WO2018223492A1 - Oled显示装置的数字驱动方法 - Google Patents

Oled显示装置的数字驱动方法 Download PDF

Info

Publication number
WO2018223492A1
WO2018223492A1 PCT/CN2017/092861 CN2017092861W WO2018223492A1 WO 2018223492 A1 WO2018223492 A1 WO 2018223492A1 CN 2017092861 W CN2017092861 W CN 2017092861W WO 2018223492 A1 WO2018223492 A1 WO 2018223492A1
Authority
WO
WIPO (PCT)
Prior art keywords
equal
display device
oled display
thin film
film transistor
Prior art date
Application number
PCT/CN2017/092861
Other languages
English (en)
French (fr)
Inventor
何健
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/744,832 priority Critical patent/US10332453B2/en
Publication of WO2018223492A1 publication Critical patent/WO2018223492A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • G09G3/2029Display of intermediate tones by time modulation using two or more time intervals using sub-frames the sub-frames having non-binary weights
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • G09G2340/0435Change or adaptation of the frame rate of the video stream
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a digital driving method for an OLED display device.
  • OLED Organic Light Emitting Display
  • OLED Organic Light Emitting Display
  • the OLED display device has a plurality of pixels arranged in an array, and the organic light emitting diodes are driven to emit light through the pixel driving circuit.
  • a common pixel driving circuit is shown in FIG. 1 , which includes a switching thin film transistor T10 , a driving thin film transistor T20 , a storage capacitor C10 , and an organic light emitting diode D .
  • the driving method includes an analog driving method and a digital driving method, and uses an analog driving. In the method, since the threshold voltage (Vth) of the driving thin film transistor T20 is delayed in the saturation region for a long time, the brightness of the panel display screen is uneven, which affects the display effect.
  • the gate of the driving thin film transistor T20 outputs only two gamma voltage levels, respectively: the highest gamma Gamma level that makes the organic light emitting diode the brightest ( GM1) and the lowest Gamma level (GM9) that makes the organic light-emitting diode the darkest, according to the transistor current voltage IV equation:
  • I ds, sat is the transistor conduction current
  • k is the intrinsic conduction factor
  • Vgs is the gate-source voltage of the driving thin film transistor T20
  • V th is the threshold voltage of the driving thin film transistor T20
  • V A is the driving thin film transistor
  • the gate voltage of T20, V B is the source voltage of the driving thin film transistor T20. Since the non-uniformity leads to device degradation or change in V th of the driving thin film transistor T20 in an amount ⁇ V th is small relative to (V A -V B) changes, as compared to the analog driving method, a digital driving manner effective to inhibit brightness of the OLED Uneven problem.
  • subfield non-equal cutting method there are two commonly used digital driving methods, one is subfield non-equal cutting method, and the other is subfield equal cutting mode.
  • a normal frame is cut into a plurality of subfields (Subframes, SF), and the time weight of the subfields is Driving, by controlling the brightness and darkness of the subfield to generate a pulse width modulation (PWM) luminance signal, combined with the time integration principle of the human eye to the brightness perception, the digital voltage (GM1 and GM9) can be used to display different grayscale luminance images, but In this way, the specifications of the hardware are very high.
  • the frame frequency of the shortest subfield reaches 15300 Hz, which is difficult to implement at present.
  • a discharge thin film transistor to the pixel driving circuit of FIG. 1 for discharging the gate of the driving thin film transistor, as shown in FIG.
  • the digital driving method of sub-field cutting by cutting one frame or the like into a plurality of subfields having the same time, the pixel is illuminated in different subfields by controlling the time interval at which the switching thin film transistor charges and discharges the thin film transistor to discharge. Different, pixel lighting time according to weight Drive to generate a PWM luminance signal.
  • this method can reduce the hardware specifications, since the pixels are not bright for most of the time, the overall brightness will be very low, taking 8 subfields as an example, 255 gray levels (8 subfields lighting) pixel lighting time.
  • the proportion in one frame is about 25%, that is, the brightness is only 25% of the 255 gray level driven by the analog.
  • An object of the present invention is to provide a digital driving method for an OLED display device, which can effectively reduce the hardware specifications required for driving, improve the brightness of the OLED display device, and ensure the display effect of the OLED display device.
  • the present invention provides a digital driving method for an OLED display device, comprising the following steps:
  • Step 1 An OLED display device is provided.
  • the OLED display device includes a plurality of sub-pixels arranged in an array, and each of the sub-pixels is provided with a pixel driving circuit.
  • the pixel driving circuit includes: a first thin film transistor and a second thin film. a transistor, a third thin film transistor, a storage capacitor, and an organic light emitting diode;
  • the second thin film transistor is configured to drive the organic light emitting diode to emit light
  • the first thin film transistor is configured to charge a gate of the second thin film transistor
  • the third thin film transistor is used to be used to the second thin film transistor
  • the gate is discharged
  • the storage capacitor is used to store the gate potential of the second thin film transistor, and the potential of the gate of the second thin film transistor is only at the lowest gamma level or the highest gamma level;
  • Step 2 dividing a frame image of the OLED display device into a plurality of subfields, the number of the plurality of subfields being equal to the number of bits of the gray scale data of the OLED display device, where the plurality of subfields include: having different a plurality of non-equal fields and a plurality of equal-length sub-fields of equal duration, The duration of the equal-cut subfield is equal to half the duration of the non-equal subfield having the lowest time weight;
  • Step 3 driving each subfield output according to the gray scale data of the picture to be displayed, and controlling the lighting time of each of the equal-cut subfields by changing the time interval between the charging of the first thin film transistor and the discharge of the third thin film transistor when outputting each of the equal-cut subfields .
  • the number of bits of the gray scale data of the OLED display device is 8 bits.
  • the image of one frame of the OLED display device is divided into 8 subfields.
  • the maximum frame frequency of the OLED display device is 1140 Hz.
  • the eight subfields include three non-equal fields and five equal-cut subfields, and the ratio of time weights of the three non-equal fields is
  • the maximum frame frequency of the OLED display device is 720 Hz.
  • the eight subfields include two non-equal fields and six equal-cut subfields, and the ratio of time weights of the two non-equal fields is
  • the number of bits of the gray scale data of the OLED display device is 6 bits.
  • the image of one frame of the OLED display device is divided into 6 subfields.
  • the gate of the first thin film transistor is connected to the first scan signal, the source is connected to the data signal, and the drain is electrically connected to the first node;
  • the gate of the second thin film transistor is electrically connected to the first node, the source is electrically connected to the anode of the organic light emitting diode, and the drain is connected to the positive voltage of the power source;
  • the gate of the third thin film transistor is connected to the second scan signal, the source is connected to the reference voltage, and the drain is electrically connected to the first node;
  • One end of the storage capacitor is electrically connected to the first node, and the other end is electrically connected to the drain of the second thin film transistor;
  • the cathode of the organic light emitting diode is connected to a negative voltage of the power source.
  • the reference voltage is equal to zero.
  • the invention also provides a digital driving method for an OLED display device, comprising the following steps:
  • Step 1 An OLED display device is provided.
  • the OLED display device includes a plurality of sub-pixels arranged in an array, and each of the sub-pixels is provided with a pixel driving circuit.
  • the pixel driving circuit includes: a first thin film transistor and a second thin film. a transistor, a third thin film transistor, a storage capacitor, and an organic light emitting diode;
  • the second thin film transistor is configured to drive the organic light emitting diode to emit light
  • the first thin film transistor is configured to charge a gate of the second thin film transistor
  • the third thin film transistor is used to be used to the second thin film transistor
  • the gate is discharged
  • the storage capacitor is used to store the gate potential of the second thin film transistor, and the potential of the gate of the second thin film transistor is only at the lowest gamma level or the highest gamma level;
  • Step 2 dividing a frame image of the OLED display device into a plurality of subfields, the number of the plurality of subfields being equal to the number of bits of the gray scale data of the OLED display device, where the plurality of subfields include: having different a plurality of non-equal fields and a plurality of equal-length sub-fields of equal duration, the duration of the equal-cut subfield being equal to half of the duration of the non-equal subfield having the lowest time weight;
  • Step 3 driving each subfield output according to the gray scale data of the picture to be displayed, and controlling the lighting time of each of the equal-cut subfields by changing the time interval between the charging of the first thin film transistor and the discharge of the third thin film transistor when outputting each of the equal-cut subfields ;
  • the step 2 is to determine the number of the non-equal fields and the equal-cut sub-fields in the plurality of sub-fields according to the maximum frame frequency of the OLED display device, so that the frame frequency of the equal-cut sub-field is smaller than the OLED display device. Maximum frame frequency;
  • the number of bits of the gray scale data of the OLED display device is 8 bits, and the image of one frame of the OLED display device is divided into 8 subfields in the step 2;
  • the gate of the first thin film transistor is connected to the first scan signal, the source is connected to the data signal, and the drain is electrically connected to the first node;
  • the gate of the second thin film transistor is electrically connected to the first node, the source is electrically connected to the anode of the organic light emitting diode, and the drain is connected to the positive voltage of the power source;
  • the gate of the third thin film transistor is connected to the second scan signal, the source is connected to the reference voltage, and the drain is electrically connected to the first node;
  • One end of the storage capacitor is electrically connected to the first node, and the other end is electrically connected to the drain of the second thin film transistor;
  • the cathode of the organic light emitting diode is connected to a negative voltage of the power source
  • the present invention provides a digital driving method of an OLED display device using a 3T1C pixel driving circuit including a first thin film transistor, a second thin film transistor, a third thin film transistor, a storage capacitor, and an organic light emitting diode
  • a digital driving method of an OLED display device using a 3T1C pixel driving circuit including a first thin film transistor, a second thin film transistor, a third thin film transistor, a storage capacitor, and an organic light emitting diode
  • Driving each sub-pixel by dividing one frame image of the OLED display device into a plurality of non-equal fields and equal-cut subfields, and controlling each isolator by changing a time interval between charging of the first thin film transistor and discharge of the third thin film transistor
  • the lighting time of the field combines the non-equal and equal-cutting of the subfield.
  • the display brightness of the OLED display device can be improved, and the display effect of the OLED display device can be ensured.
  • 1 is a circuit diagram of a conventional pixel driving circuit
  • FIG. 2 is a schematic diagram of a conventional non-equal-cut subfield driving method
  • FIG. 3 is a schematic diagram of a conventional equal-cut subfield driving method
  • FIG. 5 is a schematic diagram of steps 2 and 3 of a first embodiment of a digital driving method of an OLED display device of the present invention
  • FIG. 6 is a schematic diagram of steps 2 and 3 of a second embodiment of the digital driving method of the OLED display device of the present invention.
  • FIG. 7 is a flow chart of a digital driving method of an OLED display device of the present invention.
  • the present invention provides a digital driving method for an OLED display device, including the following steps:
  • the OLED display device includes a plurality of sub-pixels arranged in an array, and each of the sub-pixels is provided with a pixel driving circuit, and the pixel driving circuit includes: a thin film transistor T1, a second thin film transistor T2, a third thin film transistor T3, a storage capacitor C, and an organic light emitting diode D;
  • the gate of the first thin film transistor T1 is connected to the first scan signal Gate1, the source is connected to the data signal Data, the drain is electrically connected to the first node G, and the gate of the second thin film transistor T2 is electrically connected.
  • the source is electrically connected to the anode of the organic light emitting diode D, the drain is connected to the power supply positive voltage OVDD;
  • the gate of the third thin film transistor T3 is connected to the second scan signal Gate2, and the source is connected to the reference a voltage Vref, the drain is electrically connected to the first node G; one end of the storage capacitor C is electrically connected to the first node G, and the other end is electrically connected to the drain of the second thin film transistor T2; the cathode of the organic light emitting diode D Connect to the power supply negative voltage OVSS.
  • the reference The voltage Vref is equal to 0 or a negative potential close to zero.
  • the second thin film transistor T2 is configured to drive the organic light emitting diode D to emit light
  • the first thin film transistor T1 is configured to charge the gate of the second thin film transistor T2 (ie, the first node G).
  • the third thin film transistor T3 is configured to discharge a gate of the second thin film transistor T2 for storing a gate potential of the second thin film transistor T2, and a gate of the second thin film transistor T2 The potential is only at the lowest gamma level or the highest gamma level.
  • Step 2 As shown in FIG. 5 or FIG. 6, the image of one frame of the OLED display device is divided into a plurality of subfields, and the number of the plurality of subfields is equal to the number of bits of the grayscale data of the OLED display device.
  • the plurality of subfields include: a plurality of non-equal fields having different time weights and a plurality of equal-cut subfields having equal durations, the duration of the equal-cut subfields being equal to half of the duration of the non-equal-cut subfields having the lowest time weight.
  • step 2 determining a number of non-equal fields and equal-cut subfields in the plurality of subfields according to a maximum frame frequency of the OLED display device, so that a frame frequency of the equal-cut subfield is smaller than the OLED display
  • the maximum frame frequency of the device combines the non-equal and equal-cutting of the subfield.
  • the hardware specification (frame frequency) required for driving can be effectively reduced, and the practicality of the digital driving method is ensured.
  • the display brightness of the OLED display device can be improved, and the display effect of the OLED display device can be ensured.
  • the maximum frame frequency of the OLED display device is 1140 Hz
  • the number of bits of gray scale data of the OLED display device is 8 bits
  • the image of one frame of the OLED display device is divided into eight subfields, wherein three subfields are non-equal fields, and the ratio of time weights of the three non-equal fields is The remaining 5 subfields are equal-cut subfields, and the duration of the equal-cut subfields is time weight Half of the duration of the non-equal field.
  • the maximum frame frequency of the OLED display device is 720 Hz
  • the number of bits of gray scale data of the OLED display device is 8 bits
  • the step 2 The image of one frame of the OLED display device is divided into eight subfields, wherein two subfields are non-equal fields, and the ratio of time weights of the two non-equal fields is The remaining 6 subfields are equal-cut subfields, and the duration of the equal-cut subfields is time weight Half of the duration of the non-equal field.
  • the number of bits of the gradation data of the OLED display device may be 6 bits.
  • a frame of the OLED display device is used.
  • the image is divided into 6 subfields, which may also include a plurality of equally divided subfields and a plurality of non-equal subfields, which does not affect the implementation of the present invention.
  • Step 3 driving each subfield output according to the gray scale data of the to-be-displayed screen, and controlling the points of the respective equal-cut subfields by changing the time interval between the charging of the first thin film transistor T1 and the discharge of the third thin film transistor T3 at the output of each equal-cut subfield. Bright time.
  • the second scan signal Gate2 controls the third thin film transistor T3 to be always turned off, that is, the illumination time of the non-equal subfield is only equal to the duration of the non-equal field. Or equal to 0, and for the equal-cut subfield, it is also necessary to control the lighting time of each equal-cut subfield by changing the time interval between the charging of the first thin film transistor T1 and the discharge of the third thin film transistor T3, that is, the lighting of the equal-cut subfield.
  • the time is determined by the length of the cutting subfields and the weight of the lighting time corresponding to the cutting subfields.
  • the ratio of the weights of the lighting times of the five equal-cut subfields is In a second embodiment of the present invention, the ratio of the weights of the lighting times of the six equal-cut subfields is
  • the first embodiment of the present invention reduces the maximum frame frequency from 15300 Hz to 1140 Hz, compared to the technical scheme of using the non-equal cut mode alone.
  • the frequency is reduced by 92.5%, and the pixel lighting time ratio is increased from 25% to 84% compared with the technical scheme of using the equal-cut mode alone.
  • the second embodiment of the present invention is different from the non-isocutting method alone.
  • the frame frequency is reduced from 15300 Hz to 720 Hz, and the frame frequency is reduced by 95.3%.
  • the pixel lighting time ratio is increased from 25% to 66.4%, which can be seen that the present invention can be compared with the prior art. Effectively reduce the hardware specifications required for driving, improve the brightness of the OLED display device, and ensure the display effect of the OLED display device.
  • the present invention provides a digital driving method for an OLED display device, which is driven by a 3T1C pixel driving circuit including a first thin film transistor, a second thin film transistor, a third thin film transistor, a storage capacitor, and an organic light emitting diode.
  • a 3T1C pixel driving circuit including a first thin film transistor, a second thin film transistor, a third thin film transistor, a storage capacitor, and an organic light emitting diode.
  • the equal-cut subfield drive can improve the display brightness of the OLED display device and ensure the display effect of the OLED display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种OLED显示装置的数字驱动方法。该方法采用包括第一薄膜晶体管(T1)、第二薄膜晶体管(T2)、第三薄膜晶体管(T3)、存储电容(C)、以及有机发光二极管(D)的3T1C像素驱动电路驱动各个子像素,通过将OLED显示装置的一帧图像划分为多个非等切子场和等切子场,并通过改变第一薄膜晶体管(T1)充电与第三薄膜晶体管(T3)放电的时间间隔控制各个等切子场的点亮时间,将子场非等切与等切相结合,相比于单独的非等切子场驱动,能够有效降低驱动所需的硬件规格,保证数字驱动方法的实用性,相比于单独的等切子场驱动,能够提升OLED显示装置的显示亮度,保证OLED显示装置的显示效果。

Description

OLED显示装置的数字驱动方法 技术领域
本发明涉及显示技术领域,尤其涉及一种OLED显示装置的数字驱动方法。
背景技术
有机发光二极管(Organic Light Emitting Display,OLED)显示装置具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED显示装置具有呈阵列式排布的多个像素,通过像素驱动电路驱动有机发光二极管发光。常见的像素驱动电路如图1所示,包括一开关薄膜晶体管T10、一驱动薄膜晶体管T20、一存储电容C10、以及一有机发光二极管D,驱动方法有模拟驱动方法及数字驱动方法,采用模拟驱动方法时,由于驱动薄膜晶体管T20长时间工作在饱和区会造成其阈值电压(Vth)发生漂移,导致面板显示画面产生亮度不均匀,影响显示效果。
而在OLED显示装置的数字驱动方法中,驱动薄膜晶体管T20的栅极仅输出两个伽马(Gamma)电压准位,分别为:使得有机发光二级管最亮的最高伽马Gamma准位(GM1)和使得有机发光二极管最暗的最低Gamma准位(GM9),按照晶体管电流电压I-V方程:
Ids,sat=k*(Vgs-Vth,T20)2=k*(VA-VB-Vth,T20)2
其中,Ids,sat为晶体管导通电流,k为本征导电因子,Vgs为驱动薄膜晶体管T20的栅源极电压,Vth,T20为驱动薄膜晶体管T20的阈值电压,VA为驱动薄膜晶体管T20的栅极电压,VB为驱动薄膜晶体管T20的源极电压。由于器件退化或者非一致性导致驱动薄膜晶体管T20的Vth的变化量△Vth相对于(VA-VB)变化较小,因此相比模拟驱动方式,数字驱动方式可有效抑制OLED的亮度不均匀问题。
目前常用的数字驱动方式有两种,一种是子场非等切方式,另一种是子场等切方式。
如图2所示,在子场非等切的数字驱动方式中,正常的一个帧被切成多个子场(Subframe,SF),子场的时间权重按照
Figure PCTCN2017092861-appb-000001
Figure PCTCN2017092861-appb-000002
进行驱动,通过控制子场的亮暗产生脉冲宽度调制(PWM)亮度信号,结合人眼对亮度感知的时间上积分原理,可使用数位电压(GM1和GM9)来显示不同灰阶亮度影像,但这种方式对硬件的规格要求非常高,以8bits驱动为例,时间最短的子场的帧频率达到15300Hz,目前硬件难以实现。
在子场等切的数字驱动方式中,需要在图1的像素驱动电路中增加一个放电薄膜晶体管,所述放电薄膜晶体管用于对所述驱动薄膜晶体管的栅极进行放电,如图3所示,在子场等切的数字驱动方式中,通过将一个帧等切成多个时间相同的子场,通过控制开关薄膜晶体管充电和放电薄膜晶体管放电的时间间隔实现像素在不同子场点亮时间不同,像素点亮时间按照权重
Figure PCTCN2017092861-appb-000003
进行驱动,产生PWM亮度信号。这种方式虽然可以降低硬件规格,但由于大部分时间内像素是不亮的,因此整体的亮度会非常低,以8个子场为例,255灰阶(8个子场点亮)像素点亮时间在一帧的占比约为25%,即亮度仅为类比驱动下255灰阶的25%。
发明内容
本发明的目的在于提供一种OLED显示装置的数字驱动方法,能够有效降低驱动所需的硬件规格,提升OLED显示装置的亮度,保证OLED显示装置的显示效果。
为实现上述目的,本发明提供了一种OLED显示装置的数字驱动方法,包括如下步骤:
步骤1、提供一OLED显示装置,所述OLED显示装置包括呈阵列排布的多个子像素,每一个子像素内设有一像素驱动电路,所述像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容、以及有机发光二极管;
所述第二薄膜晶体管用于驱动有机发光二极管发光,所述第一薄膜晶体管用于对所述第二薄膜晶体管的栅极进行充电,所述第三薄膜晶体管用于对所述第二薄膜晶体管的栅极进行放电,所述存储电容用于存储第二薄膜晶体管的栅极电位,所述第二薄膜晶体管的栅极的电位仅处于最低伽马准位或最高伽马准位;
步骤2、将所述OLED显示装置的一帧图像划分为多个子场,所述多个子场的数目等于所述OLED显示装置的灰阶数据的位数,所述多个子场包括:具有不同的时间权重的多个非等切子场和多个时长相等的等切子场, 所述等切子场的时长等于时间权重最低的非等切子场的时长的一半;
步骤3、根据待显示画面的灰阶数据驱动各个子场输出,并在各个等切子场输出时通过改变第一薄膜晶体管充电与第三薄膜晶体管放电的时间间隔控制各个等切子场的点亮时间。
所述步骤2中根据所述OLED显示装置的最大帧频率确定所述多个子场中非等切子场和等切子场的数目,使所述时间权重最低的非等切子场的帧频率小于所述OLED显示装置的最大帧频率。
所述OLED显示装置的灰阶数据的位数为8位,所述步骤2中将所述OLED显示装置的一帧图像划分为8个子场。
所述OLED显示装置的最大帧频率为1140Hz。
所述8个子场中包括3个非等切子场和5个等切子场,所述3个非等切子场的时间权重的比值为
Figure PCTCN2017092861-appb-000004
所述OLED显示装置的最大帧频率为720Hz。
所述8个子场中包括2个非等切子场和6个等切子场,所述2个非等切子场的时间权重的比值为
Figure PCTCN2017092861-appb-000005
所述OLED显示装置的灰阶数据的位数为6位,所述步骤2中将所述OLED显示装置的一帧图像划分为6个子场。
所述第一薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接第一节点;
所述第二薄膜晶体管的栅极电性连接第一节点,源极电性连接有机发光二极管的阳极,漏极接入电源正电压;
所述第三薄膜晶体管的栅极接入第二扫描信号,源极接入参考电压,漏极电性连接第一节点;
所述存储电容的一端电性连接第一节点,另一端电性连接第二薄膜晶体管的漏极;
所述有机发光二极管的阴极接入电源负电压。
所述参考电压等于0。
本发明还提供一种OLED显示装置的数字驱动方法,包括如下步骤:
步骤1、提供一OLED显示装置,所述OLED显示装置包括呈阵列排布的多个子像素,每一个子像素内设有一像素驱动电路,所述像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容、以及有机发光二极管;
所述第二薄膜晶体管用于驱动有机发光二极管发光,所述第一薄膜晶体管用于对所述第二薄膜晶体管的栅极进行充电,所述第三薄膜晶体管用于对所述第二薄膜晶体管的栅极进行放电,所述存储电容用于存储第二薄膜晶体管的栅极电位,所述第二薄膜晶体管的栅极的电位仅处于最低伽马准位或最高伽马准位;
步骤2、将所述OLED显示装置的一帧图像划分为多个子场,所述多个子场的数目等于所述OLED显示装置的灰阶数据的位数,所述多个子场包括:具有不同的时间权重的多个非等切子场和多个时长相等的等切子场,所述等切子场的时长等于时间权重最低的非等切子场的时长的一半;
步骤3、根据待显示画面的灰阶数据驱动各个子场输出,并在各个等切子场输出时通过改变第一薄膜晶体管充电与第三薄膜晶体管放电的时间间隔控制各个等切子场的点亮时间;
其中,所述步骤2中根据所述OLED显示装置的最大帧频率确定所述多个子场中非等切子场和等切子场的数目,使所述等切子场的帧频率小于所述OLED显示装置的最大帧频率;
其中,所述OLED显示装置的灰阶数据的位数为8位,所述步骤2中将所述OLED显示装置的一帧图像划分为8个子场;
其中,所述第一薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接第一节点;
所述第二薄膜晶体管的栅极电性连接第一节点,源极电性连接有机发光二极管的阳极,漏极接入电源正电压;
所述第三薄膜晶体管的栅极接入第二扫描信号,源极接入参考电压,漏极电性连接第一节点;
所述存储电容的一端电性连接第一节点,另一端电性连接第二薄膜晶体管的漏极;
所述有机发光二极管的阴极接入电源负电压;
其中,所述参考电压等于0。
本发明的有益效果:本发明提供一种OLED显示装置的数字驱动方法,该方法采用包括第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容、以及有机发光二极管的3T1C像素驱动电路驱动各个子像素,通过将所述OLED显示装置的一帧图像划分为多个非等切子场和等切子场,并通过改变第一薄膜晶体管充电与第三薄膜晶体管放电的时间间隔控制各个等切子场的点亮时间,将子场非等切与等切相结合,相比于单独的非等切子场驱动,能够有效降低驱动所需的硬件规格,保证数字驱动方法的实用 性,相比于单独的等切子场驱动,能够提升OLED显示装置的显示亮度,保证OLED显示装置的显示效果。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有的像素驱动电路的电路图;
图2为现有的非等切子场驱动方式的示意图;
图3为现有的等切子场驱动方式的示意图;
图4为本发明的OLED显示装置的数字驱动方法的步骤1的示意图;
图5为本发明的OLED显示装置的数字驱动方法的第一实施例的步骤2和步骤3的示意图;
图6为本发明的OLED显示装置的数字驱动方法的第二实施例的步骤2和步骤3的示意图;
图7为本发明的OLED显示装置的数字驱动方法的流程图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图7,本发明提供一种OLED显示装置的数字驱动方法,包括如下步骤:
步骤1、如图4所示,提供一OLED显示装置,所述OLED显示装置包括呈阵列排布的多个子像素,每一个子像素内设有一像素驱动电路,所述像素驱动电路包括:第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、存储电容C、以及有机发光二极管D;
其中,所述第一薄膜晶体管T1的栅极接入第一扫描信号Gate1,源极接入数据信号Data,漏极电性连接第一节点G;所述第二薄膜晶体管T2的栅极电性连接第一节点G,源极电性连接有机发光二极管D的阳极,漏极接入电源正电压OVDD;所述第三薄膜晶体管T3的栅极接入第二扫描信号Gate2,源极接入参考电压Vref,漏极电性连接第一节点G;所述存储电容C的一端电性连接第一节点G,另一端电性连接第二薄膜晶体管T2的漏极;所述有机发光二极管D的阴极接入电源负电压OVSS。具体地,所述参考 电压Vref等于0或为接近于0的负电位。
具体地,所述第二薄膜晶体管T2用于驱动有机发光二极管D发光,所述第一薄膜晶体管T1用于对所述第二薄膜晶体管T2的栅极(即第一节点G)进行充电,所述第三薄膜晶体管T3用于对所述第二薄膜晶体管T2的栅极进行放电,所述存储电容C用于存储第二薄膜晶体管T2的栅极电位,所述第二薄膜晶体管T2的栅极的电位仅处于最低伽马准位或最高伽马准位。
步骤2、如图5或图6所示,将所述OLED显示装置的一帧图像划分为多个子场,所述多个子场的数目等于所述OLED显示装置的灰阶数据的位数,所述多个子场包括:具有不同的时间权重的多个非等切子场和多个时长相等的等切子场,所述等切子场的时长等于时间权重最低的非等切子场的时长的一半。
具体地,所述步骤2中根据所述OLED显示装置的最大帧频率确定所述多个子场中非等切子场和等切子场的数目,使所述等切子场的帧频率小于所述OLED显示装置的最大帧频率,将子场非等切与等切相结合,相比于单独的非等切子场驱动,能够有效降低驱动所需的硬件规格(帧频率),保证数字驱动方法的实用性,相比于单独的等切子场驱动,能够提升OLED显示装置的显示亮度,保证OLED显示装置的显示效果。
举例说明,如图5所示,在本发明的第一实施例中,所述OLED显示装置的最大帧频率为1140Hz,所述OLED显示装置的灰阶数据的位数为8位,则所述步骤2中,将所述OLED显示装置的一帧图像划分为8个子场,其中,3个子场为非等切子场,该3个非等切子场的时间权重的比值为
Figure PCTCN2017092861-appb-000006
Figure PCTCN2017092861-appb-000007
剩余的5个子场为等切子场,所述等切子场的时长为时间权重为
Figure PCTCN2017092861-appb-000008
的非等切子场的时长的一半。
而在本发明的第二实施例中,如图6所示,所述OLED显示装置的最大帧频率为720Hz,所述OLED显示装置的灰阶数据的位数为8位,则所述步骤2中,将所述OLED显示装置的一帧图像划分为8个子场,其中,2个子场为非等切子场,该2个非等切子场的时间权重的比值为
Figure PCTCN2017092861-appb-000009
剩余的6个子场为等切子场,所述等切子场的时长为时间权重为
Figure PCTCN2017092861-appb-000010
的非等切子场的时长的一半。
可以理解的是,在本发明的其他实施例中,所述OLED显示装置的灰度数据的位数还可以6位,所述步骤2中,将所述OLED显示装置的一帧 图像划分为6个子场,该6个子场同样可以包括多个等切子场和多个非等切子场,这并不会影响本发明的实现。
步骤3、根据待显示画面的灰阶数据驱动各个子场输出,并在各个等切子场输出时通过改变第一薄膜晶体管T1充电与第三薄膜晶体管T3放电的时间间隔控制各个等切子场的点亮时间。
具体地,在所述非等切子场输出时,所述第二扫描信号Gate2控制所述第三薄膜晶体管T3始终关闭,也即非等切子场的点亮时间仅等于该非等切子场的时长或等于0,而对于等切子场,则还需要通过改变第一薄膜晶体管T1充电与第三薄膜晶体管T3放电的时间间隔来控制各个等切子场的点亮时间,也即等切子场的点亮时间由该等切子场的时长和该等切子场对应的点亮时间的权重共同决定。
具体地,在本发明的第一实施例中,所述5个等切子场的点亮时间的权重的比值为
Figure PCTCN2017092861-appb-000011
在本发明的第二实施例中,所述6个等切子场的点亮时间的权重的比值为
Figure PCTCN2017092861-appb-000012
进一步地,在同样都是将一个帧画面切分为8个子场的情况下,本发明的第一实施例相比单独采用非等切方式的技术方案,最大帧频率从15300Hz降低为1140Hz,帧频率降低92.5%,相比单独采用等切方式的技术方案,像素点亮时间占比从25%提升为84%,本发明的第二实施例相比单独采用非等切方式的技术方案,最大帧频率从15300Hz降低为720Hz,帧频率降低95.3%,相比单独采用等切方式的技术方案,像素点亮时间占比从25%提升为66.4%,可见本发明相比于现有技术,能够有效降低驱动所需的硬件规格,提升OLED显示装置的亮度,保证OLED显示装置的显示效果。
综上所述,本发明提供一种OLED显示装置的数字驱动方法,该方法采用包括第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容、以及有机发光二极管的3T1C像素驱动电路驱动各个子像素,通过将所述OLED显示装置的一帧图像划分为多个非等切子场和等切子场,并通过改变第一薄膜晶体管充电与第三薄膜晶体管放电的时间间隔控制各个等切子场的点亮时间,将子场非等切与等切相结合,相比于单独的非等切子场驱动,能够有效降低驱动所需的硬件规格,保证数字驱动方法的实用性,相比于单独的等切子场驱动,能够提升OLED显示装置的显示亮度,保证OLED显示装置的显示效果。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (15)

  1. 一种OLED显示装置的数字驱动方法,包括如下步骤:
    步骤1、提供一OLED显示装置,所述OLED显示装置包括呈阵列排布的多个子像素,每一个子像素内设有一像素驱动电路,所述像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容、以及有机发光二极管;
    所述第二薄膜晶体管用于驱动有机发光二极管发光,所述第一薄膜晶体管用于对所述第二薄膜晶体管的栅极进行充电,所述第三薄膜晶体管用于对所述第二薄膜晶体管的栅极进行放电,所述存储电容用于存储第二薄膜晶体管的栅极电位,所述第二薄膜晶体管的栅极的电位仅处于最低伽马准位或最高伽马准位;
    步骤2、将所述OLED显示装置的一帧图像划分为多个子场,所述多个子场的数目等于所述OLED显示装置的灰阶数据的位数,所述多个子场包括:具有不同的时间权重的多个非等切子场和多个时长相等的等切子场,所述等切子场的时长等于时间权重最低的非等切子场的时长的一半;
    步骤3、根据待显示画面的灰阶数据驱动各个子场输出,并在各个等切子场输出时通过改变第一薄膜晶体管充电与第三薄膜晶体管放电的时间间隔控制各个等切子场的点亮时间。
  2. 如权利要求1所述的OLED显示装置的数字驱动方法,其中,所述步骤2中根据所述OLED显示装置的最大帧频率确定所述多个子场中非等切子场和等切子场的数目,使所述等切子场的帧频率小于所述OLED显示装置的最大帧频率。
  3. 如权利要求2所述的OLED显示装置的数字驱动方法,其中,所述OLED显示装置的灰阶数据的位数为8位,所述步骤2中将所述OLED显示装置的一帧图像划分为8个子场。
  4. 如权利要求3所述的OLED显示装置的数字驱动方法,其中,所述OLED显示装置的最大帧频率为1140Hz。
  5. 如权利要求4所述的OLED显示装置的数字驱动方法,其中,所述8个子场中包括3个非等切子场和5个等切子场,所述3个非等切子场的时间权重的比值为
    Figure PCTCN2017092861-appb-100001
  6. 如权利要求3所述的OLED显示装置的数字驱动方法,其中,所述 OLED显示装置的最大帧频率为720Hz。
  7. 如权利要求6所述的OLED显示装置的数字驱动方法,其中,所述8个子场中包括2个非等切子场和6个等切子场,所述2个非等切子场的时间权重的比值为
    Figure PCTCN2017092861-appb-100002
  8. 如权利要求2所述的OLED显示装置的数字驱动方法,其中,所述OLED显示装置的灰阶数据的位数为6位,所述步骤2中将所述OLED显示装置的一帧图像划分为6个子场。
  9. 如权利要求1所述的OLED显示装置的数字驱动方法,其中,所述第一薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接第一节点;
    所述第二薄膜晶体管的栅极电性连接第一节点,源极电性连接有机发光二极管的阳极,漏极接入电源正电压;
    所述第三薄膜晶体管的栅极接入第二扫描信号,源极接入参考电压,漏极电性连接第一节点;
    所述存储电容的一端电性连接第一节点,另一端电性连接第二薄膜晶体管的漏极;
    所述有机发光二极管的阴极接入电源负电压。
  10. 如权利要求9所述的OLED显示装置的数字驱动方法,其中,所述参考电压等于0。
  11. 一种OLED显示装置的数字驱动方法,包括如下步骤:
    步骤1、提供一OLED显示装置,所述OLED显示装置包括呈阵列排布的多个子像素,每一个子像素内设有一像素驱动电路,所述像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容、以及有机发光二极管;
    所述第二薄膜晶体管用于驱动有机发光二极管发光,所述第一薄膜晶体管用于对所述第二薄膜晶体管的栅极进行充电,所述第三薄膜晶体管用于对所述第二薄膜晶体管的栅极进行放电,所述存储电容用于存储第二薄膜晶体管的栅极电位,所述第二薄膜晶体管的栅极的电位仅处于最低伽马准位或最高伽马准位;
    步骤2、将所述OLED显示装置的一帧图像划分为多个子场,所述多个子场的数目等于所述OLED显示装置的灰阶数据的位数,所述多个子场包括:具有不同的时间权重的多个非等切子场和多个时长相等的等切子场,所述等切子场的时长等于时间权重最低的非等切子场的时长的一半;
    步骤3、根据待显示画面的灰阶数据驱动各个子场输出,并在各个等切子场输出时通过改变第一薄膜晶体管充电与第三薄膜晶体管放电的时间间隔控制各个等切子场的点亮时间;
    其中,所述步骤2中根据所述OLED显示装置的最大帧频率确定所述多个子场中非等切子场和等切子场的数目,使所述等切子场的帧频率小于所述OLED显示装置的最大帧频率;
    其中,所述OLED显示装置的灰阶数据的位数为8位,所述步骤2中将所述OLED显示装置的一帧图像划分为8个子场;
    其中,所述第一薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接第一节点;
    所述第二薄膜晶体管的栅极电性连接第一节点,源极电性连接有机发光二极管的阳极,漏极接入电源正电压;
    所述第三薄膜晶体管的栅极接入第二扫描信号,源极接入参考电压,漏极电性连接第一节点;
    所述存储电容的一端电性连接第一节点,另一端电性连接第二薄膜晶体管的漏极;
    所述有机发光二极管的阴极接入电源负电压;
    其中,所述参考电压等于0。
  12. 如权利要求11所述的OLED显示装置的数字驱动方法,其中,所述OLED显示装置的最大帧频率为1140Hz。
  13. 如权利要求12所述的OLED显示装置的数字驱动方法,其中,所述8个子场中包括3个非等切子场和5个等切子场,所述3个非等切子场的时间权重的比值为
    Figure PCTCN2017092861-appb-100003
  14. 如权利要求11所述的OLED显示装置的数字驱动方法,其中,所述OLED显示装置的最大帧频率为720Hz。
  15. 如权利要求14所述的OLED显示装置的数字驱动方法,其中,所述8个子场中包括2个非等切子场和6个等切子场,所述2个非等切子场的时间权重的比值为
    Figure PCTCN2017092861-appb-100004
PCT/CN2017/092861 2017-06-06 2017-07-13 Oled显示装置的数字驱动方法 WO2018223492A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/744,832 US10332453B2 (en) 2017-06-06 2017-07-13 Digital driving method for OLED display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710419710.1A CN107068048B (zh) 2017-06-06 2017-06-06 Oled显示装置的数字驱动方法
CN201710419710.1 2017-06-06

Publications (1)

Publication Number Publication Date
WO2018223492A1 true WO2018223492A1 (zh) 2018-12-13

Family

ID=59616578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092861 WO2018223492A1 (zh) 2017-06-06 2017-07-13 Oled显示装置的数字驱动方法

Country Status (3)

Country Link
US (1) US10332453B2 (zh)
CN (1) CN107068048B (zh)
WO (1) WO2018223492A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110136620A (zh) * 2019-06-28 2019-08-16 京东方科技集团股份有限公司 显示面板的驱动时间差确定方法及系统

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107507569B (zh) * 2017-10-12 2019-10-25 深圳市华星光电半导体显示技术有限公司 用于显示面板的驱动方法
US10586487B2 (en) 2017-10-12 2020-03-10 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd Driving method of display panel
JP6669178B2 (ja) * 2018-01-30 2020-03-18 セイコーエプソン株式会社 電気光学装置及び電子機器
CN109064973B (zh) * 2018-09-12 2022-01-11 京东方科技集团股份有限公司 显示方法和显示装置
CN111326112B (zh) * 2018-11-29 2022-08-05 成都辰显光电有限公司 一种像素电路、显示装置和像素电路的驱动方法
CN110459169A (zh) * 2019-08-23 2019-11-15 云谷(固安)科技有限公司 一种数字驱动像素电路及其驱动方法和显示面板
CN111341265B (zh) * 2019-08-26 2021-04-02 Tcl科技集团股份有限公司 一种显示面板的驱动方法、驱动装置以及显示装置
CN110634442A (zh) * 2019-08-28 2019-12-31 深圳市华星光电半导体显示技术有限公司 Oled显示装置及其驱动方法
CN110599948A (zh) * 2019-08-28 2019-12-20 深圳市华星光电半导体显示技术有限公司 显示装置的驱动方法
CN110473493B (zh) * 2019-08-30 2021-04-06 上海中航光电子有限公司 显示面板的驱动方法及显示装置
CN111179847B (zh) * 2019-12-18 2021-03-26 京东方科技集团股份有限公司 显示面板的驱动方法及驱动组件、控制器、显示装置
CN112652267B (zh) * 2020-02-26 2021-09-21 中国电子科技集团公司第五十五研究所 一种有源Micro-LED显示屏卷帘显示数字驱动方法
CN111369936A (zh) * 2020-04-10 2020-07-03 深圳市华星光电半导体显示技术有限公司 发光驱动电路及其驱动方法、显示面板
CN111540308B (zh) * 2020-05-13 2021-09-07 昆山国显光电有限公司 像素驱动电路、驱动方法以及显示装置
CN111883061B (zh) * 2020-07-31 2021-06-08 维沃移动通信有限公司 像素电路、显示装置、电子设备及像素电路的驱动方法
CN112017603A (zh) * 2020-09-02 2020-12-01 Tcl华星光电技术有限公司 背光模组和背光模组的驱动方法
CN112687222B (zh) * 2020-12-28 2021-12-17 北京大学 基于脉冲信号的显示方法、装置、电子设备及介质
CN115223498A (zh) * 2021-04-14 2022-10-21 孙丽娜 伽马电压产生电路、显示装置及伽马电压产生方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023259A (en) * 1997-07-11 2000-02-08 Fed Corporation OLED active matrix using a single transistor current mode pixel design
CN101739948A (zh) * 2008-11-24 2010-06-16 三星移动显示器株式会社 像素、使用该像素的有机发光显示装置及其驱动方法
CN103559860A (zh) * 2013-08-16 2014-02-05 京东方科技集团股份有限公司 像素电路驱动电压调节方法及其调节装置、显示设备
CN104575380A (zh) * 2014-12-31 2015-04-29 昆山工研院新型平板显示技术中心有限公司 像素电路和有源矩阵有机发光显示器
CN105047139A (zh) * 2015-09-22 2015-11-11 深圳市华星光电技术有限公司 Oled显示装置的数字驱动方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088052B2 (en) * 2001-09-07 2006-08-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of driving the same
KR101404582B1 (ko) * 2006-01-20 2014-06-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치의 구동방법
JP2009145664A (ja) * 2007-12-14 2009-07-02 Hitachi Ltd プラズマディスプレイ装置
CN102074192A (zh) * 2010-12-29 2011-05-25 广东中显科技有限公司 一种显示器驱动电路
WO2014068017A1 (en) * 2012-11-01 2014-05-08 Imec Digital driving of active matrix displays
KR20140106013A (ko) * 2013-02-25 2014-09-03 삼성디스플레이 주식회사 의사 윤곽 감소용 표시 장치
CN104050928B (zh) * 2014-07-10 2017-06-27 杭州士兰微电子股份有限公司 用于led显示器的灰度显示驱动方法及装置
TWI533273B (zh) * 2014-10-24 2016-05-11 友達光電股份有限公司 電力管理方法與電力管理裝置
KR102328841B1 (ko) * 2014-12-24 2021-11-19 엘지디스플레이 주식회사 유기 발광 다이오드 표시장치와 그 구동 방법
KR102322707B1 (ko) * 2014-12-24 2021-11-09 엘지디스플레이 주식회사 유기전계발광표시장치와 이의 구동방법
KR102349175B1 (ko) * 2015-06-11 2022-01-11 삼성디스플레이 주식회사 영상 데이터의 프레임 구조 및 이를 이용한 유기 발광 표시 장치의 디지털 구동 방법
CN106097967A (zh) * 2016-08-25 2016-11-09 深圳市华星光电技术有限公司 一种oled pwm驱动方法
CN106097966B (zh) * 2016-08-25 2019-01-29 深圳市华星光电技术有限公司 一种oled pwm像素驱动方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023259A (en) * 1997-07-11 2000-02-08 Fed Corporation OLED active matrix using a single transistor current mode pixel design
CN101739948A (zh) * 2008-11-24 2010-06-16 三星移动显示器株式会社 像素、使用该像素的有机发光显示装置及其驱动方法
CN103559860A (zh) * 2013-08-16 2014-02-05 京东方科技集团股份有限公司 像素电路驱动电压调节方法及其调节装置、显示设备
CN104575380A (zh) * 2014-12-31 2015-04-29 昆山工研院新型平板显示技术中心有限公司 像素电路和有源矩阵有机发光显示器
CN105047139A (zh) * 2015-09-22 2015-11-11 深圳市华星光电技术有限公司 Oled显示装置的数字驱动方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110136620A (zh) * 2019-06-28 2019-08-16 京东方科技集团股份有限公司 显示面板的驱动时间差确定方法及系统

Also Published As

Publication number Publication date
CN107068048B (zh) 2019-04-30
CN107068048A (zh) 2017-08-18
US10332453B2 (en) 2019-06-25
US20190012964A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
WO2018223492A1 (zh) Oled显示装置的数字驱动方法
US20180277042A1 (en) Organic light-emitting diode display device
US7796100B2 (en) Organic electroluminescence display and driving method thereof
KR20200039071A (ko) 표시 장치 및 이를 이용한 표시 패널의 구동 방법
KR101651291B1 (ko) 유기발광다이오드 표시장치
WO2017049675A1 (zh) Oled显示装置的数字驱动方法
KR101374443B1 (ko) 유기발광다이오드 표시장치
KR100857672B1 (ko) 유기전계발광표시장치 및 그의 구동방법
WO2019029091A1 (zh) Oled显示装置的数位驱动方法及系统
KR101534627B1 (ko) 유기전계발광 표시장치 및 그 구동방법
JP2008116905A (ja) 有機発光ダイオード表示装置の駆動方法
US20100091001A1 (en) Pixel and organic light emitting display device using the same
JP2008015513A (ja) 有機発光ダイオード表示素子及びその駆動方法
CN110634442A (zh) Oled显示装置及其驱动方法
KR102172392B1 (ko) 구동 소자의 열화를 보상할 수 있는 유기발광 표시장치
WO2019205470A1 (zh) Amoled显示器的像素驱动系统及驱动方法
WO2021035809A1 (zh) 显示装置的驱动方法
US20110084992A1 (en) Active matrix display apparatus
KR101076448B1 (ko) 유기발광다이오드 표시장치
CN112242117A (zh) 显示设备和使用该显示设备驱动显示面板的方法
KR20080060890A (ko) 능동형 유기전계 발광소자 디스플레이의 구동방법 및 이의구동장치
KR20150004554A (ko) 화소 및 이를 이용한 유기전계발광 표시장치
KR20150072593A (ko) 유기 발광 표시 장치
CN107492336B (zh) 显示装置的驱动方法及显示装置
WO2019071833A1 (zh) 用于显示面板的驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912804

Country of ref document: EP

Kind code of ref document: A1