WO2018223913A1 - 信号传输方法、发送单元、接收单元及显示装置 - Google Patents

信号传输方法、发送单元、接收单元及显示装置 Download PDF

Info

Publication number
WO2018223913A1
WO2018223913A1 PCT/CN2018/089740 CN2018089740W WO2018223913A1 WO 2018223913 A1 WO2018223913 A1 WO 2018223913A1 CN 2018089740 W CN2018089740 W CN 2018089740W WO 2018223913 A1 WO2018223913 A1 WO 2018223913A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
identification
signals
units
scrambled
Prior art date
Application number
PCT/CN2018/089740
Other languages
English (en)
French (fr)
Inventor
周呈祺
段欣
朱昊
王洁琼
陈明
栗首
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/618,524 priority Critical patent/US10971048B2/en
Priority to EP18812852.4A priority patent/EP3637407A4/en
Publication of WO2018223913A1 publication Critical patent/WO2018223913A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G3/2096Details of the interface to the display terminal specific for a flat panel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/005Adapting incoming signals to the display format of the display terminal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • G09G5/008Clock recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/12Transmitting and receiving encryption devices synchronised or initially set up in a particular manner
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0275Details of drivers for data electrodes, other than drivers for liquid crystal, plasma or OLED displays, not related to handling digital grey scale data or to communication of data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/06Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/08Details of image data interface between the display device controller and the data line driver circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/10Use of a protocol of communication by packets in interfaces along the display data pipeline
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03866Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using scrambling

Definitions

  • the present application relates to a signal transmission method and related transmitting unit, receiving unit and display device.
  • the display device may generally include a display panel and a panel driving circuit for driving the display panel.
  • the panel driving circuit may include a timing controller, a gate driving circuit, and a source driving circuit.
  • the timing controller includes a plurality of transmitting units
  • the source driving circuit includes a plurality of receiving units.
  • the plurality of transmitting units are in one-to-one correspondence with the plurality of receiving units, and the plurality of receiving units are connected to the plurality of columns of pixel units on the display panel one by one.
  • each transmitting unit in the timing controller may send a data signal to the corresponding receiving unit, so that each receiving unit connects to the plurality of columns on the display panel according to the received data signal.
  • the pixel unit inputs a display signal.
  • Each column of pixel units on the display panel emits light of a corresponding color according to the input display signal, so that the display panel displays an image.
  • a plurality of transmitting units in the timing controller transmit electromagnetic signals to a plurality of receiving units in the source driving circuit, electromagnetic interference occurs between the plurality of signals, so the data signal received by the receiving unit may be distorted, thereby causing The display signal of the receiving unit input pixel unit is also distorted. Therefore, the image displayed on the display panel is also distorted.
  • a signal transmission method a timing controller, a source driver, and a display device are provided.
  • a method for signal transmission in a display device includes a timing controller and a source driver.
  • the method is applied to any of a plurality of transmitting units of a timing controller.
  • the plurality of transmitting units are in one-to-one correspondence with the plurality of receiving units of the source driver.
  • the method includes: scrambling a non-identified signal in a signal to be transmitted by a scrambler in a transmitting unit to obtain a scrambled signal, where the scrambled signal includes: an identification signal and a scrambled non- Identifying the signal; and transmitting the scrambled signal to a corresponding receiving unit.
  • the signal obtained by scrambling the signal X by using the scrambler is: X 16 +X 5 +X 4 +X 3 +1, X 24 +X 4 +X 3 +X+1 or X 32 +X 7 +X 5 +X 3 +X 2 +X+1.
  • the signal to be transmitted includes a plurality of signal segments sequentially arranged in the time domain and at least one first identification signal between any two adjacent signal segments.
  • the first identification signal is used to instruct the scrambler to perform a reset operation.
  • the scrambling includes scrambling a non-identified signal in each of the plurality of signal segments by a scrambler to obtain the scrambled signal.
  • the scrambled signal includes: a plurality of scrambled signal segments sequentially arranged in the time domain and a first identification signal between the at least one adjacent two scrambled signal segments .
  • the time domain locations of the first identification signals are different.
  • the plurality of transmitting units are connected to the plurality of columns of pixel units in the display panel one by one through a plurality of corresponding receiving units. Scrambling includes causing the scrambler in the two transmitting units connected to any two columns adjacent to the pixel unit to be scrambled differently.
  • the signal to be transmitted comprises: a multi-frame signal that spans a multi-frame image.
  • Each of the multi-frame signals includes: a plurality of row signals.
  • Each of the line signals includes: a start identification signal and an cutoff identification signal as identification signals, and a control packet signal and a video data packet signal as non-identification signals.
  • the start identification signal is used to indicate the starting position of each of the line signals.
  • the cutoff identification signal is used to indicate the cutoff position of each of the row signals. At least one of the plurality of cutoff identification signals is used as the first identification signal.
  • each of the identification signals in each of the row signals comprises at least eleven consecutive bits.
  • each of the identification signals comprises four consecutive bit units, each of which has a number of bits of ten.
  • a method for signal transmission in a display device includes a timing controller and a source driver.
  • the method is applied to any of a plurality of receiving units of a source driver.
  • the plurality of receiving units are in one-to-one correspondence with the plurality of transmitting units of the timing controller.
  • the method includes receiving a scrambled signal from a transmitting unit, the scrambled signal being a signal obtained by the transmitting unit scrambling a non-identifying signal in a signal to be transmitted by a scrambler,
  • the scrambled signal includes: an identification signal and a scrambled non-identification signal; and the descrambled signal is descrambled by a descrambler in the receiving unit to obtain a descrambled signal.
  • the signal obtained by scrambling the signal X by using the scrambler is: X 16 +X 5 +X 4 +X 3 +1, X 24 +X 4 +X 3 +X+1 or X 32 +X 7 +X 5 +X 3 +X 2 +X+1, the descrambling of the signal by the descrambler is the inverse of the scrambler's scrambling of the signal.
  • the received signal comprises: a plurality of scrambled signal segments sequentially arranged in a time domain and at least one first identifier between any two adjacent signal segments signal.
  • the first identification signal is used to instruct the descrambler to perform a reset operation.
  • the descrambling includes: descrambling the non-identified signal in each of the scrambled plurality of signal segments by using the descrambler to obtain a descrambled signal segment.
  • the descrambled signal includes a plurality of descrambled signal segments sequentially arranged in the time domain and at least one first identification signal between any two adjacent descrambled signal segments.
  • the first identification signal is different in position in the time domain in the signals received by any two of the receiving units.
  • the plurality of receiving units are connected one-to-one with the plurality of columns of pixel units in the display panel of the display device.
  • the descrambling includes causing a descrambler in two receiving units connected to the pixel unit adjacent to any two columns to descramble the received signal differently.
  • the received signal comprises a multi-frame signal that spans a multi-frame image.
  • Each of the multi-frame signals includes: a plurality of row signals.
  • Each of the line signals includes: a start identification signal and an cutoff identification signal as identification signals, and a control packet signal and a video data packet signal as non-identification signals.
  • the start identification signal is used to indicate a starting position of each of the line signals.
  • the cutoff identification signal is used to indicate a cutoff position of each of the row signals. At least one of the plurality of cutoff identification signals is used as the first identification signal.
  • each of the identification signals in each of the row signals comprises at least eleven consecutive bits.
  • each of the identification signals comprises four consecutive bit units, each of which has a number of bits of ten.
  • a transmitting unit is provided.
  • the transmitting unit is any one of a plurality of transmitting units for a timing controller in a display device.
  • the plurality of transmitting units are in one-to-one correspondence with the plurality of receiving units of the source drivers in the display device.
  • Each of the sending units includes: a scrambler for scrambling a non-identifying signal in the signal to be transmitted to obtain a scrambled signal, where the scrambled signal includes: an identification signal and a scrambled signal a non-identifying signal; and a transmitter for transmitting the scrambled signal to a corresponding receiving unit.
  • the scrambler scrambles the signal X to obtain: X 16 +X 5 +X 4 +X 3 +1, X 24 +X 4 +X 3 +X+1 or X 32 +X 7 + X 5 +X 3 +X 2 +X+1.
  • the signal to be transmitted includes a plurality of signal segments sequentially arranged in the time domain and at least one first identification signal between any two adjacent signal segments.
  • the scrambler is configured to perform a reset operation upon detecting the first identification signal.
  • the scrambler is further configured to: scramble the non-identified signals in each of the plurality of signal segments in turn to obtain the scrambled signals.
  • the scrambled signal includes: a plurality of scrambled signal segments sequentially arranged in a time domain and a first one between the at least one adjacent two scrambled signal segments Identification signal.
  • the first identification signals are different in position in the time domain.
  • the plurality of transmitting units are connected to the plurality of columns of pixel units in the display panel of the display device one by one through the corresponding receiving unit.
  • the signal to be transmitted by the scrambler in the two transmitting units connected to any two adjacent columns of pixel units is scrambled differently.
  • the signal to be transmitted comprises: a multi-frame signal that spans a multi-frame image.
  • Each of the multi-frame signals includes: a plurality of row signals.
  • Each of the line signals includes: a start identification signal and an cutoff identification signal as identification signals, and a control packet signal and a video data packet signal as non-identification signals.
  • the start identification signal is used to indicate a starting position of each of the line signals.
  • the cutoff identification signal is used to indicate a cutoff position of each of the row signals. At least one of the plurality of cutoff identification signals is used as the first identification signal.
  • each of the identification signals in each of the row signals comprises at least eleven consecutive bits.
  • each of the identification signals comprises four consecutive bit units, each of which has a number of bits of ten.
  • a receiving unit is provided.
  • the receiving unit is any one of a plurality of receiving units for a source driver in a display device.
  • the plurality of receiving units are in one-to-one correspondence with the plurality of transmitting units of the timing controller in the display device.
  • Each of the receiving units includes: a receiver, configured to receive a scrambled signal from a corresponding transmitting unit, where the scrambled signal is a non-identification in a signal to be sent by the sending unit using a scrambler
  • the signal is scrambled to obtain a signal, the signal comprising: an identification signal and a scrambled non-identification signal; and a descrambler for descrambling the scrambled signal to obtain a descrambled signal.
  • the scrambler scrambles the signal X to obtain: X 16 +X 5 +X 4 +X 3 +1, X 24 +X 4 +X 3 +X+1 or X 32 +X 7 + X 5 +X 3 +X 2 +X+1.
  • the descrambling of the signal by the descrambler is the inverse of the scrambler's scrambling of the signal.
  • the received signal comprises: a plurality of scrambled signal segments sequentially arranged in a time domain and at least one first identifier between any two adjacent signal segments signal.
  • the descrambler is configured to perform a reset operation upon detecting the first identification signal.
  • the descrambler is further configured to: descramble the non-identified signals in each of the scrambled plurality of signal segments in turn to obtain a descrambled signal segment.
  • the descrambled signal includes a plurality of descrambled signal segments sequentially arranged in the time domain and a first identification signal between the at least one adjacent two descrambled signal segments.
  • the first identification signals are different in position in the time domain.
  • the plurality of receiving units are connected one to one with a plurality of columns of pixel units in the display panel.
  • the descrambler in the two receiving units to which the adjacent two of the pixel units are connected is descrambled differently for the received signal.
  • the received signal comprises: a multi-frame signal.
  • Each of the multi-frame signals includes: a plurality of row signals.
  • Each of the line signals includes: a start identification signal and an cutoff identification signal as identification signals, and a control packet signal and a video data packet signal as non-identification signals.
  • the start identification signal is used to indicate a starting position of each of the line signals.
  • the cutoff identification signal is used to indicate a cutoff position of each of the row signals. At least one of the plurality of cutoff identification signals is used as the first identification signal.
  • each of the identification signals in each of the row signals comprises at least eleven consecutive bits.
  • each of the identification signals comprises four consecutive bit units, each of which has a number of bits of ten.
  • a display device in a fifth aspect of an embodiment of the present disclosure, includes a timing controller as described above and a source driver as described above.
  • a computer readable storage medium having instructions stored therein, when the computer readable storage medium is run on a computer, causing the computer to execute as above Said method.
  • a computer program product comprising instructions for causing a computer to perform the method as described above when the computer program product is run on a computer.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for signaling a signal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a video image signal according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of another method for signaling a signal according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of still another method for signaling a signal according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a line signal according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of two frame signals to be sent by two sending units according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a sending unit according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a receiving unit according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a display device 100 according to an embodiment of the present invention.
  • the display device 100 can include a timing controller 110 and a source driver 120.
  • the timing controller 110 includes a plurality of transmitting units 111
  • the source driver 120 includes a plurality of receiving units 121.
  • the plurality of transmitting units 111 in the timing controller 110 are connected in one-to-one correspondence with the plurality of receiving units 121 in the source driver 120. That is, the plurality of transmitting units 111 and the plurality of receiving units 121 may transmit signals in a point-to-point transmission mode, such as a data signal, particularly a video signal.
  • the display device may be: a liquid crystal panel, an electronic paper, an Organic Light-Emitting Diode (OLED) panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigation device, etc.
  • OLED Organic Light-Emitting Diode
  • the timing controller 110 may be provided with a plurality of ports, and at least one lane may be disposed in each port. That is, the timing controller 110 may be provided with a plurality of channels, and the plurality of transmitting units 111 of the timing controller 110 are connected to the plurality of channels one-to-one.
  • the source driver 120 can include a plurality of source driver chips (not shown in FIG. 1). Each of the source driver chips is provided with a plurality of ports, and each port may include at least one channel. That is, the source driver 120 may be provided with a plurality of channels, and the plurality of receiving units 121 of the source driver 120 are connected to the plurality of channels one-to-one.
  • the plurality of channels disposed on the timing controller 110 are also connected to the plurality of channels disposed on the source driver 120 in a one-to-one correspondence by the signal lines, thereby causing the plurality of transmitting units 111 and the source drivers in the timing controller 110.
  • the plurality of receiving units 121 in the 120 are respectively connected in one-to-one correspondence through the ports on the timing controller 110, the signal lines, and the ports on the source drivers.
  • the display device 100 may further include a display panel 130 .
  • a plurality of pixel units 131 arranged in an array may be disposed on the display panel 130.
  • Each of the pixel units 131 may include one thin film transistor and one pixel electrode connected.
  • the plurality of pixel units 131 may form a plurality of columns of pixel units, and the plurality of columns of pixel units may be connected in one-to-one correspondence with the plurality of receiving units 121 of the source driver 120.
  • the display device 100 can also include a gate drive circuit (not shown in FIG. 1).
  • FIG. 2 is a flowchart of a signal transmission method in a display device according to an embodiment of the present invention.
  • This signal transmission method can be applied to any one of the plurality of transmission units 111 of the timing controller 110 in FIG.
  • the plurality of transmitting units 111 are in one-to-one correspondence with the plurality of receiving units 121 of the source driver 120.
  • the method can be implemented in conjunction with any suitable hardware, software, firmware, or combination thereof.
  • the method can be performed by software in the form of computer readable instructions embodied on a type of computer readable storage medium, which can be executed under the influence of one or more processors.
  • the signal transmission method may include the following steps.
  • Step 201 Perform scrambling on the non-identification signal in the signal to be transmitted by the scrambler in the transmitting unit to obtain the scrambled signal. Therefore, the scrambled signal includes: an identification signal and a scrambled non-identification signal.
  • the scrambler can be implemented by a linear feedback shift register. For the sake of simplicity, a linear feedback shift register will be described below as an example.
  • each of the transmitting units 111 of FIG. 1 can include a first linear feedback shift register that can be used to scramble the signal.
  • the signal to be transmitted is a signal sent to the source driver for driving the display panel, which may include an identification signal and a non-identification signal.
  • the non-identifying signal may include a data signal to drive a pixel unit on the display panel to display a corresponding image.
  • FIG. 3 illustrates an example of a signal to be transmitted that may be transmitted by a timing controller to a source driver in accordance with an embodiment of the present invention, the signal to be transmitted being a video image signal.
  • the video image signal can be stored on the timing controller.
  • the video image signal may comprise a plurality of consecutive image signals in the time domain.
  • FIG. 3 shows five image signals therein.
  • Each frame of image may be divided into a plurality of columns, and each frame of image signals may include a plurality of column signals in one-to-one correspondence with a plurality of transmitting units in the timing controller (only the first frame image signal is shown in FIG. 3) Multiple column signals).
  • the column signal S(m,n) corresponds to the nth column in the mth frame image.
  • the same column in the multi-frame image signal corresponds to the same transmitting unit, and the plurality of column signals consisting of the same column of each frame are arranged to be continuous in the time domain.
  • a plurality of column signals corresponding to the nth column in each frame image for example, S(1, n), S(2, n), ..., S(M, n) are arranged in the time domain. continuous.
  • each of the sending units in the timing controller needs to sequentially send a plurality of column signals respectively corresponding to the same column in each frame image to the receiving unit corresponding to the transmitting unit, and The receiving unit sends to the pixel unit of the corresponding column on the display panel.
  • a plurality of column signals may be included in a signal to be transmitted of a certain transmitting unit as a non-identifying signal.
  • the difference between the signals can be increased by scrambling the signal to be transmitted, especially the non-identifying signal that affects the display of the pixel unit.
  • Step 202 Send the scrambled signal to the corresponding receiving unit.
  • the corresponding receiving unit uses a descrambler therein, such as a second linear feedback shift register, to descramble the received scrambled signal to obtain a descrambled signal.
  • the descrambled signal corresponds to the pre-scrambled signal in the transmitting unit.
  • the characteristic polynomial used by the first linear feedback shift register may include: X 16 +X 5 +X 4 +X 3 +1, X 24 +X 4 +X 3 +X+1 or X 32 + X 7 +X 5 +X 3 +X 2 +X+1. That is, the signal obtained by scrambling the signal X by the first linear feedback shift register is: X 16 +X 5 +X 4 +X 3 +1, X 24 +X 4 +X 3 +X+1 or X 32 +X 7 +X 5 +X 3 +X 2 +X+1. It will be appreciated that in order to properly descramble the scrambled signal, the scrambling of the signal by the first linear feedback shift register and the descrambling of the signal by the second linear feedback shift register are inverse.
  • the characteristic polynomial of the first linear feedback shift register can also adopt any other applicable multi-order polynomial.
  • a weighted multi-order polynomial can also be employed.
  • the first linear feedback shift register of the two transmitting units may be selected such that the resulting difference between the two scrambled signals is Larger, that is, reducing the similarity of the signals to be transmitted. By converting two more similar signals to be transmitted into two signals with large differences, the electromagnetic interference between the signals is reduced during transmission, thereby improving the quality of signal transmission.
  • each of the transmitting units uses a multi-order polynomial to scramble the non-identified signal in the signal to be transmitted before transmitting the signal, so multiple transmission units send multiple The signal after scrambling has a large difference.
  • the degree of electromagnetic interference between the signals is low, thereby preventing signal distortion received by the receiving unit, thereby preventing the image displayed by the display panel from being distorted.
  • FIG. 4 is a flowchart of another signal transmission method in a display device according to an embodiment of the present invention.
  • This signal transmission method can be applied to any one of the plurality of receiving units 121 of the source driver 120 in FIG.
  • the plurality of receiving units 121 are in one-to-one correspondence with the plurality of transmitting units 111 of the timing controller 110.
  • the method can be implemented in conjunction with any suitable hardware, software, firmware, or combination thereof.
  • the method can be performed by software in the form of computer readable instructions embodied on a type of computer readable storage medium, which can be executed under the influence of one or more processors.
  • the signal transmission method may include the following steps.
  • Step 401 Receive a scrambled signal from a corresponding transmitting unit.
  • the scrambled signal is a signal obtained by the corresponding transmitting unit using a scrambler, such as a first linear feedback shift register, to scramble the non-identified signal in the signal to be transmitted.
  • the scrambled signal includes: an identification signal and a scrambled non-identified signal.
  • Step 402 De-scramble the received signal by a descrambler in the receiving unit, for example, a second linear feedback shift register, to obtain a descrambled signal.
  • the descrambled signal is used to drive the display of the display panel.
  • the descrambling of the signal by the descrambler is the inverse of the scrambler's scrambling of the signal.
  • the characteristic polynomial corresponding to the first linear feedback shift register used by the second linear feedback shift register comprises: X 16 +X 5 +X 4 +X 3 +1 , X 24 +X 4 +X 3 +X+1 or X 32 +X 7 +X 5 +X 3 +X 2 +X+1.
  • the second linear feedback shift register identifies the scrambled non-identified signal in the received signal by the identification signal, and descrambling the received signal includes performing the scrambled non-identified signal De-scrambling.
  • each of the receiving units receives the scrambled signal, so the received signals have a large difference.
  • the degree of electromagnetic interference between the plurality of signals having a large difference is low, thereby preventing signal distortion received by the receiving unit, thereby preventing an image displayed on the display panel from appearing. Distortion phenomenon.
  • FIG. 5 is a flowchart of still another signal transmission method according to an embodiment of the present invention. It will be appreciated that the method can be implemented in conjunction with any suitable hardware, software, firmware, or combination thereof. In at least some embodiments, the method can be performed by software in the form of computer readable instructions embodied on a type of computer readable storage medium, which can be executed under the influence of one or more processors. As shown in FIG. 5, the signal transmission method may include the following steps.
  • Step 501 The transmitting unit in the timing controller uses a scrambler therein, for example, a non-identifying signal in the signal to be transmitted by the first linear feedback shift register to obtain a scrambled signal.
  • a scrambler for example, a non-identifying signal in the signal to be transmitted by the first linear feedback shift register to obtain a scrambled signal.
  • each of the transmitting units 111 of FIG. 1 includes a first linear feedback shift register that can be used to scramble the signal.
  • the first linear feedback shift register is configured to perform a reset operation upon detection of the identification signal.
  • the signal obtained by scrambling the signal X by using the first linear feedback shift register includes but is not limited to: X 16 +X 5 +X 4 +X 3 +1, X 24 +X 4 +X 3 +X +1 or X 32 +X 7 +X 5 +X 3 +X 2 +X+1. That is, the first linear feedback shift register can scramble the signal using a multi-order characteristic polynomial. In practical applications, the signal obtained by scrambling the signal X using the first linear feedback shift register may also be other multi-order polynomials including X.
  • the first linear feedback shift register is configured to scramble the corresponding signal to be transmitted by employing different characteristic polynomials, such that The similarity of the obtained two scrambled signals is reduced, and the difference is increased.
  • the electromagnetic interference between the signals is reduced during transmission.
  • the signal to be transmitted by each transmitting unit may include a multi-frame signal S(n) across a multi-frame image, where n indicates the nth column.
  • the multi-frame signal S(n) may be a signal composed of a plurality of column signals corresponding to the same transmission unit among the multi-frame image signals as shown in FIG.
  • Each frame signal of the multi-frame signal refers to a column signal corresponding to a transmitting unit in each frame image signal, which may correspond to a column pixel in one frame image.
  • Each frame signal can include multiple line signals. It should be noted that each transmitting unit corresponds to one receiving unit, and each receiving unit corresponds to a plurality of columns of pixel units on the display panel.
  • Each of the signals to be transmitted by each transmitting unit is a signal of a plurality of columns of pixel units that need to be input to the display panel, and the plurality of row signals in the signal of each frame are required to be input into the plurality of columns of pixel units.
  • a signal of a plurality of pixel units that is, corresponding to each pixel unit of each row in the plurality of columns of pixel units).
  • FIG. 6 is a schematic diagram of a line signal according to an embodiment of the present invention.
  • each of the plurality of row signals may include: a start identification signal K1, a control (control; ctrl) packet signal, a video data package signal, a cutoff identification signal K2, and Empty (idle) packet signal.
  • the start identification signal K1 is used to indicate the start position of each line signal
  • the cut-off identification signal K2 is used to indicate the cut-off position of each line signal.
  • the control packet signal may also be referred to as a control-line (ctrl-1) packet signal, which includes functional control of the source driver, such as timing, drive current, and the like.
  • the control packet signals in the signals to be transmitted by each transmitting unit are the same.
  • the identification signal in each of the line signals may include: a start identification signal K1 and an off identification signal K2.
  • the non-identifying signals in each of the row signals may include: a control packet signal, a video packet signal, and a null packet signal.
  • the transmitting unit scrambles the signal to be transmitted by using the first linear feedback shift register, only the non-identifying signals in the signal to be transmitted, such as the control packet signal and the video packet signal, are scrambled. Without scrambling the identification signal in the transmitted signal. Therefore, the scrambled signal obtained after scrambling by the first linear feedback shift register may include: an unscrambled identification signal and a scrambled non-identification signal.
  • FIG. 7 is a schematic diagram of two frame signals to be transmitted by two sending units according to an embodiment of the present invention.
  • the two transmitting units are: a transmitting unit A and a transmitting unit B, respectively.
  • Each frame signal to be transmitted by each transmitting unit includes a plurality of line signals, thereby including a plurality of cutoff identification signals K2 corresponding to the respective line signals.
  • at least one special cutoff identification signal K3 is present in the plurality of cutoff identification signals K2.
  • the special cutoff identification signal K3 can be used not only to indicate the cutoff position of the line signal, but also to instruct the scrambler to perform the reset operation and start the next downward The scrambling of an input signal.
  • the signal to be transmitted by each transmitting unit may be divided into a plurality of signal segments, each signal segment being treated as an input signal to be scrambled.
  • Each signal segment may include one or more row signals, or one or more frame signals. Therefore, the signal to be transmitted by each transmitting unit may include a plurality of signal segments and at least one special cutoff identification signal, that is, the first identification signal, before being scrambled.
  • a plurality of signal segments are sequentially arranged in the time domain, and a first identification signal exists between any two adjacent signal segments.
  • each frame signal in FIG. 7 includes a plurality of row signals that are consecutive in the time domain, and each frame signal may further include a frame end identification signal K4 located after the plurality of row signals for indicating The end of the frame signal.
  • the transmitting unit may use the scrambler to scramble the non-identified signal in each of the signal segments to be transmitted, to obtain the scrambled signal.
  • the scrambled signal includes: a plurality of scrambled signal segments and at least one first identification signal.
  • the scrambled plurality of signal segments are sequentially arranged in the time domain, and a first identification signal exists between any two adjacent signal segments. That is, in the process of scrambling the signal to be transmitted by the first linear feedback shift register, if the first linear feedback shift register currently scans the segment cutoff identification signal, the first linear feedback shift register ends. Scrambling the current signal segment and performing a reset operation. After the reset operation is performed, the signal segment after the segment cutoff identification signal is restarted and scrambled, thereby achieving separate scrambling of the plurality of signal segments.
  • different scrambling can be implemented in the following manner, that is, in the case of any two sending units, on the premise that the signal to be transmitted by each transmitting unit is scrambled.
  • the first identification signal is set in a different time domain position in the signal to be transmitted (that is, the first identification signal (for example, K3) in the signals to be transmitted of any two transmitting units is set at a position of a different video thread (for example) At the end of the different row data)) to form different signal segments.
  • the first identification signal for example, K3
  • the position of the first identification signal K3 in the signal to be transmitted of the transmitting unit A and the transmitting unit B is different in the time domain, wherein the first identification signal K3 of the transmitting unit A is left in the figure.
  • the position where the signal of the first line is cut off, and the first identification signal K3 of the transmitting unit B is the position where the signal of the second line from the left in the figure is turned off. This makes the similarity of the plurality of signal segments of the transmitting unit A and the transmitting unit B divided by the first identification signal K3 low.
  • the first identification signals may also be set in different time domain locations in the signals to be transmitted of any two transmitting units to form signal segments of different lengths.
  • the signal segment divided in the transmitting unit A is long, and the signal segment divided in the transmitting unit B is shorter. This also makes the similarity of the plurality of signal segments of the transmitting unit A and the transmitting unit B divided by the first identification signal K3 low. Since the similarity of the signal to be scrambled is lowered, that is, the difference is increased, the difference in the scrambled signal is made larger, thereby preventing electromagnetic interference between the signals when the signal is transmitted.
  • the plurality of receiving units are connected one-to-one with the plurality of columns of pixel units in the display panel.
  • the plurality of transmitting units are connected to the plurality of columns of pixel units in the display panel one by one through a plurality of corresponding receiving units.
  • a scrambler such as a first linear feedback shift register, in two of the transmitting units connected to any two adjacent columns of pixel units is configured to scramble differently for the signal to be transmitted. Differently scrambling can include scrambling the signal to be transmitted by the first linear feedback shift register using different characteristic polynomials.
  • the scrambling according to an embodiment of the present disclosure reduces the similarity of similar signals input to adjacent two columns of pixel units. Thus, electromagnetic interference between each other is reduced during transmission.
  • the number of bits per identification signal is typically set to ten.
  • the number of bits of each identification signal can be set to be greater than ten.
  • each identification signal in each line signal can be set to include continuous At least eleven bits.
  • the receiving unit can correct the first ten bits according to the bits after the tenth bit, thereby accurately identifying the identification signal.
  • the K code defined in the related protocol is continuous forty bits of data, wherein every ten bits are used as a unit, that is, the actual transmission data of K1 is K1G1G1K1.
  • the receiving unit receives a feature code such as G1G1K1, even if the first ten bits are misread, the data can be restored according to the remaining thirty bits. This improves the fault tolerance of the identification signal.
  • the number of bits of the identification signal is larger in the embodiment of the present invention, more bits can be combined to obtain more types of identification signals in the embodiment of the present invention, so that the correlation in the signal transmission process can be further Information is identified.
  • each identification signal may include four consecutive bit units, and the number of bits per bit unit is ten. That is, each identification signal in the embodiment of the present invention may include forty bit units. When the receiving unit does not receive the previous one or several bit units, the identification signal can be determined by the following bit unit.
  • the receiving unit can more easily identify the identification signal due to the presence of at least two bits of different values in the identification signal. Therefore, in the embodiment of the present invention, it is possible to set at least two bits having different values in each bit unit. Further, each identification signal may be set to have consecutive 6 values of the same value. In this way, when receiving and identifying the identification signal, the receiving unit can determine whether the identification signal is received by determining whether six consecutive consecutive bits of the same value are received.
  • Table 1 shows four bit units included in each identification signal in the signal to be transmitted by each transmitting unit.
  • the value of each bit in the embodiment of the present invention is a binary number, and in order to ensure that there are at least two bits having different values in each bit unit, two bits of the four bit units may be set. The units are mutually non-existent, and the other two bit units are also mutually non-existent.
  • the bit unit (0111111010) and the bit unit (1000000101) are mutually different, and the bit unit (1010101000) and the bit unit (0101010111) ) mutuality.
  • K1 may be composed of a bit unit (0111111010), a bit unit (1000000101), a bit unit (1010101000), and a bit unit (0101010111) sequentially arranged in time series, or K1 may be sequentially performed in time series.
  • the arranged bit units (0111111010), bit units (0101010111), bit units (1010101000) and bit units (1000000101) are composed. It should be noted that the arrangement order of the four bit units shown in Table 1 is exemplary and not limiting. The four bit units included in each identification signal may adopt other arrangement orders than those shown in Table 1.
  • Step 502 The transmitting unit encodes the scrambled signal to obtain a coded signal.
  • the transmitting unit may also use 8b/10b encoding (that is, encoding 8-bit data into 10-bit data) in order to increase the rate of signal transmission by reducing the error rate.
  • the encoding method encodes the scrambled signal to obtain an encoded signal.
  • all the identification signals are not encoded, that is, the signals to be encoded are non-identification signals.
  • Step 503 The sending unit sends the encoded signal to the receiving unit.
  • the encoded signal can be sent to the corresponding receiving unit through a path established with the corresponding receiving unit. It should be noted that each of the plurality of transmitting units may send corresponding encoded signals to the corresponding receiving units in parallel.
  • Step 504 The receiving unit decodes the received encoded signal to obtain a decoded signal. After receiving the encoded signal, the receiving unit may decode the encoded signal by using a decoding method of 8b/10b decoding (that is, decoding 10-bit data into 8-bit data) to obtain a decoded signal.
  • the decoded signal corresponds to the scrambled signal obtained in step 501.
  • Step 505 The receiving unit descrambles the decoded signal by using a descrambler, such as a second linear feedback shift register, to obtain a descrambled signal, which corresponds to the pre-scrambled signal in the transmitting unit.
  • a descrambler such as a second linear feedback shift register
  • the receiving unit may descramble the scrambled signal with a second linear feedback shift register to obtain a pre-scrambled signal (ie, a signal to be transmitted).
  • a pre-scrambled signal ie, a signal to be transmitted.
  • the transmitting unit successfully transmits the signal to be transmitted to the corresponding receiving unit.
  • the scrambling order of the signals by the first linear feedback shift register may be opposite to the descrambling order of the signals of the second feedback register.
  • the second linear feedback shift register in each receiving unit descrambles the scrambled signal of the first linear feedback shift register in the transmitting unit corresponding to the receiving unit, when two transmissions are performed When the first linear feedback shift register in the cell is different, the second linear feedback shift register of the corresponding two receiving units is also different.
  • the scrambled data sent by different transmitting units at the same time will be different (from different linear feedback shift registers), the data energy will be more dispersed from the overall energy distribution, thus eliminating the energy peak spectrum. Effect.
  • the signal transmission method provided by the embodiment of the present invention is capable of generating an attenuation of about 7 decibels (dB) at the peak spectrum.
  • each transmitting unit uses a multi-order polynomial to scramble the non-identified signal in the signal to be transmitted before transmitting the signal, thereby causing multiple
  • the difference between the plurality of scrambled signals transmitted by the transmitting unit is large.
  • the degree of electromagnetic interference between the plurality of signals having a large difference is low, thereby preventing signal distortion received by the receiving unit and preventing distortion of an image displayed on the display panel. phenomenon.
  • FIG. 8 is a schematic diagram of a structure 800 of a transmitting unit according to an embodiment of the present invention.
  • the transmitting unit can be used for a timing controller.
  • the timing controller may be implemented as the timing controller 110 in FIG. 1, and it includes or uses a plurality of transmitting units, and three transmitting units 810 1 , 810 2 , . . . , 810 n are shown as an example in the drawing.
  • the transmitting unit 810 1 may include a scrambler 811 1 and a transmitter 812 1 .
  • the transmitting unit 810 2 may include a scrambler 811 2 and a transmitter 812 2
  • the transmitting unit 810 n may include a scrambler 811 n and a transmitter 812 n .
  • the scramblers 811 1 , 811 2 , ..., 811 n are used to scramble the non-identified signals in the signal to be transmitted to obtain a scrambled signal.
  • the scrambled signal includes: an identification signal and a scrambled non-identified signal.
  • 812 n are configured to send the scrambled signals to the corresponding receiving unit, so that the corresponding receiving unit adopts the descrambler in the corresponding receiving unit, and the scrambled signals are used. Perform descrambling to obtain the signal before scrambling.
  • the scramblers 811 1 , 811 2 , ..., 811 n may be implemented by a first linear feedback shift register, respectively.
  • the signal obtained by scrambling the signal X using the first linear feedback shift register is: X 16 +X 5 +X 4 +X 3 +1, X 24 +X 4 +X 3 +X+1 or X 32 + X 7 +X 5 +X 3 +X 2 +X+1.
  • the scrambling order of the signals by the first linear feedback shift register is opposite to the descrambling order of the signals of the second feedback register.
  • the signal to be transmitted includes a plurality of signal segments and at least one first identification signal between any two adjacent signal segments.
  • the first identification signal is used to instruct the linear feedback shift register to perform a reset operation, indicating that the linear feedback shift register has ended the scrambling of the current signal.
  • the plurality of signal segments before scrambling are sequentially arranged in the time domain.
  • the scrambler is further configured to scramble each signal segment separately. It can be used to: scramble the non-identified signal in each of the plurality of signal segments before scrambling in turn to obtain the scrambled signal.
  • the scrambled signal includes a plurality of scrambled signal segments and at least one first identification signal. The scrambled plurality of signal segments are sequentially arranged in the time domain, and a first identification signal exists between any two adjacent signal segments in the scrambled plurality of signal segments.
  • the time domain positions of the first identification signals are different. This can be achieved by splitting the two signals to be transmitted into signal segments of the same length, but staggering the start position of the signal segments in the time domain.
  • the position of the first identification signal can also be made different in the time domain by dividing the two signals to be transmitted into signal segments of different lengths. Since the signals scrambled by the scrambler are different, the signal difference after scrambling is further increased. This reduces electromagnetic interference between signals.
  • the plurality of transmitting units are connected to the plurality of columns of pixel units in the display panel one by one through the corresponding plurality of receiving units.
  • the scrambler in the two transmitting units to which any two adjacent columns of pixel units are connected may be made different to increase the difference of the scrambled signals.
  • the transmission unit shown in FIG. 88 101, 8102 may correspond to two adjacent pixel units. Accordingly, the transmission unit in the scrambler 81018111 scrambler and the transmission unit 8102 in 8112 may be different, for example, which employs a different characteristic polynomial.
  • the signal X 1 obtained by scrambled by the scrambler 811 1 may be: X 16 +X 5 +X 4 +X 3 +1, and the scrambler 811 2 pairs
  • the signal X 2 obtained after scrambling can be: X 24 +X 4 +X 3 +X+1.
  • X 1 is different from X 2 . Therefore, the electromagnetic interference generated by simultaneously transmitting different X 1 and X 2 is greatly reduced as compared with the simultaneous transmission of two identical signals X.
  • the characteristic polynomials of the scramblers presented herein are exemplary and not limiting. Other suitable feature polynomials may also be employed by the scrambler in accordance with embodiments of the present disclosure.
  • the signal to be transmitted includes: a multi-frame signal.
  • Each frame of the multi-frame signal includes: a plurality of line signals.
  • Each of the plurality of row signals includes: a start identification signal, a control packet signal, a video packet signal, a cutoff identification signal, and a null packet signal.
  • the start identification signal is used to indicate the start position of each line signal
  • the cutoff identification signal is used to indicate the cutoff position of each line signal.
  • each of the identification signals in each of the row signals includes at least eleven consecutive bits.
  • each identification signal comprises four consecutive bit units, each of which has a number of bits of ten.
  • each bit unit there are at least two bits of different values in each bit unit.
  • each identification signal there are six consecutive bits of the same value in each identification signal.
  • the scrambler in the transmitting unit for example, the first linear feedback shift register, uses the multi-order polynomial to perform non-identifying signals in the signal to be transmitted. Scrambling, so that the difference between the plurality of scrambled signals transmitted by the transmitters in the plurality of transmitting units is large, and when a plurality of signals having a large difference are simultaneously transmitted, between the plurality of signals having a large difference The degree of electromagnetic interference is low, thereby preventing signal distortion received by the receiving unit and preventing distortion of the image displayed on the display panel.
  • FIG. 9 is a schematic diagram of a structure 900 of a receiving unit according to an embodiment of the present invention.
  • the receiving unit can be used for a source driver.
  • the source driver can be implemented as a source driver as shown in FIG. 1, which can include or use a plurality of receiving units 910 1 , 910 2 , . . . , 910n.
  • the receiving unit 9101 may include a receiver 9111 and a descrambler 9121.
  • the receiving unit 9102 may include a receiver 9112 and a descrambler 9122
  • receiving unit 910 may include n-n-receiver 911 and the descrambler 912 n.
  • Receivers 911 1 , 911 2 , ..., 911 n are used to receive the scrambled signals from the corresponding transmitting unit.
  • the scrambled signal is a signal obtained by the corresponding transmitting unit scrambling the non-identifying signal in the signal to be transmitted by the scrambler.
  • the scrambled signal includes: an identification signal and a scrambled non-identified signal.
  • the descramblers 912 1 , 912 2 , ..., 912 n are used to descramble the received signal to obtain a descrambled signal corresponding to the signal before scrambling.
  • the descrambler uses a process that is inverse to the scrambler to descramble the received signal.
  • the scrambler is a first linear feedback shift register and the descrambler is a second linear feedback shift register.
  • the received signal is a signal obtained by the first linear feedback shift register scrambling the signal X by the following characteristic polynomial: X 16 +X 5 +X 4 +X 3 +1 , X 24 +X 4 +X 3 +X+1 or X 32 +X 7 +X 5 +X 3 +X 2 +X+1.
  • the second linear feedback shift register 921 1 , 922 also descrambles using the following characteristic polynomial corresponding to the first linear feedback shift register: X 16 +X 5 +X 4 +X 3 +1, X 24 + X 4 + X 3 + X + 1 or X 32 + X 7 + X 5 + X 3 + X 2 + X + 1.
  • the received signal includes a plurality of scrambled signal segments and at least one first identification signal between any two adjacent signal segments.
  • the scrambled multiple signal segments are arranged in sequence in the time domain.
  • the descramblers 912 1 , 912 2 , . . . , 912 n can also be used to identify signal segments in the received signal by the first identification signal, and separately for each signal segment Perform scrambling.
  • the non-identified signal in each signal segment can be descrambled to obtain a descrambled signal.
  • , 912 n respectively include: a plurality of descrambled signal segments and at least one first identification signal.
  • the plurality of signal segments after descrambling are sequentially arranged in the time domain, and a first identification signal exists between any two adjacent signal segments.
  • the first identification signal is used to instruct the descrambler to perform a reset operation.
  • the time domain locations of the first identification signals are different.
  • the plurality of receiving units are connected to the plurality of columns of pixel units in the display panel one by one, and the second linear feedback shift registers of the two receiving units connected by any two adjacent columns of pixel units are different. For example, different feature polynomials are used.
  • the signal received by the receiving unit is a scrambled signal obtained by scrambling the signal to be transmitted by each transmitting unit before transmitting the signal, and thus the plurality of receiving units
  • the received signals differ greatly.
  • the degree of electromagnetic interference between the plurality of signals having a large difference is low, thereby preventing signal distortion received by the receiving unit and preventing distortion of an image displayed on the display panel. phenomenon.
  • the embodiments shown in Figures 2, 4 and 5 can be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product comprising one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a programmable device that can be stored in a readable storage medium of the computer.
  • the computer readable storage medium can be any available media that can be accessed by a computer.
  • the usable medium may be a magnetic medium, an optical medium, or a semiconductor medium or the like.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本公开涉及用于在显示装置中的信号传输的方法和装置。该显示装置包括时序控制器和源极驱动器。该方法应用于时序控制器的多个发送单元中的任一发送单元。多个发送单元与源极驱动器的多个接收单元一一对应。所述方法包括:通过发送单元中的加扰器对待发送的信号中的非标识信号进行加扰,得到加扰后的信号,所述加扰后的信号包括:标识信号和加扰后的非标识信号;和向对应的接收单元发送所述加扰后的信号。采用所述加扰器对信号X进行加扰所得到的信号为:X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1。本公开减少了显示面板显示的图像出现失真的现象。

Description

信号传输方法、发送单元、接收单元及显示装置 技术领域
本申请涉及一种信号传输方法及相关的发送单元、接收单元和显示装置。
背景技术
显示装置一般可以包括显示面板以及用于驱动该显示面板的面板驱动电路。面板驱动电路可以包括时序控制器、栅极驱动电路和源极驱动电路。
在现有技术中,时序控制器包括多个发送单元,源极驱动电路包括多个接收单元。该多个发送单元与多个接收单元一一对应,而多个接收单元与显示面板上的多列像素单元一一连接。在需要控制显示面板显示图像时,时序控制器中的每个发送单元可以向对应的接收单元发送数据信号,进而使得每个接收单元根据接收到的数据信号,向显示面板上相连接的多列像素单元输入显示信号。显示面板上的每列像素单元根据被输入的显示信号发出相应颜色的光,使得显示面板显示图像。
由于时序控制器中的多个发送单元在向源极驱动电路中的多个接收单元发送数据信号时,多个信号之间会产生电磁干扰,所以接收单元接收到的数据信号可能失真,进而导致接收单元输入像素单元的显示信号也失真。因此,显示面板显示的图像也出现失真。
发明内容
按照本公开的实施例,提供了一种信号传输方法、时序控制器、源极驱动器及显示装置。
在本公开实施例的第一方面,提供了一种用于在显示装置中的信号传输的方法。该显示装置包括时序控制器和源极驱动器。所述方法应用于时序控制器的多个发送单元中的任一发送单元。所述多个发送单元与源极驱动器的多个接收单元一一对应。所述方法包括:通过发送单元中的加扰器对待发送的信号中的非标识信号进行加扰,得到加扰后的信号,所述加扰后的信号包括:标识信号和加扰后的非标识信 号;和向对应的接收单元发送所述加扰后的信号。在该方法中,采用所述加扰器对信号X进行加扰所得到的信号为:X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1。
在一些实施例中,所述待发送的信号包括:在时域上依次排布的多个信号分段和至少一个处于相邻的任意两个信号分段之间的第一标识信号。所述第一标识信号用于指示所述加扰器执行复位操作。所述加扰包括:由加扰器依次对所述多个信号分段中的每个信号分段中的非标识信号进行加扰,得到所述加扰后的信号。加扰后的信号包括:在时域上依次排布的加扰后的多个信号分段以及所述至少一个处于相邻的任意两个加扰后的信号分段之间的第一标识信号。
在一些实施例中,在任意两个所述发送单元的所述待发送的信号中,所述第一标识信号的时域位置不同。
在一些实施例中,所述多个发送单元通过多个对应的接收单元与显示面板中的多列像素单元一一连接。加扰包括:使得与任意两列相邻的所述像素单元所连接的两个发送单元中的加扰器对待发送的信号不同地加扰。
在一些实施例中,所述待发送的信号包括:跨多帧图像的多帧信号。所述多帧信号中的每帧信号包括:多个行信号。每个行信号包括:作为标识信号的起始标识信号和截止标识信号,以及作为非标识信号的控制包信号和视频数据包信号。起始标识信号用于指示所述每个行信号的起始位置。截止标识信号用于指示所述每个行信号的截止位置。多个截止标识信号中的至少一个截止标识信号被用作为所述第一标识信号。
在一些实施例中,所述每个行信号中的每个标识信号均包括连续的至少十一个比特。
在一些实施例中,所述每个标识信号包括连续的四个比特单元,每个所述比特单元的比特数均为十。
在一些实施例中,每个所述比特单元中存在至少两个值不同的比特。
在一些实施例中,所述每个标识信号中存在连续6个值相同的比特。
在本公开实施例的第二方面,提供了一种用于在显示装置中的信 号传输的方法。该显示装置包括时序控制器和源极驱动器。所述方法应用于源极驱动器的多个接收单元中的任一接收单元。所述多个接收单元与时序控制器的多个发送单元一一对应。所述方法包括:接收来自发送单元的加扰后的信号,所述加扰后的信号为所述发送单元采用加扰器对待发送的信号中的非标识信号进行加扰得到的信号,所述加扰后的信号包括:标识信号和加扰后的非标识信号;通过接收单元中的解扰器对所述加扰后的信号进行解扰,得到解扰的信号。在该方法中,采用所述加扰器对信号X进行加扰所得到的信号为:X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1,所述解扰器对信号的解扰是加扰器对信号的加扰的逆过程。
在一些实施例中,所述接收到的信号包括:在时域上依次排布的加扰后的多个信号分段以及至少一个处于相邻的任意两个信号分段之间的第一标识信号。所述第一标识信号用于指示所述解扰器执行复位操作。解扰包括:采用所述解扰器,依次对所述加扰后的多个信号分段中的每个信号分段中的非标识信号进行解扰,得到解扰的信号分段。所述解扰的信号包括:在时域上依次排布的多个解扰的信号分段和至少一个处于相邻的任意两个解扰的信号分段之间的第一标识信号。
在一些实施例中,在由任意两个接收单元所接收到的信号中,所述第一标识信号在时域上的位置不同。
在一些实施例中,多个接收单元与显示装置的显示面板中的多列像素单元一一连接。所述解扰包括:使得与任意两列相邻的所述像素单元所连接的两个接收单元中的解扰器对所接收到的信号不同地解扰。
在一些实施例中,所述接收到的信号包括:跨多帧图像的多帧信号。所述多帧信号中的每帧信号包括:多个行信号。每个行信号包括:作为标识信号的起始标识信号和截止标识信号,以及作为非标识信号的控制包信号和视频数据包信号。所述起始标识信号用于指示所述每个行信号的起始位置。所述截止标识信号用于指示所述每个行信号的截止位置。所述多个截止标识信号中的至少一个截止标识信号被用作为所述第一标识信号。
在一些实施例中,所述每个行信号中的每个标识信号均包括连续的至少十一个比特。
在一些实施例中,所述每个标识信号包括连续的四个比特单元, 每个所述比特单元的比特数均为十。
在一些实施例中,每个所述比特单元中存在至少两个值不同的比特。
在一些实施例中,所述每个标识信号中存在连续6个值相同的比特。
在本公开实施例的第三方面,提供了一种发送单元。所述发送单元为用于显示装置中的时序控制器的多个发送单元中的任一发送单元。多个发送单元与显示装置中的源极驱动器的多个接收单元一一对应。每个所述发送单元包括:加扰器,用于对待发送的信号中的非标识信号进行加扰,得到加扰后的信号,所述加扰后的信号包括:标识信号和加扰后的非标识信号;和发送器,用于向对应的接收单元发送所述加扰后的信号。所述加扰器对信号X进行加扰所得到的信号为:X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1。
在一些实施例中,所述待发送的信号包括:在时域上依次排布的多个信号分段和至少一个处于相邻的任意两个信号分段之间的第一标识信号。加扰器被配置为在检测到所述第一标识信号时执行复位操作。加扰器还用于:依次对所述多个信号分段中的每个信号分段中的非标识信号进行加扰,得到所述加扰后的信号。所述加扰后的信号包括:在时域上依次排布的加扰后的多个信号分段以及所述至少一个处于相邻的任意两个加扰后的信号分段之间的第一标识信号。
在一些实施例中,在任意两个所述发送单元的待发送的信号中,所述第一标识信号在时域上的位置不同。
在一些实施例中,所述多个发送单元通过对应的接收单元与显示装置的显示面板中的多列像素单元一一连接。与任意两列相邻的像素单元所连接的两个发送单元中的加扰器对待发送的信号不同地加扰。
在一些实施例中,所述待发送的信号包括:跨多帧图像的多帧信号。所述多帧信号中的每帧信号包括:多个行信号。每个行信号包括:作为标识信号的起始标识信号和截止标识信号,以及作为非标识信号的控制包信号和视频数据包信号。所述起始标识信号用于指示所述每个行信号的起始位置。所述截止标识信号用于指示所述每个行信号的截止位置。多个截止标识信号中的至少一个截止标识信号被用作为所述第一标识信号。
在一些实施例中,所述每个行信号中的每个标识信号均包括连续的至少十一个比特。
在一些实施例中,所述每个标识信号包括连续的四个比特单元,每个所述比特单元的比特数均为十。
在一些实施例中,每个所述比特单元中存在至少两个值不同的比特。
在一些实施例中,所述每个标识信号中存在连续6个值相同的比特。
在本公开实施例的第四方面,提供了一种接收单元。所述接收单元为用于显示装置中的源极驱动器的多个接收单元中的任一接收单元。多个接收单元与显示装置中的时序控制器的多个发送单元一一对应。每个所述接收单元包括:接收器,用于接收来自对应的发送单元的加扰后的信号,所述加扰后的信号为所述发送单元采用加扰器对待发送的信号中的非标识信号进行加扰得到的信号,所述信号包括:标识信号和加扰后的非标识信号;和解扰器,用于对所述加扰后的信号进行解扰,得到解扰的信号。所述加扰器对信号X进行加扰所得到的信号为:X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1。所述解扰器对信号的解扰是加扰器对信号的加扰的逆过程。
在一些实施例中,所述接收到的信号包括:在时域上依次排布的加扰后的多个信号分段以及至少一个处于相邻的任意两个信号分段之间的第一标识信号。所述解扰器被配置为在检测到所述第一标识信号时执行复位操作。解扰器还用于:依次对所述加扰后的多个信号分段中的每个信号分段中的非标识信号进行解扰,得到解扰的信号分段。所述解扰的信号包括:在时域上依次排布的多个解扰的信号分段和所述至少一个处于相邻的任意两个解扰的信号分段之间的第一标识信号。
在一些实施例中,在任意两个所述接收单元接收到的信号中,所述第一标识信号在时域上的位置不同。
在一些实施例中,所述多个接收单元与显示面板中的多列像素单元一一连接。在任意两列相邻的所述像素单元所连接的两个接收单元中的解扰器对所接收的信号不同地解扰。
在一些实施例中,所述接收到的信号包括:多帧信号。所述多帧信号中的每帧信号包括:多个行信号。每个行信号包括:作为标识信 号的起始标识信号和截止标识信号,以及作为非标识信号的控制包信号和视频数据包信号。所述起始标识信号用于指示所述每个行信号的起始位置。所述截止标识信号用于指示所述每个行信号的截止位置。多个截止标识信号中的至少一个截止标识信号被用作为所述第一标识信号。
在一些实施例中,所述每个行信号中的每个标识信号均包括连续的至少十一个比特。
在一些实施例中,所述每个标识信号包括连续的四个比特单元,每个所述比特单元的比特数均为十。
在一些实施例中,每个所述比特单元中存在至少两个值不同的比特。
在一些实施例中,所述每个标识信号中存在连续6个值相同的比特。
在本公开实施例的第五方面,提供了一种显示装置。所述显示装置包括:如上所述的时序控制器和如上所述的源极驱动器。
在本公开实施例的第六方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述计算机可读存储介质在计算机上运行时,使得计算机执行如上所述的方法。
在本公开实施例的第七方面,提供了一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得计算机执行如上所述的方法。
附图说明
为了更好地理解本公开的目的、特征和优点,下面将参照附图对本公开的实施例进行说明性而非限制性的描述。
图1为本发明实施例提供的一种显示装置的结构示意图;
图2为本发明实施例提供的一种信号传输方法的方法流程图;
图3为本发明实施例提供的一种视频图像信号示意图;
图4为本发明实施例提供的另一种信号传输方法的方法流程图;
图5为本发明实施例提供的又一种信号传输方法的方法流程图;
图6为本发明实施例提供的一种行信号的示意图;
图7为本发明实施例提供的一种两个发送单元的待发送的两帧信 号的示意图;
图8为本发明实施例提供的一种发送单元的结构示意图;以及
图9为本发明实施例提供的一种接收单元的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。可以理解,所有的附图都是示意性的,并且通常仅示出为了阐明本发明所必需的部分,而其他部分可能被省略或仅仅暗示。
图1为本发明实施例提供的一种显示装置100的结构示意图。如图1所示,该显示装置100可以包括时序控制器110和源极驱动器120。该时序控制器110包括多个发送单元111,而源极驱动器120包括多个接收单元121。时序控制器110中的多个发送单元111与源极驱动器120中的多个接收单元121一一对应连接。也即,多个发送单元111与多个接收单元121可以采用点对点的传输模式传输信号,例如数据信号,特别是视频信号。
示例的,该显示装置可以为:液晶面板、电子纸、有机发光二极管(Organic Light-Emitting Diode;OLED)面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
示例的,时序控制器110上可以设置有多个端口(port),每个端口内可以设置有至少一个通道(lane)。也即,时序控制器110上可以设置有多个通道,且时序控制器110中的多个发送单元111与该多个通道一一对应连接。源极驱动器120可以包括多个源极驱动芯片(图1中未示出)。每个源极驱动芯片上设置有多个端口,每个端口可以包括至少一个通道。也即,源极驱动器120上可以设置有多个通道,且源极驱动器120中的多个接收单元121与该多个通道一一对应连接。进一步的,时序控制器110上设置的多个通道还与源极驱动器120上设置的多个通道通过信号线一一对应连接,从而使得时序控制器110中的多个发送单元111和源极驱动器120中的多个接收单元121,分别通过时序控制器110上的端口、信号线以及源极驱动器上的端口一一对应连接。
请继续参考图1,该显示装置100还可以包括显示面板130。显示面板130上可以设置有以阵列方式排布的多个像素单元131。每个像素单元131可以包括相连接的一个薄膜晶体管和一个像素电极。多个像素单元131可以形成多列像素单元,该多列像素单元可以与源极驱动器120中的多个接收单元121一一对应连接。在一些实施例中,该显示装置100还可以包括栅极驱动电路(图1中未示出)。
在常规技术中,由于待显示图像中相邻的像素较相似,所以用于显示相邻像素的相邻两列像素单元的输入信号也较相似。因此,发送单元发送给接收单元用以驱动相邻的两列像素单元的信号会比较相似。由于显示装置中的像素单元的布设非常密集,相应地,与之对应的信号线的布设也非常密集,所以在相似的信号同时经由彼此接近的信号线传输的过程中会引起较强的信号间电磁干扰。
图2为本发明实施例提供的一种在显示装置中的信号传输方法的流程图。该信号传输方法可以应用于图1中时序控制器110的多个发送单元111中的任一发送单元111。该多个发送单元111与源极驱动器120的多个接收单元121一一对应。可以理解,该方法可以结合任何适当的硬件、软件、固件或者其组合执行。在至少一些实施例中,该方法可以通过包含在某种类型的计算机可读存储介质上的计算机可读指令形式的软件执行,该软件可以在一个或多个处理器的影响下执行。如图2所示,该信号传输方法可以包括以下步骤。
步骤201、通过发送单元中的加扰器对待发送的信号中的非标识信号进行加扰,得到加扰后的信号。因此,加扰后的信号包括:标识信号和加扰后的非标识信号。在一些实施例中,加扰器可以通过线性反馈移位寄存器来实现。为简单起见,在下文中以线性反馈移位寄存器为例来进行说明。
在实施例中,图1中的每个发送单元111均可以包括一个第一线性反馈移位寄存器,该第一线性反馈移位寄存器可以用于对信号进行加扰。在实施例中,待发送的信号是发送给源极驱动器用以驱动显示面板的信号,其可以包括标识信号和非标识信号。非标识信号可以包括用以驱动显示面板上的像素单元显示相应图像的数据信号。
图3示出了按照本发明实施例的可以由时序控制器发送给源极驱动器的一种待发送信号的示例,该待发送的信号是视频图像信号。视 频图像信号可以存储在时序控制器上。该视频图像信号可以包括在时域上连续的多帧图像信号。作为示例,图3示出了其中的五帧图像信号。每帧图像可以被划分成多个列,且每帧图像信号可以包括与时序控制器中的多个发送单元一一对应的多个列信号(图3中仅仅示出了第一帧图像信号中的多个列信号)。举例而言,列信号S(m,n)对应第m帧图像中的第n列。在一些实施例中,多帧图像信号中的相同列对应同一发送单元,由各帧相同列组成的多个列信号被安排为在时域上连续。举例而言,对应各帧图像中例如第n列的多个列信号,例如S(1,n),S(2,n),……S(M,n),被安排为在时域上连续。在需要控制显示面板显示视频图像时,时序控制器中的每个发送单元均需要将分别与各帧图像中的同一列对应的多个列信号依次发送至该发送单元对应的接收单元,并经由接收单元发送给显示面板上的对应列的像素单元。由此,在实施例中,多个列信号可以被包括在某一发送单元的待发送的信号中做为非标识信号。
通过对待发送的信号,尤其是其中影响像素单元显示的非标识信号进行加扰,可以使得信号之间的差异增大。
步骤202、向对应的接收单元发送加扰后的信号。对应的接收单元采用其中的解扰器,例如第二线性反馈移位寄存器,对所接收的加扰后的信号进行解扰,得到解扰的信号。解扰的信号对应于发送单元中的加扰前的信号。
这里,举例而言,第一线性反馈移位寄存器使用的特征多项式可以包括:X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1。也即,第一线性反馈移位寄存器对信号X进行加扰所得到的信号为:X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1。可以理解,为了正确地对加扰的信号解扰,第一线性反馈移位寄存器对信号的加扰与第二线性反馈移位寄存器对信号的解扰是相逆的过程。
可以理解,在实际应用中,第一线性反馈移位寄存器的特征多项式还可以采用其他任何的适用的多阶多项式。可选地,还可以采用加权的多阶多项式。在一些实施例中,当两个发送单元的待发送的信号较相似时,可以将两个发送单元的第一线性反馈移位寄存器选择为:使得所得到的两个加扰后的信号的相差较大,即减小待发送的信号的相似度。通过把两个较相似的待发送的信号转变为两个相差较大的信 号,在传输过程中信号间的电磁干扰被减小,进而促进信号传输质量的提高。在本发明实施例提供的信号传输方法中,由于每个发送单元在发送信号之前,都采用多阶多项式对待发送的信号中的非标识信号进行了加扰,所以多个发送单元发送的多个加扰后的信号的相差较大。在同时传输多个相差较大的信号时,信号之间的电磁干扰程度较低,从而防止了接收单元接收到的信号失真,进而防止了显示面板显示的图像出现失真的现象。
图4为本发明实施例提供的另一种在显示装置中的信号传输方法的流程图。该信号传输方法可以应用于图1中的源极驱动器120的多个接收单元121中的任一接收单元121。该多个接收单元121与时序控制器110的多个发送单元111一一对应。可以理解,该方法可以结合任何适当的硬件、软件、固件或者其组合执行。在至少一些实施例中,该方法可以通过包含在某种类型的计算机可读存储介质上的计算机可读指令形式的软件执行,该软件可以在一个或多个处理器的影响下执行。如图4所示,该信号传输方法可以包括以下步骤。
步骤401、接收来自对应的发送单元的加扰后的信号。该加扰后的信号是对应的发送单元采用其中的加扰器,例如第一线性反馈移位寄存器,对待发送的信号中的非标识信号进行加扰得到的信号。加扰后的信号包括:标识信号和加扰后的非标识信号。
步骤402、通过接收单元中的解扰器,例如第二线性反馈移位寄存器对所接收的信号进行解扰,得到解扰的信号。解扰的信号被用以驱动显示面板的显示。所述解扰器对信号的解扰是加扰器对信号的加扰的逆过程。
在实施例中,第二线性反馈移位寄存器使用的与第一线性反馈移位寄存器对应的特征多项式包括:X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1。
在实施例中,第二线性反馈移位寄存器通过标识信号来识别所接收的信号中的加扰后的非标识信号,且对所接收的信号进行解扰包括对加扰后的非标识信号进行解扰。
在本发明实施例提供的信号传输方法中,每个接收单元所接收到的是加扰后的信号,所以所接收到的信号的相差较大。在同时接收到多个相差较大的信号时,该多个相差较大的信号之间的电磁干扰程度 较低,从而防止了接收单元接收到的信号失真,进而防止了显示面板显示的图像出现失真的现象。
图5为本发明实施例提供的又一种信号传输方法的流程图。可以理解,该方法可以结合任何适当的硬件、软件、固件或者其组合执行。在至少一些实施例中,该方法可以通过包含在某种类型的计算机可读存储介质上的计算机可读指令形式的软件执行,该软件可以在一个或多个处理器的影响下执行。如图5所示,该信号传输方法可以包括以下步骤。
步骤501、时序控制器中的发送单元采用其中的加扰器,例如第一线性反馈移位寄存器对待发送的信号中的非标识信号进行加扰,得到加扰后的信号。
在实施例中,图1中的每个发送单元111均包括一个第一线性反馈移位寄存器,该第一线性反馈移位寄存器可以用于对信号进行加扰。在实施例中,第一线性反馈移位寄存器被配置为在检测到标识信号后执行复位操作。
示例的,采用第一线性反馈移位寄存器对信号X进行加扰所得到的信号包括但不限于:X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1。也即,该第一线性反馈移位寄存器能够采用多阶的特征多项式对信号进行加扰。实际应用中,采用第一线性反馈移位寄存器对信号X进行加扰所得到的信号还可以为其他包含X的多阶多项式。在一些实施例中,当两个发送单元待发送的信号较相似时,其第一线性反馈移位寄存器被配置为通过采用不同的特征多项式而对其相应的待发送的信号加扰,以使得所得到的两个加扰后的信号的相似度减小,差异增大。通过减小两个待发送的信号的相似度,使得在传输过程中信号间的电磁干扰减小。
在一些实施例中,每个发送单元待发送的信号可以包括:跨多帧图像的多帧信号S(n),其中n指示第n列。多帧信号S(n)可以是由如图3中所示的多帧图像信号中对应同一发送单元的多个列信号组成的信号。该多帧信号中的每帧信号是指各帧图像信号中对应该发送单元的列信号,其可以对应于一帧图像中的列像素。每帧信号可以包括多个行信号。要指出的是,每个发送单元对应一个接收单元,每个接收单元对应显示面板上的多列像素单元。每个发送单元待发送的信号中 的每帧信号为需要输入到显示面板上的多列像素单元的信号,而该每帧信号中的多个行信号为需要输入到该多列像素单元中的多个像素单元(也即该多列像素单元中分别对应每行的各像素单元)的信号。
图6为本发明实施例提供的一种行信号的示意图。如图6所示,该多个行信号中的每个行信号可以包括:起始标识信号K1、控制(control;ctrl)包信号、视频数据包(video data package)信号、截止标识信号K2和空(idle)包信号。起始标识信号K1用于指示每个行信号的起始位置,截止标识信号K2用于指示每个行信号的截止位置。控制包信号也可以称为行控制(control-line;ctrl-l)包信号,其包含对源极驱动器的功能控制,如时序、驱动电流等。每个发送单元待发送的信号中的控制包信号均相同。每个行信号中的标识信号可以包括:起始标识信号K1和截止标识信号K2。每个行信号中的非标识信号可以包括:控制包信号、视频数据包信号和空包信号。在本发明实施例中,发送单元在采用第一线性反馈移位寄存器对待发送的信号进行加扰时,仅仅对待发送的信号中的非标识信号,例如控制包信号和视频数据包信号进行加扰,而不对待发送的信号中的标识信号进行加扰。因此,经过第一线性反馈移位寄存器的加扰后得到的加扰后的信号可以包括:未加扰的标识信号和加扰后的非标识信号。
图7为本发明实施例提供的两个发送单元的待发送的两帧信号的示意图。如图7所示,该两个发送单元分别为:发送单元A和发送单元B。每个发送单元待发送的每帧信号包括多个行信号,由此包括对应各个行信号的多个截止标识信号K2。在实施例中,该多个截止标识信号K2中,存在至少一个特别的截止标识信号K3。与截止标识信号K2仅仅用于指示行信号的截止位置不同,该特别的截止标识信号K3不仅仅可以用于指示行信号的截止位置,还可以用于指示加扰器执行复位操作而开始对下一输入信号的加扰。在实施例中,每个发送单元待发送的信号可以被划分为多个信号分段,每个信号分段被视为一个待加扰的输入信号。每个信号分段可以包括一个或多个行信号,或者一帧或多帧信号。因此,每个发送单元待发送的信号在被加扰前可以包括:多个信号分段和至少一个特别的截止标识信号,即第一标识信号。多个信号分段在时域上依次排布,且相邻的任意两个信号分段之间存在一个第一标识信号。
在一些实施例中,图7中的每帧信号包括在时域上连续的多个行信号,且每帧信号还可以包括位于该多个行信号之后的帧结束标识信号K4,以用于指示该帧信号的结束。
返回图5,在执行步骤501时,发送单元可以采用其中的加扰器依次对待发送的信号中的每个信号分段中的非标识信号进行加扰,得到加扰后的信号。该加扰后的信号包括:加扰后的多个信号分段以及至少一个第一标识信号。加扰后的多个信号分段在时域上依次排布,且其中的相邻的任意两个信号分段之间存在一个第一标识信号。也即,发送单元在采用第一线性反馈移位寄存器对待发送的信号进行加扰的过程中,若第一线性反馈移位寄存器当前扫描到段截止标识信号,则第一线性反馈移位寄存器结束对当前信号分段的加扰,并执行复位操作。在执行完复位操作后,重新开始对段截止标识信号之后的信号分段进行扫描并加扰,从而实现对多个信号分段的分别加扰。
在实施例中,在对每个发送单元待发送的信号分段加扰的前提下,本发明实施例中还可以通过如下的方式来实现不同的加扰,即:在任意两个发送单元的待发送的信号中将第一标识信号设置在不同的时域位置(也即将任意两个发送单元的待发送的信号中的第一标识信号(例如K3)设置在不同的视频线程的位置(例如在不同行数据结束的位置))以形成不同的信号分段。如图7所示,发送单元A和发送单元B的待发送的信号中的第一标识信号K3在时域上的位置是不同的,其中发送单元A的第一标识信号K3是在图中左起第1行信号截止的位置,而发送单元B的第一标识信号K3是在图中左起第2行信号截止的位置。这使得发送单元A和发送单元B的被第一标识信号K3划分得到的多个信号分段的相似度较低。在另一实施例中,还可以在任意两个发送单元的待发送的信号中将第一标识信号设置在不同的时域位置以形成不同长度的信号分段。举例而言,发送单元A中划分的信号分段较长,而发送单元B中划分的信号分段较短。这同样使得发送单元A和发送单元B的被第一标识信号K3划分得到的多个信号分段的相似度较低。由于要被加扰的信号的相似度降低,也即区别增大,所以使得加扰后的信号的差别更大,由此而防止了在传输信号时信号间的电磁干扰。
在一些实施例中,多个接收单元与显示面板中的多列像素单元一一连接。相应地,多个发送单元通过多个对应的接收单元与显示面板 中的多列像素单元一一连接。在本发明实施例中,与任意两列相邻的像素单元所连接的两个发送单元中的加扰器,例如第一线性反馈移位寄存器被配置为对待发送的信号不同地加扰。不同地加扰可以包括由第一线性反馈移位寄存器采用不同的特征多项式来加扰待发送的信号。由于同一信号经由采用不同的特征多项式的线性反馈移位寄存器加扰后会得到不同的信号,因此,按照本公开实施例的加扰使得输入相邻两列像素单元的相似信号的相似度减小,由此在传输过程中会减小相互间的电磁干扰。
还需要说明的是,在实施例中,由于待发送信号中的标识信号还用于指示加扰的结束和开始,因此,标识信号的正确接收也是很重要的。在现有技术中,每个标识信号的比特数通常被设定为十。为了保证标识信号能够有效的被接收单元接收到,在本发明实施例中,可以将每个标识信号的比特数设置为大于十,例如可以设置每个行信号中的每个标识信号均包括连续的至少十一个比特。这样,当接收信号没接收到标识信号的前十个比特,但接收到第十个比特之后的比特时,接收单元可以根据接收到的第十个比特之后的比特,对没接收到的前十个比特进行恢复,进而确定标识信号。在另外的场景中,如果接收单元对前十个比特误判,那么接收单元能够根据第十个比特之后的比特对该前十个比特进行校正,从而准确的识别标识信号。举例而言,相关协议中定义的K code都是连续的四十比特数据,其中每十比特作为一个单元,即K1实际传输数据为K1G1G1K1。当接收数据后进行还原时,接收单元如果接收到G1G1K1这样的特征码,那么即使前十比特有误读,仍然能够根据剩余的三十比特的特征进行数据还原。这提高了标识信号的容错性。另外,由于本发明实施例中的标识信号的比特数更大,因此,本发明实施例中由更多的比特能够组合得到较多种类的标识信号,从而能够进一步的对信号传输过程中的相关信息进行标识。
示例的,每个标识信号可以包括连续的四个比特单元,且每个比特单元的比特数均为十。也即,本发明实施例中的每个标识信号可以包括四十个比特单元。当接收单元未接收到前一个或几个比特单元时,可以通过后面的比特单元,确定标识信号。
在一些实施例中,由于在标识信号中存在至少两个值不同的比特 时,接收单元能够较容易的识别出该标识信号。因此,在本发明实施例中,可以设置每个比特单元中存在至少两个值不同的比特。进一步的,每个标识信号中可以被设置为其中存在连续的6个值相同的比特。这样,接收单元在接收并识别标识信号时,可以通过判断是否接收到连续的6个值相同的比特,来确定是否接收到标识信号。
示例的,表1示出了每个发送单元待发送的信号中各个标识信号包括的四个比特单元。如表1所示,本发明实施例中的每个比特的值均为二进制数字,且为了保证每个比特单元中存在至少两个值不同的比特,可以设置四个比特单元中的两个比特单元互为非,另外两个比特单元也互为非,如:K1的四个比特单元中,比特单元(0111111010)与比特单元(1000000101)互为非,比特单元(1010101000)与比特单元(0101010111)互为非。
在一些实施例中,K1可以由在时序上依次排布的比特单元(0111111010)、比特单元(1000000101)、比特单元(1010101000)与比特单元(0101010111)组成,或者,K1可以由在时序上依次排布的比特单元(0111111010)、比特单元(0101010111)、比特单元(1010101000)与比特单元(1000000101)组成。需要说明的是,表1示出的四个比特单元的排布顺序是示例性的,而非限制性的。各标识信号所包括的四个比特单元可以采用不同于表1中示出的适用的其他排布顺序。
表1
Figure PCTCN2018089740-appb-000001
步骤502、发送单元对加扰后的信号进行编码,得到编码后的信号。
示例的,发送单元在发送该加扰后的信号前,为了通过降低误码率而提高信号传输的速率,还可以采用8b/10b编码(也即将8比特(bit)数据编码成10比特数据)的编码方法对该加扰后的信号进行编码,得 到编码后的信号。可选地,在编码的过程中,所有的标识信号均不会被编码,也即进行编码的信号均为非标识信号。
步骤503、发送单元向接收单元发送编码后的信号。
发送单元在得到编码后的信号后,就可以通过与对应的接收单元之间建立的通路,向对应的接收单元发送编码后的信号。需要说明的是,该多个发送单元中的每个发送单元可以并行地向各自对应的接收单元发送相应的编码后的信号。
步骤504、接收单元对接收到的编码后的信号进行解码,得到解码的信号。接收单元在接收到编码后的信号后,可以采用8b/10b解码(也即将10比特数据解码成8比特数据)的解码方法对编码后的信号进行解码,得到解码后的信号。解码后的信号对应于步骤501中得到的加扰后的信号。
步骤505、接收单元通过解扰器,例如第二线性反馈移位寄存器,对解码的信号进行解扰,得到解扰的信号,其对应于发送单元中的加扰前的信号。
接收单元可以采用第二线性反馈移位寄存器对加扰后的信号进行解扰,以得到加扰前的信号(也即待发送的信号)。这样一来,发送单元就成功的将待发送的信号发送至对应的接收单元。示例的,第一线性反馈移位寄存器对信号的加扰顺序可以与第二反馈寄存器对信号的解扰顺序相反。
在实施例中,由于每个接收单元中的第二线性反馈移位寄存器均解扰该接收单元对应的发送单元中的第一线性反馈移位寄存器加扰后的信号,因此,当两个发送单元中的第一线性反馈移位寄存器不同时,其对应的两个接收单元中的第二线性反馈移位寄存器也不同。另外,由于同一时刻不同的发送单元发送的加扰的数据会不同(源自不同的线性反馈移位寄存器),所以从整体能量分布上看,数据能量会更加的分散,因而有消除能量峰值频谱的效果。示例的,采用本发明实施例提供的信号传输方法能够在峰值频谱处生成大约7分贝(decibel;dB)的衰减。
需要说明的是,本发明实施例提供的信号传输方法的步骤也可以根据情况进行相应增减。任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护 范围之内。
综上所述,由于在本发明实施例提供的信号传输方法中,每个发送单元在发送信号之前,都采用多阶多项式对待发送的信号中的非标识信号进行了加扰,从而使得多个发送单元发送的多个加扰后的信号的相差较大。在同时传输多个相差较大的信号时,该多个相差较大的信号之间的电磁干扰程度较低,从而防止了接收单元接收到的信号失真,防止了显示面板显示的图像出现失真的现象。
图8为本发明实施例提供的一种发送单元的结构800的示意图。该发送单元可以用于时序控制器。时序控制器可以被实现为图1中的时序控制器110,且其包括或使用多个发送单元,图中作为示例示出了三个发送单元810 1,810 2,……,810 n。如图8所示,发送单元810 1可以包括:加扰器811 1和发送器812 1。类似地,发送单元810 2可以包括加扰器811 2和发送器812 2,以及发送单元810 n可以包括加扰器811 n和发送器812 n。加扰器811 1,811 2,……,811 n用于对待发送的信号中的非标识信号进行加扰,得到加扰后的信号。加扰后的信号包括:标识信号和加扰后的非标识信号。发送器812 1,812 2,……,812 n用于向对应的接收单元发送加扰后的信号,以便于对应的接收单元采用对应的接收单元中的解扰器,对加扰后的信号进行解扰,得到加扰前的信号。
在实施例中,加扰器811 1,811 2,……,811 n可以分别通过第一线性反馈移位寄存器实现。采用第一线性反馈移位寄存器对信号X进行加扰所得到的信号为:X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1。第一线性反馈移位寄存器对信号的加扰顺序与第二反馈寄存器对信号的解扰顺序相反。
在一些实施例中,待发送的信号包括:多个信号分段和至少一个在相邻的任意两信号分段之间的第一标识信号。第一标识信号用于指示线性反馈移位寄存器执行复位操作,表明线性反馈移位寄存器对当前的信号的加扰结束。加扰前的多个信号分段在时域上依次排布。在实施例中,加扰器还被配置为对每个信号分段单独地加扰。它可以用于:依次对加扰前的多个信号分段中的每个信号分段中的非标识信号进行加扰,得到加扰后的信号。加扰后的信号包括:多个加扰后的信号分段以及至少一个第一标识信号。加扰后的多个信号分段在时域上 依次排布,且加扰后的多个信号分段中的相邻的任意两信号分段之间存在一个第一标识信号。
在一些实施例中,任意两个发送单元,比如发送单元810 1,810 2,的待发送的信号中,第一标识信号的时域位置不同。这可以通过将两个待发送信号分成相同长度的信号分段,但是使信号分段的开始位置在时域上错开来实现。替换地,也可以通过将两个待发送信号分成不同长度的信号分段而使第一标识信号的位置在时域上不同。由于加扰器所加扰的各个信号不同,所以加扰后的信号差别进一步增大。由此而减小了信号间的电磁干扰。
在实施例中,多个发送单元通过对应的多个接收单元与显示面板中的多列像素单元一一连接。可以使任意两列相邻的像素单元所连接的两个发送单元中的加扰器不同,来增大加扰后的信号的差别。举例而言,图8中所示的发送单元810 1,810 2可以对应两列相邻的像素单元。由此,发送单元810 1中的加扰器811 1和发送单元810 2中的加扰器811 2可以是不同的,例如其采用不同的特征多项式。在示例中,对于同样的信号X,加扰器811 1对其加扰后所得到的信号X 1可以是:X 16+X 5+X 4+X 3+1,而加扰器811 2对其加扰后所得到的信号X 2可以是:X 24+X 4+X 3+X+1。X 1不同于X 2。因此,与同时传输两个相同的信号X相比,同时传输不同的X 1和X 2所产生的电磁干扰会大大减小。可以理解,这里所给出的加扰器的特征多项式是示例性的,而非限制性的。按照本公开实施例的加扰器还可以采用其他的适用的特征多项式。
在一些实施例中,待发送的信号包括:多帧信号。多帧信号中的每帧信号包括:多个行信号。多个行信号中的每个行信号包括:起始标识信号、控制包信号、视频数据包信号、截止标识信号和空包信号。起始标识信号用于指示每个行信号的起始位置,截止标识信号用于指示每个行信号的截止位置。在对信号进行分段的示例中,在多帧信号中的每帧信号的多个截止标识信号中,存在至少一个第一标识信号,每个第一标识信号指示信号分段的截止位置。
在一些实施例中,每个行信号中的每个标识信号均包括连续的至少十一个比特。
在一些实施例中,每个标识信号包括连续的四个比特单元,每个比特单元的比特数均为十。
在一些实施例中,每个比特单元中存在至少两个值不同的比特。
在一些实施例中,每个标识信号中存在连续6个值相同的比特。
综上所述,由于本发明实施例提供的发送单元在发送信号之前,发送单元中的加扰器,例如第一线性反馈移位寄存器都采用多阶多项式对待发送的信号中的非标识信号进行了加扰,从而使得多个发送单元中发送器发送的多个加扰后的信号的相差较大,在同时传输多个相差较大的信号时,该多个相差较大的信号之间的电磁干扰程度较低,从而防止了接收单元接收到的信号失真,防止了显示面板显示的图像出现失真的现象。
图9为本发明实施例提供的一种接收单元的结构900的示意图。该接收单元可以用于源极驱动器。源极驱动器可以被实现为图1所示的源极驱动器,其可以包括或使用多个接收单元910 1,910 2,……,910n。如图9所示,接收单元910 1可以包括接收器911 1和解扰器912 1。类似地,接收单元910 2可以包括接收器911 2和解扰器912 2,且接收单元910 n可以包括接收器911 n和解扰器912 n。接收器911 1,911 2,……,911 n用于接收来自对应的发送单元的加扰后的信号。加扰后的信号为对应的发送单元采用其中的加扰器对待发送的信号中的非标识信号进行加扰得到的信号。加扰后的信号包括:标识信号和加扰后的非标识信号。解扰器912 1,912 2,……,912 n用于对所接收的信号进行解扰,得到解扰的信号,其对应于加扰前的信号。解扰器采用与加扰器相逆的过程来对所接收的信号解扰。
在实施例中,加扰器为第一线性反馈移位寄存器,而解扰器为第二线性反馈移位寄存器。所接收到的信号是第一线性反馈移位寄存器采用以下特征多项式对信号X进行加扰所得到的信号:X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1。由此,第二线性反馈移位寄存器921 1,922也采用以下的与第一线性反馈移位寄存器对应的特征多项式来进行解扰:X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1。
在一些实施例中,所接收到的信号包括:加扰后的多个信号分段以及至少一个在相邻的任意两个信号分段之间的第一标识信号。加扰后的多个信号分段在时域上依次排布。在实施例中,解扰器912 1,912 2,……,912 n还可以用于通过第一标识信号来识别所接收到的信号 中的信号分段,且对每个信号分段单独地进行加扰。在示例中,可以对每个信号分段中的非标识信号进行解扰,以得到解扰的信号。解扰器912 1,912 2,……,912 n解扰后的信号相应地包括:解扰后的多个信号分段和至少一个第一标识信号。解扰后的多个信号分段在时域上依次排布,且相邻的任意两个信号分段之间存在一个第一标识信号。在一些实施例中,所述第一标识信号用于指示所述解扰器执行复位操作。
在一些实施例中,任意两个接收单元接收到的信号中,第一标识信号的时域位置不同。
在一些实施例中,多个接收单元与显示面板中的多列像素单元一一连接,且任意两列相邻的像素单元所连接的两个接收单元中的第二线性反馈移位寄存器不同,例如采用不同的特征多项式。
由于在本发明实施例提供的源极驱动器中,接收单元所接收到的信号是每个发送单元在发送信号之前对待发送的信号加扰后得到的加扰后的信号,因而多个接收单元所接收到的信号相差较大。在同时传输多个相差较大的信号时,该多个相差较大的信号之间的电磁干扰程度较低,从而防止了接收单元接收到的信号失真,防止了显示面板显示的图像出现失真的现象。
图2、图4和图5所示的实施例中,能够全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,能够全部或部分地以计算机程序产品的形式实现,所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是可编程装置,所述计算机指令能够存储在计算机的可读存储介质中。所述计算机可读存储介质可以是计算机能够存取的任何可用介质。所述可用介质可以是磁性介质、光介质或者半导体介质等。
本发明的各种方面可以单独地、组合地或以在前文描述的实施例中没有具体讨论的各种各样的安排被使用,所以,在它的应用上不限于在以上的说明中阐述的或在附图上图示的部件的细节和安排。例如,在一个实施例中描述的某些方面可以与在其它实施例中描述的某些方面以任何方式组合。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤 可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (38)

  1. 一种用于在显示装置中的信号传输的方法,该显示装置包括时序控制器和源极驱动器,所述方法应用于时序控制器的多个发送单元中的任一发送单元,所述多个发送单元与源极驱动器的多个接收单元一一对应,所述方法包括:
    通过发送单元中的加扰器对待发送的信号中的非标识信号进行加扰,得到加扰后的信号,所述加扰后的信号包括:标识信号和加扰后的非标识信号;和
    向对应的接收单元发送所述加扰后的信号;
    其中,采用所述加扰器对信号X进行加扰所得到的信号为:X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1。
  2. 根据权利要求1所述的方法,其中,所述待发送的信号包括:在时域上依次排布的多个信号分段和至少一个处于相邻的任意两个信号分段之间的第一标识信号,所述第一标识信号用于指示所述加扰器执行复位操作,以及
    所述加扰包括:由加扰器依次对所述多个信号分段中的每个信号分段中的非标识信号进行加扰,得到所述加扰后的信号,所述加扰后的信号包括:在时域上依次排布的加扰后的多个信号分段以及所述至少一个处于相邻的任意两个加扰后的信号分段之间的第一标识信号。
  3. 根据权利要求2所述的方法,其中,在任意两个所述发送单元的待发送的信号中,所述第一标识信号在时域上的位置不同。
  4. 根据权利要求1所述的方法,其中,所述多个发送单元通过多个对应的接收单元与显示面板中的多列像素单元一一连接,以及所述加扰包括:使得与任意两列相邻的所述像素单元所连接的两个发送单元中的加扰器对待发送的信号不同地加扰。
  5. 根据权利要求2所述的方法,其中,所述待发送的信号包括:跨多帧图像的多帧信号,所述多帧信号中的每帧信号包括:多个行信号,其中每个行信号包括:作为标识信号的起始标识信号和截止标识信号,以及作为非标识信号的控制包信号和视频数据包信号,所述起始标识信号用于指示所述每个行信号的起始位置,所述截止标识信号用于指示所述每个行信号的截止位置;以及
    所述多个截止标识信号中的至少一个截止标识信号被用作为所述第一标识信号。
  6. 根据权利要求5所述的方法,其特征在于,
    所述每个行信号中的每个标识信号均包括连续的至少十一个比特位。
  7. 根据权利要求6所述的方法,其中,
    所述每个标识信号包括连续的四个比特单元,每个所述比特单元的比特数均为十。
  8. 根据权利要求7所述的方法,其中,
    每个所述比特单元中存在至少两个值不同的比特。
  9. 根据权利要求8所述的方法,其中,
    所述每个标识信号中存在连续6个值相同的比特。
  10. 一种在显示装置中的信号传输的方法,该显示装置包括时序控制器和源极驱动器,所述方法应用于源极驱动器的多个接收单元中的任一接收单元,所述多个接收单元与时序控制器的多个发送单元一一对应,所述方法包括:
    接收来自发送单元的加扰后的信号,所述加扰后的信号为所述发送单元采用加扰器对待发送的信号中的非标识信号进行加扰得到的信号,所述加扰后的信号包括:标识信号和加扰后的非标识信号;
    通过接收单元中的解扰器对所述加扰后的信号进行解扰,得到解扰的信号;
    其中,采用所述加扰器对信号X进行加扰所得到的信号为:X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1,所述解扰器对信号的解扰是加扰器对信号的加扰的逆过程。
  11. 根据权利要求10所述的方法,其中,所述接收到的信号包括:在时域上依次排布的加扰后的多个信号分段以及至少一个处于相邻的任意两个信号分段之间的第一标识信号,且所述第一标识信号用于指示所述解扰器执行复位操作;
    所述解扰包括:
    采用所述解扰器,依次对所述加扰后的多个信号分段中的每个信号分段中的非标识信号进行解扰,得到解扰的信号分段,所述解扰的信号包括:在时域上依次排布的多个解扰的信号分段和至少一个处于 相邻的任意两个解扰的信号分段之间的第一标识信号。
  12. 根据权利要求11所述的方法,其中,在由任意两个接收单元所接收到的信号中,所述第一标识信号在时域上的位置不同。
  13. 根据权利要求10所述的方法,其中,所述多个接收单元与显示装置的显示面板中的多列像素单元一一连接,以及所述解扰包括:使得与任意两列相邻的所述像素单元所连接的两个接收单元中的解扰器对所接收到的信号不同地解扰。
  14. 根据权利要求11所述的方法,其中,所述接收到的信号包括:跨多帧图像的多帧信号,所述多帧信号中的每帧信号包括:多个行信号,其中每个行信号包括:作为标识信号的起始标识信号和截止标识信号,以及作为非标识信号的控制包信号和视频数据包信号,所述起始标识信号用于指示所述每个行信号的起始位置,所述截止标识信号用于指示所述每个行信号的截止位置;
    所述多个截止标识信号中的至少一个截止标识信号被用作为所述第一标识信号。
  15. 根据权利要求14所述的方法,其中,
    所述每个行信号中的每个标识信号均包括连续的至少十一个比特。
  16. 根据权利要求15所述的方法,其中,
    所述每个标识信号包括连续的四个比特单元,每个所述比特单元的比特数均为十。
  17. 根据权利要求16所述的方法,其中,
    每个所述比特单元中存在至少两个值不同的比特。
  18. 根据权利要求17所述的方法,其中,
    所述每个标识信号中存在连续6个值相同的比特。
  19. 一种发送单元,所述发送单元为用于显示装置中的时序控制器的多个发送单元中的任一发送单元,所述多个发送单元与显示装置中的源极驱动器的多个接收单元一一对应,且每个所述发送单元包括:
    加扰器,用于对待发送的信号中的非标识信号进行加扰,得到加扰后的信号,所述加扰后的信号包括:标识信号和加扰后的非标识信号;和
    发送器,用于向对应的接收单元发送所述加扰后的信号;
    其中,所述加扰器被配置为对信号X进行加扰所得到的信号为: X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1。
  20. 根据权利要求19所述的发送单元,其中,所述待发送的信号包括:在时域上依次排布的多个信号分段和至少一个处于相邻的任意两个信号分段之间的第一标识信号,所述加扰器被配置为在检测到所述第一标识信号时执行复位操作,以及
    所述加扰器还用于:依次对所述多个信号分段中的每个信号分段中的非标识信号进行加扰,得到所述加扰后的信号,所述加扰后的信号包括:在时域上依次排布的加扰后的多个信号分段以及所述至少一个处于相邻的任意两个加扰后的信号分段之间的第一标识信号。
  21. 根据权利要求20所述的发送单元,其中,在任意两个所述发送单元的待发送的信号中,所述第一标识信号在时域上的位置不同。
  22. 根据权利要求19所述的发送单元,其中,所述多个发送单元通过对应的接收单元与显示装置的显示面板中的多列像素单元一一连接,以及与任意两列相邻的像素单元所连接的两个发送单元中的加扰器对待发送的信号不同地加扰。
  23. 根据权利要求20所述的发送单元,其中,所述待发送的信号包括:跨多帧图像的多帧信号,所述多帧信号中的每帧信号包括:多个行信号,其中每个行信号包括:作为标识信号的起始标识信号和截止标识信号,以及作为非标识信号的控制包信号和视频数据包信号,所述起始标识信号用于指示所述每个行信号的起始位置,所述截止标识信号用于指示所述每个行信号的截止位置;以及
    所述多个截止标识信号中的至少一个截止标识信号被用作为所述第一标识信号。
  24. 根据权利要求23所述的发送单元,其中,
    所述每个行信号中的每个标识信号均包括连续的至少十一个比特。
  25. 根据权利要求24所述的发送单元,其中,
    所述每个标识信号包括连续的四个比特单元,每个所述比特单元的比特数均为十。
  26. 根据权利要求25所述的发送单元,其中,
    每个所述比特单元中存在至少两个值不同的比特。
  27. 根据权利要求26所述的发送单元,其中,
    所述每个标识信号中存在连续6个值相同的比特。
  28. 一种接收单元,所述接收单元为用于显示装置中的源极驱动器的多个接收单元中的任一接收单元,所述多个接收单元与显示装置中的时序控制器的多个发送单元一一对应,每个所述接收单元包括:
    接收器,用于接收来自对应的发送单元的加扰后的信号,所述加扰后的信号为所述发送单元采用加扰器对待发送的信号中的非标识信号进行加扰得到的信号,所述信号包括:标识信号和加扰后的非标识信号;和
    解扰器,用于对所述加扰后的信号进行解扰,得到解扰的信号;
    其中,所述加扰器被配置为对信号X进行加扰所得到的信号为:X 16+X 5+X 4+X 3+1、X 24+X 4+X 3+X+1或X 32+X 7+X 5+X 3+X 2+X+1,所述解扰器对信号的解扰是加扰器对信号的加扰的逆过程。
  29. 根据权利要求28所述的接收单元,其中,所述接收到的信号包括:在时域上依次排布的加扰后的多个信号分段以及至少一个处于相邻的任意两个信号分段之间的第一标识信号,且所述解扰器被配置为在检测到所述第一标识信号时执行复位操作,;
    所述解扰器还用于:依次对所述加扰后的多个信号分段中的每个信号分段中的非标识信号进行解扰,得到解扰的信号分段,其中所述解扰的信号包括:在时域上依次排布的多个解扰的信号分段和所述至少一个处于相邻的任意两个解扰的信号分段之间的第一标识信号。
  30. 根据权利要求29所述的接收单元,其中,在任意两个所述接收单元接收到的信号中,所述第一标识信号在时域上的位置不同。
  31. 根据权利要求28所述的接收单元,其中,所述多个接收单元与显示面板中的多列像素单元一一连接,以及在任意两列相邻的所述像素单元所连接的两个接收单元中的解扰器对所接收的信号不同地解扰。
  32. 根据权利要求29所述的接收单元,其中,所述接收到的信号包括:多帧信号,所述多帧信号中的每帧信号包括:多个行信号,其中每个行信号包括:作为标识信号的起始标识信号和截止标识信号,以及作为非标识信号的控制包信号和视频数据包信号,所述起始标识信号用于指示所述每个行信号的起始位置,所述截止标识信号用于指示所述每个行信号的截止位置;
    所述多个截止标识信号中的至少一个截止标识信号被用作为所述 第一标识信号。
  33. 根据权利要求32所述的接收单元,其中,
    所述每个行信号中的每个标识信号均包括连续的至少十一个比特。
  34. 根据权利要求33所述的接收单元,其中,
    所述每个标识信号包括连续的四个比特单元,每个所述比特单元的比特数均为十。
  35. 根据权利要求34所述的接收单元,其中,
    每个所述比特单元中存在至少两个值不同的比特。
  36. 根据权利要求35所述的接收单元,其中,
    所述每个标识信号中存在连续6个值相同的比特。
  37. 一种显示装置,其特征在于,所述显示装置包括:时序控制器和源极驱动电路,
    所述时序控制器包括多个发送单元,所述源极驱动电路包括多个接收单元,且所述多个发送单元与所述多个接收单元一一对应;
    所述多个发送单元中的每个发送单元为权利要求19至27任一所述的发送单元,所述多个接收单元中的每个接收单元为权利要求28至36任一所述的接收单元。
  38. 一种计算机可读存储介质,其中,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至18中任一项所述的方法。
PCT/CN2018/089740 2017-06-09 2018-06-04 信号传输方法、发送单元、接收单元及显示装置 WO2018223913A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/618,524 US10971048B2 (en) 2017-06-09 2018-06-04 Signal transmission method, transmitting unit, receiving unit and display device
EP18812852.4A EP3637407A4 (en) 2017-06-09 2018-06-04 SIGNAL SENDING METHOD, SENDING UNIT, RECEIVING UNIT AND DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710434370.XA CN108696288B (zh) 2017-06-09 2017-06-09 信号传输方法、发送单元、接收单元及显示装置
CN201710434370.X 2017-06-09

Publications (1)

Publication Number Publication Date
WO2018223913A1 true WO2018223913A1 (zh) 2018-12-13

Family

ID=63843931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089740 WO2018223913A1 (zh) 2017-06-09 2018-06-04 信号传输方法、发送单元、接收单元及显示装置

Country Status (4)

Country Link
US (1) US10971048B2 (zh)
EP (1) EP3637407A4 (zh)
CN (1) CN108696288B (zh)
WO (1) WO2018223913A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210081866A (ko) * 2019-12-24 2021-07-02 주식회사 실리콘웍스 디스플레이 구동 장치 및 이를 포함하는 디스플레이 장치
CN112951137B (zh) * 2021-01-29 2023-07-25 深圳市华星光电半导体显示技术有限公司 一种识别信号传送完整性的方法及装置
KR20230071309A (ko) * 2021-11-16 2023-05-23 주식회사 엘엑스세미콘 타이밍 컨트롤러, 이를 포함하는 디스플레이 구동장치 및 타이밍 컨트롤러를 구동하는 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050216A1 (en) * 2011-08-31 2013-02-28 Colin Whitby-Strevens Methods and apparatus for low power audio visual interface interoperability
CN103810975A (zh) * 2012-11-14 2014-05-21 联咏科技股份有限公司 时序控制器、源极驱动器、显示驱动电路及显示驱动方法
CN103903573A (zh) * 2012-12-26 2014-07-02 联咏科技股份有限公司 时序扰乱方法及其时序控制装置
CN103928004A (zh) * 2013-01-10 2014-07-16 三星电子株式会社 显示驱动电路和在显示驱动电路中的传输数据的方法
US20150348485A1 (en) * 2014-05-29 2015-12-03 Samsung Electronics Co., Ltd. Method of controlling display driver ic with improved noise characteristics

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050112953A (ko) * 2004-05-28 2005-12-01 엘지.필립스 엘시디 주식회사 액정표시장치의 구동장치 및 방법
KR100586047B1 (ko) * 2004-11-03 2006-06-08 한국전자통신연구원 PCI Express 프로토콜용 16비트 데이터스크램블링/디스크램블링 장치 및 방법
KR20120065840A (ko) * 2010-12-13 2012-06-21 삼성전자주식회사 디스플레이 구동 회로, 그것의 동작 방법, 및 그것을 포함하는 사용자 장치
CN102930808A (zh) * 2011-08-08 2013-02-13 联咏科技股份有限公司 显示面板驱动装置与其操作方法以及其源极驱动器
CN102571503B (zh) * 2012-03-20 2014-06-04 上海航天科工电器研究院有限公司 一种基于fpga的sdlc协议总线通讯测试装置
US9210010B2 (en) 2013-03-15 2015-12-08 Apple, Inc. Methods and apparatus for scrambling symbols over multi-lane serial interfaces
CN103218966B (zh) * 2013-04-02 2015-09-23 硅谷数模半导体(北京)有限公司 显示面板内部接口的数据传输方法和装置
US9846656B2 (en) * 2013-04-17 2017-12-19 Laurence H. Cooke Secure computing
US9898611B2 (en) 2015-03-30 2018-02-20 Rockwell Automation Technologies, Inc. Method and apparatus for scrambling a high speed data transmission
KR101619049B1 (ko) * 2015-05-22 2016-05-11 강원대학교산학협력단 병렬 bch 디코더

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050216A1 (en) * 2011-08-31 2013-02-28 Colin Whitby-Strevens Methods and apparatus for low power audio visual interface interoperability
CN103810975A (zh) * 2012-11-14 2014-05-21 联咏科技股份有限公司 时序控制器、源极驱动器、显示驱动电路及显示驱动方法
CN103903573A (zh) * 2012-12-26 2014-07-02 联咏科技股份有限公司 时序扰乱方法及其时序控制装置
CN103928004A (zh) * 2013-01-10 2014-07-16 三星电子株式会社 显示驱动电路和在显示驱动电路中的传输数据的方法
US20150348485A1 (en) * 2014-05-29 2015-12-03 Samsung Electronics Co., Ltd. Method of controlling display driver ic with improved noise characteristics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637407A4 *

Also Published As

Publication number Publication date
US20200135080A1 (en) 2020-04-30
US10971048B2 (en) 2021-04-06
CN108696288A (zh) 2018-10-23
EP3637407A1 (en) 2020-04-15
EP3637407A4 (en) 2021-01-20
CN108696288B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2018223913A1 (zh) 信号传输方法、发送单元、接收单元及显示装置
US8766828B2 (en) Data bus inversion apparatus, systems, and methods
US20160164705A1 (en) Methods and apparatus for scrambling symbols over multi-lane serial interfaces
KR101514413B1 (ko) 정보 스큐 및 리던던트 콘트롤 정보에 의한 데이터 송신 장치 및 방법
US10319334B2 (en) Image processing apparatus and control method thereof
US20200126465A1 (en) Data transmission method, timing controller, source driver and display device
EP3637652B1 (en) Encoding method and device
US20160217762A1 (en) Command input method and display system
KR20080095833A (ko) 무선 매체를 통한 전송을 위해 비압축 비디오를 분할하여인코딩하는 방법 및 시스템
US20200143721A1 (en) Method and component for signal detection as well as display device
US20200257645A1 (en) Data transmission method and data transmission system
US9191700B2 (en) Encoding guard band data for transmission via a communications interface utilizing transition-minimized differential signaling (TMDS) coding
US20070050807A1 (en) Method and apparatus for transmitting/receiving multimedia data
WO2018223916A1 (zh) 信号传输方法及相关的时序控制器、源极驱动器和显示装置
KR102223031B1 (ko) 향상된 브레이드 클락 시그널링을 이용한 차동 신호 처리장치
US20160373685A1 (en) Video Controller, Playback Controller and Display System
US10582152B2 (en) Dynamic direction control in active cable
US9787879B2 (en) Image data receiving device
US11159237B2 (en) Data transmission system and method
NL1034461C2 (nl) Werkwijze en inrichting voor het sturen/ontvangen van gegevens.
US20170150083A1 (en) Video signal transmission device, method for transmitting a video signal thereof, video signal reception device, and method for receiving a video signal thereof
US10397517B2 (en) Matrix switcher
CN111464766B (zh) 视频处理器和显示系统
US8954626B2 (en) Transmission system and method thereof
US10810955B2 (en) Data encoding method, data decoding method, and display device for improving communication reliability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018812852

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018812852

Country of ref document: EP

Effective date: 20200109