WO2018223276A1 - 液体处理装置 - Google Patents

液体处理装置 Download PDF

Info

Publication number
WO2018223276A1
WO2018223276A1 PCT/CN2017/087242 CN2017087242W WO2018223276A1 WO 2018223276 A1 WO2018223276 A1 WO 2018223276A1 CN 2017087242 W CN2017087242 W CN 2017087242W WO 2018223276 A1 WO2018223276 A1 WO 2018223276A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
processing apparatus
inner cylinder
flow
spiral
Prior art date
Application number
PCT/CN2017/087242
Other languages
English (en)
French (fr)
Inventor
周耀周
Original Assignee
周耀周
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周耀周 filed Critical 周耀周
Priority to CN201780091662.6A priority Critical patent/CN110785382B/zh
Priority to EP17913010.9A priority patent/EP3636598A4/en
Priority to PCT/CN2017/087242 priority patent/WO2018223276A1/zh
Publication of WO2018223276A1 publication Critical patent/WO2018223276A1/zh
Priority to US16/706,202 priority patent/US11058972B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/02Softening water by precipitation of the hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2405Feed mechanisms for settling tanks
    • B01D21/2411Feed mechanisms for settling tanks having a tangential inlet
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/006Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/005Systems or processes based on supernatural or anthroposophic principles, cosmic or terrestrial radiation, geomancy or rhabdomancy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/481Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F2001/5218Crystallization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/026Spiral, helicoidal, radial
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/028Tortuous
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention

Definitions

  • the present invention relates to the field of fluid processing technologies, and in particular, to a liquid processing apparatus.
  • micro-polymerized or structured water are: better absorption, better hydration effect; higher taste, feel and quality of water; increase and activation of water Dissolved oxygen makes the water more active; the solubility of water is significantly increased; the water has more natural energy.
  • the brine discharged from the internal ion exchange water softener contains a relatively high concentration of sodium, chloride, magnesium, calcium, etc., which are difficult to be reused in, for example, agricultural irrigation, groundwater. Replenish or use water as a cooling tower.
  • the brine-free regulator can be used to reduce the salinity load of the reclaimed water and improve its quality for reuse. In some alternative devices, scale can be effectively prevented by some other possible means.
  • One method of physical water treatment to prevent scale can be, for example, treating the water by treating the medium to convert soluble calcium in the water into unbonded calcium carbonate microcrystals suspended in water.
  • soluble calcium in the water When water enters an environment that is more prone to scale-forming, such as water heaters, microscopic crystals provide the lowest energy surface for crystallization. Therefore, scale is formed on the microscopic crystals suspended in the water to prevent scale formation on the surface of the water heater.
  • Template-assisted crystallization (TAC) technology is one of the techniques used to form unbonded microscopic crystals.
  • nextScaleStop next generation of scale
  • TAC template assisted crystallization
  • TAC template assisted crystallization
  • TAC template assisted crystallization
  • Another method of physical water treatment to prevent scale can be, for example, scale induction, in which scale can be generated on the electrode by induction of an electric field, thereby reducing the potential for scale formation in water.
  • Electrically induced precipitation is an example of scale inducing technology.
  • electromagnetic devices can also be used in place of the electrodes to generate microscopic crystals.
  • Other alternative techniques for ion exchange may include devices that use capacitance or devices that use electro-deionization. These devices are capable of removing almost all of the ions with the same efficiency, but with a lower water recovery rate.
  • the inventors of the present application have found that if the natural energy in the water can be returned to the tap water before the tap water contacts the treatment medium, the treatment effect of the treatment medium on the water will be significantly improved.
  • a portion of the natural energy can be returned to the liquid by causing the liquid in the liquid treatment device to flow in a helical direction prior to contacting the treatment medium, thereby increasing the ability of the treatment medium to treat the liquid.
  • a housing which is cylindrical and has a receiving space
  • a spiral drainage device that causes a liquid in the accommodating space to flow in a direction spiraling around the cylindrical axial direction at least before or in contact with the treatment medium
  • the accommodating space includes at least a first portion for arranging the spiral drainage device to flow the liquid in a direction spiraling around the cylindrical axial direction, and the second portion Partially used to set the processing medium to treat the liquid
  • An advantageous effect of the present application is to increase the natural energy in the liquid by causing the liquid in the liquid processing apparatus to flow in a spiral direction, thereby improving the processing ability of the processing medium to the liquid.
  • Figure 1 is an axial sectional view of a liquid processing apparatus according to Embodiment 1 of the present application;
  • Figure 2 is an exploded view of the liquid processing apparatus of Embodiment 1 of the present application.
  • Figure 3 is another axial sectional view of the liquid processing apparatus of Embodiment 1 of the present application.
  • Figure 4 is another axial sectional view of the liquid processing apparatus of Embodiment 1 of the present application.
  • FIG. 5 is a schematic diagram of a configuration form of a magnetic unit according to Embodiment 1 of the present application.
  • Figure 6 is another axial sectional view of the liquid processing apparatus of Embodiment 1 of the present application.
  • Figure 7 is a perspective view of the liquid processing apparatus of Embodiment 2 of the present application.
  • Figure 8 is another perspective view of the liquid processing apparatus of Embodiment 2 of the present application.
  • Figure 9 is an exploded view of a of Figure 8.
  • Figure 10 is a schematic cross-sectional view of the shaft of Figure 8.
  • Figure 11 is a cross-sectional view showing another axial section of the liquid processing apparatus of Embodiment 2 of the present application.
  • FIG. 12 is a schematic view showing another arrangement position of the magnetic unit of Embodiment 2 of the present application.
  • Figure 13 is a schematic view showing the configuration of a magnetic unit of Embodiment 2 of the present application.
  • Figure 14 is an axial sectional view of the liquid processing apparatus of Embodiment 3 of the present application.
  • Figure 15 is another axial sectional view of the liquid processing apparatus of Embodiment 3 of the present application.
  • Figure 16 is an axial sectional view of a liquid processing apparatus according to Embodiment 4 of the present application.
  • Figure 17 is a schematic illustration of five liquid handling devices used in a control experiment.
  • the housing of the liquid processing apparatus may be cylindrical, the direction of the cylindrical axis is referred to as an axial direction, and the direction perpendicular to the axial direction is referred to as a radial direction. It should be noted that the above description of each direction is for convenience of description only, and is not intended to limit the orientation of the liquid processing apparatus at the time of manufacture and use.
  • Embodiment 1 of the present application provides a liquid processing apparatus for treating a liquid.
  • FIG. 1 is an axial cross-sectional view of the liquid processing apparatus of the present embodiment
  • b of FIG. 1 is a schematic view in which a liquid flow direction is added on the basis of a of FIG. 1
  • FIG. 2 is a liquid processing apparatus of the present embodiment. An explosion of the map.
  • the liquid processing apparatus 100 may have a housing 05, an inlet 101, an outlet 102, a processing medium 06, and a spiral drainage device 03.
  • the housing 05 may be cylindrical and has an accommodating space therein; the inlet 101 for liquid to flow into the accommodating space; the outlet 102 for liquid to flow out of the accommodating space; and the processing medium 06 for contacting the liquid contacting the processing medium 06
  • the treatment is performed; the spiral drainage device 03 causes the liquid in the accommodation space to flow in a direction spiraling around the axial direction of the cylindrical casing 05.
  • part of the day can be made by causing the liquid in the liquid processing apparatus to flow in the spiral direction.
  • the energy is then returned to the liquid, thereby increasing the ability of the treatment medium to treat the liquid.
  • the accommodating space may include at least a first portion for arranging the spiral drainage device 03 to flow the liquid in a direction spiraling around the axial direction of the cylinder, and the second portion, the second portion It is used to set the treatment medium 06 to treat the liquid.
  • first portion and the second portion may be disposed to be spaced apart from each other in the axial direction, or may be disposed to at least partially overlap in the axial direction.
  • the liquid entering the accommodating space may be first guided by the spiral flow guiding device 03 to flow in the spiral direction on the liquid flow path, and then contacted with the processing medium 06, or may be spirally drained at a position in contact with the processing medium 06.
  • the device 03 is guided to flow in the spiral direction, or may flow in the spiral direction before contacting the treatment medium 06, and is also continuously guided to the direction of the spiral direction of the eye in contact with the treatment medium 06.
  • the left side of FIG. 2 is a bottom view, a perspective view, and a plan view of the spiral drainage device 03 from top to bottom.
  • the spiral drainage device 03 may have a drainage surface 031 which may be inclined with respect to the axial direction, thereby causing the liquid to be guided by the circular arrow as shown in FIG. 2 under the guidance of the drainage surface 031.
  • the movement in the direction of the spiral may further have a flow guiding groove (not shown), the flow guiding groove can flow through the liquid, whereby the liquid can pass through the guiding flow channel, and the spiral drainage device 03 The upper portion flows to the lower portion of the drainage device 03.
  • the liquid processing apparatus 100 may further have a first inner cylinder 04, and the first inner cylinder 04 may be located in the accommodating space.
  • At least one spiral drainage device 03 may be disposed between the first inner cylinder 04 and the casing 05, and the at least one spiral drainage device 03 may hold the first inner cylinder 04 to make the first
  • the axis of the inner cylinder 04 is along the axial direction, for example, the outermost circumference of the radial direction of the spiral flow guiding device 03 can abut against the inner wall of the casing 05, and the innermost circumference of the radial direction of the spiral drainage device 03 can be combined with the first inner cylinder 04.
  • the outer wall abuts, whereby the inclination of the first inner cylinder 04 with respect to the axial direction can be prevented, thereby preventing the first inner cylinder 04 from being damaged during the installation of the liquid processing apparatus 100.
  • a first liquid flow path is formed between the first inner cylinder 04 and the casing 05, and the liquid flows in a spiral direction at least in the first liquid flow path.
  • a second liquid flow path may be formed in the inner space of the first inner cylinder.
  • the liquid flowing in from the inlet 101 is guided by the drainage surface of the spiral drainage device 03, passes through the flow guiding groove of the spiral drainage device 03, enters the first liquid flow path, and the first liquid In the flow path, the liquid flows in the spiral direction, and the liquid enters the first inner cylinder 04 from the bottom of the first inner cylinder 04, And flowing along the second liquid flow path, in the first inner cylinder 04, the liquid is in contact with the medium 06, and is processed by the medium 06, and the treated liquid flows out of the accommodating space via the outlet 102.
  • the medium 06 may be disposed in the first inner cylinder 04, but the embodiment is not limited thereto, and the medium 06 may not be disposed in the first inner cylinder. Further, in Fig. 1, the lower half of the medium 06 is shown in a of Fig. 1, and the upper half of the medium 06 is shown in b of Fig. 1, which is only for the sake of simplicity of illustration, and the actual case is that the medium 06 has the upper half and the lower half.
  • the liquid processing apparatus 100 may further have a second inner cylinder (not shown), which may be disposed radially inward of the first inner cylinder 04, and in the first inner cylinder At least one spiral drainage device may be disposed between the second inner cylinder, a third liquid flow path may be formed between the first inner cylinder and the second inner cylinder, and a fourth inner portion may be formed in the second inner cylinder
  • the liquid flow path, the third liquid flow path and the fourth liquid flow path may become part of the second liquid flow path.
  • the number of the second inner cylinders may be two or more, and the second inner cylinders may be sequentially nested in the radial direction, and may be formed between the two second inner cylinders adjacent in the radial direction. There are more liquid flow paths. Thereby, the length of the path through which the liquid flows in the accommodation space can be further lengthened, thereby further increasing the natural energy of the liquid.
  • the radial dimension of the first inner cylinder 04 and each of the second inner cylinders may be unevenly distributed in the axial direction, whereby the flow velocity of the liquid in the liquid flow path follows the radial direction.
  • the change in size changes, causing the liquid flow rate to undergo more changes, further increasing the natural energy of the liquid.
  • the liquid processing apparatus 100 may further have a flow reducer (not shown), which can change the flow cross section of the liquid flow path in the liquid processing apparatus, thereby further increasing the natural nature of the liquid. energy.
  • the liquid processing apparatus 100 may further have an upper cover 01, a nut 02, and a seal ring 07.
  • the inlet 101 and the outlet 102 may be disposed on the upper cover 01; the upper cover 01 and the housing 05 may be connected by a nut 02; the sealing ring 07 may be an O-ring for the upper cover 01 and the housing 05 The joint is sealed.
  • the treatment medium 06 may be a medium based on template assisted crystallization (TAC) technology, or a medium having the same or similar principles as template assisted crystallization (TAC) technology, or other particles having other uses.
  • Granular media such other granular media may be, for example, a trade name Silecte medium.
  • FIG. 3 is a further axial sectional view of the liquid processing apparatus of the present embodiment, and b of FIG. 3 is a schematic view in which the liquid flow direction is increased on the basis of a of FIG.
  • the description of the components having the same reference numerals as in FIG. 3 and FIG. 1 is omitted here. Only the difference between the two will be explained.
  • the liquid processing apparatus 100 may further have a baffle 08, which may have a surface inclined with respect to the axial direction, thereby guiding the liquid in the direction of the spiral in the second flow.
  • the flow in the road further increases the natural energy of the liquid.
  • the baffle 08 can be, for example, a spiral baffle; in addition, the treatment medium 06 can be in contact with the baffle 08, so by friction or impact between the treatment medium 06 and the baffle 08 The treatment medium 06 can also be self-cleaned.
  • FIG. 4 is a further axial sectional view of the liquid processing apparatus of the present embodiment, and b of FIG. 4 is a schematic view in which the liquid flow direction is increased on the basis of a of FIG.
  • the description of the components having the same reference numerals as in FIG. 4 and FIG. 1 is omitted here. Only the difference between the two will be explained.
  • the liquid processing apparatus 100 may further have a magnetic unit 09, which may be located in the accommodating space, for example, at a central position of the first inner cylinder 04.
  • the magnetic unit 09 may also be disposed outside the casing 05, or the magnetic unit 09 may be disposed in the accommodating space and outside the casing 05.
  • the treatment medium 06 has an improved treatment effect on the liquid having electromagnetic energy.
  • Fig. 5 is a schematic view showing the configuration of the magnetic unit of the present embodiment. As shown in Fig. 5, A-F shows different configurations of the magnetic unit 09, respectively. The embodiment may not be limited thereto, and the magnetic unit 09 may also adopt other configurations. Further, the magnetic unit 09 may be a rod type, a bar type, a cylindrical type or the like.
  • Fig. 6a is another axial sectional view of the liquid processing apparatus of the present embodiment
  • b of Fig. 6 is a schematic view in which the liquid flow direction is increased on the basis of a of Fig. 6.
  • the liquid processing apparatus of Fig. 6 is a combination of Fig. 3 and Fig. 4, i.e., having both a magnetic unit 09 and a baffle 08, whereby the magnetic field guided by the baffle 08 to move in the spiral direction and the magnetic field of the magnetic unit 09 The contact time is extended to generate more electromagnetic energy in the liquid.
  • a portion of the natural energy can be returned to the liquid by causing the liquid in the liquid treatment device to flow in a spiral direction before or in contact with the treatment medium, thereby increasing the treatment medium to the liquid.
  • the processing capability in addition, by providing the first inner cylinder and the second inner cylinder, the length of the flow path of the liquid is increased, and the natural energy in the liquid can also be increased; by setting the flow reducer, the area of the path of the liquid flow is also changed. It is possible to increase the natural energy in the liquid; in addition, by providing the magnetic unit, it is also possible to increase the processing ability of the treatment medium for the liquid.
  • the structure of the liquid processing apparatus is described by taking the upper cover as an example, but the present application is not limited thereto, for example, the position of the inlet and the outlet, the position of the spiral drainage device, The number of the two inner cylinders, etc., can be changed according to different embodiments.
  • Embodiment 2 of the present application provides a liquid processing apparatus for treating a liquid.
  • FIG. 7 is a perspective view of the liquid processing apparatus of Embodiment 2 of the present application
  • b of FIG. 7 is another perspective view of the liquid processing apparatus of Embodiment 2 of the present application.
  • the liquid processing apparatus 200 may have a housing 11, an inlet 101a, an outlet 102a, a processing medium (not shown), and a spiral drainage device 33.
  • the housing 11 may be cylindrical and has an accommodating space therein; the inlet 101a for liquid to flow into the accommodating space; the outlet 102a for liquid to flow out of the accommodating space; and the processing medium for processing the liquid contacting the processing medium
  • the spiral drainage device 33 causes the liquid in the accommodation space to flow in a spiral direction around the axial direction of the cylindrical casing 11 before and/or in contact with the treatment medium.
  • the accommodating space may include at least a first portion for arranging the spiral drainage device to flow the liquid in a spiral direction around the cylindrical axial direction, and the second portion for using the second portion
  • the processing medium is set to process the liquid.
  • first portion and the second portion may be disposed to be spaced apart from each other in the axial direction, or may be disposed to at least partially overlap in the axial direction.
  • the inlet 101a and the outlet 102a are respectively provided at both ends in the axial direction of the cylindrical casing 11, whereby the liquid processing apparatus 200 becomes an inline filter.
  • the spiral flow guiding device 33 may have a drainage surface inclined with respect to the axial direction and a flow guiding groove through which the liquid passes.
  • the liquid entering the accommodating space of the casing 11 from the inlet 101a passes through the flow guiding groove and is guided by the drainage surface of the spiral drainage device 33, and starts moving in the spiral direction at the position 12, the movement in the spiral direction At the end of position 13, the fluid then continues to flow to the outlet 102a.
  • a portion of the natural energy can be returned to the liquid by causing the liquid in the liquid treatment device to flow in a spiral direction before or in contact with the treatment medium, thereby increasing the treatment medium pair.
  • the liquid processing apparatus 200 may further have a flow reducer 37 that can change the flow cross section of the liquid flow path in the liquid processing apparatus 200 and change the flow speed of the liquid.
  • the flow reducer 37 may be cylindrical, and the flow cross section of the liquid flow path between the flow reducer 37 and the housing 11 may be set smaller than the flow cross section at the position 12. Thereby, the liquid flow rate is changed.
  • the liquid processing apparatus 200 may further have a baffle 38, which may have a surface inclined with respect to the axial direction, thereby guiding the liquid along the spiral.
  • the direction flows to further increase the natural energy of the liquid.
  • the baffle 38 can be, for example, a spiral baffle; in addition, the treatment medium can be in contact with the baffle 38, so that by friction or impact between the treatment medium and the baffle 38, The process media is self-cleaned.
  • FIG. 8 is a perspective view of another embodiment of the liquid processing apparatus of the second embodiment of the present application
  • b of FIG. 8 is another perspective view of the liquid processing apparatus of the second embodiment of the present application.
  • a and b of FIG. 8 are respectively improved on the basis of a and b of FIG. 7, and FIG. 8 differs from FIG. 7 only in that a and b of FIG. 8 replace the a of FIG. 7 with the speed reducer 37a. , the speed reducer 37 in b.
  • the radial cross-sectional area of the flow reducer 37a varies in the axial direction, and the smaller the radial cross-sectional area, the smaller the radial area of the liquid flow path between the flow reducer 37a and the casing 11.
  • the higher the flow rate of the liquid for example, the closer the radial cross-sectional area of the flow reducer 37a is to the outlet 102a, the smaller the radial cross-sectional area of the liquid flow path, and the higher the flow rate of the liquid, that is, the liquid flow rate at the position 13.
  • the liquid processing apparatus 200 has a housing 11, a spiral drainage device 33, a flow reducer 37a, and a post filter holder 39.
  • post filter post The filter 40a, the upper cover portion 41a, a medium (not shown) provided in the casing 11, is provided at the inlet 101a of the casing 11, and at the outlet 102a of the upper cover portion 41.
  • the rear filter 40a is for post-filtration of the liquid treated liquid, and the rear filter holding portion 39 is for holding the rear filter 40a.
  • FIG. 10 is a schematic axial sectional view of a of FIG. 8, and b of FIG. 10 is a schematic axial sectional view of b of FIG.
  • a processing medium 06 is shown.
  • the meanings of the other components in Fig. 10 are the same as those in Figs. 8 and 9, and the description thereof will not be repeated here.
  • the spiral drainage device 33 moves the liquid in the spiral direction and flows toward the outlet. Further, in a of Fig. 10, due to the presence of the baffle 38, the liquid can also move in the spiral direction by the action of the baffle 38.
  • Fig. 11 is a cross-sectional view showing another axial section of the liquid processing apparatus of the present embodiment
  • b of Fig. 11 is another axial sectional view of the liquid processing apparatus of the present embodiment. 11 differs from FIG. 10 only in that, in FIG. 11, a magnetic unit 09a is provided in the liquid processing apparatus.
  • the magnetic unit 09a may be located in the accommodating space, or may be located outside the casing 11, or may be partially disposed in the accommodating space and partially disposed outside the casing 11.
  • a and b of Fig. 12 respectively show another arrangement position of the magnetic unit 09a. Further, the embodiment is not limited thereto, and the magnetic unit 09a may be disposed at other positions.
  • Fig. 13 is a schematic view showing the configuration of the magnetic unit 09a of the present embodiment. As shown in Fig. 13, A-F shows different configurations of the magnetic unit 09a, respectively. In addition, the embodiment is not limited thereto, and the magnetic unit 09a may have other configurations.
  • the magnetic unit 09a may be a rod type, a bar type, a cylindrical type or the like.
  • the first inner cylinder, the second inner cylinder, and the like may be disposed in the liquid processing apparatus 200.
  • the first embodiment and the third embodiment which are not described in this embodiment. .
  • Embodiment 3 of the present application provides a liquid processing apparatus for treating a liquid.
  • the present application will be described by taking an inline liquid processing apparatus in which the inlet and the outlet are respectively provided at both ends of the casing as an example.
  • Fig. 14 is a cross-sectional view showing the liquid processing apparatus of the third embodiment of the present application.
  • the liquid processing apparatus 300 may have a housing 201, an inlet 101b, an outlet 102b, a processing medium 06, and spiral drainage devices 34, 35, 36.
  • the housing 201 may be cylindrical and has an accommodating space therein; the inlet 101b allows liquid to flow into the accommodating space; the outlet 102b allows liquid to flow out of the accommodating space; and the processing medium 06 is used for the liquid contacting the processing medium. Processing; the spiral drainage device 34, 35, 36 causes the liquid in the accommodating space to flow in a spiral direction around the axial direction of the cylindrical casing 201 before and/or in contact with the treatment medium. .
  • the accommodating space may include at least a first portion for arranging the spiral drainage device to flow the liquid in a spiral direction around the cylindrical axial direction, and the second portion for using the second portion
  • the processing medium is set to process the liquid.
  • first portion and the second portion may be disposed to be spaced apart from each other in the axial direction, or may be disposed to at least partially overlap in the axial direction.
  • the inlet 101b and the outlet 102b are respectively provided at both ends in the axial direction of the cylindrical casing 11, whereby the liquid processing apparatus 200 becomes an inline filter.
  • the liquid processing apparatus 300 may further have a first inner cylinder 202 and a second inner cylinder 203.
  • the second inner cylinder 203 is nested radially inward of the first inner cylinder 202.
  • the number of the spiral drainage devices may be three, that is, the spiral drainage devices 34, 35, and 36.
  • Each of the spiral drainage devices 34, 35, 36 may have a drainage surface and a flow guiding groove.
  • Each of the spiral drainage devices 34, 35, 36 may have a similar structure to the spiral drainage device 33 of the second embodiment.
  • the spiral drainage device 34 may be disposed at one end of the first inner cylinder 202 near the inlet 101b and between the first inner cylinder 202 and the housing 201; the spiral drainage device 35 It may be disposed at one end of the first inner cylinder 202 near the inlet 101b and between the first inner cylinder 202 and the first inner cylinder 203; the spiral drainage device 36 may be disposed at one end of the first inner cylinder 202 near the outlet 102b. And located between the first inner cylinder 202 and the first inner cylinder 203.
  • baffle 202a for guiding the liquid to the drain surface and the flow guiding groove of the spiral drainage device 34.
  • the liquid entering from the inlet 101b is guided by the shutter 202a. And flowing to the drainage surface of the spiral drainage device 34 and the flow guiding groove; the liquid flowing from the drainage surface of the spiral drainage device 34 and the flow guiding groove is spiraled in the first flow path between the first inner cylinder 202 and the casing 201 The direction flows; the liquid reaches the end of the first inner cylinder 202 near the outlet 102b, and then flows through the spiral flow guiding device 36 and flows along the spiral direction between the first inner cylinder 202 and the second inner cylinder 203.
  • the third liquid flow path and the fourth liquid flow path may constitute a part of the second liquid flow path inside the first inner cylinder 202.
  • the radial cross-sectional area of the first inner cylinder 202 and the radial cross-sectional area of the second inner cylinder 203 may be unevenly distributed in the axial direction, for example, from one end near the inlet 101b to near the outlet 102b. At one end, the radial cross-sectional area of the first inner cylinder 202 gradually increases, and the radial cross-sectional area of the second inner cylinder 203 gradually decreases. Further, the radial cross-sectional area of the first inner cylinder 202 and the radial cross-sectional area of the second inner cylinder 203 may have other distribution forms.
  • Fig. 14b is another axial sectional view of the liquid processing apparatus of the third embodiment of the present application, which differs from the a of Fig. 14 only.
  • the radial cross-sectional area of the first inner cylinder 202 and the radial cross-sectional area of the second inner cylinder 203 are evenly distributed in the axial direction, that is, the first inner cylinder 202 and the second inner cylinder 203 are both Cylindrical cylinder.
  • Fig. 15 is a further axial sectional view of the liquid processing apparatus of the third embodiment of the present application.
  • the liquid processing apparatus 300 may have a housing 201, an inlet 101c, an outlet 102c, a processing medium 06, and spiral drainage devices 37, 38, 39, 39a.
  • the liquid processing apparatus 300 may further have a first inner cylinder 202 and a second inner cylinder 203.
  • the second inner cylinder 203 is nested radially inward of the first inner cylinder 202.
  • spiral drainage devices 37, 38, 39, 39a may each have a similar structure to the spiral drainage device 33 of the second embodiment.
  • the spiral drainage device 37 may be disposed at one end of the first inner cylinder 202 near the outlet 102c and between the first inner cylinder 202 and the housing 201; the spiral drainage device 38 It may be disposed at one end of the first inner cylinder 202 near the outlet 102c and between the first inner cylinder 202 and the first inner cylinder 203; the spiral drainage device 39 may be disposed at one end of the first inner cylinder 202 near the inlet 101c. And located in the second content 203; the spiral drainage device 39a may be disposed at one end of the first inner cylinder 202 near the inlet 101c and between the first inner cylinder 202 and the casing 201.
  • baffle 202b for guiding The liquid is directed to the drainage surface and the flow guiding groove of the spiral drainage device 38.
  • the liquid entering from the inlet 101c flows through the spiral flow guiding device 39 in the spiral direction in the third liquid flow path in the second inner cylinder 203; the liquid reaches the second inner portion.
  • the end of the cylinder 203 is close to the outlet 102c, it is guided by the baffle 202b to flow to the spiral drainage device 38; the liquid drained through the spiral drainage device 38 is between the second inner cylinder 203 and the first inner cylinder, and in the second liquid flow path.
  • the middle flows in the spiral direction to one end of the casing 201 near the inlet 101c, and is guided to the spiral drainage device 39a; the first liquid flow of the liquid drawn through the spiral drainage device 39a between the first inner cylinder 202 and the casing 201
  • the road flows in the spiral direction to the spiral drainage device 37; the liquid drained by the spiral drainage device 39a flows to the outlet 102a.
  • the third liquid flow path and the fourth liquid flow path may constitute a part of the second liquid flow path inside the first inner cylinder 202.
  • the radial cross-sectional area of the first inner cylinder 202 and the radial cross-sectional area of the second inner cylinder 203 may be unevenly distributed in the axial direction, for example, from one end near the inlet 101c to near the outlet 102c. At one end, the radial cross-sectional area of the first inner cylinder 202 gradually decreases, and the radial cross-sectional area of the second inner cylinder 203 gradually decreases. Further, the radial cross-sectional area of the first inner cylinder 202 and the radial cross-sectional area of the second inner cylinder 203 may have other distribution forms.
  • Fig. 15b is another axial sectional view of the liquid processing apparatus of the third embodiment of the present application, which differs from a of Fig. 15 only in that.
  • the radial cross-sectional area of the first inner cylinder 202 and the radial cross-sectional area of the second inner cylinder 203 are evenly distributed in the axial direction, that is, the first inner cylinder 202 and the second inner cylinder 203 are both Cylindrical cylinder.
  • the number of the spiral drainage devices and the number of the second inner cylinders may not be limited to the description of Embodiment 3, and a specific number may be set based on the revelation of the present application.
  • the liquid processing apparatus of this embodiment may also have a unit such as a current reducer, a magnetic unit, and/or a baffle.
  • a unit such as a current reducer, a magnetic unit, and/or a baffle.
  • Embodiment 4 of the present application provides a liquid processing apparatus for treating a liquid.
  • the present application will be described by taking a liquid processing apparatus in which the inlet and the outlet are located at the same end of the casing as an example.
  • Fig. 16 is a cross-sectional view showing the liquid processing apparatus of the third embodiment of the present application.
  • the liquid processing apparatus 400 may have a housing 201, an inlet 101d, an outlet 102d, a processing medium 06, and a spiral drainage device 40, 41.
  • the housing 201 may be cylindrical, the inlet 101d may be disposed in the axial direction, and the outlet 102d may be disposed perpendicular to the axial direction; the processing medium 06 is for processing the liquid contacting the processing medium; the spiral drainage devices 40, 41 may be The liquid in the accommodating space flows in a direction spiraling around the axial direction of the cylindrical casing 201 at least before and/or in contact with the treatment medium.
  • the accommodating space may include at least a first portion for arranging the spiral drainage device to flow the liquid in a spiral direction around the cylindrical axial direction, and the second portion for using the second portion
  • the processing medium is set to process the liquid.
  • first portion and the second portion may be disposed to be spaced apart from each other in the axial direction, or may be disposed to at least partially overlap in the axial direction.
  • the liquid processing apparatus 400 may also have a first inner cylinder 202.
  • the number of the spiral drainage devices may be two, that is, the spiral drainage devices 40, 41.
  • the spiral drainage devices 40, 41 may have a similar structure to the spiral drainage device 33 of the second embodiment.
  • the spiral drainage device 40 may be disposed at one end of the first inner cylinder 202 near the inlet 101d and located in the first inner cylinder 202; the spiral drainage device 41 may be disposed on the processing medium 06. Above and between the first inner cylinder 202 and the 201.
  • the liquid entering from the inlet 101d flows through the spiral drainage device 40 and then flows in the spiral direction, and then comes into contact with the treatment medium 06; the liquid treated by the treatment medium 06 is spirally flowed through the spiral drainage device 41, and flows toward Exit 102d.
  • the number of the spiral drainage devices and the number of the second inner cylinders may not be limited to the description of the embodiment 4, and a specific number may be set based on the revelation of the present application.
  • the liquid processing apparatus of this embodiment may also have a unit such as a current reducer, a magnetic unit, and/or a baffle.
  • a unit such as a current reducer, a magnetic unit, and/or a baffle.
  • the inventors of the present application conducted a control experiment for liquid treatment apparatuses of different configurations.
  • the test method used in the experiment was based on the German DVGW-W512 protocol (German DVGW-W512 protocol).
  • the main components of the liquid handling system used in the experiment consisted of a water supply tank, a pump, a treatment line, a treatment device, a check valve, a water heater, and a drain.
  • a timer is used to control the flow and to periodically turn the water on and off during the day. There is an 8-hour break every night and no water flows through the liquid handling system.
  • the inventors constructed two identical liquid handling systems, which were processed in parallel during the experiment so that two tests can be run simultaneously for each experiment.
  • Each water tank has a capacity of 350 gallons, and the water tank is filled with water for each experiment.
  • the water tanks of the two parallel liquid handling systems have a total of 700 gallons of water for each experiment.
  • the experiment consisted of intermittently pumping water from the liquid handling system over a period of one day, pumping a flow rate of 3 liters per minute to simulate the opening and closing of the faucet in the home. In the experiment, water was pumped through the liquid handling system over a period of 21 days.
  • the liquid handling device can be removed or set to bypass when controlled to be free of water treatment.
  • the total volume of the water heater is 14 liters, wherein the heating element has a power of 1200 W, a surface area of 738 cm 2 , and a total power density of 1.6 W/cm 2 . All equipment for the liquid handling system is installed according to the manufacturer's instructions.
  • the experimental water was taken from Toronto, Canada, and the water had a hardness of 180 mg/L of calcium carbonate.
  • the experimental temperature is 80 ° C, which is the temperature used by the DVGW-W512 protocol.
  • the amount of scale formed in each experiment can be determined by a combined measurement method of weight measurement and acid dissolution measurement.
  • the scale generated in the water treated by the liquid treatment device can be compared with the scale generated in the water not treated by the liquid treatment device, thereby evaluating the ability of the liquid treatment device to reduce scale.
  • the solid scale can be scraped off the heating element using a stainless steel tool.
  • the solid scale can be weighed together with other loose scales.
  • the liquid processing apparatus used in the above experiment can have five configurations. All liquid handling devices have the same internal dimensions: 35 mm in diameter and 200 mm in axial length. The amount of the treatment medium set inside each liquid processing apparatus was the same, both being 60 g.
  • the processing medium can be a medium based on template assisted crystallization (TAC) technology, such as the next generation of NextScaleStop media.
  • TAC template assisted crystallization
  • the flow rate of water through each liquid handling device is the same, at 3 liters per minute.
  • FIG. 17 is a schematic illustration of five liquid handling devices used in the experiment. As shown in Fig. 17, the configuration of each liquid processing apparatus is as follows:
  • the liquid inflow end is provided with a spiral drainage device, after which a flow path of constant cross section is formed, and finally a medium processing chamber provided with a treatment medium;
  • the liquid inflow end is provided with a spiral drainage device, after which a flow path having a constant cross section is formed, and finally a medium processing chamber provided with a treatment medium;
  • the liquid inflow end is provided with a spiral drainage device, and thereafter a flow passage having a constant cross section is formed, and finally a medium processing chamber provided with a treatment medium with a spiral flow baffle;
  • the liquid inflow end is provided with a spiral drainage device, and thereafter a constant cross section is formed.
  • the small flow path, and finally the media processing chamber with the processing medium, is provided with a spiral flow baffle.
  • the liquid processing apparatus AD of FIG. 17 adopts the configuration described in the embodiment of the present application, and enables the liquid in the liquid processing apparatus to flow in a spiral direction, thereby returning part of the natural energy to the liquid. Thereby, the processing ability of the treatment medium to the liquid is improved.
  • the amount of scale generated by the water treated by the liquid treatment apparatus AD is significantly less than that generated by the water treated by the liquid treatment apparatus P of the prior art. Scale.

Abstract

一种液体处理装置,所述液体处理装置具有:壳体(05,11,201),其为筒状,具有容置空间;入口(101),其供液体流入所述容置空间;出口(102),其供液体流出所述容置空间;处理介质(06),其用于对接触到该处理介质的液体进行处理;螺旋引流装置(03,33,34,36,39,41),其使所述容置空间中的液体至少在接触到所述处理介质(06)之前或接触到所述处理介质(06)时,沿围绕所述筒状的轴向而螺旋的方向流动。通过使液体处理装置中的液体在接触到处理介质之前进行螺旋方向的流动,增加液体中的天然能量,从而提高该处理介质对液体的处理能力。

Description

液体处理装置 技术领域
本发明涉及流体处理技术领域,尤其涉及一种液体处理装置。
背景技术
在如今的城市中,通过非自然分布的管道系统来输送市政水(municipal water),使水的原有结构被破坏,并且失去了水的自然健康和活力。也就是说,将水引入管道,限制了水的流动能力,由此,移除了水中的天然能量(natural energy),其结果是,正常的自来水的结构由大量的相互关联的水分子组成,而不像天然水那样是微聚的(micro-clustered)或结构化的(structured)水。
微聚的或结构化的水的优点在于:利于吸收,能有更好的水合(hydration)效果;水的味道(taste)、触感(feel)和质量(quality)较高;增加和激活水中的溶解氧,使得水变得更有活性;水的可溶性(solubility)被显著增加;水中具有更多的天然能量(natural energy)。
在硬水地区,内部离子交换(domestic ion exchange)软水机被广泛使用。然而,从内部离子交换软水机排出的卤水中含有较高浓度的钠(sodium)、氯(chloride)、镁(magnesium)、钙(calcium)等离子,这些卤水难以被再次利用于例如农业灌溉,地下水补给或作为冷却塔用水等。无盐水调节装置可以用于降低再生水的盐度负荷(salinity load),提高其质量以便于再利用。在一些替代设备中,可以通过一些其它的可能方法来有效地防止水垢。
物理水处理以防止水垢的一种方法例如可以是通过处理介质来处理水,从而将水中的可溶性钙转化为悬浮在水中的不粘结的碳酸钙微观晶体。当水进入一个更容易生成水垢(scale-forming)的环境时,如热水器等,微观晶体提供了结晶的最低能量表面。因此,会在悬浮于水中的微观晶体上形成水垢,而防止在热水器的表面形成水垢。模板辅助结晶(TAC)技术就是用于形成不粘结的微观晶体的技术之一。
在水处理器的预过滤器(prefilter)中,可以使用基于例如下一代结垢阻挡 (NextScaleStop)技术的介质来对水进行过滤,该介质例如可以是基于模板辅助结晶(TAC)技术的介质,或者与模板辅助结晶(TAC)技术具有相同或类似的原理的介质,或者是具有其它用途的其他的颗粒型介质(granular media),该其它的颗粒型介质例如可以是商品名为silecte或Quantum Disinfection的介质。
物理水处理以防止水垢的另一种方法例如可以是水垢诱导法(scale induction),在该方法中,可以通过电场(electric field)的诱导在电极上生成水垢,从而降低在水中生成水垢的潜力。电诱导沉淀(Electrically induced precipitation,EPI)是水垢诱导技术的一个实例。
此外,也可以使用电磁装置来替代电极以生成微观晶体(microscopic crystals)。其他的用于离子交换的替代技术中可以包括使用电容的装置或使用电去离子(electro-deionization)的装置。这些装置能够以相同的效率去除几乎所有的离子,但是水的复原率(water recovery rate)较低。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
本申请的发明人发现,如果在自来水接触到处理介质以前,使水中的天然能量能够回到自来水中,那么,将显著提高处理介质对水的处理效果。
在本申请的实施例中,通过使液体处理装置中的液体在接触到处理介质之前进行螺旋方向的流动,能使部分天然能量回到液体中,从而提高该处理介质对液体的处理能力。
本申请的实施例提供一种液体处理装置,所述液体处理装置具有:
壳体,其为筒状,具有容置空间;
入口,其供液体流入所述容置空间;
出口,其供液体流出所述容置空间;
处理介质,其用于对接触到该处理介质的液体进行处理;以及,
螺旋引流装置,其使所述容置空间中的液体至少在接触到所述处理介质之前或接触到所述处理介质时,沿围绕所述筒状的轴向而螺旋的方向流动,
其中,所述容置空间至少包括第一部分和第二部分,所述第一部分用于设置所述螺旋引流装置以使液体沿围绕所述筒状的轴向而螺旋的方向流动,所述第二部分用于设置所述处理介质以对液体进行处理
本申请的有益效果在于:通过使液体处理装置中的液体进行螺旋方向的流动,增加液体中的天然能量,从而提高该处理介质对液体的处理能力。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请实施例1的液体处理装置的一个轴向截面图;
图2是本申请实施例1的液体处理装置的一个爆炸图;
图3是本申请实施例1的液体处理装置的另一个轴向截面图;
图4是本申请实施例1的液体处理装置的另一个轴向截面图;
图5是本申请实施例1的磁性单元的配置形式的一个示意图;
图6是本申请实施例1的液体处理装置的另一个轴向截面图;
图7是本申请实施例2的液体处理装置的一个立体透视;
图8是本申请实施例2的液体处理装置的另一个立体透视;
图9是图8的a的一个爆炸图;
图10是图8的一个轴截面示意图;
图11是本申请实施例2的液体处理装置的另一个轴截面示意图,;
图12是本申请实施例2的磁性单元的另一种设置位置示意图;
图13是本申请实施例2的磁性单元的配置形式的一个示意图;
图14是本申请实施例3的液体处理装置的一个轴向截面图;
图15是本申请实施例3的液体处理装置的另一个轴向截面图;
图16是本申请实施例4的液体处理装置的一个轴向截面图;
图17是对照实验所采用的5种液体处理装置的示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请的实施例中,液体处理装置的壳体可以为筒状,该筒状的轴线的方向被称为轴向,与轴向垂直的方向称为径向。需要说明的是,上述对各方向的限定仅是为了说明的方便,并不用于限定该液体处理装置在制造和使用时的方位。
实施例1
本申请实施例1提供一种液体处理装置,用于对液体进行处理。
图1的a是本实施例的液体处理装置的一个轴向截面图,图1的b是在图1的a的基础上增加了液体流动方向的示意图,图2是本实施例的液体处理装置的一个爆炸图。
如图1和图2所示,液体处理装置100可以具有:壳体05,入口101,出口102,处理介质06,以及螺旋引流装置03。
其中,壳体05可以为筒状,其内部具有容置空间;入口101供液体流入该容置空间;出口102供液体流出该容置空间;处理介质06用于对接触到处理介质06的液体进行处理;螺旋引流装置03使该容置空间中的液体沿围绕筒状壳体05的轴向而螺旋的方向流动。
在本实施例中,通过使液体处理装置中的液体进行螺旋方向的流动,能使部分天 然能量回到液体中,从而提高该处理介质对液体的处理能力。
在本实施例中,该容置空间至少可以包括第一部分和第二部分,该第一部分用于设置螺旋引流装置03以使液体沿围绕筒状的轴向而螺旋的方向流动,该第二部分用于设置处理介质06以对液体进行处理。
在本实施例中,该第一部分和该第二部分可以被设置为在轴向上彼此隔开,也可以被设置为在轴向上有至少部分重叠。
在本实施例中,进入容置空间的液体可以在液体流路上先被螺旋引流装置03引导为沿螺旋方向流动,然后与处理介质06接触,也可以在与处理介质06接触的位置被螺旋引流装置03引导为沿螺旋方向流动,也可以既在接触处理介质06之前沿螺旋方向流动,也在接触处理介质06的位置上被继续引导为眼螺旋方向流动。
图2左侧从上至下依次是螺旋引流装置03的仰视图、立体图、以及俯视图。如图2所示,螺旋引流装置03可以具有引流面031,该引流面031可以相对于轴向倾斜,由此,使得液体在该引流面031的引导下进行如图2的环形箭头所示的螺旋方向的运动。在本实施例中,螺旋引流装置03还可以具有导流槽(图中未标记出),该导流槽能够流过液体,由此,液体能够穿过该导流槽,从螺旋引流装置03的上部流动到引流装置03的下部。
在本实施例中,如图1、图2所示,该液体处理装置100还可以具有第一内筒04,该第一内筒04可以位于该容置空间内。
在本实施例中,第一内筒04与壳体05之间可以设置有至少一个该螺旋引流装置03,该至少一个螺旋引流装置03可以对第一内筒04进行保持,以使该第一内筒04的轴线沿该轴向,例如,螺旋引流装置03的径向的最外周可以与壳体05的内壁抵接,螺旋引流装置03的径向的最内周可以与第一内筒04的外壁抵接,由此,可以防止第一内筒04相对于该轴向发生倾斜,从而避免在安装该液体处理装置100的过程中第一内筒04被损坏。
如图1所示,在本实施例中,在第一内筒04与壳体05之间,形成有第一液体流路,液体至少在第一液体流路中沿螺旋的方向流动。此外,在第一内筒的筒内空间可以形成有第二液体流路。例如,如图1的b所示,从入口101流入的液体被螺旋引流装置03的引流面所引导,并穿过螺旋引流装置03的导流槽而进入第一液体流路,再第一液体流路中,液体沿螺旋方向流动,液体从第一内筒04的底部进入第一内筒04, 并沿第二液体流路流动,在第一内筒04中,液体与介质06接触,并被介质06所处理,处理后的液体经由出口102流出该容置空间。
在本实施例中,介质06可以被设置于第一内筒04中,但本实施例不限于此,介质06也可以不被设置于第一内筒中。此外,在图1中,介质06的下半部分被示于图1的a,介质06的上半部分被示于图1的b,这仅是为了图示的简洁,实际的情况是,介质06即具有上半部分也具有下半部分。
在本实施例中,液体处理装置100还可以具有第二内筒(图未示出),该第二内筒可以设置于第一内筒04的径向内侧,并且,在该第一内筒和该第二内筒之间可以设置有至少一个螺旋引流装置,在该第一内筒与该第二内筒之间可以形成有第三液体流路,在第二内筒内部形成有第四液体流路,该第三液体流路和第四液体流路可以成为该第二液体流路的一部分。由此,可以延长液体在容置空间内流动的路径的长度,进一步增加液体的天然能量。
在本实施例中,该第二内筒的数量可以为2个以上,各第二内筒可以沿径向依次嵌套,并且,在径向上相邻的两个第二内筒之间可以形成有更多的液体流路。由此,可以进一步延长液体在该容置空间内流动的路径的长度,从而更进一步增加液体的天然能量。
在本实施例中,该第一内筒04和各第二内筒的径向尺寸可以在沿轴向的方向上不均匀分布,由此,液体在液体流路中的流速随着该径向尺寸的改变而改变,从而使液体流速经历更多的变化,进一步增加液体的天然能量。
在本实施例中,液体处理装置100还可以具有减流器(flow reducer)(图未示出),该减流器可以改变液体处理装置中液体流路的流通截面,从而进一步增加液体的天然能量。
在本实施例中,如图1、图2所示,该液体处理装置100还可以具有上盖01、螺母(nut)02,和密封圈07。其中,入口101和出口102可以被设置于该上盖01;上盖01和壳体05可以通过螺母02而连接;密封圈07可以是O形环,用于对上盖01和壳体05的连接处进行密封。
在本实施例中,处理介质06可以是是基于模板辅助结晶(TAC)技术的介质,或者与模板辅助结晶(TAC)技术具有相同或类似的原理的介质,或者是具有其它用途的其他的颗粒型介质(granular media),该其它的颗粒型介质例如可以是商品名为 silecte的介质。
图3的a是本实施例的液体处理装置的另一个轴向截面图,图3的b是在图3的a的基础上增加了液体流动方向的示意图。对于图3与图1具有相同标号的部件的说明此处省略。仅对二者的区别进行说明。
如图3所示,在本实施例中,液体处理装置100还可以具有挡板(baffle)08,挡板08可以具有相对于轴向倾斜的表面,从而引导液体沿螺旋的方向在第二流路中流动,进一步增加液体的自然能量,该档板08例如可以是螺旋档板;此外,处理介质06可以与挡板08接触,所以,通过处理介质06与挡板08之间的摩擦或撞击,也可以对处理介质06进行自清洁。
图4的a是本实施例的液体处理装置的另一个轴向截面图,图4的b是在图4的a的基础上增加了液体流动方向的示意图。对于图4与图1具有相同标号的部件的说明此处省略。仅对二者的区别进行说明。
如图4所示,在本实施例中,液体处理装置100还可以具有磁性单元09,该磁性单元09可以位于容置空间内,例如,位于第一内筒04的中心位置。在本实施例中,磁性单元09也可以设置于壳体05外部,或者,在容置空间内和壳体05外部都设置有磁性单元09。
当液体在容置空间内流动时,会产生对磁性单元09的磁场进行切割的运动,由此,在液体中产生电磁能;并且,由于处理介质06介质的颗粒表面也可以具有一定的电荷,所以,处理介质06对具有电磁能的液体的处理效果提高。
图5是本实施例的磁性单元的配置形式的一个示意图,如图5所示,A-F分别示出了磁性单元09的不同的配置形式。本实施例可以不限于此,磁性单元09也可以采用其它的配置形式。此外,磁性单元09可以是杆形(rod type),条形(bar type),圆筒形(cylindrical type)或其它形状。
图6的a是本实施例的液体处理装置的另一个轴向截面图,图6的b是在图6的a的基础上增加了液体流动方向的示意图。图6的液体处理装置是图3与图4的结合,即,既具有磁性单元09,又具有挡板08,由此,被挡板08引导以沿螺旋方向运动的液体与磁性单元09的磁场接触的时间延长,从而能在液体中产生更多的电磁能量。
关于图6的各部件的说明可以参考对图1、图3、图4相关部件的说明,此处不再重复说明。
在本实施例中,通过使液体处理装置中的液体在接触到处理介质之前或接触到处理介质时进行螺旋方向的流动,能使部分天然能量回到液体中,从而提高该处理介质对液体的处理能力;此外,通过设置第一内筒、第二内筒,增加了液体的流动路径的长度,也能增加液体中的天然能量;通过设置减流器,改变液体流动的路径的面积,也能增加液体中的天然能量;此外,通过设置磁性单元,也能进意图提高该处理介质对液体的处理能力。
在本实施例中,以入口和出口都设置上盖为例对液体处理装置的结构进行了说明,但是,本申请可以不限于此,例如,进口与出口的位置,螺旋引流装置的位置,第二内筒的数量等,都可以根据不同的实施方式而被改变。
实施例2
本申请实施例2提供一种液体处理装置,用于对液体进行处理。
在实施例2中,以入口和出口分别设置在壳体两端的轴向式(inline)液体处理装置为例,对本申请进行说明。
图7的a是本申请实施例2的液体处理装置的一个立体透视,图7的b是本申请实施例2的液体处理装置的另一个立体透视。
如图7的b所示,液体处理装置200可以具有:壳体11,入口101a,出口102a,处理介质(图未示),以及螺旋引流装置33。
其中,壳体11可以为筒状,其内部具有容置空间;入口101a供液体流入该容置空间;出口102a供液体流出该容置空间;处理介质用于对接触到处理介质的液体进行处理;螺旋引流装置33使该容置空间中的液体在接触到处理介质之前和/或接触到所述处理介质时,沿围绕筒状壳体11的轴向而螺旋的方向流动。
在本实施例中,该容置空间至少可以包括第一部分和第二部分,该第一部分用于设置螺旋引流装置以使液体沿围绕筒状的轴向而螺旋的方向流动,该第二部分用于设置处理介质以对液体进行处理。
在本实施例中,该第一部分和该第二部分可以被设置为在轴向上彼此隔开,也可以被设置为在轴向上有至少部分重叠。
在本实施例中,入口101a和出口102a分别设置在筒状的壳体11沿轴向的两端,由此,该液体处理装置200成为轴向式(inline)过滤器。
如图7的b所示,螺旋引流装置33可以具有相对于轴向倾斜的引流面和使液体穿过的导流槽。从入口101a进入壳体11的该容置空间内的液体穿过导流槽,并被螺旋引流装置33的引流面所引导,在位置12处开始进行沿螺旋方向的运动,该螺旋方向的运动在位置13处结束,然后流体继续向出口102a流动。
在本实施例中,通过使液体处理装置中的液体在接触到处理介质之前或接触到所述处理介质时进行螺旋方向的流动,能使部分天然能量回到液体中,从而提高该处理介质对液体的处理能力。
如图7的b所示,在本实施例中,液体处理装置200还可以具有减流器37,该减流器37可以改变液体处理装置200中液体流路的流通截面,改变液体的流动速度,从而进一步增加液体的天然能量,例如,减流器37可以为圆柱状,且该减流器37与壳体11之间的液体流路的流通截面可以被设置得小于位置12处的流通截面,由此,使得液体流速变化。
图7的a与b区别仅在于,在图7的a中,液体处理装置200还可以具有挡板(baffle)38,挡板38可以具有相对于轴向倾斜的表面,从而引导液体沿螺旋的方向流动,进一步增加液体的自然能量,该档板38例如可以是螺旋档板;此外,处理介质可以与挡板38接触,所以,通过处理介质与挡板38之间的摩擦或撞击,也可以使处理介质进行自清洁。
图8的a是本申请实施例2的液体处理装置的另一个立体透视,图8的b是本申请实施例2的液体处理装置的另一个立体透视。其中,图8的a、b分别是在图7的a、b的基础上进行改进而得到,图8与图7的区别仅在于,图8的a、b用减速器37a代替图7的a、b中的减速器37。
在图8中,减流器37a的径向截面积沿轴向发生变化,在径向截面积越大的位置,减流器37a与壳体11之间的液体流路的径向面积越小,液体的流速越高,例如,减流器37a的径向截面积越靠近出口102a越大,液体流路的径向截面积小,液体的流速越高,即,在位置13处的液体流速高于位置12处的液体流速,这样,能够使减流器37a周围的液体产生龙卷风效应(tornado effect),从而使液体获得更多的天然能量。
图9是图8的a的一个爆炸图,如图9所示,该液体处理装置200具有:壳体11,螺旋引流装33,减流器37a,后过滤器保持部(post filter holder)39,后过滤器(post  filter)40a,上盖部41a,设置于壳体11内的介质(图未示出),设置于壳体11的入口101a,以及设置于上盖部41的出口102a。
在本实施例中,后过滤器40a用于对经过介质处理后的液体进行后过滤,后过滤器保持部39用于保持该后过滤器40a。
图10的a是图8的a的一个轴截面示意图,图10的b是图8的b的一个轴截面示意图。在图10中,示出了处理介质06。图10中其它部件的含义与图8和图9相同,此处不再重复说明。
在图10的a和b中,螺旋引流装置33使液体沿螺旋方向运动,并流向出口。此外,在图10的a中,由于存在挡板38,液体在挡板38的作用下也可以沿螺旋方向运动。
图11的a是本实施例的液体处理装置的另一个轴截面示意图,图11的b是本实施例的液体处理装置的另一个轴截面示意图。图11与图10的区别仅在于,在图11中,液体处理装置中设置有磁性单元09a。
在本实施例中,磁性单元09a可以位于容置空间内,也可以位于壳体11的外部,此外,也可以部分设置于容置空间内,部分设置于壳体11的外部。
图12的a、b分别示出了磁性单元09a的另一种设置位置。此外,本实施例不限于此,磁性单元09a也可以设置在其他位置。
图13是本实施例的磁性单元09a的配置形式的一个示意图,如图13所示,A-F分别示出了磁性单元09a的不同的配置形式。此外,本实施例不限于此,磁性单元09a还可以有其它的配置形式。
在本实施例中,磁性单元09a可以是杆形(rod type),条形(bar type),圆筒形(cylindrical type)或其它形状。
关于磁性单元09a的说明,可以参考实施1中对磁性单元09的说明,此处不再赘述。
此外,在本实施例中,液体处理装置200中还可以设置第一内筒,第二内筒等单元,具体的实现方式可以参考实施例1和实施例3,在本实施例中不进行描述。
实施例3
本申请实施例3提供一种液体处理装置,用于对液体进行处理。
在实施例3中,以入口和出口分别设置在壳体两端的轴向式(inline)液体处理装置为例,对本申请进行说明。
图14的a是本申请实施例3的液体处理装置的一个轴向截面图。如图14的a所示,液体处理装置300可以具有:壳体201,入口101b,出口102b,处理介质06,以及螺旋引流装置34、35、36。
其中,壳体201可以为筒状,其内部具有容置空间;入口101b供液体流入该容置空间;出口102b供液体流出该容置空间;处理介质06用于对接触到处理介质的液体进行处理;螺旋引流装置34、35、36使该容置空间中的液体在接触到处理介质之前和/或接触到所述处理介质时,沿围绕筒状壳体201的轴向而螺旋的方向流动。
在本实施例中,该容置空间至少可以包括第一部分和第二部分,该第一部分用于设置螺旋引流装置以使液体沿围绕筒状的轴向而螺旋的方向流动,该第二部分用于设置处理介质以对液体进行处理。
在本实施例中,该第一部分和该第二部分可以被设置为在轴向上彼此隔开,也可以被设置为在轴向上有至少部分重叠。
在本实施例中,入口101b和出口102b分别设置在筒状的壳体11沿轴向的两端,由此,该液体处理装置200成为轴向式(inline)过滤器。
如图14的a所示,液体处理装置300还可以具有第一内筒202和第二内筒203。其中,第二内筒203嵌套在第一内筒202的径向内侧。
在本实施例中,螺旋引流装置的数量可以是3个,即,螺旋引流装置34、35、36。螺旋引流装置34、35、36中的每一个都可以具有引流面和导流槽。螺旋引流装置34、35、36中的每一个都可以与实施例2的螺旋引流装置33具有类似的结构。
在本实施例中,如14的a所示,螺旋引流装置34可以设置于第一内筒202的靠近入口101b的一端,并且位于第一内筒202与壳体201之间;螺旋引流装置35可以设置于第一内筒202的靠近入口101b的一端,并且位于第一内筒202与第一内筒203之间;螺旋引流装置36可以设置于第一内筒202的靠近出口102b的一端,并且位于第一内筒202与第一内筒203之间。
此外,在第一内筒202的靠近入口101b的一端,还可以具有档板202a,用于引导液体流向螺旋引流装置34的引流面和导流槽。
在本实施例中,如图14的a所示,从入口101b进入的液体受到档板202a的引 导,流向螺旋引流装置34的引流面和导流槽;从螺旋引流装置34的引流面和导流槽流过的液体在第一内筒202与壳体201之间的第一流路中沿螺旋方向流动;液体到达第一内筒202的靠近出口102b的一端,然后经过螺旋引流装置36的引流后在第一内筒202与第二内筒203之间的第三流路沿着螺旋方向流动,并在该第三流路中与处理介质06接触;液体到达螺旋引流装置35后被螺旋引流装置35所引导,并且,受到档板202a的引导,在第二内筒203内部的第四流路中沿螺旋方向流动到出口102b。
在本实施例中,该第三液体流路和该第四液体流路可以构成第一内筒202的内部的第二液体流路的一部分。
在图14的a中,第一内筒202的径向截面积和第二内筒203的径向截面积可以沿轴向不均匀地分布,例如,从靠近入口101b的一端到靠近出口102b的一端,第一内筒202的径向截面积逐渐增大,第二内筒203的径向截面积逐渐减小。此外,第一内筒202的径向截面积和第二内筒203的径向截面积还可以有其它的分布形式。
图14的b是本申请实施例3的液体处理装置的另一个轴向截面图,与图14的a的区别仅在于。在图14的b中,第一内筒202的径向截面积和第二内筒203的径向截面积沿轴向均匀地分布,即,第一内筒202和第二内筒203都是圆柱筒状。
图15的a是本申请实施例3的液体处理装置的另一个轴向截面图。如图15的a所示,液体处理装置300可以具有:壳体201,入口101c,出口102c,处理介质06,以及螺旋引流装置37、38、39、39a。
如图15的a所示,液体处理装置300还可以具有第一内筒202和第二内筒203。其中,第二内筒203嵌套在第一内筒202的径向内侧。
在图15中,螺旋引流装置37、38、39、39a每一个都可以与实施例2的螺旋引流装置33具有类似的结构。
在本实施例中,如15的a所示,螺旋引流装置37可以设置于第一内筒202的靠近出口102c的一端,并且位于第一内筒202与壳体201之间;螺旋引流装置38可以设置于第一内筒202的靠近出口102c的一端,并且位于第一内筒202与第一内筒203之间;螺旋引流装置39可以设置于第一内筒202的靠近入口101c的一端,并且位于第二内容203内;螺旋引流装置39a可以设置于第一内筒202的靠近入口101c的一端,并且位于第一内筒202与壳体201之间。
此外,在第一内筒202的靠近出口102c的一端,还可以具有档板202b,用于引 导液体流向螺旋引流装置38的引流面和导流槽。
在本实施例中,如图15的a所示,从入口101c进入的液体经过螺旋引流装置39后在第二内筒203内的第三液体流路中沿螺旋方向流动;液体到达第二内筒203的靠近出口102c的一端后,被挡板202b引导,流向螺旋引流装置38;经过螺旋引流装置38引流的液体在第二内筒203和第一内筒之间,在第二液体流路中沿螺旋方向流动到壳体201的靠近入口101c的一端,并被引导到螺旋引流装置39a;经过螺旋引流装置39a引流的液体在第一内筒202和壳体201之间的第一液体流路中沿螺旋方向流动到螺旋引流装置37;被螺旋引流装置39a引流的液体流动到出口102a。
在本实施例中,该第三液体流路和该第四液体流路可以构成第一内筒202的内部的第二液体流路的一部分。
在图15的a中,第一内筒202的径向截面积和第二内筒203的径向截面积可以沿轴向不均匀地分布,例如,从靠近入口101c的一端到靠近出口102c的一端,第一内筒202的径向截面积逐渐减小,第二内筒203的径向截面积逐渐减小。此外,第一内筒202的径向截面积和第二内筒203的径向截面积还可以有其它的分布形式。
图15的b是本申请实施例3的液体处理装置的另一个轴向截面图,与图15的a的区别仅在于。在图15的b中,第一内筒202的径向截面积和第二内筒203的径向截面积沿轴向均匀地分布,即,第一内筒202和第二内筒203都是圆柱筒状。
在本实施例中,螺旋引流装置的数量和第二内筒的数量可以不限于实施例3的说明,可以基于本申请的启示而设置具体的数量。
本实施例的液体处理装置也可以具有减流器、磁性单元和/或挡板等单元,其具体结构和设置方式可以参考实施例1和实施例2的说明。
实施例4
本申请实施例4提供一种液体处理装置,用于对液体进行处理。
在实施例4中,以入口和出口位于壳体同一端的液体处理装置为例,对本申请进行说明。
图16的a是本申请实施例3的液体处理装置的一个轴向截面图。如图16所示,液体处理装置400可以具有:壳体201,入口101d,出口102d,处理介质06,以及螺旋引流装置40,41。
其中,壳体201可以为筒状,入口101d可以沿轴向设置,出口102d可以与轴向垂直设置;处理介质06用于对接触到处理介质的液体进行处理;螺旋引流装置40、41可以使该容置空间中的液体至少在接触到处理介质之前和/或接触到所述处理介质时,沿围绕筒状壳体201的轴向而螺旋的方向流动。
在本实施例中,该容置空间至少可以包括第一部分和第二部分,该第一部分用于设置螺旋引流装置以使液体沿围绕筒状的轴向而螺旋的方向流动,该第二部分用于设置处理介质以对液体进行处理。
在本实施例中,该第一部分和该第二部分可以被设置为在轴向上彼此隔开,也可以被设置为在轴向上有至少部分重叠。
如图16所示,液体处理装置400还可以具有第一内筒202。在本实施例中,螺旋引流装置的数量可以是2个,即,螺旋引流装置40,41。螺旋引流装置40,41可以与实施例2的螺旋引流装置33具有类似的结构。
在本实施例中,如图16所示,螺旋引流装置40可以设置于第一内筒202的靠近入口101d的一端,并且位于第一内筒202内;螺旋引流装置41可以设置于处理介质06的上方,并且位于第一内筒202与可201之间。
如图16所示,从入口101d进入的液体经过螺旋引流装置40后向螺旋方向流动,随后与处理介质06接触;经过处理介质06处理后的液体经过螺旋引流装置41而进行螺旋流动,并流向出口102d。
在本实施例中,螺旋引流装置的数量和第二内筒的数量可以不限于实施例4的说明,可以基于本申请的启示而设置具体的数量。
本实施例的液体处理装置也可以具有减流器、磁性单元和/或挡板等单元,其具体结构和设置方式可以参考实施例1和实施例2的说明。
为了证明本申请的液体处理装置进行液体处理的效果,本申请的发明人针对不同构造的液体处理装置进行了对照实验。实验所用的测试方法基于德国DVGW-W512协议(German DVGW-W512protocol)。实验所用的液体处理系统的主要部件由供水箱、泵、处理管路、处理装置、止回阀、热水器和排水管组成。一个定时器被用来控制流量,以及在一天内定期地打开和关闭水。每天晚上有8小时的休息时间,没有水流通过该液体处理系统。发明人构建了两个相同的液体处理系统,在实验时,这两个液体处理系统进行并行处理,因此每次实验可以同时运行两个测试。
每个供水箱的容量为350加仑,每次实验时供水箱会被加满水,两个并行液体处理系统的供水箱总共有700加仑的水用于每次实验。实验包括在一天时间内从液体处理系统间歇性地抽水,抽水的流量为每分钟3升,以模拟家庭中水龙头的开启和关闭。在实验中,在超过21天的时间段内经由液体处理系统抽水。在被控制为不进行水处理的情况下,液体处理装置可以被移除或被设置为旁通(bypass)。热水器的总容积为14升,其中的加热元件的功率为1200W,表面积为738cm2,总的功率密度为1.6W/cm2。液体处理系统的所有设备均根据制造商的指示进行安装。
实验用水取自加拿大的多伦多(Toronto)水,水的硬度为具有180毫克/升的碳酸钙。实验温度是80℃,这是DVGW-W512协议所使用的温度。
在每次实验中形成的水垢的量可以通过重量测量和酸溶解测量的组合测量方法确定。经过液体处理装置处理后的水中所生成的水垢可以与没有经过液体处理装置处理的水中所生成的水垢进行比较,从而评价该液体处理装置的降低水垢的能力。
在实验中,可以利用不锈钢工具将固体的水垢从加热元件上刮下。该固体的水垢可以与其它松散的水垢合在一起被称重。
在上述实验中使用的液体处理装置可以有五种构造。所有的液体处理装置都具有相同的内部尺寸:直径35mm,轴向长度200mm。每个液体处理装置内部所设置的处理介质的量是相同的,均为60g。处理介质可以是基于模板辅助结晶(TAC)技术的介质,例如下一代结垢阻挡(NextScaleStop)介质。水流通过每个液体处理装置的流速相同,均为每分钟3升。
图17是该实验所采用的5种液体处理装置的示意图。如图17所示,各液体处理装置的构造说明如下:
P:现有技术的液体处理装置,其内部不具有螺旋引流装置;
A:对应于图7的b,液体流入端设置有螺旋引流装置,其后形成有恒定截面的流道,最后为设置有处理介质的介质处理室;
B:对应于图8的b,液体流入端设置有螺旋引流装置,其后形成有截面恒定减小的流道,最后为设置有处理介质的介质处理室;
C:对应于图7的a,液体流入端设置有螺旋引流装置,其后形成有恒定截面的流道,最后是带有螺旋流挡板的设置有处理介质的介质处理室;
D:对应于图8的a,液体流入端设置有螺旋引流装置,其后形成有截面恒定减 小的流道,最后是带有螺旋流挡板的设置有处理介质的介质处理室。
实验结果如下表所示:
水垢总量(CaCO3的质量,单位:g)
液体处理装置的构造 多伦多水的硬度为具有180毫克/升的CaCO3
没有处理 14.48
P 1.10
A 0.72
B 0.58
C 0.52
D 0.36
根据上述实验可以看出,图17的液体处理装置A-D采用了本申请的实施例所述的构造,能够使液体处理装置中的液体进行螺旋方向的流动,从而使部分天然能量回到液体中,从而提高处理介质对液体的处理能力,例如,经过液体处理装置A-D处理后的水在加热时产生的水垢的量明显少于经过现有技术的液体处理装置P处理后的水在加热时产生的水垢。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (9)

  1. 一种液体处理装置,其特征在于,所述液体处理装置具有:
    壳体(05,11,201),其为筒状,具有容置空间;
    入口,其供液体流入所述容置空间;
    出口,其供液体流出所述容置空间;
    处理介质(06),其用于对接触到该处理介质的液体进行处理;以及,
    螺旋引流装置(03,33,34,36,37,39,41),其使所述容置空间中的液体至少在接触到所述处理介质之前或接触到所述处理介质时,沿围绕所述筒状的轴向而螺旋的方向流动,
    其中,所述容置空间至少包括第一部分和第二部分,所述第一部分用于设置所述螺旋引流装置以使液体沿围绕所述筒状的轴向而螺旋的方向流动,所述第二部分用于设置所述处理介质以对液体进行处理。
  2. 如权利要求1所述的液体处理装置,其特征在于,
    每一个所述螺旋引流装置都具有引流面,所述引流面相对于所述轴向倾斜。
  3. 如权利要求1所述的液体处理装置,其特征在于,
    所述液体处理装置还具有第一内筒(04,202),其位于所述容置空间内;
    所述第一内筒(04,202)与所述壳体(05,201)之间设置有至少一个所述螺旋引流装置(03,40),该至少一个所述螺旋引流装置(03,34,36,37,39,41)将所述第一内筒(04,202)保持为使所述第一内筒(04,202)的轴线沿所述轴向。
  4. 如权利要求3所述的液体处理装置,其特征在于,
    在所述第一内筒(04,202)与所述壳体(05,201)之间,形成有第一液体流路,在所述第一内筒的筒内空间形成有第二液体流路,
    其中,液体至少在所述第一液体流路中沿螺旋的方向流动。
  5. 如权利要求4所述的液体处理装置,其特征在于,
    所述液体处理装置还具有第二内筒(203),其设置于所述第一内筒(04,202)的径向内侧,并且,在所述第一内筒(04,202)和第二内筒(203)之间设置有至少一个所述螺旋引流装置(34),在所述第一内筒(04,202)与所述第二内筒之间形成有第三液体流路,在第二内筒内部形成有第四液体流路,所述第二液体流路包括所述 第三液体流路和所述第四液体流路。
  6. 如权利要求5所述的液体处理装置,其特征在于,
    所述第二内筒的数量为1个以上,并且,各所述第二内筒沿径向依次嵌套。
  7. 如权利要求5所述的液体处理装置,其特征在于,
    所述第一内筒和各所述第二内筒的径向尺寸沿轴向均匀分布或不均匀分布。
  8. 如权利要求1所述的液体处理装置,其特征在于,
    所述液体处理装置还具有磁性单元,其位于所述容置空间内和/或所述壳体外部。
  9. 如权利要求1所述的液体处理装置,其特征在于,
    所述液体处理装置还具有减流器(flow reducer),其用于改变所述液体处理装置中液体流路的流通截面。
PCT/CN2017/087242 2017-06-06 2017-06-06 液体处理装置 WO2018223276A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780091662.6A CN110785382B (zh) 2017-06-06 2017-06-06 液体处理装置
EP17913010.9A EP3636598A4 (en) 2017-06-06 2017-06-06 LIQUID TREATMENT UNIT
PCT/CN2017/087242 WO2018223276A1 (zh) 2017-06-06 2017-06-06 液体处理装置
US16/706,202 US11058972B2 (en) 2017-06-06 2019-12-06 Liquid treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/087242 WO2018223276A1 (zh) 2017-06-06 2017-06-06 液体处理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/706,202 Continuation US11058972B2 (en) 2017-06-06 2019-12-06 Liquid treatment apparatus

Publications (1)

Publication Number Publication Date
WO2018223276A1 true WO2018223276A1 (zh) 2018-12-13

Family

ID=64566792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087242 WO2018223276A1 (zh) 2017-06-06 2017-06-06 液体处理装置

Country Status (4)

Country Link
US (1) US11058972B2 (zh)
EP (1) EP3636598A4 (zh)
CN (1) CN110785382B (zh)
WO (1) WO2018223276A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11471794B2 (en) 2019-02-11 2022-10-18 Watts Regulator Co. Filter cartridge for a whole house water filtering system
US11725781B2 (en) 2019-02-11 2023-08-15 Watts Regulator Co. Pressure relief cover assembly
US11745127B2 (en) 2019-02-11 2023-09-05 Watts Regulator Co. Controller for a manifold assembly in a water filter system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD905198S1 (en) * 2019-07-18 2020-12-15 Walter Tom Kemmer External self-contained water filter with direct mounting
USD943705S1 (en) * 2020-02-10 2022-02-15 Camco Manufacturing, Llc Water filter housing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3801492A (en) * 1970-05-18 1974-04-02 A King Apparatus for electrically treating liquids
JPH0724470A (ja) * 1993-07-05 1995-01-27 Nippon Bitsugu Toizu Kk 複合回転流式浄水器
JPH07155748A (ja) * 1993-12-03 1995-06-20 Norihiro Okumura 浄化イオン水発生器及び浄化イオン水の発生方法
CN2506631Y (zh) * 2001-08-30 2002-08-21 张仁本 液态物质的磁能活化处理单元
CN202671312U (zh) * 2012-06-01 2013-01-16 长沙晟高环保科技有限公司 一种旋流过滤器
CN104176787A (zh) * 2010-03-05 2014-12-03 周耀周 具有手动切换机构的流体处理装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540848A (en) * 1994-12-13 1996-07-30 Vortex Corporation Filter retainer for water purification unit
US6254772B1 (en) * 1998-01-15 2001-07-03 Yiu Chau Chau Backwashable filtration system
JP2000093978A (ja) * 1998-09-28 2000-04-04 Baaku Japan:Kk 浄化活性化装置
CA2448758A1 (en) * 2001-05-30 2002-12-05 Hydro Municipal Technologies, Ltd. A fluid treatment apparatus
US6776905B2 (en) * 2002-08-02 2004-08-17 Jen-Pen Chang Magnetizing and activating processing unit for liquid material
US7208084B2 (en) * 2004-09-07 2007-04-24 T.F.H. Publications, Inc. Modular aquarium filter
KR100731763B1 (ko) * 2005-12-01 2007-06-22 주식회사 거산 정수기용 여과기의 물활성화장치
JP3158110U (ja) * 2009-11-30 2010-03-18 インテグリス・インコーポレーテッド フィルタ装置
CN102190337B (zh) * 2010-03-05 2014-09-03 周耀周 具有手动切换机构的流体处理装置
CN102190336B (zh) * 2010-03-08 2014-11-26 周耀周 流体处理单元、流体处理组件以及流体处理装置
US20120223001A1 (en) * 2011-03-04 2012-09-06 Baldwin Filters, Inc. Filter and center tube with helical fin
KR20120122842A (ko) * 2011-04-29 2012-11-07 주식회사 장수로 생체 활성수 생성기
DE202011051098U1 (de) * 2011-08-11 2011-11-08 Jonathan Mitschke Vorrichtung zur Verbesserung der Qualität von Trink- und/oder Brauchwasser
CN202355921U (zh) * 2011-10-26 2012-08-01 曹佳惠 外接式水质处理器
CN202671273U (zh) * 2012-08-04 2013-01-16 淄博盛金磁铁制造有限公司 一种磁能活化器
CN104418410B (zh) * 2013-08-29 2017-11-10 吉林天士力矿泉饮品有限公司 水分子团簇重整反应装置
US10286338B2 (en) * 2014-01-13 2019-05-14 Spiral Water Technologies, Inc. Flow control features for fluid filtration device and methods
US10207206B2 (en) * 2014-06-18 2019-02-19 Yiu Chau Chau Liquid processing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3801492A (en) * 1970-05-18 1974-04-02 A King Apparatus for electrically treating liquids
JPH0724470A (ja) * 1993-07-05 1995-01-27 Nippon Bitsugu Toizu Kk 複合回転流式浄水器
JPH07155748A (ja) * 1993-12-03 1995-06-20 Norihiro Okumura 浄化イオン水発生器及び浄化イオン水の発生方法
CN2506631Y (zh) * 2001-08-30 2002-08-21 张仁本 液态物质的磁能活化处理单元
CN104176787A (zh) * 2010-03-05 2014-12-03 周耀周 具有手动切换机构的流体处理装置
CN202671312U (zh) * 2012-06-01 2013-01-16 长沙晟高环保科技有限公司 一种旋流过滤器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3636598A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11471794B2 (en) 2019-02-11 2022-10-18 Watts Regulator Co. Filter cartridge for a whole house water filtering system
US11725781B2 (en) 2019-02-11 2023-08-15 Watts Regulator Co. Pressure relief cover assembly
US11745127B2 (en) 2019-02-11 2023-09-05 Watts Regulator Co. Controller for a manifold assembly in a water filter system

Also Published As

Publication number Publication date
EP3636598A4 (en) 2021-01-13
CN110785382A (zh) 2020-02-11
CN110785382B (zh) 2022-12-30
US11058972B2 (en) 2021-07-13
EP3636598A1 (en) 2020-04-15
US20200114283A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
WO2018223276A1 (zh) 液体处理装置
US7407589B2 (en) Method and apparatus for preventing scale deposits and removing contaminants from fluid columns
US6852235B2 (en) Method and apparatus for preventing scale deposits and removing contaminants from fluid columns
JP5384829B2 (ja) 流体処理方法および装置
US8784667B2 (en) Method for preventing scale deposits and removing contaminants from fluid columns
US8454837B2 (en) Systems and methods for generation of low zeta potential mineral crystals to enhance quality of liquid solutions
CN103864161B (zh) 一种利用渐缩孔板产生水力空化灭活水体中微生物的装置
CA2886410C (en) Devices and methods for storing, processing, and delivering a processed liquid
CN203976546U (zh) 超纯水废水处理装置
FR2697537A1 (fr) Traitement des liquides par induction électromagnétique.
WO2017029568A1 (es) Aparato y método para el control microbiológico de fluidos mediante campos eléctricos y magnéticos generados a partir de corriente eléctrica alterna de bajo voltaje y baja frecuencia
RU139264U1 (ru) Судовая установка для очистки балластных вод от биологических загрязнений электрохимическим способом
CN205528287U (zh) 一种环境微生物降解排放净化装置
CN204211571U (zh) 一种家用高效净水装置
CN207958038U (zh) 一种新型净水设备
US20060175255A1 (en) Systems and methods for generation of low zeta potential mineral crystals and hydrated electrons to enhance the quality of liquid solutions
CN207933176U (zh) 应用于冷却水系统的废水回收系统
JP6650560B2 (ja) 水処理装置
WO1995013853A1 (en) Water treatment device
BR102017012876A2 (pt) estação compacta de tratamento de água e composição para tratamento de água
CN214612018U (zh) 可改善人体病源的养身活化水装置
CN211813905U (zh) 一种用于矿泉水的净化消毒设备
CA2963964A1 (en) Portable device for water treatment
Shahid Desalination and water treatment using the bubble column evaporator
BR102013028502A2 (pt) sistema de dessalinização de água a partir da utilização de um mineral, e, processo de dessalinização de água a partir da utilização de um mineral

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017913010

Country of ref document: EP

Effective date: 20200107