WO2018205992A1 - 显示装置及其制作方法 - Google Patents

显示装置及其制作方法 Download PDF

Info

Publication number
WO2018205992A1
WO2018205992A1 PCT/CN2018/086480 CN2018086480W WO2018205992A1 WO 2018205992 A1 WO2018205992 A1 WO 2018205992A1 CN 2018086480 W CN2018086480 W CN 2018086480W WO 2018205992 A1 WO2018205992 A1 WO 2018205992A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
negative refractive
display device
display
light
Prior art date
Application number
PCT/CN2018/086480
Other languages
English (en)
French (fr)
Inventor
李东升
吴慧利
谭纪风
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/337,736 priority Critical patent/US10962832B2/en
Publication of WO2018205992A1 publication Critical patent/WO2018205992A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • G02F1/133507Films for enhancing the luminance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/30Metamaterials

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display device and a method of fabricating the same.
  • the liquid crystal display device is widely used because of its advantages of light weight, small volume, and no radiation. Since the liquid crystal itself does not emit light, the display device is provided with a backlight module, and the backlight module provides light for the display module to realize a display function. The low light utilization efficiency of the backlight module is one of the important factors hindering the low power consumption of the liquid crystal display device.
  • an optical film such as a brightness enhancement film (BEF) or a dual brightness brightness enhancement film (DBEF) is attached between the backlight module and the display module.
  • BEF is also called Prism Sheet.
  • the surface of the BEF includes a plurality of prismatic structures having the same structure, and the light reflection and refraction of the backlight module are concentrated to the front of the viewer of the display device.
  • DBEF is also known as Reflective Polarizer.
  • the DBEF uses a multilayer film system to reflect light having a polarization direction perpendicular to the polarization direction of the lower polarizer of the display module back to the backlight module.
  • An embodiment of the present disclosure provides a display device.
  • the display device includes a display unit and a negative refractive index functional layer disposed on the display unit.
  • the negative refractive index functional layer has a negative refractive index for light from the display unit.
  • the display device is divided into a display area and a light transmissive area, the display unit is a liquid crystal display unit or an organic electroluminescent diode, and the display unit is disposed in the display area.
  • the negative refractive index functional layer includes a negative refractive index portion, and the negative refractive index portion is disposed in the display region.
  • the negative refractive index functional layer further includes a transparent material portion, and the transparent material portion is provided with at least the light transmissive region.
  • the transparent material portion is further disposed in the display region and covers the negative refractive index portion.
  • the negative refractive index portion exhibits a negative refractive index to visible light.
  • the negative refractive index portion exhibits a negative refractive index to red, green, and blue light.
  • the negative refractive index portion is a two-dimensional periodic structure composed of a metal strip and a metal open-loop resonator.
  • the negative refractive index portion is a nanogrid of a metal, a dielectric, and a metal stack.
  • the metal is silver and the dielectric is magnesium fluoride.
  • the negative refractive index portion includes a dielectric substrate and a metal strip radially distributed in the dielectric substrate.
  • the display device further includes an optical convergence unit disposed on the negative refractive index functional layer.
  • the optical convergence unit includes two liquid crystal prism layers sequentially stacked on the negative refractive index functional layer.
  • each of the liquid crystal prism layers includes a liquid crystal prism located in the display area.
  • An embodiment of the present disclosure provides a method of fabricating a display device.
  • the method includes: preparing a display unit; and forming a negative refractive index functional layer on the display unit, wherein the negative refractive index functional layer has a negative refractive index to light from the display unit.
  • FIG. 1 schematically shows a configuration diagram of a display device of an embodiment of the present disclosure.
  • Fig. 2 schematically shows an optical path when light is transmitted through a stack of a positive refractive index material and a negative refractive index material.
  • FIG. 3 is a view schematically showing a configuration diagram and an optical path diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 4 is a view schematically showing a configuration diagram and an optical path diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 5 is a flow chart schematically showing a method of fabricating a display device according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a display device and a manufacturing method thereof, which are intended to solve the defect that the processing process of the optical film is complicated and expensive, and improve the light utilization efficiency of the backlight module in the display device.
  • the display device 100 includes a display unit 110 and a negative refractive index functional layer 120 disposed on the display unit 110.
  • the negative refractive index functional layer 120 has a negative refractive index to light from the display unit 110.
  • the display device 100 further includes an optical convergence unit 130 disposed on the negative refractive index functional layer 120.
  • Figure 2 is a schematic illustration of the effect of a negative refractive index functional layer on light propagation.
  • the negative refractive index material layer (shown as n0 in Fig. 2) has the following optical characteristics.
  • the energy of light in the layer of negative refractive index material is opposite to the direction of propagation of the phase.
  • n1 in Fig. 2 When light propagates from a layer of material having a positive refractive index (shown1 in Fig. 2) to a layer of material having a negative refractive index, the incident ray and the refracted ray are on the same side of the normal, thereby changing the direction of propagation of the light.
  • the dashed line in Figure 2 shows the normal to the interface between adjacent layers. As shown in FIG.
  • a negative refractive index functional layer 120 is disposed on the display unit 110.
  • the negative refractive index functional layer 120 has a negative refractive index for light from the display unit 110 such that the light has a reduced divergence after passing through the negative refractive index functional layer 120. This increases the degree of collimation of light and improves the light utilization efficiency of the display unit 110. This in turn increases the brightness of the display device 100 and reduces power consumption.
  • the negative refractive index functional layer 120 reduces the divergence of the light generated by the display unit 110, the directivity of the light is improved, which is advantageous for improving the anti-spy performance of the display device 100.
  • an optical film such as BEF or DBEF
  • FIG. 3 schematically shows a block diagram of a display device according to an embodiment of the present disclosure.
  • the display device 300 is divided into a display area 301 and a light transmitting area 302.
  • the display unit 310 is, for example, a liquid crystal display unit or an organic electroluminescent diode (OLED).
  • the display unit 310 includes a backlight 312, and the backlight 312 is disposed in the display area 301 of the display device 300.
  • the backlight 312 of the liquid crystal display unit is located directly below the display module 330 instead of being disposed at the end surface of the display unit.
  • a direct type of backlight is advantageous for implementing a large area display device 330.
  • the arrows in Figure 3 also show schematic light paths in the display device.
  • the backlight 312 in the display unit 310 is disposed in the display area 301 to provide light to the display area 301 of the display device 300 to implement an information display function of the display device 300, as indicated by an arrow in the display area 301.
  • Natural light passes through the light transmissive region 302 to effect the see-through function of the display device, as indicated by the arrows in the light transmissive region 302. That is, the display device 300 of this embodiment is a transparent display device.
  • the negative refractive index functional layer 320 includes a negative refractive index portion 322, and the negative refractive index portion 322 is disposed at the display region 301 of the display device 300.
  • the negative refractive index portion 322 of the negative refractive index functional layer 320 is disposed only in the display region 301.
  • the negative refractive index functional layer 320 has a collimating effect only on the light generated by the backlight 312 in the display unit 310 without affecting the natural light in the light transmitting region 302. This facilitates a more realistic and natural transparent display function in the light transmissive area 302.
  • the negative refractive index functional layer 320 further includes a transparent material portion 324, and the transparent material portion 324 is disposed at least in the light transmissive region 302 of the display device 300.
  • the transparent material portion 324 is disposed in the light transmissive region 302, which ensures the penetration of natural light in the light transmissive region 302 without affecting the see-through function of the display device 300.
  • the transparent material portion 324 is formed of, for example, an inorganic or organic transparent material.
  • Inorganic materials include, but are not limited to, silicon oxide, silicon nitride, silicon oxynitride.
  • Organic materials include, but are not limited to, resins.
  • the negative refractive index functional layer 320 has a patterned structure including only the negative refractive index portion 322 in the display region 301 and only the transparent material portion 324 in the transparent region 302.
  • the transparent material portion 324 is disposed in the display region 301 and the light transmissive region 302, and covers the negative refractive index portion 322 in the display region 301.
  • the display unit 310 is an organic electroluminescent diode (OLED). OLEDs are considered as point sources, and the directivity of light is poor.
  • backlight 312 includes a plurality of OLEDs arranged in a two dimensional array.
  • the negative refractive index portion 322 exhibits a negative refractive index to visible light.
  • the negative refractive index portion 322 exhibits a negative refractive index for light having a wavelength of 380 to 800 nm.
  • the OLED of the backlight 312 emits white light, or the light emitted by the OLED is converted to white light by the phosphor, and the negative refractive index portion 322 exhibits a negative refractive index to the visible light.
  • the OLED emits three primary colors of red, green, and blue light that are then mixed to achieve full color display.
  • the negative refractive index portion 322 exhibits a negative refractive index for red light, green light, and blue light.
  • the full color display is not limited to the scheme of red, green, and blue RGB three primary colors. For example, cyan, magenta, yellow, and black CMYK four primary color schemes are also possible.
  • Enkrich et al. used a two-dimensional periodic structure consisting of a metal strip and a metal open-loop resonator to produce a material exhibiting a negative refractive index for light at 800 nm, see Phys. Rev. Lett., 95, 203901 (2005). As circuit processing and printing technology conditions evolve and improve, the plasma cutoff frequency of metal wire arrays is expected to gradually decrease, indicating that materials exhibiting a negative refractive index for light of shorter wavelengths will be available.
  • Dolling et al. used a layer of metallic silver on a glass plate, followed by a thin layer of non-conducting magnesium fluoride, and finally a layer of metallic silver to form a 100-nanometer "sandwich".
  • the sandwich structure is then etched to form a square hole array to form a grid or grid similar to a wire mesh, see Optics Letters, Vol. 32, 53-55 (2007).
  • This nano-mesh of metal, dielectric and metal laminates exhibits a negative refractive index for light at 780 nm.
  • Wenshan Cai et al. used a metal strip comprising a dielectric substrate and a radial distribution in a dielectric matrix to produce a material exhibiting a negative refractive index for light of 632.8 nm, see Nature Photonics, Vol. 1 224-228 (2007).
  • FIG. 4 is a view schematically showing a configuration diagram and an optical path diagram of a display device according to an embodiment of the present disclosure.
  • the display device 400 includes a display unit 410 and a negative refractive index functional layer 420 disposed on the display unit 410.
  • the display device 400 is divided into a display area 401 and a light transmitting area 402. The following description focuses on the differences between the embodiment shown in Fig. 4 and the embodiment shown in Figs.
  • display device 400 is a D-View type device.
  • display device 400 includes an optical convergence unit 430 disposed on a negative refractive index functional layer 420.
  • the optical convergence unit 430 includes two liquid crystal prism layers 431, 432 that are sequentially stacked on the negative refractive index functional layer 420.
  • the liquid crystal molecules 433 in the liquid crystal prism layer are deflected under the control of an electrode (not shown) to form a liquid crystal prism 434.
  • the liquid crystal prism layers 431, 432 are driven by an active thin film transistor switching mode, and by inputting different gray scale voltages to different strip electrodes, the morphology of the liquid crystal in the corresponding region is controlled, thereby forming the liquid crystal prism 434.
  • the liquid crystal prism 434 is located in the display area of the display device.
  • an arrow in the display area 401 shows a schematic diagram of an optical path through which the light generated by the display unit 410 propagates through the optical convergence unit 430.
  • the liquid crystal prism 434 facilitates further improving the directivity of light emitted from the display unit 410. This is advantageous for improving the anti-spyness of the display device 400.
  • FIG. 5 is a flow chart schematically showing a method of fabricating a display device according to an embodiment of the present disclosure.
  • a method for fabricating a display device comprising: step S510: preparing a display unit; and step S520: forming a negative refractive index functional layer on the display unit, wherein the negative refraction The rate functional layer has a negative refractive index for light from the display unit.
  • the method further comprises the step S530 of forming an optical convergence unit on the negative refractive index functional layer.
  • the display device is divided into a display area and a light-transmitting area, and the step S510 of preparing the display unit includes forming a backlight in the display area of the display device.
  • the step S520 of forming a negative refractive index functional layer on the display unit includes forming a negative refractive index portion in a display region of the display device.
  • the step S520 of forming a negative refractive index functional layer on the display unit includes forming a transparent material portion at least in a light transmitting region of the display device.
  • a display device and a method of fabricating the same are disclosed.
  • the display device includes a display unit and a negative refractive index functional layer disposed on the display unit.
  • the negative refractive index functional layer has a negative refractive index for light from the display unit.
  • the light generated by the display unit has a reduced divergence after passing through the negative refractive index functional layer, and the degree of collimation is increased, so that the light utilization efficiency of the display unit is improved.
  • This increases the brightness of the display device, which in turn reduces the power consumption of the display device at the same brightness. Since the directivity of the backlight is improved, the anti-spy performance of the display device is improved.
  • Replacing an optical film such as BEF or DBEF with a negative refractive index functional layer helps to reduce the cost and thickness of the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

公开了一种显示装置。该显示装置包括显示单元以及设置在所述显示单元上的负折射率功能层。所述负折射率功能层对来自所述显示单元的光具有负折射率。还公开了该显示装置的制作方法。

Description

显示装置及其制作方法
相关专利申请
本申请主张于2017年5月12日提交的中国专利申请No.201710334793.4的优先权,其全部内容通过引用结合于此。
技术领域
本公开涉及显示技术领域,并且具体涉及一种显示装置及其制作方法。
背景技术
液晶显示装置具有重量轻、体积小、无辐射等优点而被广泛应用。由于液晶本身不发光,显示装置设有背光模组,该背光模组为显示模组提供光以实现显示功能。背光模组的光利用效率低是阻碍液晶显示装置低功耗的重要因素之一。
为了提高背光模组的光利用效率,在背光模组和显示模组之间贴附诸如增亮膜(Brightness Enhancement Film,BEF)或者偏光增亮膜(Dual Brightness Enhancement Film,DBEF)的光学膜片。BEF又称棱镜片(Prism Sheet)。BEF的表面包含许多结构相同的棱形结构,将背光模组的光反射、折射集中到显示装置的观看者的正面。DBEF又称反射式偏光片(Reflective Polarizer)。DBEF采用多层膜系,将偏振方向与显示模组的下偏光片的偏振方向垂直的光反射回背光模组。反射光在背光模组内经过多次折射和反射后,一部分的振动方向变为平行于下偏光片的偏振方向。这部分光再次通过下偏光片进入液晶层,由此提高显示装置的亮度。
然而,BEF和DBEF的加工工艺非常复杂,并且其专利权被少数业内巨头所垄断,使得价格高昂。
发明内容
本公开的一实施例提供了一种显示装置。该显示装置包括显示单元以及设置在所述显示单元上的负折射率功能层。所述负折射率功能层对来自所述显示单元的光具有负折射率。
在本公开的一实施例中,所述显示装置分为显示区域和透光区域,所述显示单元为液晶显示单元或者有机电致发光二极管,并且所述显示单元设置在所述显示区域。
在本公开的一实施例中,该负折射率功能层包括负折射率部,并且所述负折射率部设置在所述显示区域。
在本公开的一实施例中,所述负折射率功能层还包括透明材料部,并且所述透明材料部至少设置所述透光区域。
在本公开的一实施例中,所述透明材料部还设置在所述显示区域,并且覆盖所述负折射率部。
在本公开的一实施例中,所述负折射率部对可见光表现出负折射率。
在本公开的一实施例中,所述负折射率部对红光、绿光和蓝光表现出负折射率。
在本公开的一实施例中,所述负折射率部为由金属条和金属开环谐振器组成的二维周期性结构。
在本公开的一实施例中,所述负折射率部为金属、电介质和金属叠层的纳米网格。
在本公开的一实施例中,所述金属为银,并且所述电介质为氟化镁。
在本公开的一实施例中,所述负折射率部包括电介质基体和放射状分布于所述电介质基体中的金属条。
在本公开的一实施例中,该显示装置还包括设置在所述负折射率功能层上的光学会聚单元。
在本公开的一实施例中,所述光学会聚单元包括依次堆叠在所述负折射率功能层上的两个液晶棱镜层。
在本公开的一实施例中,每个所述液晶棱镜层包括位于所述显示区域的液晶棱镜。
本公开的一实施例提供了一种显示装置的制作方法。该方法包括:准备显示单元;以及在显示单元上形成负折射率功能层,其中所述负折射率功能层对来自所述显示单元的光具有负折射率。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例。
图1示意性示出本公开的一实施例的显示装置的结构图。
图2示意性示出光线传播经过正折射率材料和负折射率材料的叠层时的光路。
图3示意性示出本公开的一实施例的显示装置的结构图和光路图。
图4示意性示出本公开的一实施例的显示装置的结构图和光路图。
图5示意性示出本公开的一实施例的显示装置的制作方法的流程图。
通过上述附图,已示出本公开明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域普通技术人员说明本公开的概念。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施例的技术方案作进一步地详细描述。
液晶棱镜层本公开实施例提供一种显示装置及其制作方法,其旨在解决前述光学膜片的加工工艺复杂且价格高昂的缺陷,提高显示装置中背光模组的光利用效率。
下面结合附图具体说明本公开实施例提供的显示装置及其制作方法的具体实施方式。
本公开的一实施例提供了一种显示装置。如图1所示,显示装置100包括显示单元110以及设置在显示单元110上的负折射率功能层120。负折射率功能层120对来自显示单元110的光具有负折射率。可选地,显示装置100还包括设置在负折射率功能层120上的光学会聚单元130。
图2为负折射率功能层对光线传播的影响的示意图。负折射率材料层(如图2中n0所示)具有如下光学特性。光在负折射率材料层中的能量与相位的传播方向相反。当光从具有正折射率的材料层(如图2中n1所示)传播到具有负折射率材料层中时,入射光线与折射光线位于法 线的同一侧,从而改变了光的传播方向。图2中的虚线示出相邻层之间界面的法线。如图2所示,当入射光线从n1入射至n1和n0之间界面上时,反射光线(未图示)位于法线的另一侧,而折射光线与入射光线位于法线的同一侧。图中还示出叠置在负折射率材料层n0上的正折射率材料层n2。类似地,光线入射到n0和n2之间界面时,折射光线还是与入射光线位于法线的同一侧。应指出,虽然负折射率材料层与正折射率材料层之间界面的光折射方向已经不满足斯涅耳(Snell)定律,但是折射角仍满足斯涅耳定律。
从图2的光路图中可以看出,通过在两个正折射率材料层之间设置负折射率材料层,光束的发散度有效地减小。这意味着光束的指向性改善。
在图1所示实施例的显示装置中,显示单元110上设置负折射率功能层120。负折射率功能层120对来自显示单元110的光具有负折射率,使得光在经过负折射率功能层120之后具有减小的发散度。这增加了光的准直程度,提高了显示单元110的光利用效率。这进而提高了显示装置100的亮度并且降低功耗。同时,由于负折射率功能层120减小了显示单元110产生的光的发散度,因此光的指向性提高,这有利于提高显示装置100的防窥性能。再者,通过采用负折射率功能层120,不需要在显示单元110上贴附诸如BEF或DBEF的光学膜片,这有助于降低显示装置100的成本和厚度。
图3示意性示出本公开的一实施例的显示装置的结构图。如图3所示,在本公开的一实施例中,显示装置300分为显示区域301和透光区域302。显示单元310例如为液晶显示单元或者有机电致发光二极管(OLED)。以液晶显示单元为例,显示单元310包括背光源312,并且背光源312设置在显示装置300的显示区域301。如图3所示,液晶显示单元的背光源312位于显示模组330的正下方,而不是设置在显示单元的端面。直下式类型的背光源有利于实现大面积的显示装置330。
图3中的箭头还示出了显示装置中的示意性光路。显示单元310中的背光源312设置在显示区域301,为显示装置300的显示区域301提供光线,实现显示装置300的信息显示功能,如显示区域301中的箭头所示。自然光穿过透光区域302而实现显示装置的透视功能,如 透光区域302中的箭头所示。也就是说,此实施例的显示装置300为一种透明显示装置。
在本公开的一实施例中,负折射率功能层320包括负折射率部322,并且负折射率部322设置在显示装置300的显示区域301。在此实施例中,负折射率功能层320的负折射率部322仅仅设置在显示区域301。藉此,负折射率功能层320只对显示单元310中的背光源312产生的光有准直效果,而不影响透光区域302中的自然光。这有利于在透光区域302实现更真实和自然的透明显示功能。
在本公开的一实施例中,负折射率功能层320还包括透明材料部324,并且透明材料部324至少设置在显示装置300的透光区域302。透明材料部324设置在透光区域302,这确保自然光在透光区域302的穿透性能,而不影响显示装置300的透视功能。透明材料部324由例如无机或有机透明材料形成。无机材料包括但不限于氧化硅、氮化硅、氮氧化硅。有机材料包括但不限于树脂。
在一示例中,负折射率功能层320具有图案化结构,在显示区域301仅包括负折射率部322,并且在与透光区域302仅包括透明材料部324。
在另一示例中,透明材料部324设置在显示区域301和透光区域302,并且在显示区域301覆盖负折射率部322。
在本公开的一实施例中,显示单元310为有机电致发光二极管(OLED)。OLED被视为点光源,光线的指向性不佳。通常,背光源312包括以二维阵列方式排布的多个OLED。
在本公开的一实施例中,负折射率部322对可见光表现出负折射率。例如,负折射率部322对波长为380-800nm的光表现出负折射率。
在一示例中,背光源312的OLED发射白光,或者该OLED发射的光经磷光体转换为白光,则负折射率部322对可见光表现出负折射率。
在另一示例中,OLED发射红光、绿光和蓝光三基色光,这些光随后被混合以实现全彩色显示。这种情况下,负折射率部322对红光、绿光和蓝光表现出负折射率。应指出,全彩色显示不限于红光、绿光和蓝光RGB三基色光的方案。例如,青色、品红色、黄色和黑色CMYK四基色方案也是可行的。
以下描述本公开实施例中负折射率部的材料示例。应指出,自然界中并不存在具有负折射率的材料。Pendry从电磁场麦克斯韦方程和物质本构方程出发,通过理论计算指出理论上可以制作出具有负折射率的材料,见Phys.Rev.Lett.,76,4773-4776(1996)。Smith等人按照Pendry的理论构想,利用金属铜的开环谐振器(split ring resonator,SRR)和导线组成的二维周期性,首次制作出具有负折射率的材料,见Phys.Rev.Lett.,84,4184-4187(2000)。Enkrich等人利用由金属条和金属开环谐振器组成的二维周期性结构,制作出对800nm的光表现出负折射率的材料,见Phys.Rev.Lett.,95,203901(2005)。随着电路加工和印刷技术条件的发展和提高,金属导线阵列的等离子体截止频率预计将逐渐降低,这表明对更短波长的光表现出负折射率的材料将是可获得的。
Dolling等人利用在玻璃板上沉积一层金属银,随后在上面覆盖一层薄薄的不传导的氟化镁,最后再覆上一层金属银,由此形成一块100纳米厚“三明治”。随后对该三明治结构蚀刻形成方孔阵列,形成类似于金属丝网的栅格或网格,见Optics Letters,Vol.32,53-55(2007)。这种金属、电介质和金属叠层的纳米网格对780nm的光表现出负折射率。
此外,Wenshan Cai等人利用包括电介质基体和放射状分布于电介质基体中的金属条,制作出对632.8nm的光表现出负折射率的材料,见Nature Photonics,Vol.1 224-228(2007)。
图4示意性示出本公开的一实施例的显示装置的结构图和光路图。如图4所示,显示装置400包括显示单元410以及设置在显示单元410上的负折射率功能层420。显示装置400分为显示区域401和透光区域402。以下侧重描述图4所示实施例与图1和3所示实施例不同之处。
在图4所示实施例中,显示装置400为指向式显示(D-View)类型的装置。如所示,显示装置400包括设置在负折射率功能层420上的光学会聚单元430。如所示,光学会聚单元430包括依次堆叠在负折射率功能层420上的两个液晶棱镜层431、432。每个液晶棱镜层431、432在工作时,液晶棱镜层中的液晶分子433在电极(未示出)控制下偏转形成液晶棱镜434。例如,液晶棱镜层431、432通过有源薄膜晶体管开关方式驱动,通过对不同的条状电极输入不同的灰阶电压,从而控制相应区域中液晶的形貌,由此形成液晶棱镜434。在每个液晶棱镜层431、432中,液晶棱镜434位于显示装置的显示区域。
在图4中,显示区域401中的箭头示出了显示单元410产生的光传播经过光学会聚单元430的光路示意图。如所示,液晶棱镜434有利于进一步提高从显示单元410出射的光的指向性。这对于改善显示装置400的防窥性是有利的。
图5示意性示出本公开的一实施例的显示装置的制作方法的流程图。如所示,在本公开的一实施例中,提供了一种显示装置的制作方法,包括:步骤S510:准备显示单元;以及步骤S520:在显示单元上形成负折射率功能层,其中负折射率功能层对来自显示单元的光具有负折射率。可选地,该方法还包括步骤S530:在负折射率功能层上形成光学会聚单元。
在本公开的一实施例中,显示装置分为显示区域和透光区域,并且准备显示单元的步骤S510包括:在显示装置的显示区域形成背光源。
在本公开的一实施例中,在显示单元上形成负折射率功能层的步骤S520包括:在显示装置的显示区域形成负折射率部。
在本公开的一实施例中,在显示单元上形成负折射率功能层的步骤S520包括:至少在显示装置的透光区域形成透明材料部。
在各个实施例中,公开了一种显示装置及其制作方法。该显示装置包括显示单元以及设置在所述显示单元上的负折射率功能层。所述负折射率功能层对来自所述显示单元的光具有负折射率。显示单元产生的光经过负折射率功能层之后具有减小的发散度,准直程度提高,使得显示单元的光利用效率提高。这提高了显示装置的亮度,进而降低了显示装置在相同亮度下的功耗。由于背光的指向性提高,显示装置的防窥性能改善。利用负折射率功能层替代诸如BEF或DBEF的光学膜片,这有助于降低显示装置的成本和厚度。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何本领域普通技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应该以权利要求的保护范围为准。

Claims (15)

  1. 一种显示装置,包括显示单元以及设置在所述显示单元上的负折射率功能层,其中所述负折射率功能层对来自所述显示单元的光具有负折射率。
  2. 根据权利要求1所述的显示装置,其中所述显示装置分为显示区域和透光区域,所述显示单元为液晶显示单元或者有机电致发光二极管,并且所述显示单元设置在所述显示区域。
  3. 根据权利要求2所述的显示装置,其中该负折射率功能层包括负折射率部,并且所述负折射率部设置在所述显示区域。
  4. 根据权利要求3所述的显示装置,其中所述负折射率功能层还包括透明材料部,并且所述透明材料部至少设置在所述透光区域。
  5. 根据权利要求4所述的显示装置,其中所述透明材料部还设置在所述显示区域。
  6. 根据权利要求3所述的显示装置,其中所述负折射率部对可见光表现出负折射率。
  7. 根据权利要求3所述的显示装置,其中所述负折射率部对红光、绿光和蓝光表现出负折射率。
  8. 根据权利要求3所述的显示装置,其中所述负折射率部为由金属条和金属开环谐振器组成的二维周期性结构。
  9. 根据权利要求3所述的显示装置,其中所述负折射率部为金属、电介质和金属叠层的纳米网格。
  10. 根据权利要求9所述的显示装置,其中所述金属为银,并且所述电介质为氟化镁。
  11. 根据权利要求1所述的显示装置,其中所述负折射率部包括电介质基体和放射状分布于所述电介质基体中的金属条。
  12. 根据权利要求1所述的显示装置,还包括设置在所述负折射率功能层上的光学会聚单元。
  13. 根据权利要求12所述的显示装置,其中所述光学会聚单元包括依次堆叠在所述负折射率功能层上的两个液晶棱镜层。
  14. 根据权利要求13所述的显示装置,其中每个所述液晶棱镜层包括位于所述显示区域的液晶棱镜。
  15. 一种显示装置的制作方法,包括:
    准备显示单元;以及
    在显示单元上形成负折射率功能层,其中所述负折射率功能层对来自所述显示单元的光具有负折射率。
PCT/CN2018/086480 2017-05-12 2018-05-11 显示装置及其制作方法 WO2018205992A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/337,736 US10962832B2 (en) 2017-05-12 2018-05-11 Display device and method for fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710334793.4A CN106932954A (zh) 2017-05-12 2017-05-12 显示装置及其制作方法
CN201710334793.4 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018205992A1 true WO2018205992A1 (zh) 2018-11-15

Family

ID=59430547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086480 WO2018205992A1 (zh) 2017-05-12 2018-05-11 显示装置及其制作方法

Country Status (3)

Country Link
US (1) US10962832B2 (zh)
CN (1) CN106932954A (zh)
WO (1) WO2018205992A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106932954A (zh) 2017-05-12 2017-07-07 京东方科技集团股份有限公司 显示装置及其制作方法
CN109493746A (zh) * 2018-12-29 2019-03-19 厦门天马微电子有限公司 显示面板及显示装置
CN112180648B (zh) * 2019-07-03 2022-04-08 中国科学院苏州纳米技术与纳米仿生研究所 光学薄膜结构、其制备方法以及应用
CN110010792B (zh) * 2019-04-09 2022-07-29 合肥鑫晟光电科技有限公司 Oled显示基板及其制作方法、显示装置
CN110727144A (zh) * 2019-07-17 2020-01-24 深圳市隆利科技股份有限公司 指纹识别模组及电子设备
CN110412667B (zh) * 2019-07-17 2022-06-21 深圳市隆利科技股份有限公司 多层结构光学薄膜
CN110941111A (zh) * 2019-10-28 2020-03-31 深圳市隆利科技股份有限公司 用于指纹识别的显示设备
CN110989052A (zh) * 2019-10-28 2020-04-10 深圳市隆利科技股份有限公司 多层结构渐变折射率的增亮膜
CN110865741B (zh) * 2019-11-29 2023-10-24 上海天马微电子有限公司 一种触控显示模组及显示装置
CN113078193B (zh) * 2021-03-24 2022-11-04 武汉天马微电子有限公司 一种显示面板和显示装置
CN117063630A (zh) * 2022-03-09 2023-11-14 京东方科技集团股份有限公司 一种显示面板和显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815687A (ja) * 1994-06-29 1996-01-19 Hitachi Ltd 液晶表示素子およびこれを用いた液晶表示装置
TW201104372A (en) * 2009-04-13 2011-02-01 Hewlett Packard Development Co Dynamically reconfigurable holograms for generating color holographic images
CN105374918A (zh) * 2014-08-26 2016-03-02 清华大学 发光装置以及采用该发光装置的显示装置
CN105374919A (zh) * 2014-08-26 2016-03-02 清华大学 发光装置以及采用该发光装置的显示装置
CN105929600A (zh) * 2016-06-30 2016-09-07 京东方科技集团股份有限公司 一种透明显示屏以及透明显示装置
CN106324906A (zh) * 2016-09-08 2017-01-11 京东方科技集团股份有限公司 准直背光源及其制备方法、透明显示装置
CN106932954A (zh) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 显示装置及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7535171B2 (en) * 2006-06-21 2009-05-19 Advantech Global, Ltd. System and method for total light extraction from flat-panel light-emitting devices
JP2013525863A (ja) * 2010-04-27 2013-06-20 ザ リージェンツ オブ ユニバーシティー オブ ミシガン プラズモン・カラー・フィルタ及び光起電力能力を有するディスプレイ・デバイス
US9385172B2 (en) * 2012-10-19 2016-07-05 Universal Display Corporation One-way transparent display
KR20150033079A (ko) * 2013-09-23 2015-04-01 한국전자통신연구원 메타물질 구조물
US9069178B2 (en) * 2013-11-28 2015-06-30 Shenzhen China Star Optoelectronics Technology Co. Ltd. Display device and liquid crystal prism cell panel
KR102283456B1 (ko) * 2013-12-18 2021-07-30 삼성디스플레이 주식회사 광투과율 제어가 가능한 표시 장치
US10571692B2 (en) * 2016-03-02 2020-02-25 Facebook Technologies, Llc Field curvature corrected display

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815687A (ja) * 1994-06-29 1996-01-19 Hitachi Ltd 液晶表示素子およびこれを用いた液晶表示装置
TW201104372A (en) * 2009-04-13 2011-02-01 Hewlett Packard Development Co Dynamically reconfigurable holograms for generating color holographic images
CN105374918A (zh) * 2014-08-26 2016-03-02 清华大学 发光装置以及采用该发光装置的显示装置
CN105374919A (zh) * 2014-08-26 2016-03-02 清华大学 发光装置以及采用该发光装置的显示装置
CN105929600A (zh) * 2016-06-30 2016-09-07 京东方科技集团股份有限公司 一种透明显示屏以及透明显示装置
CN106324906A (zh) * 2016-09-08 2017-01-11 京东方科技集团股份有限公司 准直背光源及其制备方法、透明显示装置
CN106932954A (zh) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 显示装置及其制作方法

Also Published As

Publication number Publication date
US20190346719A1 (en) 2019-11-14
US10962832B2 (en) 2021-03-30
CN106932954A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
WO2018205992A1 (zh) 显示装置及其制作方法
JP5605368B2 (ja) 光学素子、光源装置及び投射型表示装置
US10551627B2 (en) 3D display device
US20180299727A1 (en) Display devices
JP5605426B2 (ja) 光学素子、光源装置及び投射型表示装置
US10018871B1 (en) Display apparatus
CN102656492B (zh) 带干涉型滤光片层的基板及使用该基板的显示装置
CN110556394B (zh) Micro LED显示装置
WO2005017860A1 (ja) 光学デバイス及び有機elディスプレイ
WO2018223874A1 (zh) 彩色滤光片、显示面板及显示装置
WO2019228046A1 (zh) 一种显示面板、其制作方法及显示装置
JP2021517263A (ja) 光共振器、表示パネル
JP2017015973A (ja) 波長変換装置およびそれを用いた表示装置
WO2012172858A1 (ja) 光学素子、光源装置及び投射型表示装置
KR20080003486A (ko) 편광성을 갖는 반도체 발광 소자
JP2014182280A (ja) 表示装置
US11262621B2 (en) Optical film layer and display device
US20180196302A1 (en) Display device
US10642112B2 (en) Array substrate, display panel and display device
WO2020253312A1 (zh) 显示装置及制作方法
CN109991775A (zh) 背光源和显示装置
CN106959550B (zh) 一种光学调制器、背光源模组及显示装置
CN109065578B (zh) 显示模组及显示装置
KR100763404B1 (ko) 백 라이트 유닛
CN109375419B (zh) 背光模组和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.07.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18797691

Country of ref document: EP

Kind code of ref document: A1