WO2018225350A1 - 空気流量計 - Google Patents

空気流量計 Download PDF

Info

Publication number
WO2018225350A1
WO2018225350A1 PCT/JP2018/013118 JP2018013118W WO2018225350A1 WO 2018225350 A1 WO2018225350 A1 WO 2018225350A1 JP 2018013118 W JP2018013118 W JP 2018013118W WO 2018225350 A1 WO2018225350 A1 WO 2018225350A1
Authority
WO
WIPO (PCT)
Prior art keywords
air flow
input signal
output signal
calculation unit
flow meter
Prior art date
Application number
PCT/JP2018/013118
Other languages
English (en)
French (fr)
Inventor
松本 昌大
中野 洋
暁 上ノ段
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201880020523.9A priority Critical patent/CN110678717B/zh
Priority to US16/614,996 priority patent/US10816380B2/en
Priority to DE112018002851.8T priority patent/DE112018002851T5/de
Publication of WO2018225350A1 publication Critical patent/WO2018225350A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • G01F5/005Measuring a proportion of the volume flow by measuring pressure or differential pressure, created by the use of flow constriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows

Definitions

  • the present invention relates to an air flow meter.
  • Patent Document 1 As an example of a method for reducing a pulsation error, a technique disclosed in Patent Document 1 is known.
  • an average value is obtained by an average processing unit in a microcomputer based on an input signal from an intake air amount detector, and a frequency and a pulsation amplitude are obtained by using a fast Fourier transform in a high frequency analysis unit.
  • the correction unit of the microcomputer calculates a correction amount and corrects the input signal. Thereby, the pulsation error caused by the pulsation of the input signal from the intake air amount detector is corrected.
  • fast Fourier transform is used for the high-frequency analysis unit.
  • the fast Fourier transform when a desired frequency analysis range and resolution are to be obtained, an observation time and a sampling frequency of a predetermined length are required. Also, the amount of calculation increases exponentially according to the frequency analysis range and resolution. Therefore, a predetermined observation time and a predetermined calculation time are required until the result of the fast Fourier transform is output, and it takes a long time to calculate the correction amount. I can not follow.
  • the conventional technology lacks consideration for changes in the pulsation state of the input signal.
  • the present invention has been made in view of the above circumstances, and a main object thereof is to provide an air flow meter capable of following a change in the pulsation state of an input signal at high speed.
  • An air flow meter performs an operation for generating an output signal corresponding to the air flow rate based on the air flow rate detection element that generates an input signal related to the air flow rate of a measurement target.
  • An arithmetic unit, and the arithmetic unit includes an output signal arithmetic unit that performs arithmetic including a power operation greater than 1 on the output signal, an input signal arithmetic unit that performs arithmetic on the input signal, A subtractor that calculates a difference between a calculation result by the output signal calculation unit and a calculation result by the input signal calculation unit; and an integrator that integrates the difference obtained by the subtraction unit; Is generated based on the output from the integrator.
  • An air flow meter includes an air flow rate detection element that generates an input signal related to an air flow rate to be measured, and an operation for generating an output signal corresponding to the air flow rate based on the input signal. And an arithmetic unit that performs a low-pass filter function of cutting off a frequency component equal to or higher than a predetermined cutoff frequency from the input signal, and the cutoff frequency depends on an instantaneous value of the output signal. Change.
  • an air flow meter capable of following a change in the pulsation state of an input signal at high speed.
  • the figure which shows the structure of the air flowmeter which concerns on the 1st Embodiment of this invention Diagram showing the configuration of the output signal calculation unit Diagram showing the configuration of the input signal calculation unit Diagram showing an example of the arrangement of air flow meters in the intake pipe
  • the figure which shows the waveform example of the output signal when changing the input signal in the step shape The figure which shows the structure of the air flowmeter which concerns on the 2nd Embodiment of this invention.
  • the figure which shows the structure of a 2nd input signal calculating part The figure which shows an example of the output characteristic of the 2nd input signal calculating part with respect to an air flow rate The figure which shows the structure of the air flowmeter which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 is a diagram showing a configuration of an air flow meter 1 according to the first embodiment of the present invention.
  • the air flow meter 1 of the present embodiment includes a calculation unit 2 and an air flow rate detection element 3.
  • the air flow rate detection element 3 generates a signal related to the air flow rate to be measured by the air flow meter 1 and outputs the signal as an input signal Qsen to the calculation unit 2.
  • the calculation unit 2 performs a calculation for generating an output signal Qout corresponding to the air flow rate based on the input signal Qsen input from the air flow rate detection element 3.
  • the calculation unit 2 includes an input signal calculation unit 4, a subtraction unit 5, an integrator 6, and an output signal calculation unit 7.
  • the input signal calculation unit 4 performs a predetermined calculation on the input signal Qsen from the air flow rate detection element 3.
  • the output signal calculation unit 7 performs a predetermined calculation including a power calculation greater than 1 on the output signal Qout. Details of the calculations performed by the input signal calculation unit 4 and the output signal calculation unit 7 will be described later.
  • the subtraction unit 5 obtains a difference between the calculation result by the output signal calculation unit 7 and the calculation result by the input signal calculation unit 4.
  • the integrator 6 integrates the difference obtained by the subtracting unit 5 to generate and output an output signal Qout.
  • FIG. 2 is a diagram illustrating a configuration of the output signal calculation unit 7.
  • the output signal calculation unit 7 includes a multiplier 8 that multiplies the output signal Qout by a predetermined proportionality constant, and a power multiplier 9 that performs a power calculation of the output signal Qout.
  • FIG. 3 is a diagram showing the configuration of the input signal calculation unit 4.
  • the input signal calculation unit 4 includes a multiplier 10 that multiplies the input signal Qsen by a predetermined proportional constant, and a power multiplier 11 that performs a power calculation of the input signal Qsen.
  • FIG. 4 is a diagram illustrating an arrangement example of the air flow meter 1 in the intake pipe.
  • an air flow having an air flow rate Q that is measured by the air flow meter 1 flows into the intake pipe 12.
  • the intake pipe 12 is provided with a main passage 13 and a sub-passage 14 branched from the main passage 13.
  • An air flow meter 1 is installed in the auxiliary passage 14.
  • the air flow rate Q flowing through the intake pipe 12 is divided into the main passage 13 and the sub passage 14. Assuming that the air flow rates in the main passage 13 and the sub passage 14 are Q1 and Q2, the pressure difference ⁇ p between the surface A and the surface B shown in FIG. 4 is expressed by the following equations (1), (2) from the Navier-Stokes equation It is expressed as
  • equation (4) can be transformed into equation (5) below.
  • equation (5) can be transformed into equation (6) below.
  • the air flow rate actually measured by the air flow meter 1 by the air flow rate detection element 3 is the air flow rate Q2 of the sub passage 14. Therefore, by solving the above equation (6), the air flow rate Q flowing through the intake pipe 12 can be obtained from time to time from the air flow rate Q2 of the auxiliary passage 14 measured by the air flow rate detection element 3. This is true even if the air flow rate Q flowing through the intake pipe 12 is in a pulsating state. That is, it is possible to accurately obtain the air flow rate Q flowing through the intake pipe 12 without being influenced by the pulsation whatever the pulsation state of the air flow rate Q flowing through the intake pipe 12 by the equation (6). become. That is, the pulsation error caused by pulsation can be eliminated.
  • the air flow rate Q2 of the auxiliary passage 14 is The air flow rate Q flowing through the intake pipe 12 can be obtained every moment. Therefore, it is possible to reduce the pulsation error.
  • the air flow rate Q flowing through the intake pipe 12 from the flow rate Q2 of the auxiliary passage 14 can be obtained every moment. That is, it is possible to provide a method for correcting an input signal that is not affected by distortion of the pulsation waveform.
  • the output signal calculation unit 7 performs a calculation for obtaining the second term on the right side of Equation (6), that is, C1 / 2 / L1 * Q * Q.
  • the multiplier 8 multiplies the output signal Qout by a proportionality constant corresponding to C1 / 2 / L1, and the exponent 9 calculates a power operation corresponding to Qout * Qout. That is, the square calculation of the output signal Qout is performed.
  • the input signal calculation unit 4 performs a calculation for obtaining the first term on the right side of Equation (6), that is, C2 / 2 / L1 * Q2 * Q2.
  • the multiplier 10 multiplies the input signal Qsen by a proportional constant corresponding to C2 / 2 / L1, and the exponent 11 calculates a power operation corresponding to Qsen * Qsen. That is, the square calculation of the input signal Qsen is performed. Then, the difference between the calculation result of the output signal calculation unit 7 and the calculation result of the input signal calculation unit 4 is obtained by the subtraction unit 5, and then the difference obtained by the subtraction unit 5 is integrated by the integrator 6. As a result, the output function Qout from which the pulsation error has been removed can be obtained by solving the implicit function shown in Expression (6).
  • the air flow meter 1 of the present embodiment provides a pulsation error correction process that enables high-speed processing with a small amount of calculation and can follow a change in the pulsation state of an input signal at high speed with the above-described configuration.
  • the power multipliers 9 and 11 set the power to 2 in accordance with the equation (6) and output.
  • the signal Qout and the input signal Qsen are squared.
  • the loss coefficients C1 and C2 are expressed as functions of the air flow rates Q1 and Q2, respectively.
  • the air flow meter 1 of the present embodiment may change the output characteristics of the output signal calculation unit 7 as described below.
  • FIG. 5 is a diagram illustrating an example of output characteristics of the output signal calculation unit 7 with respect to the air flow rate Q.
  • the example of the output characteristic of the output signal calculating part 7 which is respectively proportional to the 1.5th power, the 2nd power, and the 2.5th power of the air flow rate Q is shown.
  • the power generator 9 of the output signal calculation unit 7 changes the power of the power calculation for the output signal Qout according to the passage structure of the intake pipe 12 and the air flow rate Q represented by the output signal Qout. A change in output characteristics may be realized. In general, since a power greater than 1 is required, a value greater than at least 1 is set as the power.
  • the polarity (positive / negative) of the output of the output signal calculation unit 7 is switched according to the polarity (positive / negative) of the air flow rate Q. That is, when the output signal Qout indicates a positive air flow rate Q value, the output of the output signal calculation unit 7 is also a positive value. Conversely, when the output signal Qout indicates a negative air flow rate Q value, The output of the signal calculation unit 7 is also a negative value. By doing so, even if a back flow occurs in the air flow rate Q, the calculation unit 2 operates normally.
  • the output characteristic of the output signal calculation unit 7 is point-symmetric with respect to the origin, and is increased or decreased at the same rate when the output signal Qout is positive and negative. This is based on the premise that the sub-passage 14 has a symmetrical structure, and the passage length L2 and the loss factor C2 of the sub-passage 14 do not change even when the air flow rate Q flows backward. However, in the actual passage structure of the intake pipe 12, the auxiliary passage 14 may have an asymmetric structure. In order to cope with this, in the air flow meter 1 of the present embodiment, the output characteristics of the output signal calculation unit 7 may be changed according to the polarity of the output signal Qout. An example thereof will be described below with reference to FIG.
  • FIG. 6 is a diagram showing another example of the output characteristics of the output signal calculation unit 7 with respect to the air flow rate.
  • the slope of the output of the output signal calculation unit 7 changes between the region 1 corresponding to the negative air flow rate Q and the region 2 corresponding to the positive air flow rate Q.
  • the multiplier 8 of the output signal calculation unit 7 such a change in output characteristics can be realized by changing a proportionality constant by which the output signal Qout is multiplied according to the polarity of the output signal Qout.
  • the output signal calculation unit 7 changes the proportionality constant of the multiplier 8 according to the polarity of the output signal Qout, so that the air flow rate of the present embodiment is also applied to the sub-passage 14 having an asymmetrical passage structure. It is possible to correct the pulsation error by applying the total 1.
  • the change in the output characteristics as described above is not limited to the output signal calculation unit 7 but can be similarly applied to the input signal calculation unit 4. That is, when the actual passage structure of the intake pipe 12 is considered, as described above, the loss coefficients C1 and C2 are functions of the air flow rates Q1 and Q2. Therefore, in the same manner as described with reference to FIG. 5 for the output signal calculation unit 7, the output characteristic of the input signal calculation unit 4 is also set to a characteristic proportional to the 1.5th power of the air flow rate Q or proportional to the square. It is preferable to set the characteristic to be equal to 2.5 or a characteristic proportional to the power of 2.5.
  • the power of the power calculation for the input signal Qsen is changed according to the passage structure of the intake pipe 12 and the magnitude of the air flow rate Q2 represented by the input signal Qsen.
  • the auxiliary passage 14 may have an asymmetric structure. Therefore, in order to cope with this, the output characteristic of the input signal calculation unit 4 may be changed according to the polarity of the input signal Qsen in the same manner as described with reference to FIG. .
  • the multiplier 10 of the input signal calculation unit 4 such a change in output characteristics can be realized by changing a proportional constant that is multiplied by the input signal Qsen in accordance with the polarity of the input signal Qsen.
  • the pulsation error correction can be performed on the sub-passage 14 having an asymmetrical passage structure by applying the air flow meter 1 of the present embodiment.
  • the calculation unit 2 includes a closed loop system including an output signal calculation unit 7, a subtraction unit 5, and an integrator 6.
  • This closed-loop system is stable in principle, but if this is actually implemented as an analog circuit, digital circuit, or program in the arithmetic unit 2, a delay due to a circuit delay or a calculation cycle occurs. Due to this delay, the closed loop system may become unstable if the loop gain becomes too large. Therefore, in the air flow meter 1 of the present embodiment, it is preferable to adjust the loop gain to be small when the air flow rate Q is large in order to avoid the closed loop system becoming unstable as described above. An example thereof will be described below with reference to FIG.
  • FIG. 7 is a diagram showing still another example of the output characteristics of the output signal calculation unit 7 with respect to the air flow rate.
  • the region 1 corresponding to the negative air flow rate Q is the same as that in FIG. 6, but the region corresponding to the positive air flow rate Q is divided into two regions (region 2 and region 3).
  • the output of the output signal calculation unit 7 changes between these areas.
  • the power generator 9 of the output signal calculation unit 7 changes the power of the power calculation for the output signal Qout according to the magnitude of the air flow rate Q represented by the output signal Qout. Specifically, in the region 3 corresponding to the large flow rate region, the power of the power calculation performed by the power generator 9 is made smaller than that in the region 2. Thereby, a change in output characteristics as shown in FIG. 7 can be realized.
  • the loop gain of the closed loop system in the calculation unit 2 is determined by the product of the gains of the output signal calculation unit 7, the subtraction unit 5, and the integrator 6. Since the output signal calculation unit 7 calculates the power of the output signal Qout by the power generator 9, the gain of the output signal calculation unit 7 increases exponentially as the air flow rate Q represented by the output signal Qout increases. Therefore, in order to keep the gain increase of the output signal calculation unit 7 within a predetermined range, in the air flow meter 1 of the present embodiment, the output signal calculation unit 7 is in a large flow rate region such as the region 3 in FIG. It is preferable to suppress an increase in gain by reducing the power of the power calculation to be performed.
  • the calculation unit 2 can operate stably even if the calculation cycle is delayed. Therefore, a cheaper circuit configuration can be adopted.
  • the closed loop system including the output signal calculation unit 7, the subtraction unit 5, and the integrator 6 exists in the calculation unit 2 as described above.
  • This closed loop system can be regarded as a feedback system in which feedback is provided to the integrator 6 by the output signal calculation unit 7, and has an LPF (low-pass filter) characteristic with respect to the input signal Qsen input to the calculation unit 2.
  • the cutoff frequency of the LPF characteristic is proportional to the gain of the output signal calculation unit 7.
  • the output signal calculation unit 7 calculates the power of the output signal Qout by the power generator 9
  • the gain of the output signal calculation unit 7 increases as the air flow rate Q represented by the output signal Qout increases, and the LPF characteristic of the calculation unit 2 increases.
  • the cut-off frequency at increases as well.
  • FIGS. 8 is a diagram illustrating waveform examples of the output signal Qout having different DC levels
  • FIG. 9 is a diagram illustrating frequency characteristic examples of the waveforms of the output signal Qout illustrated in FIG. 8, and FIG. It is a figure which shows the relationship between the direct current
  • FIG. 8 is a diagram illustrating waveform examples of the output signal Qout having different DC levels
  • FIG. 9 is a diagram illustrating frequency characteristic examples of the waveforms of the output signal Qout illustrated in FIG. 8, and FIG. It is a figure which shows the relationship between the direct current
  • the cut-off frequency in the LPF characteristic of the calculation unit 2 changes according to the magnitude of the output signal Qout. Therefore, for example, when the DC level of the output signal Qout is changed as shown in FIG. 8, an LPF whose cutoff frequency increases as the DC level of the output signal Qout increases as shown in FIG. It becomes a characteristic. That is, the cut-off frequency in the LPF characteristic of the calculation unit 2 increases as the DC level of the output signal Qout increases.
  • the characteristic of the power generator 9 of the output signal calculation unit 7 is a square characteristic and the power of the power calculation for the output signal Qout is 2
  • the LPF characteristic of the calculation unit 2 is shown in FIG.
  • the cutoff frequency at varies in proportion to the output signal Qout.
  • the cutoff frequency in the LPF characteristic of the calculation unit 2 changes according to the DC level of the output signal Qout.
  • the responsiveness of the calculating part 2 can be improved compared with the case where a cutoff frequency changes according to the direct current level of the input signal Qsen.
  • FIG. 11 is a diagram illustrating a waveform example of the output signal Qout when the input signal Qsen is changed in a step shape.
  • FIG. 11 (a) when an input signal Qsen that changes stepwise is input to the calculation unit 2, assuming that the cutoff frequency in the LPF characteristic of the calculation unit 2 is proportional to the input signal Qsen, An output signal Qout having a waveform as shown in FIG. The waveform of the output signal Qout rises quickly but falls very slowly. Therefore, it can be seen that the output signal Qout from the calculation unit 2 causes a significant response delay with respect to the change in the input signal Qsen.
  • the cut-off frequency is proportional to the input signal Qsen
  • the input signal Qsen approaches zero at the time of falling, and the responsiveness of the calculation unit 2 is extremely reduced.
  • the cutoff frequency in the LPF characteristic of the calculation unit 2 is proportional to the output signal Qout instead of the input signal Qsen.
  • the output signal Qout having a waveform as shown in FIG.
  • the waveform of the output signal Qout is sufficiently fast in both rising and falling. Therefore, it can be seen that the output signal Qout from the calculation unit 2 does not cause an extreme response delay with respect to the change in the input signal Qsen.
  • the extreme frequency that occurs when the cutoff frequency is proportional to the input signal Qsen by making the cutoff frequency in the LPF characteristic of the calculation unit 2 proportional to the output signal Qout.
  • Response delay can be avoided. Therefore, the responsiveness of the calculating part 2 can be improved.
  • the air flow meter 1 performs an operation for generating an output signal Qout corresponding to the air flow rate based on the air flow detection element 3 that generates an input signal Qsen related to the air flow rate to be measured and the input signal Qsen.
  • the calculation unit 2 includes an output signal calculation unit 7 that performs a calculation including a power calculation greater than 1 on the output signal Qout, an input signal calculation unit 4 that performs a calculation on the input signal Qsen, and an output signal calculation unit 7.
  • a subtractor 5 that obtains the difference between the result of computation by the input signal computation unit 4 and an integrator 6 that integrates the difference obtained by the subtractor 5, and the output signal Qout is the integrator 6 Is generated based on the output from.
  • the power generator 9 of the output signal calculation unit 7 calculates, for example, the square of the output signal in the power calculation for the output signal Qout. Since it did in this way, the calculation equivalent to Q * Q in the 2nd term of the right-hand side of a formula (6) is realizable in output signal operation part 7.
  • the output signal calculation unit 7 includes a multiplier 8 that multiplies the output signal Qout by a predetermined proportional constant, and a power multiplier 9 that performs a power calculation on the output signal Qout.
  • the multiplier 8 may change the proportionality constant according to the polarity of the output signal Qout as described with reference to FIG. In this way, pulsation error correction can be performed even when measuring the air flow rate of the asymmetric passage structure.
  • the output signal calculation unit 7 may change the power of the power calculation according to the magnitude of the air flow rate represented by the output signal Qout. In this way, it is possible to correct the pulsation error accurately in consideration of the change in the loss coefficient according to the air flow rate in the actual passage structure that measures the air flow rate.
  • the input signal calculation unit 4 includes a power generator 11 that performs a power calculation greater than 1 on the input signal Qsen. Since it did in this way, the calculation equivalent to Q * Q in the 1st term of the right-hand side of a formula (6) is realizable in output signal operation part 7. In addition, it is possible to correct the pulsation error accurately in consideration of the change in the loss coefficient according to the air flow rate in the actual passage structure that measures the air flow rate.
  • the input signal calculation unit 4 includes a multiplier 10 that multiplies the input signal Qsen by a predetermined proportionality constant.
  • the multiplier 10 may change the proportionality constant according to the polarity of the input signal Qsen. In this way, pulsation error correction can be performed even when measuring the air flow rate of the asymmetric passage structure.
  • the computing unit 2 has a low-pass filter function that cuts off a frequency component equal to or higher than a predetermined cut-off frequency from the input signal Qsen.
  • the cut-off frequency of the low-pass filter function depends on the instantaneous value of the output signal Qout. Change. Since it did in this way, the responsiveness of the calculating part 2 can be improved.
  • FIG. 12 is a diagram showing a configuration of an air flow meter 1A according to the second embodiment of the present invention.
  • An air flow meter 1A of the present embodiment includes a calculation unit 2A instead of the calculation unit 2 of the air flow meter 1 described in the first embodiment.
  • the calculation unit 2A basically has the same configuration as the calculation unit 2, but differs in that it further includes a second input signal calculation unit 15 and an addition unit 16.
  • the second input signal calculation unit 15 performs a predetermined calculation on the input signal Qsen input from the air flow rate detection element 3 to the calculation unit 2A.
  • the adder 16 calculates the sum of the output from the integrator 6, that is, the difference between the calculation result by the output signal calculation unit 7 and the calculation result by the input signal calculation unit 4 and the calculation result by the second input signal calculation unit 15. As a result, the output signal Qout is generated and output.
  • FIG. 13 is a diagram illustrating a configuration of the second input signal calculation unit 15.
  • the second input signal calculation unit 15 includes a multiplier 17 that multiplies the input signal Qsen by a predetermined proportionality constant, and a power multiplier 18 that performs a power calculation of the input signal Qsen.
  • the output signal Qout from which the pulsation error is removed can be obtained for the input signal Qsen including the higher-frequency pulsation by solving the function expressed by Equation (5).
  • the air flow rate Q flowing through the intake pipe 12 can be obtained every moment more accurately. That is, the present invention can also be applied to an air flow meter in which high-frequency pulsation occurs in the air flow rate to be measured, such as an air flow meter used in an automobile engine.
  • FIG. 14 is a diagram illustrating an example of output characteristics of the second input signal calculation unit 15 with respect to the air flow rate.
  • the slope of the output of the second input signal calculation unit 15 changes between the region 1 corresponding to the negative air flow rate Q and the region 2 corresponding to the positive air flow rate Q.
  • the multiplier 17 of the second input signal calculation unit 15 such a change in output characteristics can be realized by changing a proportional constant to be multiplied by the input signal Qsen in accordance with the polarity of the input signal Qsen.
  • the second input signal calculation unit 15 can change the proportionality constant of the multiplier 17 in accordance with the polarity of the input signal Qsen.
  • the pulsation error correction can be performed by applying the air flow meter 1A of the present embodiment even with an asymmetric passage structure.
  • the calculation unit 2A includes the second input signal calculation unit 15 that calculates the input signal Qsen, the output from the integrator 6, and the second input signal calculation. And an addition unit 16 that calculates the sum of the calculation results by the unit 15, and the output signal Qout is generated based on the output from the addition unit 16. Since it did in this way, the output signal Qout from which the pulsation error was removed can be calculated
  • the second input signal calculation unit 15 includes the multiplier 17 that multiplies the input signal Qsen by a predetermined proportional constant.
  • the multiplier 17 may change the proportionality constant according to the polarity of the input signal Qsen. In this way, pulsation error correction can be performed even when measuring the air flow rate of the asymmetric passage structure.
  • FIG. 15 is a diagram showing a configuration of an air flow meter 1B according to the third embodiment of the present invention.
  • the air flow meter 1B of this embodiment includes a calculation unit 2B instead of the calculation unit 2 of the air flow meter 1 described in the first embodiment.
  • the calculation unit 2B basically has the same configuration as the calculation unit 2A described in the second embodiment, except that it further includes an addition unit 19.
  • the adding unit 19 generates and outputs an output signal Qout by calculating the sum of the input signal Qsen input from the air flow rate detecting element 3 to the calculating unit 2B and the output from the adding unit 16.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

入力信号の脈動状態の変化に高速に追従できる空気流量計を提供する。 空気流量計1は、測定対象の空気流量に関する入力信号Qsenを生成する空気流量検出素子3と、入力信号Qsenに基づいて空気流量に応じた出力信号Qoutを生成するための演算を行う演算部2とを備える。演算部2は、出力信号Qoutに対して1より大なる累乗演算を含む演算を行う出力信号演算部7と、入力信号Qsenに対して演算を行う入力信号演算部4と、出力信号演算部7による演算結果と、入力信号演算部4による演算結果との差分を求める減算部5と、減算部5により求められた差分を積分する積分器6とを有し、出力信号Qoutは、積分器6からの出力に基づいて生成される。

Description

空気流量計
 本発明は、空気流量計に関する。
 従来、空気流量検出素子からの入力信号に応じて空気流量信号を出力する空気流量計において、入力信号の脈動によって生じる脈動誤差の低減が求められている。脈動誤差の低減方法の例としては、特許文献1に開示された技術が知られている。この技術では、吸気量検出器からの入力信号に基づいて、マイコンにおいて平均処理部で平均値を求めると共に、高周波分析部で高速フーリエ変換を用いて周波数と脈動振幅を求める。そして、得られた平均値、周波数、脈動振幅から、マイコンの補正部において補正量を算出し、入力信号を補正する。これにより、吸気量検出器からの入力信号の脈動によって生じる脈動誤差を補正している。
特開2012-112716号公報
 特許文献1に開示された従来技術では、高周波分析部に高速フーリエ変換を使用している。高速フーリエ変換において、所望の周波数分析範囲と分解能を得ようとすると、所定の長さの観測時間とサンプリング周波数を必要とする。また、周波数分析範囲と分解能に応じて演算量が指数的に増加する。したがって、高速フーリエ変換の結果が出力されるまでに、所定の観測時間と所定の演算時間を必要とし、補正量の算出までに長時間を要してしまうため、入力信号の脈動状態の変化に追従できない。このように、上記従来技術では入力信号の脈動状態の変化に対する配慮が欠けていた。
 本発明は、上記事情に鑑みてなされたものであり、その主な目的は、入力信号の脈動状態の変化に高速に追従できる空気流量計を提供することにある。
 本発明の一態様による空気流量計は、測定対象の空気流量に関する入力信号を生成する空気流量検出素子と、前記入力信号に基づいて前記空気流量に応じた出力信号を生成するための演算を行う演算部と、を備え、前記演算部は、前記出力信号に対して1より大なる累乗演算を含む演算を行う出力信号演算部と、前記入力信号に対して演算を行う入力信号演算部と、前記出力信号演算部による演算結果と、前記入力信号演算部による演算結果との差分を求める減算部と、前記減算部により求められた前記差分を積分する積分器と、を有し、前記出力信号は、前記積分器からの出力に基づいて生成される。
 本発明の他の一態様による空気流量計は、測定対象の空気流量に関する入力信号を生成する空気流量検出素子と、前記入力信号に基づいて前記空気流量に応じた出力信号を生成するための演算を行う演算部と、を備え、前記演算部は、前記入力信号から所定の遮断周波数以上の周波数成分を遮断するローパスフィルタ機能を有し、前記遮断周波数は、前記出力信号の瞬時値に応じて変化する。
 本発明によれば、入力信号の脈動状態の変化に高速に追従できる空気流量計を提供することが可能となる。
本発明の第1の実施形態に係る空気流量計の構成を示す図 出力信号演算部の構成を示す図 入力信号演算部の構成を示す図 吸気管内での空気流量計の配置例を示す図 空気流量に対する出力信号演算部の出力特性の一例を示す図 空気流量に対する出力信号演算部の出力特性の別の一例を示す図 空気流量に対する出力信号演算部の出力特性のさらに別の一例を示す図 直流レベルがそれぞれ異なる出力信号の波形例を示す図 出力信号の各波形の周波数特性例を示す図 出力信号の直流レベルと遮断周波数との関係を示す図 入力信号をステップ状に変化させた時の出力信号の波形例を示す図 本発明の第2の実施形態に係る空気流量計の構成を示す図 第2入力信号演算部の構成を示す図 空気流量に対する第2入力信号演算部の出力特性の一例を示す図 本発明の第3の実施形態に係る空気流量計の構成を示す図
 以下、本発明の実施の形態について、図面を参照して説明する。なお、各実施形態は、矛盾しない限り組み合わせ可能である。
(第1の実施形態)
 まず、本発明の第1の実施形態に係る空気流量計について、図1から図11を参照して説明する。図1は、本発明の第1の実施形態に係る空気流量計1の構成を示す図である。図1に示すように、本実施形態の空気流量計1は、演算部2と空気流量検出素子3により構成される。空気流量検出素子3は、空気流量計1が測定対象とする空気流量に関する信号を生成し、演算部2への入力信号Qsenとして出力する。演算部2は、空気流量検出素子3から入力された入力信号Qsenに基づいて、空気流量に応じた出力信号Qoutを生成するための演算を行う。
 演算部2は、入力信号演算部4と、減算部5と、積分器6と、出力信号演算部7とを有する。入力信号演算部4は、空気流量検出素子3からの入力信号Qsenに対して所定の演算を行う。出力信号演算部7は、出力信号Qoutに対して、1より大なる累乗演算を含む所定の演算を行う。なお、入力信号演算部4と出力信号演算部7がそれぞれ行う演算の詳細については、後で説明する。
 減算部5は、出力信号演算部7による演算結果と、入力信号演算部4による演算結果との差分を求める。積分器6は、減算部5により求められた差分を積分することで、出力信号Qoutを生成して出力する。
 図2は、出力信号演算部7の構成を示す図である。出力信号演算部7は、図2に示すように、出力信号Qoutに所定の比例定数を乗算する乗算器8と、出力信号Qoutの累乗演算を行う累乗器9により構成される。
 図3は、入力信号演算部4の構成を示す図である。入力信号演算部4は、図3に示すように、入力信号Qsenに所定の比例定数を乗算する乗算器10と、入力信号Qsenの累乗演算を行う累乗器11により構成される。
 次に、図4により空気流量計1の吸気管への配置を説明する。図4は、吸気管内での空気流量計1の配置例を示す図である。図4に示すように、吸気管12には、空気流量計1が測定対象とする空気流量Qの空気流が流入する。この吸気管12には、主通路13と、主通路13から分岐した副通路14が設けられている。副通路14には、空気流量計1が設置されている。
 吸気管12を流れる空気流量Qは、主通路13と副通路14に分流する。主通路13と副通路14のそれぞれにおける空気流量をQ1,Q2とすると、図4に示す面Aと面Bの圧力差Δpは、ナビエ・ストークスの式から以下の式(1)、(2)のように表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 式(1)、(2)における各定数は以下のとおりである。
  ρ:流体の密度
  L1:主通路13の通路長
  L2:副通路14の通路長
  C1:主通路13の損失係数
  C2:副通路14の損失係数
 ここで、式(1)に式(2)を代入し、Q1を求めると、以下の式(3)を得る。
Figure JPOXMLDOC01-appb-M000003
 ここで、Q=Q1+Q2なので、吸気管12を流れる空気流量Qは、以下の式(4)で求められる。
Figure JPOXMLDOC01-appb-M000004
 ここで、Q1に比べてQ2が十分小さいと仮定できる場合、式(4)は以下の式(5)のように変形できる。
Figure JPOXMLDOC01-appb-M000005
 さらに、Qの流速変化が十分に遅いと仮定できる場合、式(5)は以下の式(6)のように変形できる。
Figure JPOXMLDOC01-appb-M000006
 図4の配置において、空気流量計1が空気流量検出素子3により実際に計測する空気流量は、副通路14の空気流量Q2である。そのため、上記の式(6)を解くことで、空気流量検出素子3が計測した副通路14の空気流量Q2から、吸気管12を流れる空気流量Qを時々刻々と求めることができる。これは、吸気管12を流れる空気流量Qが脈動状態であっても成り立つ。すなわち、式(6)により、吸気管12を流れる空気流量Qが如何なる脈動状態であったとしても、その脈動の影響を受けずに、正確に吸気管12を流れる空気流量Qを求めることが可能になる。つまり、脈動によって生じる脈動誤差を無くすことができる。
 また、上記の式(6)により、空気流量検出素子3から演算部2に入力される入力信号の脈動波形が正弦波で無く高調波を含む歪んだ波形でも、副通路14の空気流量Q2から、吸気管12を流れる空気流量Qを時々刻々と求めることができる。そのため、脈動誤差の低減を図ることができる。
 特許文献1の従来技術では、入力信号の脈動波形から平均値、周波数、脈動振幅を代表値として求め、これらに基づいて補正量を算出している。そのため、脈動波形から求めたこれらの値が等しければ、入力信号に対して同じ補正が働く。しかし、実際の入力信号の脈動波形は大きな歪を有する波形であり、従来技術ではこの歪に対応して適切な補正量を算出することができなかった。一方、本実施形態の空気流量計1では、前述の式(6)を用いて、副通路14の空気流量Q2から吸気管12を流れる空気流量Qを時々刻々と求める方式とする。そのため、入力信号の脈動波形が歪んでいたとしても、副通路14の流量Q2から吸気管12を流れる空気流量Qを時々刻々と求めることができる。つまり、脈動波形の歪に影響されない入力信号の補正方法を提供できる。
 本実施形態の空気流量計1では、出力信号演算部7において、式(6)の右辺の第2項、すなわちC1/2/L1*Q*Qを求める演算を行う。具体的には、Q=Qoutとして、乗算器8により、C1/2/L1に相当する比例定数の乗算を出力信号Qoutに対して行うと共に、累乗器9により、Qout*Qoutに相当する累乗演算、すなわち出力信号Qoutの2乗演算を行う。また、入力信号演算部4において、式(6)の右辺の第1項、すなわちC2/2/L1*Q2*Q2を求める演算を行う。具体的には、Q2=Qsenとして、乗算器10により、C2/2/L1に相当する比例定数の乗算を入力信号Qsenに対して行うと共に、累乗器11により、Qsen*Qsenに相当する累乗演算、すなわち入力信号Qsenの2乗演算を行う。そして、減算部5により、出力信号演算部7の演算結果と入力信号演算部4の演算結果との差分を求めた後、積分器6により、減算部5で求められた差分を積分する。これにより、式(6)で示した陰関数を解いて、脈動誤差が除去された出力信号Qoutを求められるようにしている。
 本実施形態の空気流量計1は、上記の構成により、少ない演算量で高速な処理を可能とし、入力信号の脈動状態の変化に高速に追従できる脈動誤差補正処理を提供している。
 なお、以上説明した演算処理において、殆どの場合には損失係数C1,C2を固定値として扱って問題ないため、累乗器9、11では、式(6)に合わせて累乗数を2とし、出力信号Qout、入力信号Qsenをそれぞれ2乗している。しかしながら、実際の吸気管12の通路構造では、損失係数C1,C2は空気流量Q1,Q2の関数としてそれぞれ表される。このことを考慮して、本実施形態の空気流量計1では、以下で説明するように出力信号演算部7の出力特性を変化させるようにしてもよい。
 図5は、空気流量Qに対する出力信号演算部7の出力特性の一例を示す図である。図5では、空気流量Qの1.5乗、2乗、2.5乗にそれぞれ比例する出力信号演算部7の出力特性の例を示している。出力信号演算部7の累乗器9では、吸気管12の通路構造や、出力信号Qoutが表す空気流量Qの大きさに応じて、出力信号Qoutに対する累乗演算の累乗数を変化させることで、こうした出力特性の変化を実現することとしてもよい。なお、一般的には1より大なる累乗が必要であるため、累乗数には少なくとも1より大きな値が設定される。
 また、図5に示す出力信号演算部7の出力特性の例では、空気流量Qの極性(正負)に応じて、出力信号演算部7の出力の極性(正負)も切り替えられている。すなわち、出力信号Qoutが正の空気流量Qの値を示す場合は、出力信号演算部7の出力も正の値とし、反対に出力信号Qoutが負の空気流量Qの値を示す場合は、出力信号演算部7の出力も負の値としている。こうすることで、空気流量Qに逆流が生じても、演算部2が正常に動作するようにしている。
 なお、図5の例では、出力信号演算部7の出力特性を、原点を中心に点対称として、出力信号Qoutが正の場合と負の場合に同じ割合で増減するようにしている。これは、副通路14が対称構造を有しており、空気流量Qが逆流しても副通路14の通路長L2や損失係数C2が変化しないことを前提としている。しかし、実際の吸気管12の通路構造では、副通路14に非対称構造を持たせる場合がある。これに対応するため、本実施形態の空気流量計1では、出力信号Qoutの極性に応じて出力信号演算部7の出力特性を変化させるようにしてもよい。その例を以下に図6を参照して説明する。
 図6は、空気流量に対する出力信号演算部7の出力特性の別の一例を示す図である。図6の例では、負の空気流量Qに対応する領域1と、正の空気流量Qに対応する領域2とで、出力信号演算部7の出力の傾きが変化している。出力信号演算部7の乗算器8では、出力信号Qoutの極性に応じて、出力信号Qoutに乗じる比例定数を変化させることで、こうした出力特性の変化を実現することができる。
 以上説明したように、出力信号演算部7において、出力信号Qoutの極性に応じて乗算器8の比例定数を変化させることで、非対称な通路構造の副通路14についても、本実施形態の空気流量計1を適用して脈動誤差補正を行うことが可能である。
 ここで、上述したような出力特性の変化は、出力信号演算部7に限ったことではなく、入力信号演算部4に対しても同様に適用可能である。つまり、実際の吸気管12の通路構造を考えた場合、前述のように損失係数C1,C2は空気流量Q1,Q2の関数になる。そのため、出力信号演算部7に対して図5で説明したのと同様に、入力信号演算部4の出力特性についても、空気流量Qの1.5乗に比例した特性にしたり、2乗に比例した特性にしたり、2.5乗に比例した特性にしたりすることが好ましい。具体的には、入力信号演算部4の累乗器11において、吸気管12の通路構造や、入力信号Qsenが表す空気流量Q2の大きさに応じて、入力信号Qsenに対する累乗演算の累乗数を変化させることで、こうした出力特性の変化を実現することができる。なお、一般的には1より大なる累乗が必要であるため、累乗数には少なくとも1より大きな値が設定される。また、実際の吸気管12の通路構造では、副通路14に非対称構造を持たせる場合がある。そこで、これに対応するため、出力信号演算部7に対して図6で説明したのと同様に、入力信号Qsenの極性に応じて入力信号演算部4の出力特性を変化させるようにしてもよい。具体的には、入力信号演算部4の乗算器10において、入力信号Qsenの極性に応じて入力信号Qsenに乗じる比例定数を変化させることで、こうした出力特性の変化を実現することができる。これにより、非対称な通路構造の副通路14についても、本実施形態の空気流量計1を適用して脈動誤差補正を行うことが可能である。
 次に、演算部2のループゲインの調整について説明する。本実施形態の空気流量計1では、図1に示したように、演算部2において、出力信号演算部7と減算部5と積分器6により構成される閉ループ系が存在する。この閉ループ系は原理的には安定であるが、実際に演算部2においてアナログ回路、デジタル回路あるいはプログラムとしてこれを実装すると、回路遅延や演算周期による遅延が生じる。この遅延により、ループゲインが大きくなり過ぎると閉ループ系が不安定になる場合がある。そこで、本実施形態の空気流量計1では、上記のように閉ループ系が不安定になるのを避けるために、空気流量Qが大きいときにはループゲインを小さくするように調整することが好ましい。その例を以下に図7を参照して説明する。
 図7は、空気流量に対する出力信号演算部7の出力特性のさらに別の一例を示す図である。図7の例では、負の空気流量Qに対応する領域1については図6と同様であるが、正の空気流量Qに対応する領域が2つの領域(領域2、領域3)に分かれており、これらの領域間で出力信号演算部7の出力が変化している。出力信号演算部7の累乗器9では、出力信号Qoutが表す空気流量Qの大きさに応じて、出力信号Qoutに対する累乗演算の累乗数を変化させる。具体的には、大流量域に相当する領域3では、領域2よりも累乗器9で行う累乗演算の累乗数が小さくなるようにする。これにより、図7のような出力特性の変化を実現することができる。
 演算部2における閉ループ系のループゲインは、出力信号演算部7と減算部5と積分器6の各々のゲインの積により決定される。出力信号演算部7では累乗器9により出力信号Qoutの累乗演算を行うため、出力信号Qoutが表す空気流量Qが大きくなるに従い、出力信号演算部7のゲインが累乗的に増加する。そこで、出力信号演算部7のゲインの増加を所定の範囲内に収めるため、本実施形態の空気流量計1では、図7中の領域3のような大流量域において、出力信号演算部7が行う累乗演算の累乗数を小さくしてゲインの増加を抑えることが好ましい。これにより、演算部2における閉ループ系のループゲインが大きくなり過ぎて、閉ループ系が不安定になることを防止できる。換言すれば、本実施形態の空気流量計1において、演算部2は演算周期を遅くしても安定に動作できる。そのため、より安価な回路構成を採用できる。
 次に、演算部2のローパスフィルタ特性について説明する。本実施形態の空気流量計1では、前述のように演算部2において、出力信号演算部7と減算部5と積分器6により構成される閉ループ系が存在する。この閉ループ系は、積分器6に出力信号演算部7でフィードバックを行ったフィードバック系と見なすことができ、演算部2に入力される入力信号Qsenに対してLPF(ローパスフィルタ)特性を持つ。このLPF特性の遮断周波数は、出力信号演算部7のゲインに比例する。また、出力信号演算部7は累乗器9により出力信号Qoutの累乗演算を行うため、出力信号Qoutが表す空気流量Qが大きくなるほど出力信号演算部7のゲインが増加し、演算部2のLPF特性における遮断周波数も増加する。
 上記の空気流量Qと遮断周波数との関係を、図8、図9、図10を参照して以下に説明する。図8は、直流レベルがそれぞれ異なる出力信号Qoutの波形例を示す図であり、図9は、図8に示した出力信号Qoutの各波形の周波数特性例を示す図であり、図10は、出力信号Qoutの直流レベルと演算部2のLPF特性の遮断周波数との関係を示す図である。
 演算部2のLPF特性における遮断周波数は、出力信号Qoutの大きさに応じて変化する。そのため、例えば図8に示すように出力信号Qoutの直流レベルを変化させた場合には、図9に示すように、出力信号Qoutの直流レベルの増加に応じて、遮断周波数が増加するようなLPF特性となる。つまり、出力信号Qoutの直流レベルの増加に応じて、演算部2のLPF特性における遮断周波数が増加する。特に、出力信号演算部7の累乗器9の特性が2乗特性であり、出力信号Qoutに対する累乗演算の累乗数が2である場合には、図10に示すように、演算部2のLPF特性における遮断周波数は、出力信号Qoutに比例して変化する。
 以上説明したように、本実施形態の空気流量計1では、出力信号Qoutの直流レベルに応じて、演算部2のLPF特性における遮断周波数が変化する。これにより、入力信号Qsenの直流レベルに応じて遮断周波数が変化する場合と比べて、演算部2の応答性を向上させることができる。この点について、以下に図11を参照して説明する。
 図11は、入力信号Qsenをステップ状に変化させた時の出力信号Qoutの波形例を示す図である。図11(a)に示すように、ステップ状に変化する入力信号Qsenが演算部2に入力されると、演算部2のLPF特性における遮断周波数が入力信号Qsenに比例すると仮定した場合には、図11(b)のような波形の出力信号Qoutが演算部2から出力される。この出力信号Qoutの波形は、立ち上がりが素早い一方で、立ち下りが非常に遅い。そのため、入力信号Qsenの変化に対して、演算部2からの出力信号Qoutは大幅な応答遅れを生じてしまうことが分かる。このように、遮断周波数が入力信号Qsenに比例する場合には、立ち下り時に入力信号Qsenがゼロに近づくため、演算部2の応答性が極端に低下する。
 これに対して、本実施形態の空気流量計1では、演算部2のLPF特性における遮断周波数が入力信号Qsenではなく、出力信号Qoutに比例する。この場合、図11(c)のような波形の出力信号Qoutが演算部2から出力される。この出力信号Qoutの波形は、立ち上がりと立ち下りの両方が十分に早い。そのため、入力信号Qsenの変化に対して、演算部2からの出力信号Qoutは極端な応答遅れが生じないことが分かる。
 以上説明したように、本実施形態の空気流量計1では、演算部2のLPF特性における遮断周波数を出力信号Qoutに比例させることで、遮断周波数を入力信号Qsenに比例させた場合に生じる極端な応答遅れを回避することができる。そのため、演算部2の応答性を向上させることができる。
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。
(1)空気流量計1は、測定対象の空気流量に関する入力信号Qsenを生成する空気流量検出素子3と、入力信号Qsenに基づいて空気流量に応じた出力信号Qoutを生成するための演算を行う演算部2とを備える。演算部2は、出力信号Qoutに対して1より大なる累乗演算を含む演算を行う出力信号演算部7と、入力信号Qsenに対して演算を行う入力信号演算部4と、出力信号演算部7による演算結果と、入力信号演算部4による演算結果との差分を求める減算部5と、減算部5により求められた差分を積分する積分器6とを有し、出力信号Qoutは、積分器6からの出力に基づいて生成される。このようにしたので、前述の式(6)の関数を解いて、脈動誤差が除去された出力信号Qoutを求めることができる。したがって、入力信号Qsenの脈動状態の変化に高速に追従できる空気流量計1を提供することが可能となる。
(2)出力信号演算部7の累乗器9は、出力信号Qoutに対する累乗演算において、例えば出力信号の2乗を演算する。このようにしたので、式(6)の右辺の第2項におけるQ*Qに相当する演算を、出力信号演算部7において実現できる。
(3)出力信号演算部7は、出力信号Qoutに所定の比例定数を乗算する乗算器8と、出力信号Qoutに累乗演算を行う累乗器9とを有する。乗算器8は、図6で説明したように、出力信号Qoutの極性に応じて比例定数を変化させるようにしてもよい。このようにすれば、非対称な通路構造の空気流量を計測する場合でも、脈動誤差補正を行うことが可能となる。
(4)出力信号演算部7は、図5で説明したように、出力信号Qoutが表す空気流量の大きさに応じて累乗演算の累乗数を変化させることとしてもよい。このようにすれば、空気流量の計測を行う実際の通路構造における空気流量に応じた損失係数の変化を考慮して、正確な脈動誤差補正が可能となる。
(5)入力信号演算部4は、入力信号Qsenに対して1より大なる累乗演算を行う累乗器11を有する。このようにしたので、式(6)の右辺の第1項におけるQ*Qに相当する演算を、出力信号演算部7において実現できる。また、空気流量の計測を行う実際の通路構造における空気流量に応じた損失係数の変化を考慮して、正確な脈動誤差補正が可能となる。
(6)入力信号演算部4は、入力信号Qsenに所定の比例定数を乗算する乗算器10を有する。乗算器10は、入力信号Qsenの極性に応じて比例定数を変化させるようにしてもよい。このようにすれば、非対称な通路構造の空気流量を計測する場合でも、脈動誤差補正を行うことが可能となる。
(7)演算部2は、入力信号Qsenから所定の遮断周波数以上の周波数成分を遮断するローパスフィルタ機能を有しており、このローパスフィルタ機能の遮断周波数は、出力信号Qoutの瞬時値に応じて変化する。このようにしたので、演算部2の応答性を向上させることができる。
(第2の実施形態)
 次に、本発明の第2の実施形態に係る空気流量計について、図12から図14により説明する。図12は、本発明の第2の実施形態に係る空気流量計1Aの構成を示す図である。本実施形態の空気流量計1Aは、第1の実施形態で説明した空気流量計1の演算部2に代えて、演算部2Aを備えている。演算部2Aは、基本的には演算部2と同様の構成を有しているが、第2入力信号演算部15と、加算部16とをさらに有する点が異なっている。第2入力信号演算部15は、空気流量検出素子3から演算部2Aに入力される入力信号Qsenに対して所定の演算を行う。加算部16は、積分器6からの出力、すなわち出力信号演算部7による演算結果と入力信号演算部4による演算結果との差分と、第2入力信号演算部15による演算結果との和を演算することで、出力信号Qoutを生成して出力する。
 図13は、第2入力信号演算部15の構成を示す図である。第2入力信号演算部15は、図13に示すように、入力信号Qsenに所定の比例定数を乗算する乗算器17と、入力信号Qsenの累乗演算を行う累乗器18により構成される。
 本実施形態の空気流量計1Aでは、第2入力信号演算部15において、式(5)の右辺の第1項、すなわちL2/L1*Q2を求める演算を行う。具体的には、Q2=Qsenとして、乗算器17により、L2/L1に相当する比例定数の乗算を入力信号Qsenに対して行うと共に、累乗器18により、*Qsenに相当する累乗演算、すなわち入力信号Qsenの1乗演算を行う。そして、加算部16により、積分器6からの出力、すなわち式(6)の右辺に相当する値に対して、第2入力信号演算部15による演算結果を加算する演算を行う。これにより、式(5)で表される関数を解いて、より高周波の脈動が含まれる入力信号Qsenについても、脈動誤差が除去された出力信号Qoutを求めることができる。その結果、より一層正確に、吸気管12を流れる空気流量Qを時々刻々と求めることができる。つまり、例えば自動車のエンジンにおいて用いられる空気流量計のように、測定対象とする空気流量に高周波の脈動が発生する空気流量計に対しても、本発明を適用可能となる。
 なお、本実施形態の第2入力信号演算部15についても、第1の実施形態で説明した入力信号演算部4と同様に、入力信号Qsenの極性に応じて出力特性を変化させるようにしてもよい。図14は、空気流量に対する第2入力信号演算部15の出力特性の一例を示す図である。図14の例では、負の空気流量Qに対応する領域1と、正の空気流量Qに対応する領域2とで、第2入力信号演算部15の出力の傾きが変化している。第2入力信号演算部15の乗算器17では、入力信号Qsenの極性に応じて、入力信号Qsenに乗じる比例定数を変化させることで、こうした出力特性の変化を実現することができる。例えばこのようにして、第2入力信号演算部15において、入力信号Qsenの極性に応じて乗算器17の比例定数を変化させることができる。これにより、非対称な通路構造でも本実施形態の空気流量計1Aを適用して、脈動誤差補正を行うことが可能となる。
 以上説明した本発明の第2の実施形態によれば、演算部2Aは、入力信号Qsenに対して演算を行う第2入力信号演算部15と、積分器6からの出力と第2入力信号演算部15による演算結果との和を演算する加算部16とをさらに有し、出力信号Qoutは、加算部16からの出力に基づいて生成される。このようにしたので、より高周波の脈動が含まれる入力信号Qsenについても、脈動誤差が除去された出力信号Qoutを求めることができる。
 また、本発明の第2の実施形態によれば、第2入力信号演算部15は、入力信号Qsenに所定の比例定数を乗算する乗算器17を有する。乗算器17は、入力信号Qsenの極性に応じて前記比例定数を変化させるようにしてもよい。このようにすれば、非対称な通路構造の空気流量を計測する場合でも、脈動誤差補正を行うことが可能となる。
(第3の実施形態)
 次に、本発明の第3の実施形態に係る空気流量計について、図15により説明する。図15は、本発明の第3の実施形態に係る空気流量計1Bの構成を示す図である。本実施形態の空気流量計1Bは、第1の実施形態で説明した空気流量計1の演算部2に代えて、演算部2Bを備えている。演算部2Bは、基本的には第2の実施形態で説明した演算部2Aと同様の構成を有しているが、加算部19をさらに有する点が異なっている。加算部19は、空気流量検出素子3から演算部2Bに入力される入力信号Qsenと、加算部16からの出力との和を演算することで、出力信号Qoutを生成して出力する。
 本実施形態の空気流量計1Bでは、加算部19において、式(4)の右辺の第3項、すなわち+Q2を求める演算を行う。具体的には、Q2=Qsenとして、加算部19により、加算部16からの出力、すなわち式(5)の右辺に相当する値に対して、入力信号Qsenを加算する演算を行う。これにより、式(4)で表される関数を解いて、より一層高精度に、吸気管12を流れる空気流量Qを時々刻々と求めることができる。つまり、低流量領域においても高精度に計測することが必要な空気流量計に対しても、本発明を適用可能となる。
 以上説明した本発明の第3の実施形態によれば、第1および第2の実施形態で説明したのと同様の作用効果を奏する。
 なお、以上説明した各実施形態では、演算部2、2A、2Bのそれぞれにおいて、加算、減算、乗算、累乗の各種演算を行うことで入力信号Qsenから出力信号Qoutを求める例を説明したが、これらの演算のうち任意のものを、予め定められた関係に基づく演算等に置き換えてもよい。例えば、入力値と出力値の関係を所定の数値間隔で一対一に表したマップ情報を演算部2、2A、2Bにおいて予め保存しておき、このマップ情報を用いた演算により、演算部2、2A、2Bがそれぞれ行う演算の一部または全部を代替することも可能である。
 以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
1,1A,1B‥空気流量計、2,2A,2B‥演算部、3‥空気流量検出素子、4‥入力信号演算部、5‥減算部、6‥積分器、7‥出力信号演算部、8‥乗算器、9‥累乗器、10‥乗算器、11‥累乗器、12‥吸気管、13‥主通路、14‥副通路、15‥第2入力信号演算部、16‥加算部、17‥乗算器、18‥累乗器、19‥加算部

Claims (10)

  1.  測定対象の空気流量に関する入力信号を生成する空気流量検出素子と、
     前記入力信号に基づいて前記空気流量に応じた出力信号を生成するための演算を行う演算部と、を備え、
     前記演算部は、
     前記出力信号に対して1より大なる累乗演算を含む演算を行う出力信号演算部と、
     前記入力信号に対して演算を行う入力信号演算部と、
     前記出力信号演算部による演算結果と、前記入力信号演算部による演算結果との差分を求める減算部と、
     前記減算部により求められた前記差分を積分する積分器と、を有し、
     前記出力信号は、前記積分器からの出力に基づいて生成される空気流量計。
  2.  請求項1に記載の空気流量計において、
     前記出力信号演算部は、前記累乗演算において前記出力信号の2乗を演算する空気流量計。
  3.  請求項1に記載の空気流量計において、
     前記出力信号演算部は、前記出力信号に所定の比例定数を乗算する第1の乗算器と、前記出力信号に前記累乗演算を行う第1の累乗器とを有し、
     前記第1の乗算器は、前記出力信号の極性に応じて前記比例定数を変化させる空気流量計。
  4.  請求項1に記載の空気流量計において、
     前記出力信号演算部は、前記出力信号が表す前記空気流量の大きさに応じて前記累乗演算の累乗数を変化させる空気流量計。
  5.  請求項1に記載の空気流量計において、
     前記入力信号演算部は、前記入力信号に対して1より大なる累乗演算を行う第2の累乗器を有する空気流量計。
  6.  請求項1に記載の空気流量計において、
     前記入力信号演算部は、前記入力信号に所定の比例定数を乗算する第2の乗算器を有し、
     前記第2の乗算器は、前記入力信号の極性に応じて前記比例定数を変化させる空気流量計。
  7.  請求項1に記載の空気流量計において、
     前記演算部は、
     前記入力信号に対して演算を行う第2入力信号演算部と、
     前記積分器からの出力と、前記第2入力信号演算部による演算結果との和を演算する加算部と、をさらに有し、
     前記出力信号は、前記加算部からの出力に基づいて生成される空気流量計。
  8.  請求項7に記載の空気流量計において、
     前記第2入力信号演算部は、前記入力信号に所定の比例定数を乗算する第3の乗算器を有し、
     前記第3の乗算器は、前記入力信号の極性に応じて前記比例定数を変化させる空気流量計。
  9.  請求項1に記載の空気流量計において、
     前記演算部は、前記入力信号から所定の遮断周波数以上の周波数成分を遮断するローパスフィルタ機能を有し、
     前記遮断周波数は、前記出力信号の瞬時値に応じて変化する空気流量計。
  10.  測定対象の空気流量に関する入力信号を生成する空気流量検出素子と、
     前記入力信号に基づいて前記空気流量に応じた出力信号を生成するための演算を行う演算部と、を備え、
     前記演算部は、前記入力信号から所定の遮断周波数以上の周波数成分を遮断するローパスフィルタ機能を有し、
     前記遮断周波数は、前記出力信号の瞬時値に応じて変化する空気流量計。
PCT/JP2018/013118 2017-06-05 2018-03-29 空気流量計 WO2018225350A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880020523.9A CN110678717B (zh) 2017-06-05 2018-03-29 空气流量计
US16/614,996 US10816380B2 (en) 2017-06-05 2018-03-29 Air flow meter
DE112018002851.8T DE112018002851T5 (de) 2017-06-05 2018-03-29 Luftdurchflussmengenmesser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-111055 2017-06-05
JP2017111055A JP6763823B2 (ja) 2017-06-05 2017-06-05 空気流量計

Publications (1)

Publication Number Publication Date
WO2018225350A1 true WO2018225350A1 (ja) 2018-12-13

Family

ID=64566580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013118 WO2018225350A1 (ja) 2017-06-05 2018-03-29 空気流量計

Country Status (5)

Country Link
US (1) US10816380B2 (ja)
JP (1) JP6763823B2 (ja)
CN (1) CN110678717B (ja)
DE (1) DE112018002851T5 (ja)
WO (1) WO2018225350A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6970309B2 (ja) * 2018-09-26 2021-11-24 日立Astemo株式会社 内燃機関制御装置
JP7256470B2 (ja) * 2019-11-18 2023-04-12 トヨタ自動車株式会社 エンジン制御装置
WO2023100232A1 (ja) * 2021-11-30 2023-06-08 日立Astemo株式会社 空気流量計測装置及び空気流量計測方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541662A (en) * 1977-06-06 1979-01-08 Nissan Motor Device for measuring flow rate
JP2007522479A (ja) * 2004-02-16 2007-08-09 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) 非定常流量計

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435180A (en) * 1992-10-07 1995-07-25 Hitachi, Ltd. Method and system for measuring air flow rate
US6725167B2 (en) * 2002-01-16 2004-04-20 Fisher Controls International Llc Flow measurement module and method
DE102004047786A1 (de) * 2004-10-01 2006-04-06 Robert Bosch Gmbh Verfahren zur Pulsationskorrektur innerhalb eines einen Medienmassenstrom messenden Messgeräts
JP5073949B2 (ja) * 2006-02-02 2012-11-14 日立オートモティブシステムズ株式会社 流量測定装置
JP4436884B1 (ja) * 2009-02-06 2010-03-24 株式会社オーバル 信号処理方法、信号処理装置、およびコリオリ流量計
JP5284864B2 (ja) * 2009-04-30 2013-09-11 日立オートモティブシステムズ株式会社 熱式空気流量計
JP5494435B2 (ja) 2010-11-22 2014-05-14 株式会社デンソー 空気流量測定装置
JP6506681B2 (ja) * 2015-11-13 2019-04-24 日立オートモティブシステムズ株式会社 空気流量測定装置
CN206442575U (zh) * 2016-12-26 2017-08-25 江苏海明医疗器械有限公司 一种医用加速器剂量率稳定控制电路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541662A (en) * 1977-06-06 1979-01-08 Nissan Motor Device for measuring flow rate
JP2007522479A (ja) * 2004-02-16 2007-08-09 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) 非定常流量計

Also Published As

Publication number Publication date
US20200200583A1 (en) 2020-06-25
CN110678717A (zh) 2020-01-10
CN110678717B (zh) 2020-12-18
US10816380B2 (en) 2020-10-27
JP2018205134A (ja) 2018-12-27
JP6763823B2 (ja) 2020-09-30
DE112018002851T5 (de) 2020-03-12

Similar Documents

Publication Publication Date Title
WO2018225350A1 (ja) 空気流量計
JP5284864B2 (ja) 熱式空気流量計
WO2017081987A1 (ja) 空気流量測定装置
KR20200013591A (ko) 유량 제어 장치
JP6177384B1 (ja) 熱式空気流量計
JP5293486B2 (ja) 電磁流量計
CN102854381B (zh) 一种有功功率和无功功率的误差补偿方法
JP2018151339A (ja) 熱式空気流量計
KR102020811B1 (ko) 유량 신호 보정 방법 및 이것을 사용한 유량 제어 장치
CN103063257B (zh) 用于运行涡流流量测量设备的方法
US10323965B2 (en) Estimating system parameters from sensor measurements
CN113748320B (zh) 空气流量计
US9518854B2 (en) Resonance circuit used for measurement device and measurement device
US11828638B2 (en) Method for operating a Coriolis mass flowmeter and corresponding Coriolis mass flowmeter
JP5779022B2 (ja) 信号検出装置
JP7330394B2 (ja) 電力計測装置
JP2019086486A (ja) 処理装置、処理システム、物理量測定装置及び測定方法
JPH0447226A (ja) フルイディック流量計
CN116539105A (zh) 一种基于变系数微分干扰补偿的电磁流量计流量测量方法
JPS5912573Y2 (ja) 差圧式流量測定装置
KR19980017438A (ko) 정현파 신호를 사용한 회전각 추정 장치 및 방법
KR20160059172A (ko) 가변 위상 천이기를 이용한 전력측정장치의 전압신호와 전류신호간의 위상 보정 장치 및 방법
JPH03279869A (ja) 直流電流測定方法
JPH06258120A (ja) 器差補正装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813411

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18813411

Country of ref document: EP

Kind code of ref document: A1