WO2018223704A1 - 光线准直结构、基板、背光模组和显示装置 - Google Patents

光线准直结构、基板、背光模组和显示装置 Download PDF

Info

Publication number
WO2018223704A1
WO2018223704A1 PCT/CN2018/073045 CN2018073045W WO2018223704A1 WO 2018223704 A1 WO2018223704 A1 WO 2018223704A1 CN 2018073045 W CN2018073045 W CN 2018073045W WO 2018223704 A1 WO2018223704 A1 WO 2018223704A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
grating
lens
focus
light collimating
Prior art date
Application number
PCT/CN2018/073045
Other languages
English (en)
French (fr)
Inventor
谭纪风
梁蓬霞
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/076,874 priority Critical patent/US20200233225A1/en
Publication of WO2018223704A1 publication Critical patent/WO2018223704A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass
    • G02F1/0105Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating

Definitions

  • the present disclosure relates to a light collimating structure, a substrate, a backlight module, and a display device.
  • At least one embodiment of the present disclosure provides a light collimation structure, including:
  • a lens having a first major axis and a first focus, the lens for transmitting light from the first focus and collimating to parallel light parallel to the first major axis;
  • a grating structure disposed outside the region where the first focus and the clear aperture of the lens are formed, and in a direction of the first major axis, between the lens and the first focus, the grating structure
  • a transmission grating is included for transmitting light from the first focus and collimating into parallel light parallel to the first major axis.
  • the transmission grating is located in a region outside the clear aperture of the lens in a direction perpendicular to the first major axis.
  • the transmission grating is a step grating.
  • the number of transmission grating steps is greater than three.
  • the transmission grating has a period ranging from 0.5 micrometers to 5 micrometers, and the transmission grating has a refractive index ranging from 1.2 to 2.
  • the grating structure further includes a reflective grating for reflecting light from the first focus, the reflective grating being disposed at both ends of the first focus and the transmission grating Outside the region formed, and outside the transmitted light exit region of the transmission grating.
  • the reflective grating includes a first reflective grating and a second reflective grating, and the first reflective grating is located at one side of the first focus, and the second reflective grating is located at The other side of the first focus.
  • An embodiment of the present disclosure provides a light collimating substrate, comprising a plurality of the above-mentioned light collimating structures, wherein a distance between lenses of each light collimating structure is greater than zero, and a first major axis of the lens of each light collimating structure is parallel. And in a direction perpendicular to the first major axis, the transmission grating is located between adjacent two lenses.
  • the width of the transmission grating is equal to the distance between two lenses adjacent to the transmission grating.
  • the reflective grating is located between two adjacent transmission gratings in a direction perpendicular to the first major axis
  • Two adjacent transmission gratings are the two nearest transmission gratings on both sides of the lens of the light collimating structure in which the reflection grating is located, or the reflection grating is located at the boundary of the light collimating substrate and the reflection
  • the gratings are between the transmission gratings of the same light collimating structure.
  • the light collimating substrate further includes a second lens having a second major axis and a second focus, wherein the second lens is configured to transmit light from the second focus Collimating is parallel light parallel to the second major axis, the second major axis being parallel to the first major axis, the second lens side being adjacent to a light collimating structure and the other side being adjacent to the light
  • the boundary of the substrate is collimated, and the distance between the second lens and the adjacent lens is greater than zero.
  • the light collimating substrate further includes a third reflective grating and a fourth reflective grating, disposed under the second lens and passing light of the second focus and the second lens Outside the region formed by the aperture, and in the direction of the second major axis, between the second lens and the second focus, and in a direction perpendicular to the second major axis, located in the A transmission grating adjacent to the third reflection grating and the fourth reflection grating is between the boundary of the light collimating substrate.
  • a third reflective grating and a fourth reflective grating disposed under the second lens and passing light of the second focus and the second lens Outside the region formed by the aperture, and in the direction of the second major axis, between the second lens and the second focus, and in a direction perpendicular to the second major axis, located in the A transmission grating adjacent to the third reflection grating and the fourth reflection grating is between the boundary of the light collimating substrate.
  • An embodiment of the present disclosure provides a backlight module, including: a light source substrate, and the light collimating substrate disposed in a light emitting direction of the light source substrate, wherein the light source substrate includes a plurality of light sources, and the plurality of light sources One-to-one correspondence with the lens on the light collimating substrate, the light source being disposed at the focus of its corresponding lens.
  • An embodiment of the present disclosure provides a display device including the above backlight module.
  • FIG. 1 is a schematic diagram of a light collimation structure in the related art
  • FIG. 2 is a schematic diagram of a light collimation structure according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a light collimating substrate according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a light collimating substrate according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a light collimating substrate according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a light collimating substrate according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a backlight module according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a backlight module according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of light transmission of a transmission grating according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of simulation results of collimation effects according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram showing simulation results of light output efficiency according to an embodiment of the present disclosure.
  • the human eye can only receive a small amount of light energy, which greatly reduces the utilization of the light energy, thereby increasing the power consumption of the display panel.
  • the divergence angle of the light emitted by the display panel is reduced, so that the emitted light can be efficiently received by the human eye, and a backlight module capable of collimating light is required.
  • FIG. 1 shows a light collimation correlation technique that uses a lens to achieve backlight collimation.
  • the light collimating structure includes a lens 12 having a focus and a major axis, and a light emitting point 11 disposed at a focus of the lens 12.
  • the plurality of light-emitting points 11 constitute an organic light-emitting diode (OLED) dot matrix light source, and the plurality of lenses 12 constitute a collimating microlens array.
  • OLED organic light-emitting diode
  • the angle formed by the clear aperture of the lens 12 i.e., the diameter of the lens 12 in the direction perpendicular to the major axis
  • the lens aperture angle which describes the magnitude of the cone angle of the lens.
  • the light emitted by the light-emitting point 11 within the lens aperture angle is transmitted through the lens 12 and collimated into parallel light parallel to the major axis of the lens 12, and light outside the lens aperture angle will be incident on the adjacent lens. Affects the overall alignment effect. Therefore, the light collimation structure only has a collimating effect on the light within the lens aperture angle, and the light outside the lens aperture angle will not be collimated. Thus, the utilization of light energy during the collimation process is low, increasing the power consumption of the associated device including the light collimation structure.
  • An embodiment of the present disclosure provides a light collimating structure 20, as shown in FIG. 2, including:
  • the lens 21 has a first focus 211 and a first main axis 212, and the lens 21 is configured to transmit light from the first focus 211 and collimate into parallel light parallel to the first main axis 212;
  • the grating structure 22 disposed outside the region formed by the first focus 211 and the clear aperture of the lens (specifically, the line connecting the A end and the B end in FIG. 2 ), and at the first main shaft 212 In the direction between the lens and the first focus 211 (ie, in the region between the dashed line A1 and the dashed line A2), the grating structure 22 includes a transmission grating 221 for Light from the first focus 211 is transmitted and collimated into parallel light parallel to the first major axis 212.
  • the lens 21 may be a cylindrical lens, a spherical lens, or a liquid crystal lens.
  • a spherical lens can be selected.
  • the transmission grating is located outside the light-passing aperture of the lens (ie, at a dotted line A3 and a broken line A4)
  • the area outside the area specifically, the area on the left side of the dotted line A3, the area on the right side of the dotted line A4).
  • the grating structure 22 is located outside the region of the first focus 211 and the clear aperture of the lens, and in the direction of the first major axis, the grating structure 22 is located at the lens and the first focus
  • the transmission grating 221 is part of the grating structure 22 and therefore also satisfies this requirement.
  • the transmission grating 221 may be located on the left side of the lens 21 or on the right side of the lens 21.
  • the transmission grating is a step grating.
  • the number of transmission grating steps is greater than three.
  • the transmission grating has a period ranging from 0.5 micrometers to 5 micrometers (um), and the transmission grating has a refractive index ranging from 1.2 to 2.
  • the above parameters are only examples, and other parameters can be selected as needed.
  • the grating structure 22 further includes a reflective grating 222 disposed outside the region formed by the first focus and the two ends of the transmission grating, and located at the transmission grating Transmitted light outside the light exit area.
  • the reflective grating is for reflecting light from the first focus.
  • the reflection The grating is part of the grating structure 22 and therefore also satisfies this requirement. The light will exit from the height gap of the transmission grating and the lens, causing stray light.
  • the reflection grating reflects the part of the light and reuses it. For example, after a plurality of reflections, the light may enter other lenses or transmission gratings and be emitted, thereby improving the light extraction efficiency.
  • the reflective grating may include one or more, for example, including only a reflective grating located to the left of the first focus, or only a reflective grating located to the right of the first focus, or at the same time, including the first focus A reflective grating on the side and a reflective grating on the right side of the first focus.
  • the grating structure includes a first reflection grating and a second reflection grating, and the first reflection grating is located at one side of the first focus, and the second reflection grating is located at the other side of the first focus .
  • the transmission grating and the reflection grating may be in the same layer, as shown in FIG. 2, or may be in different layers.
  • the reflective grating can move up or down.
  • a grating structure is provided outside the diverging region formed by the lens aperture and its focal point, and the grating structure functions to collimate light incident at a large angle other than the lens aperture angle.
  • the grating structure uses an echelon grating that is insensitive to light incident at large angles. Therefore, the light source from the light source to the lens aperture is obtained by collimating the lens, and the light outside the lens aperture is subjected to the diffraction effect of the grating and the interference between the gratings to achieve the technical effect of collimating and emitting, thereby achieving an improvement in the display device.
  • the straightforward technical effect greatly improves the light extraction efficiency.
  • FIG. 3 Another embodiment of the present disclosure provides a light collimating substrate, as shown in FIG. 3, including a plurality of the above-mentioned light collimating structures 20, the distance between the lenses of each light collimating structure is greater than zero, and each light is collimated
  • the first major axis of the lens of the structure is parallel, and in a direction perpendicular to the first major axis, the transmission grating 221 is located between adjacent two lenses.
  • the light collimation structure only includes the transmission grating, does not include the reflection grating, and the transmission grating is located on the right side of the lens.
  • the width of the transmission grating is equal to the distance between two lenses adjacent thereto.
  • the width of the transmission grating can also be smaller than the distance between two lenses adjacent thereto.
  • the light collimating substrate further includes a light collimating structure 31 that includes only the lens and does not include a transmission grating.
  • the light collimating substrate further includes a second lens 311 having a second major axis and a second focus, wherein the second lens is configured to transmit light from the second focus and collimate to be parallel to the first The parallel light of the two main axes, the second main axis being parallel to the first main axis.
  • the second lens side is adjacent to a light collimating structure, and the other side is adjacent to a boundary of the light collimating substrate, and the distance between the second lens and the adjacent lens is greater than zero.
  • Mainly only one transmission grating is needed between two adjacent lenses, so there will be a light collimating structure containing only the lens and no transmission grating.
  • the leftmost light collimating structure of the light collimating substrate includes only the lens, and does not include the transmission grating.
  • a grating structure is provided outside the diverging region formed by the lens aperture and its focal point, and the grating structure functions to collimate light incident at a large angle other than the lens aperture angle.
  • the grating structure uses an echelon grating that is insensitive to light incident at large angles. Therefore, the light source from the light source to the lens aperture is obtained by collimating the lens, and the light outside the lens aperture is subjected to the diffraction effect of the grating and the interference between the gratings to achieve the technical effect of collimating and emitting, thereby achieving the improvement of the display device.
  • the straightforward technical effect greatly improves the light extraction efficiency.
  • Another embodiment of the present disclosure provides a light collimating substrate.
  • the light collimating structure further includes a reflective grating.
  • the light collimating substrate provided in this embodiment includes a plurality of light collimating structures 20, the distance between the lenses of each light collimating structure is greater than zero, and the first major axis of the lens of each light collimating structure Parallel, and in a direction perpendicular to the first major axis, the transmission grating 221 is located between adjacent two lenses.
  • the transmission grating is located on the right side of the lens.
  • the width of the transmission grating is equal to the distance between two lenses adjacent thereto.
  • the width of the transmission grating can also be smaller than the distance between two lenses adjacent thereto.
  • each lens is in the same layer
  • each transmission grating is in the same layer
  • each reflection grating is in the same layer
  • the transmission grating and the reflection grating may be in the same layer or in different layers.
  • the light collimating structure 20 further includes a reflective grating 222, wherein:
  • the reflecting grating 222 in the light collimating structure 20 is located at the boundary of the light collimating substrate in a direction perpendicular to the first main axis.
  • a transmission grating belonging to the same light collimating structure as the reflection grating specifically, in a region between the broken line B1 and the broken line B2.
  • the reflective grating can be in a region where the regions A1, A2, B1, and B2 are in a region other than the region where the first focus of the lens and the clear aperture of the lens are formed;
  • the reflecting grating is located adjacent to the two transmissions in a direction perpendicular to the first major axis.
  • the two adjacent transmission gratings are the two transmission gratings closest to the two ends of the lens of the light collimating structure in which the reflection grating is located, specifically, in a region between the broken line B3 and the broken line B4.
  • the allowable region of the reflection grating 222 is a region other than the region composed of the first focus of the lens and the clear aperture of the lens in the region composed of: A1, A2, B3, and B4.
  • the reflective grating can move up and down in its allowed area, and the width of the reflective grating can also vary, not exceeding the range of its allowable area. As shown in FIG.
  • the position of the reflective grating 222 can be shifted downward, and at this time, the width of the reflective grating can be increased.
  • the width of the reflective grating is set to the maximum width at the current position.
  • the position of the reflection grating 222 can also be shifted upward, and at this time, the width of the reflection grating can be reduced.
  • the light collimating substrate further includes a light collimating structure 41.
  • the light collimating structure 41 includes a second lens 31 having a second major axis and a second focus, and the second lens is configured to transmit light from the second focus and collimate to be parallel to the first The parallel light of the two main axes, the second main axis being parallel to the first main axis.
  • the second lens side is adjacent to a light collimating structure, and the other side is adjacent to a boundary of the light collimating substrate, and the distance between the second lens and the adjacent lens is greater than zero.
  • the light collimating structure 41 further includes a third reflective grating 42 and a fourth reflective grating 43 disposed under the second lens 31 and outside the region of the second focal point and the clear aperture of the second lens And in the direction of the second major axis, between the second lens and the second focus (since the second focus is in the same layer as the first focus, therefore, here is relative to the dotted line A1 and the broken line A2 And between the transmission grating adjacent to the third reflection grating and the fourth reflection grating and the boundary of the light collimating substrate in a direction perpendicular to the second major axis (specifically, located Between the dotted line B5 and the broken line B6).
  • the width of the transmission grating may be smaller than the distance between the lenses, as shown in FIG. 6. At this time, the positions of the broken lines B2, B3, and B4 follow the position of the transmission grating correspondingly. The allowable area of the reflective grating changes accordingly.
  • a grating structure is provided outside the diverging region formed by the lens aperture and its focal point, and the grating structure functions to collimate light incident at a large angle other than the lens aperture angle.
  • the grating structure uses an echelon grating that is insensitive to light incident at large angles. Therefore, the light source from the light source to the lens aperture is obtained by collimating the lens, and the light outside the lens aperture is subjected to the diffraction effect of the grating and the interference between the gratings to achieve the technical effect of collimating and emitting, thereby achieving the improvement of the display device.
  • the straightforward technical effect greatly improves the light extraction efficiency.
  • the reflection grating can reflect and reuse the portion of the light emitted from the height gap of the transmission grating and the lens. For example, after a plurality of reflections, the light may enter other lenses or transmission gratings and be emitted, thereby improving the light extraction efficiency.
  • a backlight module including a light source substrate 71 having a plurality of light sources 23 and a light collimating substrate disposed in a light emitting direction of the light source 23, as shown in FIG.
  • the plurality of light sources are in one-to-one correspondence with lenses on the light collimating substrate, and the light sources are disposed at a focus of their corresponding lenses.
  • the light collimating substrate comprises only a transmissive grating, and no reflective grating.
  • a reflective electrode may be disposed in the light source substrate 71 near the light source 23.
  • the light source 23 is a point light source, which may be a Light Emitting Diode (LED), including an inorganic light emitting diode, an organic light emitting diode (OLED), a micro light emitting diode (Micro-LED) or a quantum dot light emitting diode ( QLED).
  • LED Light Emitting Diode
  • OLED organic light emitting diode
  • Micro-LED micro light emitting diode
  • QLED quantum dot light emitting diode
  • a grating structure is provided outside the diverging region formed by the lens aperture and its focal point, and the grating structure functions to collimate light incident at a large angle other than the lens aperture angle.
  • the grating structure uses an echelon grating that is insensitive to light incident at large angles. Therefore, the light source from the light source to the lens aperture is obtained by collimating the lens, and the light outside the lens aperture is subjected to the diffraction effect of the grating and the interference between the gratings to achieve the technical effect of collimating and emitting, thereby achieving the improvement of the display device.
  • the straightforward technical effect greatly improves the light extraction efficiency.
  • FIG. 8 is a schematic diagram of another backlight module.
  • the backlight module is different from the backlight module of FIG. 7 in that the light-collimating substrate included in the backlight module shown in FIG. 8 includes a reflective grating.
  • the reflective grating can reflect and reuse the portion of the light that exits the height gap of the transmission grating and the lens. For example, after a plurality of reflections, the light may enter other lenses or transmission gratings and be emitted, thereby improving the light extraction efficiency.
  • the display device may be a display device such as a liquid crystal panel, a liquid crystal display, a liquid crystal television, an OLED panel, an OLED display, an OLED television, or an electronic paper.
  • the implementation of the display device can be referred to the above embodiment.
  • Another embodiment of the present disclosure uses a simulation experiment to illustrate the effect of the alignment of the transmission grating parameters.
  • Figure 9 is a schematic illustration of light passing through a transmission grating. Where ⁇ 0 is the incident angle of the incident light, and ⁇ is the exit angle of the outgoing light. Where h1 to h8 are the number of steps of the transmission grating. The parameters are shown in Table 1 and Table 2.
  • the exit angle changes with the incident angle: the incident angle fluctuates from 84° to 89°, and the exit angle fluctuates from 4.99° to 4.79°.
  • the incident angle has substantially no exit angle. influences.
  • the light output rate changes with the incident angle: the incident angle fluctuates from 84° to 89°, the light extraction efficiency remains above 80%, and the light extraction efficiency is high.
  • the incident light at a large angle has little effect on the collimation and light extraction efficiency of the multi-step grating.
  • the collimation of the transmission grating to collimate the incident light at a large angle is high.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种光线准直结构(20)、基板、背光模组和显示装置,该光线准直结构(20)包括:透镜(21),具有第一主轴(212)和第一焦点(211),透镜(21)用于将来自第一焦点(211)的光进行透射后准直为平行于第一主轴(212)的平行光;光栅结构(22),设置于第一焦点(211)与透镜(21)的通光孔径构成的区域之外,且在第一主轴的方向上,位于透镜(21)和第一焦点(211)之间,光栅结构(22)包括一透射光栅(221),透射光栅(221)用于将来自第一焦点(211)的光进行透射后准直为平行于第一主轴(212)的平行光。

Description

光线准直结构、基板、背光模组和显示装置
相关申请的交叉引用
本申请要求于2017年06月05日递交的中国专利申请201710413696.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及光线准直结构、基板、背光模组和显示装置。
背景技术
近年来,随着各类显示器件的快速发展,其功耗受到了广泛的关注。
发明内容
本公开至少一实施例提供了一种光线准直结构,包括:
透镜,具有第一主轴和第一焦点,所述透镜用于将来自所述第一焦点的光进行透射后准直为平行于所述第一主轴的平行光;
光栅结构,设置于所述第一焦点与所述透镜的通光孔径构成的区域之外,且在第一主轴的方向上,位于所述透镜和所述第一焦点之间,所述光栅结构包括一透射光栅,所述透射光栅用于将来自所述第一焦点的光进行透射后准直为平行于所述第一主轴的平行光。
在本公开一可选实施例中,在与所述第一主轴垂直的方向上,所述透射光栅位于所述透镜的通光孔径之外的区域。
在本公开一可选实施例中,所述透射光栅为阶梯光栅。
在本公开一可选实施例中,所述透射光栅阶梯数大于3。
在本公开一可选实施例中,所述透射光栅的周期范围为0.5微米-5微米,所述透射光栅的折射率范围为1.2-2。
在本公开一可选实施例中,所述光栅结构还包括反射光栅,用于反射来自所述第一焦点的光,所述反射光栅设置于所述第一焦点与所述透射光栅的两端构成的区域之外,且位 于所述透射光栅的透射光出光区域外。
在本公开一可选实施例中,所述反射光栅包括第一反射光栅和第二反射光栅,且所述第一反射光栅位于所述第一焦点的一侧,所述第二反射光栅位于所述第一焦点的另一侧。
本公开一实施例提供一种光线准直基板,包括多个上述光线准直结构,各光线准直结构的透镜之间的距离大于零,且各光线准直结构的透镜的第一主轴平行,且在垂直于所述第一主轴的方向上,所述透射光栅的位于相邻的两个透镜之间。
在本公开一可选实施例中,所述透射光栅的宽度等于与所述透射光栅相邻的两个透镜之间的距离。
在本公开一可选实施例中,所述光线准直结构包括反射光栅时,在垂直于所述第一主轴的方向上,所述反射光栅位于相邻的两个透射光栅之间,所述相邻的两个透射光栅为所述反射光栅所在的光线准直结构的透镜两侧最近的两个透射光栅,或者,所述反射光栅位于所述光线准直基板的边界与和与所述反射光栅属于同一光线准直结构的透射光栅之间。
在本公开一可选实施例中,所述光线准直基板还包括第二透镜,具有第二主轴和第二焦点,所述第二透镜用于将来自所述第二焦点的光进行透射后准直为平行于所述第二主轴的平行光,所述第二主轴与所述第一主轴平行,所述第二透镜一侧与一个光线准直结构相邻,另一侧靠近所述光线准直基板的边界,所述第二透镜与相邻透镜的距离大于零。
在本公开一可选实施例中,所述光线准直基板还包括第三反射光栅和第四反射光栅,设置于第二透镜下方并且在所述第二焦点与所述第二透镜的通光孔径构成的区域之外,且在所述第二主轴的方向上,位于所述第二透镜和所述第二焦点之间,且在垂直于所述第二主轴的方向上,位于与所述第三反射光栅和第四反射光栅相邻的透射光栅与所述光线准直基板的边界之间。
本公开一实施例提供一种背光模组,包括:光源基板,以及,设置于所述光源基板的出光方向上的上述光线准直基板,所述光源基板包括多个光源,所述多个光源与所述光线准直基板上的透镜一一对应,所述光源设置于其对应的透镜的焦点上。
本公开一实施例提供一种显示装置,包括上述背光模组。
本公开的特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为相关技术中的光线准直结构示意图;
图2为本公开一实施例提供的光线准直结构示意图;
图3为本公开一实施例提供的光线准直基板示意图;
图4为本公开一实施例提供的光线准直基板示意图;
图5为本公开一实施例提供的光线准直基板示意图;
图6为本公开一实施例提供的光线准直基板示意图;
图7为本公开一实施例提供的背光模组示意图;
图8为本公开一实施例提供的背光模组示意图;
图9为本公开一实施例的透射光栅出光示意图;
图10为本公开一实施例提供的准直效果模拟结果示意图;
图11为本公开一实施例提供的出光效率模拟结果示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限 定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
由于相关技术中的显示面板中的背光模组发出光线的发散角较大,人眼只能接收很少的一部分光能,大幅降低了光能的利用率,从而增加了显示面板的功耗。减小显示面板出射光线的发散角,使出射光能高效地被人眼接收,需要能准直光线的背光模组。
图1示出了一种使用透镜达到背光准直化的光线准直相关技术。该光线准直结构包括透镜12,该透镜12具有焦点和主轴,发光点11设置在透镜12的焦点上。多个发光点11构成有机发光二极管(Organic Light-Emitting Diode,,简称OLED)点阵光源,多个透镜12构成准直微透镜阵列。透镜12的通光孔径(即透镜12在垂直于主轴方向上的直径)与发光点所形成的角度被称为透镜孔径角,它描述了透镜收光锥角的大小。发光点11发出的在透镜孔径角之内的光线经透镜12透射后准直为平行于透镜12主轴的平行光,而位于透镜孔径角之外的光线将会入射到相邻的透镜内,严重影响整体的准直效果。因此,该光线准直结构仅对于透镜孔径角之内的光线具有准直作用,透镜孔径角之外的光线将不能得到准直。从而,在准直过程中的光能利用率较低,增加了包含该光线准直结构的相关器件的功耗。
本公开的一实施例提供一种光线准直结构20,如图2所示,包括:
透镜21,具有第一焦点211和第一主轴212,所述透镜21用于将来自所述第一焦点211的光进行透射后准直为平行于所述第一主轴212的平行光;
光栅结构22,设置于所述第一焦点211与所述透镜的通光孔径(具体的,图2中A端和B端连线)构成的区域之外,且在所述第一主轴212的方向上,位于所述透镜和所述第一焦点211之间(即位于虚线A1和虚线A2之间的区域内),所述光栅结构22包括一透射光栅221,所述透射光栅221用于将来自所述第一焦点211的光进行透射后准直为平行于所述第一主轴212的平行光。
例如,透镜21可以是柱透镜、球面透镜或者液晶透镜。比如,可以选择球面透镜。
例如,在与所述第一主轴垂直的方向上(即虚线A1或虚线A2所示方向),所述透射光栅位于所述透镜的通光孔径之外的区域(即位于除虚线A3和虚线A4之间的区域之外的 区域,具体的,虚线A3左侧的区域,虚线A4右侧的区域)。另外,由于光栅结构22位于所述第一焦点211与所述透镜的通光孔径构成的区域之外,且在第一主轴的方向上,光栅结构22位于所述透镜和所述第一焦点之间,透射光栅221属于光栅结构22的一部分,因此也要满足该要求。
需要说明的是,透射光栅221可以位于透镜21的左侧,也可以位于透镜21的右侧。
例如,所述透射光栅为阶梯光栅。
例如,所述透射光栅阶梯数大于3。
例如,所述透射光栅的周期范围为0.5微米-5微米(um),所述透射光栅的折射率范围为1.2-2。当然,上述参数仅为示例,可以根据需要选择其他参数。
在其他实施例中,所述光栅结构22还包括反射光栅222,所述反射光栅222设置于所述第一焦点与所述透射光栅的两端构成的区域之外,且位于所述透射光栅的透射光出光区域外。所述反射光栅用于反射来自第一焦点的光。另外,由于光栅结构22位于所述第一焦点211与所述透镜的通光孔径构成的区域之外,且在第一主轴的方向上,位于所述透镜和所述第一焦点之间,反射光栅属于光栅结构22的一部分,因此也要满足该要求。光线会从透射光栅和透镜的高度缝隙中出射,造成杂散光,反射光栅的作用是将这部分光线进行反射,进行再利用。比如,这部分光线经多次反射后可能进入其他透镜或透射光栅再发射出去,从而提高了出光效率。
例如,所述反射光栅可以包括一个或多个,比如,只包括位于第一焦点左侧的反射光栅,或者,只包括位于第一焦点右侧的反射光栅,或者,同时包括位于第一焦点左侧的反射光栅和位于第一焦点右侧的反射光栅。即,所述光栅结构包括第一反射光栅和第二反射光栅,且所述第一反射光栅位于所述第一焦点的一侧,所述第二反射光栅位于所述第一焦点的另一侧。
需要说明的是,透射光栅和反射光栅可以处于同一层,如图2中所示,也可以处于不同层。比如,反射光栅可以向上移动,也可以向下移动。
本实施例中,在透镜通光孔径与其焦点构成的发散区域外设置了光栅结构,该光栅结构的作用是将透镜孔径角之外的大角度入射的光线准直化。并且,光栅结构使用阶梯光栅,该光栅对大角度入射的光线不敏感。因此,获得了光源到透镜口径内的光线经由透镜准直化出射,透镜口径外的光线经光栅的衍射及光栅间的干涉作用达到准直化出射的技术效果, 从而在达到了提高显示器件准直度的技术效果的同时,大大提高了出光效率。
本公开的另一实施例提供一种光线准直基板,如图3所示,包括多个上述光线准直结构20,各光线准直结构的透镜之间的距离大于零,且各光线准直结构的透镜的第一主轴平行,且在垂直于所述第一主轴的方向上,所述透射光栅221位于相邻的两个透镜之间。本实施例中,光线准直结构只包含透射光栅,不包括反射光栅,且透射光栅位于透镜右侧。可选的,透射光栅的宽度等于与其相邻的两个透镜之间的距离。当然,透射光栅的宽度也可以小于与其相邻的两个透镜之间的距离。
另外,该光线准直基板还包括一个只包括透镜不包括透射光栅的光线准直结构31。具体,该光线准直基板还包括第二透镜311,具有第二主轴和第二焦点,所述第二透镜用于将来自所述第二焦点的光进行透射后准直为平行于所述第二主轴的平行光,所述第二主轴与所述第一主轴平行。所述第二透镜一侧与一个光线准直结构相邻,另一侧靠近所述光线准直基板的边界,所述第二透镜与相邻透镜的距离大于零。主要是两个相邻透镜之间只需要一个透射光栅,因此,会存在只包含透镜,不包含透射光栅的光线准直结构。
需要说明的是,如果透射光栅位于透镜左侧,则光线准直基板最左侧的光线准直结构只包括透镜,不包括透射光栅。
本实施例中,在透镜通光孔径与其焦点构成的发散区域外设置了光栅结构,该光栅结构的作用是将透镜孔径角之外的大角度入射的光线准直化。并且,光栅结构使用阶梯光栅,该光栅对大角度入射的光线不敏感。因此,获得了光源到透镜口径内的光线经由透镜准直化出射,透镜口径外的光线经光栅的衍射及光栅间的干涉作用达到准直化出射的技术效果,从而在达到了提高显示器件准直度的技术效果的同时,大大提高了出光效率。
本公开的另一实施例提供一种光线准直基板,与实施例二不同的是,本实施例中光线准直结构中还包括反射光栅。
如图4所示,本实施例提供的光线准直基板包括多个光线准直结构20,各光线准直结构的透镜之间的距离大于零,且各光线准直结构的透镜的第一主轴平行,且在垂直于所述第一主轴的方向上,所述透射光栅221位于相邻的两个透镜之间。本实施例中,透射光栅位于透镜右侧。可选的,透射光栅的宽度等于与其相邻的两个透镜之间的距离。当然,透射光栅的宽度也可以小于与其相邻的两个透镜之间的距离。
一般地,为便于实现,各透镜处于同一层,各透射光栅处于同一层,各反射光栅处于同一层,透射光栅和反射光栅可以处于同一层,也可以处于不同层。
所述光线准直结构20还包括反射光栅222,其中:
当光线准直结构与光线准直基板的边界相邻时,在垂直于所述第一主轴的方向上,所述光线准直结构20中的反射光栅222位于所述光线准直基板的边界与和与所述反射光栅属于同一光线准直结构的透射光栅之间,具体的,位于虚线B1和虚线B2中间的区域里。另外,由于光栅结构22需要在透镜的第一焦点和透镜之间(即虚线A1和虚线A2之间的区域),且需在透镜的第一焦点和透镜的通光孔径构成的区域之外。因此,反射光栅可在的区域为A1、A2、B1和B2构成的区域里除透镜的第一焦点和透镜的通光孔径构成的区域之外的区域中;
当光线准直结构不与光线准直基板的边界相邻时,即为中间的光线准直结构时,在垂直于所述第一主轴的方向上,所述反射光栅位于相邻的两个透射光栅之间,所述相邻的两个透射光栅为所述反射光栅所在的光线准直结构的透镜两端最近的两个透射光栅,具体的,位于虚线B3和虚线B4之间的区域内。另外,由于光栅结构22需要在透镜的第一焦点和透镜之间(即虚线A1和虚线A2之间的区域),且需在透镜的第一焦点和透镜的通光孔径构成的区域之外,因此,反射光栅222的允许区域为:A1、A2、B3和B4构成的区域里除透镜的第一焦点和透镜的通光孔径构成的区域之外的区域。反射光栅可在其允许区域中上下移动,而且反射光栅的宽度也可变化,不超过其允许区域的范围即可。如图5所示,可以将反射光栅222的位置下移,此时,反射光栅的宽度可以增大。可选的,反射光栅的宽度设置为当前位置下的最大宽度。当然,也可以将反射光栅222的位置上移,此时,可以减少反射光栅的宽度。
另外,如图4所示,该光线准直基板还包括一个光线准直结构41。具体,该光线准直结构41包括第二透镜31,具有第二主轴和第二焦点,所述第二透镜用于将来自所述第二焦点的光进行透射后准直为平行于所述第二主轴的平行光,所述第二主轴与所述第一主轴平行。所述第二透镜一侧与一个光线准直结构相邻,另一侧靠近所述光线准直基板的边界,所述第二透镜与相邻透镜的距离大于零。所述光线准直结构41还包括第三反射光栅42和第四反射光栅43,设置于第二透镜31下方并且在所述第二焦点与所述第二透镜的通光孔径构成的区域之外,且在第二主轴的方向上,位于所述第二透镜和所述第二焦点之间(由 于第二焦点与第一焦点处于同一层,因此,此处相对于位于虚线A1和虚线A2之间),且在垂直于所述第二主轴的方向上,位于与所述第三反射光栅和第四反射光栅相邻的透射光栅与所述光线准直基板的边界之间(具体的,位于虚线B5和虚线B6之间)。
需要说明的是,透射光栅的宽度可能小于透镜之间的距离,如图6所示,此时,虚线B2、B3、B4所在位置跟随透射光栅的位置相应改变。反射光栅的允许区域随之变化。
本实施例中,在透镜通光孔径与其焦点构成的发散区域外设置了光栅结构,该光栅结构的作用是将透镜孔径角之外的大角度入射的光线准直化。并且,光栅结构使用阶梯光栅,该光栅对大角度入射的光线不敏感。因此,获得了光源到透镜口径内的光线经由透镜准直化出射,透镜口径外的光线经光栅的衍射及光栅间的干涉作用达到准直化出射的技术效果,从而在达到了提高显示器件准直度的技术效果的同时,大大提高了出光效率。
另外,反射光栅可以将从透射光栅和透镜的高度缝隙中出射的这部分光线进行反射,进行再利用。比如,这部分光线经多次反射后可能进入其他透镜或透射光栅再发射出去,从而提高了出光效率。
本公开的另一实施例提供一种背光模组,如图7所示,包括具有多个光源23的光源基板71以及设置于所述光源23的出光方向上的光线准直基板。所述多个光源与所述光线准直基板上的透镜一一对应,所述光源设置于其对应的透镜的焦点上。该实施例中,光线准直基板仅包括透射光栅,无反射光栅。
例如,光源基板71中靠近光源23处可设置反射电极。
例如,所述光源23为点状光源,可以是发光二极管(Light Emitting Diode,简称LED),包括无机发光二极管、有机发光二极管(OLED),微型发光二极管(Micro-LED)或者量子点发光二极管(QLED)。
本实施例中,在透镜通光孔径与其焦点构成的发散区域外设置了光栅结构,该光栅结构的作用是将透镜孔径角之外的大角度入射的光线准直化。并且,光栅结构使用阶梯光栅,该光栅对大角度入射的光线不敏感。因此,获得了光源到透镜口径内的光线经由透镜准直化出射,透镜口径外的光线经光栅的衍射及光栅间的干涉作用达到准直化出射的技术效果,从而在达到了提高显示器件准直度的技术效果的同时,大大提高了出光效率。
图8为另一背光模组的示意图。该背光模组与图7中背光模组的区别在于,图8所示 的背光模组中包括的光线准直基板中包含反射光栅。
反射光栅可以将从透射光栅和透镜的高度缝隙中出射的这部分光线进行反射,进行再利用。比如,这部分光线经多次反射后可能进入其他透镜或透射光栅再发射出去,从而提高了出光效率。
本公开的另一实施例提供一种显示装置,包括上述背光模组。该显示装置可以是液晶面板、液晶显示器、液晶电视、OLED面板、OLED显示器、OLED电视或电子纸等显示装置。该显示装置的实施可参考上述实施例。
本公开的另一实施例采用模拟实验说明一下透射光栅参数对准直效果的影响。
图9为光线通过透射光栅的示意图。其中,θ 0是入射光的入射角度,θ是出射光的出射角度。其中,h1至h8为透射光栅的阶梯数。参数如表1和表2所示。
表1
Figure PCTCN2018073045-appb-000001
表2 透射光栅参数各阶高度
台阶 高度/um
h1 1.21
h2 1.94
h3 1.71
h4 1.45
h5 1.18
h6 0.19
h7 0.32
h8 0.99
如图10所示,固定其他参数,改变入射角度时,出射角度随入射角度变化结果:入射角度从84°波动到89°,出射角度由4.99°波动到4.79°,入射角度对出射角度基本没有影响。
如图11所示,固定其他参数,改变入射角度时,出光率随入射角度变化结果:入射角度从84°波动到89°,出光效率仍保持在80%以上,出光效率很高。
从图10和图11的模拟结果看,大角度入射光线对多阶阶梯光栅的准直度和出光效率影响不大。从而,本申请中,透射光栅对大角度入射光线进行准直的准直度很高。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (14)

  1. 一种光线准直结构,包括:
    透镜,具有第一主轴和第一焦点,所述透镜用于将来自所述第一焦点的光进行透射后准直为平行于所述第一主轴的平行光;
    光栅结构,设置于所述第一焦点与所述透镜的通光孔径构成的区域之外,且在第一主轴的方向上,位于所述透镜和所述第一焦点之间,所述光栅结构包括一透射光栅,所述透射光栅用于将来自所述第一焦点的光进行透射后准直为平行于所述第一主轴的平行光。
  2. 如权利要求1所述的光线准直结构,其中,在与所述第一主轴垂直的方向上,所述透射光栅位于所述透镜的通光孔径之外的区域。
  3. 如权利要求1所述的光线准直结构,其中,所述透射光栅为阶梯光栅。
  4. 如权利要求3所述的光线准直结构,其中,所述透射光栅阶梯数大于3。
  5. 如权利要求4所述的光线准直结构,其中,所述透射光栅的周期范围为0.5微米-5微米,所述透射光栅的折射率范围为1.2-2。
  6. 如权利要求1至5任一所述的光线准直结构,其中,所述光栅结构还包括反射光栅,用于反射来自所述第一焦点的光,所述反射光栅设置于所述第一焦点与所述透射光栅的两端构成的区域之外,且位于所述透射光栅的透射光出光区域外。
  7. 如权利要求6所述的光线准直结构,其中,所述反射光栅包括第一反射光栅和第二反射光栅,且所述第一反射光栅位于所述第一焦点的一侧,所述第二反射光栅位于所述第一焦点的另一侧。
  8. 一种光线准直基板,其中,包括多个如权利要求1至7任一所述的光线准直结构,各光线准直结构的透镜之间的距离大于零,且各光线准直结构的透镜的第一主轴平行,且在垂直于所述第一主轴的方向上,所述透射光栅的位于相邻的两个透镜之间。
  9. 如权利要求8所述的光线准直基板,其中,所述透射光栅的宽度等于与所述透射光栅相邻的两个透镜之间的距离。
  10. 如权利要求8所述的光线准直基板,其中,所述光线准直结构包括反射光栅时,在垂直于所述第一主轴的方向上,所述反射光栅位于相邻的两个透射光栅之间,所述相邻的两个透射光栅为所述反射光栅所在的光线准直结构的透镜两侧最近的两个透射光栅,或 者,所述反射光栅位于所述光线准直基板的边界与和与所述反射光栅属于同一光线准直结构的透射光栅之间。
  11. 如权利要求8、9或10所述的光线准直基板,其中,所述光线准直基板还包括第二透镜,具有第二主轴和第二焦点,所述第二透镜用于将来自所述第二焦点的光进行透射后准直为平行于所述第二主轴的平行光,所述第二主轴与所述第一主轴平行,所述第二透镜一侧与一个光线准直结构相邻,另一侧靠近所述光线准直基板的边界,所述第二透镜与相邻透镜的距离大于零。
  12. 如权利要求11所述的光线准直基板,其中,所述光线准直基板还包括第三反射光栅和第四反射光栅,设置于第二透镜下方并且在所述第二焦点与所述第二透镜的通光孔径构成的区域之外,且在所述第二主轴的方向上,位于所述第二透镜和所述第二焦点之间,且在垂直于所述第二主轴的方向上,位于与所述第三反射光栅和第四反射光栅相邻的透射光栅与所述光线准直基板的边界之间。
  13. 一种背光模组,包括:光源基板,以及,设置于所述光源基板的出光方向上的如权利要求8至12任一所述的光线准直基板,所述光源基板包括多个光源,所述多个光源与所述光线准直基板上的透镜一一对应,所述光源设置于其对应的透镜的焦点上。
  14. 一种显示装置,包括如权利要求13所述的背光模组。
PCT/CN2018/073045 2017-06-05 2018-01-17 光线准直结构、基板、背光模组和显示装置 WO2018223704A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/076,874 US20200233225A1 (en) 2017-06-05 2018-01-17 Light beam collimation structure, substrate, backlight module, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710413696.4A CN107065307B (zh) 2017-06-05 2017-06-05 一种光线准直结构、基板、背光模组和显示装置
CN201710413696.4 2017-06-05

Publications (1)

Publication Number Publication Date
WO2018223704A1 true WO2018223704A1 (zh) 2018-12-13

Family

ID=59617470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073045 WO2018223704A1 (zh) 2017-06-05 2018-01-17 光线准直结构、基板、背光模组和显示装置

Country Status (3)

Country Link
US (1) US20200233225A1 (zh)
CN (1) CN107065307B (zh)
WO (1) WO2018223704A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063347A (zh) * 2020-08-07 2022-02-18 海信视像科技股份有限公司 一种显示装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065307B (zh) * 2017-06-05 2019-12-27 京东方科技集团股份有限公司 一种光线准直结构、基板、背光模组和显示装置
CN109581574B (zh) 2017-09-28 2021-08-10 京东方科技集团股份有限公司 背光模组及显示装置
CN108153054A (zh) * 2018-01-03 2018-06-12 京东方科技集团股份有限公司 背光模组及显示装置
CN108508509B (zh) * 2018-04-12 2019-10-29 京东方科技集团股份有限公司 一种防窥膜及其制作方法、背光模组、显示装置
CN111929945B (zh) * 2019-05-13 2021-09-28 合肥京东方光电科技有限公司 准直器件、光学膜、背光模组及显示装置
CN111061091B (zh) * 2019-12-31 2022-07-26 厦门天马微电子有限公司 一种光学模组及显示装置
CN113296277A (zh) * 2020-02-24 2021-08-24 宁波激智科技股份有限公司 一种准直膜、及一种减干涉准直膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1135797A (zh) * 1993-11-19 1996-11-13 联合讯号公司 用于电光显示器的背光部件
US5682265A (en) * 1994-02-18 1997-10-28 Massachusetts Institute Of Technology Diffractive microstructures for color separation and fusing
CN1580902A (zh) * 2003-08-05 2005-02-16 财团法人工业技术研究院 函数曲线型透镜光栅的光源调制装置
CN202947082U (zh) * 2012-11-16 2013-05-22 北京京东方光电科技有限公司 一种准直系统、背光源和显示装置
CN107065307A (zh) * 2017-06-05 2017-08-18 京东方科技集团股份有限公司 一种光线准直结构、基板、背光模组和显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205281087U (zh) * 2016-01-08 2016-06-01 京东方科技集团股份有限公司 一种光学调制器、背光源模组及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1135797A (zh) * 1993-11-19 1996-11-13 联合讯号公司 用于电光显示器的背光部件
US5682265A (en) * 1994-02-18 1997-10-28 Massachusetts Institute Of Technology Diffractive microstructures for color separation and fusing
CN1580902A (zh) * 2003-08-05 2005-02-16 财团法人工业技术研究院 函数曲线型透镜光栅的光源调制装置
CN202947082U (zh) * 2012-11-16 2013-05-22 北京京东方光电科技有限公司 一种准直系统、背光源和显示装置
CN107065307A (zh) * 2017-06-05 2017-08-18 京东方科技集团股份有限公司 一种光线准直结构、基板、背光模组和显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063347A (zh) * 2020-08-07 2022-02-18 海信视像科技股份有限公司 一种显示装置
CN114063347B (zh) * 2020-08-07 2022-09-16 海信视像科技股份有限公司 一种显示装置

Also Published As

Publication number Publication date
US20200233225A1 (en) 2020-07-23
CN107065307A (zh) 2017-08-18
CN107065307B (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
WO2018223704A1 (zh) 光线准直结构、基板、背光模组和显示装置
CN109313287B (zh) 显示系统和光导
Wang et al. Design of compact freeform lens for application specific light-emitting diode packaging
US10768481B2 (en) Direct type backlight and method of manufacturing the same, and display device
US10114168B2 (en) Light guide plate, backlight module and display apparatus
US10060597B2 (en) Optical lens, backlight module and display device
JP2021517351A (ja) 照明装置
US11150398B2 (en) Edge-lit type backlight module and display device
TW201734594A (zh) 多色光柵耦合背光板、電子顯示器及背光板的操作方法
WO2018040557A1 (zh) 光线准直结构、基板及制造方法、背光模组和显示装置
TWI487983B (zh) 光學膜及使用光學膜之背光模組
WO2018205992A1 (zh) 显示装置及其制作方法
WO2022012226A1 (zh) 背光模组及其设计方法、显示装置
TWI748580B (zh) 近眼光場顯示裝置
JP6747448B2 (ja) 光路変換素子、光インターフェース装置、光伝送システム
Woodgate et al. P‐101: Micro‐Optical Systems for Micro‐LED Displays
Pan et al. Integration of non-Lambertian LED and reflective optical element as efficient street lamp
WO2013183750A1 (ja) 面光源装置、表示装置および照明装置
Li et al. Highly efficient and ultra‐compact micro‐LED pico‐projector based on a microlens array
Li et al. Design of a compact modified total internal reflection lens for high angular color uniformity
CN105676340B (zh) 一种复合抛物反射微准直透镜的偏振复用导光结构及其实现方法
CN101639585A (zh) 复合光学膜
US10876707B2 (en) Pattern projection device
WO2013081038A1 (ja) 光源装置、面光源装置、表示装置および照明装置
JP2014135120A (ja) 面光源装置、表示装置および照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18812799

Country of ref document: EP

Kind code of ref document: A1