conversion cell 12, and the third photoelectric conversion cell 13, and joining them. can do.
〔第2実施形態について〕
 図5は、第2実施形態に係る光発電素子端部の平面図、図6は、図5中、VI-VI線矢視断面の一部を示す図であって、光発電素子1の端部断面を示している。
 本実施形態は、図6に示すように、2つの光電変換セルである第1光電変換セル111及び第2光電変換セル112を積層している点、及び第1光電変換セル111が、第1サブセル122及び第2サブセル129によって構成されている点において、第1実施形態と相違している。
[About the second embodiment]
FIG. 5 is a plan view of the end portion of the photovoltaic device according to the second embodiment, and FIG. 6 is a view showing a part of the cross section taken along line VI-VI in FIG. The cross section is shown.
In the present embodiment, as shown in FIG. 6, the first photoelectric conversion cell 111 and the second photoelectric conversion cell 112 that are two photoelectric conversion cells are stacked, and the first photoelectric conversion cell 111 is the first photoelectric conversion cell. The second embodiment is different from the first embodiment in that the subcell 122 and the second subcell 129 are configured.
 図6中、第1光電変換セル111と、第2光電変換セル112との間には、絶縁層115が介在している。
 この光発電素子1も第1実施形態と同様、平面視において矩形状とされており、その端部には、図6に示すように、光電変換セル111,112の端部によって段差が形成されている。
In FIG. 6, an insulating layer 115 is interposed between the first photoelectric conversion cell 111 and the second photoelectric conversion cell 112.
Similar to the first embodiment, this photovoltaic element 1 is also rectangular in plan view, and at its end, a step is formed by the ends of the photoelectric conversion cells 111 and 112 as shown in FIG. ing.
 第1光電変換セル111は、裏面側に設けられた第1サブセル122と、第1サブセル122上に積層された第2サブセル129と、両サブセル122,129を接合するトンネル接合層128とを含む。
 第1光電変換セル111は、層状に形成された第1電極121の表面に積層されている。第1電極121は、例えば、AuGeNi合金よりなる。
The first photoelectric conversion cell 111 includes a first subcell 122 provided on the back surface side, a second subcell 129 stacked on the first subcell 122, and a tunnel junction layer 128 that joins both the subcells 122 and 129. .
The 1st photoelectric conversion cell 111 is laminated | stacked on the surface of the 1st electrode 121 formed in the layer form. The first electrode 121 is made of, for example, an AuGeNi alloy.
 第1サブセル122は、裏面側に設けられたp型Ge層と、p型Ge層上に設けられp型Ge層とpn接合されたn型Ge層とを含む。
 第2サブセル129は、裏面側に設けられたp型InGaAs層と、p型InGaAs層上に設けられp型InGaAs層とpn接合されたn型InGaAs層とを含む。
 トンネル接合層128は、第1サブセル122と、第2サブセル129との間に介在して接合している。トンネル接合層128は、第1サブセル122側に設けられたn型InGaAs層と、第2サブセル129側に設けられたp型InGaAs層とを含む。
The first subcell 122 includes a p-type Ge layer provided on the back surface side, and an n-type Ge layer provided on the p-type Ge layer and pn-junctioned with the p-type Ge layer.
The second subcell 129 includes a p-type InGaAs layer provided on the back surface side, and an n-type InGaAs layer provided on the p-type InGaAs layer and pn-junctioned with the p-type InGaAs layer.
The tunnel junction layer 128 is interposed and joined between the first subcell 122 and the second subcell 129. Tunnel junction layer 128 includes an n-type InGaAs layer provided on the first subcell 122 side and a p-type InGaAs layer provided on the second subcell 129 side.
 第1光電変換セル111の表面は、絶縁層115が積層されている積層面123と、光の入射方向に露出している露出面124とを含む。
 露出面124は、図5に示すように、第1光電変換セル111の表面において互いに平行な2辺に沿う縁部両方に設けられている。
 露出面124には、第2電極125が設けられている。第2電極125は、両側の露出面124に形成されており、露出面124の長手方向に沿って線状に形成されている。第2電極125は、例えば、AuGeNi合金よりなる。
 第2電極125は、第1光電変換セル111の露出面124に設けられることで第1光電変換セル111のn側電極を構成している。
 また、第1電極121は、その表面上に第1光電変換セル111が積層されることで第1光電変換セル111のp側電極を構成している。
The surface of the first photoelectric conversion cell 111 includes a laminated surface 123 on which the insulating layer 115 is laminated and an exposed surface 124 exposed in the light incident direction.
As shown in FIG. 5, the exposed surface 124 is provided on both edges along two sides parallel to each other on the surface of the first photoelectric conversion cell 111.
A second electrode 125 is provided on the exposed surface 124. The second electrode 125 is formed on the exposed surfaces 124 on both sides, and is formed in a linear shape along the longitudinal direction of the exposed surface 124. The second electrode 125 is made of, for example, an AuGeNi alloy.
The second electrode 125 constitutes an n-side electrode of the first photoelectric conversion cell 111 by being provided on the exposed surface 124 of the first photoelectric conversion cell 111.
Moreover, the 1st electrode 121 comprises the p side electrode of the 1st photoelectric conversion cell 111 by laminating | stacking the 1st photoelectric conversion cell 111 on the surface.
 第2光電変換セル112は、絶縁層115の表面に積層された第1電極層131の表面に積層されている。つまり、第2光電変換セル112と、第1光電変換セル111とは、絶縁層115、及び第1電極層131を介して積層されている。 The second photoelectric conversion cell 112 is laminated on the surface of the first electrode layer 131 laminated on the surface of the insulating layer 115. That is, the second photoelectric conversion cell 112 and the first photoelectric conversion cell 111 are stacked with the insulating layer 115 and the first electrode layer 131 interposed therebetween.
 第1電極層131は、高濃度でドーピングされたp型のInGaAsP層で構成されている。なお、第1電極層131は、第1実施形態の第1電極層31と同様の構成とされている。
 第1電極層131の表面は、第2光電変換セル112が積層されている積層面133と、光の入射方向に露出している露出面134とを含む。
 露出面134は、図5に示すように、第1電極層131の表面において露出面124に沿う2辺の縁部両方に設けられている。
 露出面134には、第3電極135が設けられている。第3電極135は、両側の露出面134に形成されており、露出面134の長手方向に沿って線状に形成されている。第3電極135は、例えば、AuGeNi合金よりなる。
The first electrode layer 131 is composed of a p-type InGaAsP layer doped at a high concentration. The first electrode layer 131 has the same configuration as the first electrode layer 31 of the first embodiment.
The surface of the first electrode layer 131 includes a stacked surface 133 on which the second photoelectric conversion cells 112 are stacked, and an exposed surface 134 exposed in the light incident direction.
As shown in FIG. 5, the exposed surface 134 is provided on both edges of the two sides along the exposed surface 124 on the surface of the first electrode layer 131.
A third electrode 135 is provided on the exposed surface 134. The third electrode 135 is formed on the exposed surfaces 134 on both sides, and is formed in a linear shape along the longitudinal direction of the exposed surface 134. The third electrode 135 is made of, for example, an AuGeNi alloy.
 第2光電変換セル112は、第1電極層131の表面上に設けられたp型InGaP層と、p型InGaP層上に設けられp型InGaP層とpn接合されたn型InGaP層とを含む。
 第2光電変換セル112の表面139には、第4電極138が設けられている。第4電極138は、両側の露出面134に沿う2辺に対して平行に延びているとともに表面139に所定間隔で並べられている線状の電極部を複数備えている。第4電極138は、例えば、AuGeNi合金よりなる。
The second photoelectric conversion cell 112 includes a p-type InGaP layer provided on the surface of the first electrode layer 131, and an n-type InGaP layer provided on the p-type InGaP layer and pn-junctioned with the p-type InGaP layer. .
A fourth electrode 138 is provided on the surface 139 of the second photoelectric conversion cell 112. The fourth electrode 138 includes a plurality of linear electrode portions that extend parallel to two sides along the exposed surfaces 134 on both sides and are arranged on the surface 139 at a predetermined interval. The fourth electrode 138 is made of, for example, an AuGeNi alloy.
 第4電極138は、第2光電変換セル112の表面139に設けられることで第2光電変換セル112のn側電極を構成している。
 また、第1電極層131は、その表面上に第2光電変換セル112が積層された状態でp型の半導体層を構成している。よって、第1電極層131及び第3電極135は、第2光電変換セル112のp側電極を構成している。
The fourth electrode 138 forms the n-side electrode of the second photoelectric conversion cell 112 by being provided on the surface 139 of the second photoelectric conversion cell 112.
The first electrode layer 131 forms a p-type semiconductor layer with the second photoelectric conversion cell 112 stacked on the surface thereof. Therefore, the first electrode layer 131 and the third electrode 135 constitute a p-side electrode of the second photoelectric conversion cell 112.
 絶縁層115は、ノンドープのInGaP層で構成されている。これにより、第1絶縁層15は、第1光電変換セル11と、第2光電変換セル12の第1電極層31との間を絶縁している。なお、絶縁層115は、第1実施形態の第1絶縁層15及び第2絶縁層16と同様の構成とされている。 The insulating layer 115 is composed of a non-doped InGaP layer. Thereby, the first insulating layer 15 insulates between the first photoelectric conversion cell 11 and the first electrode layer 31 of the second photoelectric conversion cell 12. The insulating layer 115 has the same configuration as the first insulating layer 15 and the second insulating layer 16 of the first embodiment.
 本実施形態の光発電素子1においても、第1実施形態と同様、絶縁層115を介して第1光電変換セル111と第2光電変換セル112とが積層されている。よって、第1光電変換セル111、及び第2光電変換セル112それぞれを独立した光発電素子として用いることができる。 Also in the photovoltaic device 1 of this embodiment, the 1st photoelectric conversion cell 111 and the 2nd photoelectric conversion cell 112 are laminated | stacked through the insulating layer 115 similarly to 1st Embodiment. Therefore, each of the first photoelectric conversion cell 111 and the second photoelectric conversion cell 112 can be used as an independent photovoltaic device.
 また、本実施形態では、第1光電変換セル11を第1サブセル122及び第2サブセル129によって構成したので、光電変換セルの組み合わせの自由度を高めることができる。 Moreover, in this embodiment, since the 1st photoelectric conversion cell 11 was comprised by the 1st subcell 122 and the 2nd subcell 129, the freedom degree of the combination of a photoelectric conversion cell can be raised.
 なお、本実施形態の製造方法は、第1実施形態の製造方法と同様の方法によって製造することができる。 In addition, the manufacturing method of this embodiment can be manufactured by the same method as the manufacturing method of 1st Embodiment.
〔その他〕
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。
 上記各実施形態では、3つの光電変換セルを用いた場合を示したが、2つの光電変換セルで光発電素子1を構成してもよいし、4つ以上の光電変換セルを用いて光発電素子1を構成してもよい。
[Others]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive.
In each of the embodiments described above, the case where three photoelectric conversion cells are used has been described. However, the photovoltaic device 1 may be configured by two photoelectric conversion cells, or photovoltaic power generation using four or more photoelectric conversion cells. The element 1 may be configured.
 また、上記各実施形態では、絶縁層15,16,115として、ノンドープの半導体層(InGaAs層又はInGaP層)で構成した場合を例示したが、これに限定されるものではない。絶縁層の組成は、隣接する半導体層の組成に応じて適宜設定することができる。例えば、第1実施形態では、第2絶縁層16をノンドープのInGaP層で構成したが、第2絶縁層16に隣接する第2光電変換セル12と同じ組成であるInGaAs層で構成してもよい。 In each of the above embodiments, the insulating layers 15, 16, and 115 are configured by non-doped semiconductor layers (InGaAs layers or InGaP layers). However, the present invention is not limited to this. The composition of the insulating layer can be appropriately set according to the composition of the adjacent semiconductor layer. For example, in the first embodiment, the second insulating layer 16 is composed of a non-doped InGaP layer, but may be composed of an InGaAs layer having the same composition as that of the second photoelectric conversion cell 12 adjacent to the second insulating layer 16. .
 また、上記各実施形態では、絶縁層として半導体層をノンドープとしたものを用いた場合を例示したが、絶縁層は、介在する両側の光電変換セルを絶縁することができればよく、例えば、Feをドーピングした半導体層によって絶縁層を構成することもできる。 Further, in each of the above embodiments, the case where a semiconductor layer that is non-doped is used as the insulating layer is exemplified, but the insulating layer only needs to be able to insulate the photoelectric conversion cells on both sides, for example, Fe The insulating layer can also be constituted by a doped semiconductor layer.
 また、上記各実施形態では、光電変換セルとして、Ge層によるGeセル、InGaAs層によるInGaAsセル、InGaP層によるInGaPセルを用いた場合を示したが、これに限定されるわけではなく、他の半導体材料による光電変換セルを用いることもできる。 In each of the above embodiments, the case where a Ge cell using a Ge layer, an InGaAs cell using an InGaAs layer, or an InGaP cell using an InGaP layer is used as the photoelectric conversion cell. However, the present invention is not limited to this. A photoelectric conversion cell made of a semiconductor material can also be used.
 また、上記各実施形態では、電極層31,41,131を高濃度でドーピングした半導体層(InGaAsP層)で構成した場合を例示したが、例えば、AuGeNi合金等の金属で電極層を形成してもよい。 In each of the above embodiments, the electrode layers 31, 41 and 131 are exemplified by the semiconductor layer (InGaAsP layer) doped at a high concentration. For example, the electrode layer is formed of a metal such as an AuGeNi alloy. Also good.
 本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。 The scope of the present invention is shown not by the above-mentioned meaning but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
 1 光発電素子
 11 第1光電変換セル
 12 第2光電変換セル
 13 第3光電変換セル
 15 第1絶縁層
 16 第2絶縁層
 21 第1電極
 23 積層面
 24 露出面
 25 第2電極
 31 第1電極層
 33 積層面
 34 露出面
 35 第3電極
 36 積層面
 37 露出面
 38 第4電極
 41 第2電極層
 43 積層面
 44 露出面
 45 第5電極
 46 第6電極
 47 表面
 51 AuGeNi合金層
 52 Ge基板
 55 第1積層体
 57 第2積層体
 58 第3積層体
 59 第4積層体
 61 AuGeNi合金層
 62 Ge基板
 111 第1光電変換セル
 112 第2光電変換セル
 115 絶縁層
 121 第1電極
 122 第1サブセル
 123 積層面
 124 露出面
 125 第2電極
 128 トンネル接合層
 129 第2サブセル
 131 第1電極層
 133 積層面
 134 露出面
 135 第3電極
 138 第4電極
 139 表面
 I1,I2,I3 インバータ
DESCRIPTION OF SYMBOLS 1 Photoelectric power generation element 11 1st photoelectric conversion cell 12 2nd photoelectric conversion cell 13 3rd photoelectric conversion cell 15 1st insulating layer 16 2nd insulating layer 21 1st electrode 23 Laminated surface 24 Exposed surface 25 2nd electrode 31 1st electrode Layer 33 Laminated surface 34 Exposed surface 35 Third electrode 36 Laminated surface 37 Exposed surface 38 Fourth electrode 41 Second electrode layer 43 Laminated surface 44 Exposed surface 45 Fifth electrode 46 Sixth electrode 47 Surface 51 AuGeNi alloy layer 52 Ge substrate 55 First laminated body 57 Second laminated body 58 Third laminated body 59 Fourth laminated body 61 AuGeNi alloy layer 62 Ge substrate 111 First photoelectric conversion cell 112 Second photoelectric conversion cell 115 Insulating layer 121 First electrode 122 First subcell 123 Laminated surface 124 Exposed surface 125 Second electrode 128 Tunnel junction layer 129 Second subcell 131 First electrode layer 133 Laminated surface 13 Exposed surface 135 third electrode 138 fourth electrode 139 surface I1, I2, I3 inverter

Claims (6)

  1.  少なくとも、第1光電変換セルと、第2光電変換セルと、を含む光発電素子であって、
     前記第1光電変換セルと、前記第2光電変換セルとは、前記第1光電変換セルと前記第2光電変換セルとを絶縁する絶縁層を介して積層されている
    光発電素子。
    A photovoltaic device including at least a first photoelectric conversion cell and a second photoelectric conversion cell,
    The first photoelectric conversion cell and the second photoelectric conversion cell are photovoltaic elements that are stacked via an insulating layer that insulates the first photoelectric conversion cell and the second photoelectric conversion cell.
  2.  前記第1光電変換セル及び前記第2光電変換セルのそれぞれに、p側電極及びn側電極が設けられている
    請求項1に記載の光発電素子。
    The photovoltaic device according to claim 1, wherein a p-side electrode and an n-side electrode are provided in each of the first photoelectric conversion cell and the second photoelectric conversion cell.
  3.  前記第1光電変換セル及び前記第2光電変換セルのうちのいずれか一方と、前記絶縁層との間には、前記p側電極又は前記n側電極のいずれか一方を構成する電極層が設けられている
    請求項2に記載の光発電素子。
    An electrode layer constituting either the p-side electrode or the n-side electrode is provided between any one of the first photoelectric conversion cell and the second photoelectric conversion cell and the insulating layer. The photovoltaic device according to claim 2.
  4.  前記絶縁層は、ノンドープ層である
    請求項1から請求項3の少なくともいずれか一項に記載の光発電素子。
    The photovoltaic device according to any one of claims 1 to 3, wherein the insulating layer is a non-doped layer.
  5.  前記第1光電変換セル及び前記第2光電変換セルの内、少なくともいずれか一方が複数のサブセルを接合して構成されている
    請求項1から請求項4の少なくともいずれか一項に記載の光発電素子。
    5. The photovoltaic power generation according to claim 1, wherein at least one of the first photoelectric conversion cell and the second photoelectric conversion cell is configured by joining a plurality of subcells. 6. element.
  6.  前記第1光電変換セル及び前記第2光電変換セルの内、少なくともいずれか一方が化合物半導体からなる
    請求項1から請求項5の少なくともいずれか一項に記載の光発電素子。
     
    6. The photovoltaic device according to claim 1, wherein at least one of the first photoelectric conversion cell and the second photoelectric conversion cell is made of a compound semiconductor.
PCT/JP2018/014309 2017-06-08 2018-04-03 Photovoltaic generation element WO2018225361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017113100A JP2018207024A (en) 2017-06-08 2017-06-08 Optical power generation element
JP2017-113100 2017-06-08

Publications (1)

Publication Number Publication Date
WO2018225361A1 true WO2018225361A1 (en) 2018-12-13

Family

ID=64566838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014309 WO2018225361A1 (en) 2017-06-08 2018-04-03 Photovoltaic generation element

Country Status (3)

Country Link
JP (1) JP2018207024A (en)
TW (1) TW201904078A (en)
WO (1) WO2018225361A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510719A (en) * 2005-09-26 2009-03-12 インペリアル イノベーションズ リミテッド Photovoltaic cell
US20110174366A1 (en) * 2007-03-06 2011-07-21 Sunlight Photonics Inc. Spectrally adaptive multijunction photovoltaic thin film device and method of producing same
JP2012151471A (en) * 2011-01-18 2012-08-09 Sharp Corp Mechanical stacking structure for multi-junction photovoltaic devices and method of making the same
US20140261628A1 (en) * 2013-03-14 2014-09-18 Semprius, Inc. High efficiency solar receivers including stacked solar cells for concentrator photovoltaics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510719A (en) * 2005-09-26 2009-03-12 インペリアル イノベーションズ リミテッド Photovoltaic cell
US20110174366A1 (en) * 2007-03-06 2011-07-21 Sunlight Photonics Inc. Spectrally adaptive multijunction photovoltaic thin film device and method of producing same
JP2012151471A (en) * 2011-01-18 2012-08-09 Sharp Corp Mechanical stacking structure for multi-junction photovoltaic devices and method of making the same
US20140261628A1 (en) * 2013-03-14 2014-09-18 Semprius, Inc. High efficiency solar receivers including stacked solar cells for concentrator photovoltaics

Also Published As

Publication number Publication date
TW201904078A (en) 2019-01-16
JP2018207024A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
US9508881B2 (en) Transparent contacts for stacked compound photovoltaic cells
US10686090B2 (en) Wafer bonded solar cells and fabrication methods
US20130263923A1 (en) Reverse heterojunctions for solar cells
TW201044625A (en) Multijunction solar cells with group IV/III-V hybrid alloys
JP6582591B2 (en) Compound semiconductor solar cell and method of manufacturing compound semiconductor solar cell
KR20100084843A (en) Multijunction solar cell
JP6355608B2 (en) Integrated stacked 4-junction solar cell
WO2016104711A1 (en) Solar battery
JP2009026887A (en) Solar cell
JP6405379B2 (en) Band gap variation type photovoltaic cell
JP7175993B2 (en) Thin-film solar modules with improved shunt resistance
US20110100432A1 (en) Thin film solar cell and manufacturing method thereof
JP2002368238A (en) Tandem solar cell and manufacturing method therefor
WO2018225361A1 (en) Photovoltaic generation element
JP3368822B2 (en) Solar cell
JP5487295B2 (en) Solar cell
JP4986056B2 (en) Condensing photoelectric converter
JP6536220B2 (en) Compound semiconductor solar cell and method of manufacturing the same
WO2013069492A1 (en) Bypass diode
US9040342B2 (en) Photovoltaic cell and manufacturing method thereof
US20200395495A1 (en) Multi-junction solar cell
US20140093995A1 (en) Method of Hybrid Stacked Chip for a Solar Cell
JP2017130554A (en) Compound semiconductor device, and method of manufacturing the same
KR20160117770A (en) Double layered passivation structure and solar cell including the same
CN112582494A (en) Monolithic multijunction solar cell with exactly four subcells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18812680

Country of ref document: EP

Kind code of ref document: A1